1
|
Chen Q, Zhang J, Liu X, Xu K, Guo H, Li Y, Liang J, Li Y, Liang L. Exploring the protective effects of Qiju Granule in a rat model of dry age-related macular degeneration. Exp Gerontol 2024; 196:112556. [PMID: 39197675 DOI: 10.1016/j.exger.2024.112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
AIM The aim of this study was to evaluate the potential protective effect of Qiju Granule in a rat model of age-related macular degeneration (AMD) and investigate the underlying mechanisms involved. METHODS Rats were injected intravenously with 40 mg/kg of sodium iodate (SI) to induce a dry AMD model. The rats in the treatment group received three different doses of Qiju Granule once a day via gavage, while the rats in the control group were given an equal volume of physiological saline. On day 14 and day 28 following the intervention, various methods were employed to evaluate retinal function and structure, including electroretinography (ERG), optical coherence tomography (OCT), and histological examination. The expression of glial fibrillary acidic protein (GFAP), basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) was assessed via immunofluorescence. Beyond immunofluorescence, the mRNA levels of bFGF, BDNF, and CNTF were quantitatively determined using real-time polymerase chain reaction (qRT-PCR). RESULTS Rats treated with Qiju Granule exhibited significant improvements in both retinal function and structure compared to the model group. The most noteworthy effects were observed at a high dose of Qiju Granule. Furthermore, the expression levels of bFGF, BDNF, and CNTF were significantly unregulated in the treated groups compared to the model group. CONCLUSIONS Qiju Granule demonstrated a protective effect on the retina in the SI-induced rat model of AMD. The protective mechanism may be attributed to the upregulation of retinal neurotrophic factors expression.
Collapse
Affiliation(s)
- Qiang Chen
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Jing Zhang
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Xinyu Liu
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Kai Xu
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Huiyi Guo
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Yamin Li
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Jie Liang
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China
| | - Yanying Li
- Increasepharm (Beijing) Innovative Medicine Institute Limited, Beijing, China
| | - Lina Liang
- Laboratory of Eye Function, China Academy of Chinese Medical Sciences Eye hospital, Beijing, China.
| |
Collapse
|
2
|
Bauer D, Böhm MRR, Wu X, Wang B, Jalilvand TV, Busch M, Kasper M, Brockhaus K, Wildschütz L, Melkonyan H, Laffer B, Meyer Zu Hörste G, Heiligenhaus A, Thanos S. Crystallin β-b2 promotes retinal ganglion cell protection in experimental autoimmune uveoretinitis. Front Cell Neurosci 2024; 18:1379540. [PMID: 39318470 PMCID: PMC11419989 DOI: 10.3389/fncel.2024.1379540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Crystallin βb2 (crybb2) is upregulated in regenerating retinas and in various pathological conditions of the retina, including uveoretinitis. However, the role of crybb2 in this disease is largely unknown. Therefore, we used recombinant crybb2 (rcrybb2) as intravitreal treatment of B10.RIII mice prior to immunization with human interphotoreceptor retinoid-binding protein peptide 161-180 (hIRBPp161-180) in complete Freund's adjuvant (CFA) and concomitant injection of pertussis toxin (PTX) to induce experimental autoimmune uveoretinitis (EAU). In naïve mice, more beta III-tubulin (TUBB3) + and RNA-binding protein with multiple splicing (RBPMS) + cells were found in the ganglion cell layer of the retina than in EAU eyes, suggesting a loss of retinal ganglion cells (RGC) during the development of EAU. At the same time, the number of glial fibrillary acidic protein (GFAP) + cells increased in EAU eyes. RGCs were better protected in EAU eyes treated with rcrybb2, while the number of GFAP+ cells decreased. However, in retinal flatmounts, both retinal ganglion cells and retinal endothelial cells stained positive for TUBB3, indicating that TUBB3 is present in naïve B10.RIII mouse eyes not exclusive to RGCs. A significant decline in the number of RBPMS-positive retinal ganglion cells was observed in retinal flatmounts from EAU retinas in comparison to naïve retinas or EAU retinas with intravitreal rcrybb2 treatment. Whereas no significant decrease in TUBB3 levels was detected using Western blot and RT-qPCR, GFAP level, as a marker for astrocytes, increased in EAU mice compared to naïve mice. Level of Bax and Bcl2 in the retina was altered by treatment, suggesting better cell survival and inhibition of apoptosis. Furthermore, our histologic observations of the eyes showed no change in the incidence and severity of EAU, nor was the immune response affected by intravitreal rcrybb2 treatment. Taken together, these results suggest that intravitreal injection of rcrybb2 reduces retinal RGC death during the course of EAU, independent of local or systemic autoimmune responses. In the future, treating posterior uveitis with rcrybb2 to protect RGCs may offer a promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Dirk Bauer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Michael R. R. Böhm
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
- Institute for Experimental Ophthalmology, Westfalian-Wilhelms-University of Münster, Münster, Germany
- Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Xiaoyu Wu
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Bo Wang
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Tida Viola Jalilvand
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
- Institute for Experimental Ophthalmology, Westfalian-Wilhelms-University of Münster, Münster, Germany
| | - Martin Busch
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Maren Kasper
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Katrin Brockhaus
- Institute for Experimental Ophthalmology, Westfalian-Wilhelms-University of Münster, Münster, Germany
- Institute for Physiological Biochemistry, Westfalian-Wilhelms-University of Münster, Münster, Germany
| | - Lena Wildschütz
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Harutyun Melkonyan
- Institute for Experimental Ophthalmology, Westfalian-Wilhelms-University of Münster, Münster, Germany
| | - Björn Laffer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | | | - Arnd Heiligenhaus
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
- Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Solon Thanos
- Institute for Experimental Ophthalmology, Westfalian-Wilhelms-University of Münster, Münster, Germany
| |
Collapse
|
3
|
Lakshmanan Y, Wong FSY, So KF, Chan HHL. Lycium barbarum glycopeptide promotes neuroprotection in ET-1 mediated retinal ganglion cell degeneration. J Transl Med 2024; 22:727. [PMID: 39103918 PMCID: PMC11302070 DOI: 10.1186/s12967-024-05526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/20/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Vascular dysregulation is one of the major risk factors of glaucoma, and endothelin-1 (ET-1) may have a role in the pathogenesis of vascular-related glaucoma. Fruit extract from Lycium Barbarum (LB) exhibits anti-ageing and multitarget mechanisms in protecting retinal ganglion cells (RGC) in various animal models. To investigate the therapeutic efficacy of LB glycoproteins (LbGP) in ET-1 induced RGC degeneration, LbGP was applied under pre- and posttreatment conditions to an ET-1 mouse model. Retina structural and functional outcomes were characterised using clinical-based techniques. METHODS Adult C57BL/6 mice were randomly allocated into four experimental groups, namely vehicle control (n = 9), LbGP-Pretreatment (n = 8), LbGP-Posttreatment (day 1) (n = 8) and LbGP-Posttreatment (day 5) (n = 7). Oral administration of LbGP 1 mg/Kg or PBS for vehicle control was given once daily. Pre- and posttreatment (day 1 or 5) were commenced at 1 week before and 1 or 5 days after intravitreal injections, respectively, and were continued until postinjection day 28. Effects of treatment on retinal structure and functions were evaluated using optical coherence tomography (OCT), doppler OCT and electroretinogram measurements at baseline, post-injection days 10 and 28. RGC survival was evaluated by using RBPMS immunostaining on retinal wholemounts. RESULTS ET-1 injection in vehicle control induced transient reductions in arterial flow and retinal functions, leading to significant RNFL thinning and RGC loss at day 28. Although ET-1 induced a transient loss in blood flow or retinal functions in all LbGP groups, LbGP treatments facilitated better restoration of retinal flow and retinal functions as compared with the vehicle control. Also, all three LbGP treatment groups (i.e. pre- and posttreatments from days 1 or 5) significantly preserved thRNFL thickness and RGC densities. No significant difference in protective effects was observed among the three LbGP treatment groups. CONCLUSION LbGP demonstrated neuroprotective effects in a mouse model of ET-1 induced RGC degeneration, with treatment applied either as a pretreatment, immediate or delayed posttreatment. LbGP treatment promoted a better restoration of retinal blood flow, and protected the RNFL, RGC density and retinal functions. This study showed the translational potential of LB as complementary treatment for glaucoma management.
Collapse
Affiliation(s)
- Yamunadevi Lakshmanan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Francisca Siu Yin Wong
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau (GHM) Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Henry Ho-Lung Chan
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China.
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
4
|
Zhu J, Chen H, Wu J, Li S, Lin W, Wang N, Bai L. Ferroptosis in Glaucoma: A Promising Avenue for Therapy. Adv Biol (Weinh) 2024; 8:e2300530. [PMID: 38411382 DOI: 10.1002/adbi.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Glaucoma, a blind-leading disease largely since chronic pathological intraocular high pressure (ph-IOP). Hitherto, it is reckoned incurable for irreversible neural damage and challenges in managing IOP. Thus, it is significant to develop neuroprotective strategies. Ferroptosis, initially identified as an iron-dependent regulated death that triggers Fenton reactions and culminates in lipid peroxidation (LPO), has emerged as a focal point in multiple tumors and neurodegenerative diseases. Researches show that iron homeostasis play critical roles in the optic nerve (ON) and retinal ganglion cells (RGCs), suggesting targeted treatments could be effective. In glaucoma, apart from neural lesions, disrupted metal balance and increased oxidative stress in trabecular meshwork (TM) are observed. These disturbances lead to extracellular matrix excretion disorders, known as sclerotic mechanisms, resulting in refractory blockages. Importantly, oxidative stress, a significant downstream effect of ferroptosis, is also a key factor in cell senescence. It plays a crucial role in both the etiology and risk of glaucoma. Moreover, ferroptosis also induces non-infectious inflammation, which exacerbate glaucomatous injury. Therefore, the relevance of ferroptosis in glaucoma is extensive and multifaceted. In this review, the study delves into the current understanding of ferroptosis mechanisms in glaucoma, aiming to provide clues to inform clinical therapeutic practices.
Collapse
Affiliation(s)
- Jingyun Zhu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Hui Chen
- Department of Geriatrics, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, China
| | - Jian Wu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Sen Li
- Department of Spinal Surgery, Drum Tower Hospital, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu, 210008, China
| | - Wanying Lin
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Ningli Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 8, East Chongwenmennei Street, Dongcheng District, Beijing, 100005, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
5
|
Amankwa CE, Acha LG, Dibas A, Chavala SH, Roth S, Mathew B, Acharya S. Neuroprotective and Anti-Inflammatory Activities of Hybrid Small-Molecule SA-10 in Ischemia/Reperfusion-Induced Retinal Neuronal Injury Models. Cells 2024; 13:396. [PMID: 38474360 PMCID: PMC10931063 DOI: 10.3390/cells13050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, SA-10, to assess its therapeutic potential for ocular stroke. METHODS To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1β and IFN-γ for 1 h, followed by the addition of SA-10 (10 µM). Inhibition of microglial activation, ROS scavenging, cytoprotective and anti-inflammatory activities were measured. In vivo I/R-injured mouse retinas were treated with either PBS or SA-10 (2%) intravitreally, and pattern electroretinogram (ERG), spectral-domain optical coherence tomography, flash ERG and retinal immunocytochemistry were performed. RESULTS SA-10 significantly inhibited microglial activation and inflammation in vitro. Compared to the control, the compound SA-10 significantly attenuated cell death in both microglia (43% vs. 13%) and R28 cells (52% vs. 17%), decreased ROS (38% vs. 68%) production in retinal microglia cells, preserved neural retinal function and increased SOD1 in mouse eyes. CONCLUSION SA-10 is protective to retinal neurons by decreasing oxidative stress and inflammatory cytokines.
Collapse
Affiliation(s)
- Charles E. Amankwa
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Lorea Gamboa Acha
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Adnan Dibas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sai H. Chavala
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Biji Mathew
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (L.G.A.); (S.R.)
| | - Suchismita Acharya
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (A.D.); (S.H.C.)
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
6
|
Yu M, Zhao S. Functional role of translocator protein and its ligands in ocular diseases (Review). Mol Med Rep 2024; 29:33. [PMID: 38186312 PMCID: PMC10804439 DOI: 10.3892/mmr.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
The 18 kDa translocator protein (TSPO) is an essential outer mitochondrial membrane protein that is responsible for mitochondrial transport, maintenance of mitochondrial homeostasis and normal physiological cell function. The role of TSPO in the pathogenesis of ocular diseases is a growing area of interest. More notably, TSPO exerts positive effects in regulating various pathophysiological processes, such as the inflammatory response, oxidative stress, steroid synthesis and modulation of microglial function, in combination with a variety of specific ligands such as 1‑(2‑chlorophenyl‑N‑methylpropyl)‑3‑isoquinolinecarboxamide, 4'‑chlorodiazepam and XBD173. In the present review, the expression of TSPO in ocular tissues and the functional role of TSPO and its ligands in diverse ocular diseases was discussed.
Collapse
Affiliation(s)
- Mingyi Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 30384, P.R. China
| |
Collapse
|
7
|
Spurlock M, An W, Reshetnikova G, Wen R, Wang H, Braha M, Solis G, Kurtenbach S, Galindez OJ, de Rivero Vaccari JP, Chou TH, Porciatti V, Shestopalov VI. The Inflammasome-Dependent Dysfunction and Death of Retinal Ganglion Cells after Repetitive Intraocular Pressure Spikes. Cells 2023; 12:2626. [PMID: 37998361 PMCID: PMC10670000 DOI: 10.3390/cells12222626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1β (IL-1β) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1-/-, Casp1-/-, and GsdmD-/- knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death.
Collapse
Affiliation(s)
- Markus Spurlock
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Weijun An
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Galina Reshetnikova
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Rong Wen
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Hua Wang
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Michelle Braha
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Gabriela Solis
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Orlando J. Galindez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Juan Pablo de Rivero Vaccari
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Dvoriantchikova G, Fleishaker M, Ivanov D. Molecular mechanisms of NMDA excitotoxicity in the retina. Sci Rep 2023; 13:18471. [PMID: 37891222 PMCID: PMC10611720 DOI: 10.1038/s41598-023-45855-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
NMDA excitotoxicity, as a part of glutamate excitotoxicity, has been proposed to contribute significantly to many retinal diseases. Therefore, understanding mechanisms of NMDA excitotoxicity will provide further insight into the mechanisms of many retinal diseases. To study mechanisms of NMDA excitotoxicity in vivo, we used an animal model in which NMDA (20 mM, 2 µL) was injected into the vitreous of mice. We also used high-throughput expression profiling, various animals with reduced expression of target genes, and animals treated with the oral iron chelator deferiprone. We found that the expression of many genes involved in inflammation, programmed cell death, free radical production, oxidative stress, and iron and calcium signaling was significantly increased 24 h after NMDA treatment. Meanwhile, decreased activity of the pro-inflammatory TNF signaling cascade and decreased levels of ferrous iron (Fe2+, required for free radical production) led to significant neuroprotection in NMDA-treated retinas. Since increased TNF signaling activity and high Fe2+ levels trigger regulated necrosis, which, in turn, lead to inflammation, we proposed an important role in NMDA excitotoxicity of a positive feedback loop in which regulated necrosis promotes inflammation, which subsequently triggers regulated necrosis.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Miami, FL, 33136, USA
| | - Michelle Fleishaker
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Miami, FL, 33136, USA
| | - Dmitry Ivanov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Miami, FL, 33136, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
Xue J, Lin J, Liu Z, Zhang Q, Tang J, Han J, Wu S, Liu C, Zhao L, Li Y, Zhuo Y. Alleviating early demyelination in ischaemia/reperfusion by inhibiting sphingosine-1-phosphate receptor 2 could protect visual function from impairment. Brain Pathol 2023; 33:e13161. [PMID: 37142391 PMCID: PMC10467042 DOI: 10.1111/bpa.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Retinal ischaemia/reperfusion (I/R) injury is a common cause of retinal ganglion cell (RGC) apoptosis and axonal degeneration, resulting in irreversible visual impairment. However, there are no available neuroprotective and neurorestorative therapies for retinal I/R injury, and more effective therapeutic approaches are needed. The role of the myelin sheath of the optic nerve after retinal I/R remains unknown. Here, we report that demyelination of the optic nerve is an early pathological feature of retinal I/R and identify sphingosine-1-phosphate receptor 2 (S1PR2) as a therapeutic target for alleviating demyelination in a model of retinal I/R caused by rapid changes in intraocular pressure. Targeting the myelin sheath via S1PR2 protected RGCs and visual function. In our experiment, we observed early damage to the myelin sheath and persistent demyelination accompanied by S1PR2 overexpression after injury. Blockade of S1PR2 by the pharmacological inhibitor JTE-013 reversed demyelination, increased the number of oligodendrocytes, and inhibited microglial activation, contributing to the survival of RGCs and alleviating axonal damage. Finally, we evaluated the postoperative recovery of visual function by recording visual evoked potentials and assessing the quantitative optomotor response. In conclusion, this study is the first to reveal that alleviating demyelination by inhibiting S1PR2 overexpression may be a therapeutic strategy for retinal I/R-related visual impairment.
Collapse
Affiliation(s)
- Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Schmetterer L, Tezel G, Schuman J. Neville Osborne - Editor-in-Chief of Progress in Retinal and Eye Research for 40 years. Prog Retin Eye Res 2023; 96:101194. [PMID: 37473797 DOI: 10.1016/j.preteyeres.2023.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Academic Clinical Program, Duke-NUS Medical School, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Joel Schuman
- Wills Eye Hospital, Department of Ophthalmology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
11
|
Zhang K, Wang T, Sun GF, Xiao JX, Jiang LP, Tou FF, Qu XH, Han XJ. Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion. Free Radic Biol Med 2023; 205:47-61. [PMID: 37253410 DOI: 10.1016/j.freeradbiomed.2023.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Retinal ischemia/reperfusion (I/R) injury is a common pathological process responsible for cellular damage in glaucoma, diabetic retinopathy and hypertensive retinopathy. Metformin is a biguanide drug that exerts strong effects on multiple diseases. This study aims to evaluate the protective effect of metformin against retinal I/R injury and its underlying mechanism. I/R induced reduction in retina thickness and cell number in ganglion cell layer, and metformin alleviated I/R-induced retinal injury. Both retinal I/R and simulated ischemia/reperfusion (SIR) in R28 cells down-regulated expression of mitochondrial fusion protein Mfn2 and OPA1, which led to mitochondrial fission. Metformin also alleviated damage in R28 cells, and reversed the alteration in Mfn2 and OPA1, mitochondrial fission and mitochondrial membrane potential (MMP) disruption-induced by I/R or SIR as well. Intriguingly, inhibition of AMPK by compound C or siRNA prevented metformin-mediated up-regulation of Mfn2 and OPA1. Compound C and knockdown of Mfn2 or OPA1 dramatically alleviated the protective effect of metformin against intracellular ROS generation, MMP disruption, mitochondrial fission and loss of RGCs in ganglion cell layer induced by SIR or I/R. Moreover, scavenging mitochondrial ROS (mito-ROS) by mito-TEMPO exerted the similar protection against I/R-induced retinal injury or SIR-induced damage in R28 cells as metformin. Our data show for the first time that metformin protects against retinal I/R injury through AMPK-mediated mitochondrial fusion and the decreased mito-ROS generation. These findings might also repurpose metformin as a therapeutic agent for retinal I/R injury.
Collapse
Affiliation(s)
- Kun Zhang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Ophthalmology, Shenzhen People's Hospital & the Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, PR China
| | - Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Gui-Feng Sun
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jin-Xing Xiao
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Li-Ping Jiang
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Fang-Fang Tou
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Xin-Hui Qu
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; The Second Department of Neurology, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China; The Second Department of Neurology, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
12
|
Lakshmanan Y, Wong FSY, Chan HHL. Long-Term Effects on Retinal Structure and Function in a Mouse Endothelin-1 Model of Retinal Ganglion Cell Degeneration. Invest Ophthalmol Vis Sci 2023; 64:15. [PMID: 37561449 PMCID: PMC10424801 DOI: 10.1167/iovs.64.11.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Purpose To study the long-term effects of endothelin-1 (ET-1)-induced retinal pathologies in mouse, using clinically relevant tools. Methods Adult C57BL/6 mice (7-9 weeks old) were intravitreally injected with PBS (n = 10) or 0.25 (n = 8), 0.5 (n = 8), or 1 nmol ET-1 (n = 9) and examined using electroretinogram, optical coherence tomography (OCT), and Doppler OCT at baseline and postinjection days 10, 28, and 56. Retinal ganglion cell (RGC) survival in retinal whole mount was quantified at days 28 and 56. Results ET-1 induced immediate retinal arterial constriction. The significantly reduced total blood flow and positive scotopic threshold response in the 0.5- and 1-nmol ET-1 groups at day 10 were recovered at day 28. A-wave magnitude was also significantly reduced at days 10 and 28. While a comparable and significant reduction in retinal nerve fiber layer thickness was detected in all ET-1 groups at day 56, the 1-nmol group was the earliest to develop such change at day 28. All ET-1 groups showed a transient inner retinal layer thinning at days 10 and 28 and a plateaued outer layer thickness at days 10 to 56. The 1-nmol group showed a significant RGC loss over all retinal locations examined at day 28 as compared with PBS control. As for the lower-dosage groups, significant RGC density loss at central and midperipheral retina was detected at day 56 when compared with day 28. Conclusions ET-1 injection in mice resulted in a transient vascular constriction and reduction in retinal functions, as well as a gradual loss of retinal nerve fiber layer and RGC in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | - Henry Ho-Lung Chan
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong
- Laboratory of Experimental Optometry (Neuroscience), School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong SAR, China
- University Research Facilities in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
13
|
Wang X, Zhu X, Huang G, Wu L, Meng Z, Wu Y. Knockout of PERK protects rat Müller glial cells against OGD-induced endoplasmic reticulum stress-related apoptosis. BMC Ophthalmol 2023; 23:286. [PMID: 37353739 DOI: 10.1186/s12886-023-03022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND The pathological basis for many retinal diseases, retinal ischemia is also one of the most common causes of visual impairment. Numerous ocular diseases have been linked to Endoplasmic reticulum(ER)stress. However, there is still no clear understanding of the relationship between ER stress and Müller glial cells during retinal ischemia and hypoxia. This study examined the effects of ER stress on autophagy and apoptosis-related proteins, as well as the microtubule-related protein tau in rMC-1 cells. METHODS rMC-1 cells were cultured in vitro. RT-PCR、immunofluorescence and Western blotting revealed the expression levels of associated mRNAs and proteins, and the CCK-8 and flow cytometry assays detected cell apoptosis. RESULTS The results showed that under OGD(Oxygen-glucose deprivation) conditions, the number of rMC-1 cells was decreased, the PERK/eIF2a pathway was activated, and the expressions of p-tau, LC3、Beclin1 and Caspase-12 proteins were increased. After the PERK knockout, the expression of the above proteins was decreased, and the apoptosis was also decreased. CONCLUSION According to the findings of this study, specific downregulation of PERK expression had an anti-apoptotic effect on OGD-conditioned rMC-1 cells. There is a possibility that this is one of the mechanisms of MG cell apoptosis during retinal ischemic injury.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Ophthalmology, Second Affiliated Hospital of Fujian Medical University, No.950, Donghai Street, Quanzhou, 362000, Fujian Province, China
| | - Xinxing Zhu
- Department of Ophthalmology, Second Affiliated Hospital of Fujian Medical University, No.950, Donghai Street, Quanzhou, 362000, Fujian Province, China
| | - Guangqian Huang
- Department of Ophthalmology, Second Affiliated Hospital of Fujian Medical University, No.950, Donghai Street, Quanzhou, 362000, Fujian Province, China
| | - Lili Wu
- Department of Ophthalmology, Second Affiliated Hospital of Fujian Medical University, No.950, Donghai Street, Quanzhou, 362000, Fujian Province, China
| | - Zhiyong Meng
- Department of Ophthalmology, Second Affiliated Hospital of Fujian Medical University, No.950, Donghai Street, Quanzhou, 362000, Fujian Province, China
| | - Yuyu Wu
- Department of Ophthalmology, Second Affiliated Hospital of Fujian Medical University, No.950, Donghai Street, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
14
|
Lv J, Gao R, Wang Y, Huang C, Wu R. Protective effect of leukemia inhibitory factor on the retinal injury induced by acute ocular hypertension in rats. Exp Ther Med 2022; 25:19. [PMID: 36561619 PMCID: PMC9748713 DOI: 10.3892/etm.2022.11717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is one of the leading causes of irreversible blindness worldwide. As such, neuroprotective therapy is essential for the treatment of this disease. Leukemia inhibitory factor (LIF) is a member of the IL-6 cytokine family and the LIF signaling pathway is considered to be one of the major endogenous factors mediating neuroprotection in the retina. Therefore, the present study aimed to investigate the possible effects of LIF in acute ocular hypertension (AOH). The intraocular pressure in rat eyes was raised to 110 mmHg for 1 h by infusing the anterior chamber with normal saline to establish the AOH model. In the treatment group, LIF was then injected into the vitreous cavity after AOH was ceased. The retinal tissues were obtained after the termination of AOH, and H&E staining was conducted to assess the morphological damage. The number of retinal ganglion cells (RGCs) was counted using the Fluoro-Gold retrograde staining method. TUNEL staining was used to determine the extent of apoptosis among the retinal cells. In addition, the protein expression levels of cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), STAT3 and components of the AKT/mTOR/70-kDa ribosomal protein S6 kinase (p70S6K) signaling pathway were examined by western blotting. The results showed that AOH induced tissue swelling and structural damage in the retina, which were reversed by LIF injection. In the LIF treatment group, RGC loss was significantly inhibited and the quantity of TUNEL-stained cells was also significantly reduced, whereas the expression of cleaved caspase-3 and PARP was decreased. Furthermore, increased phosphorylation of STAT3, AKT, mTOR and p70S6K was observed after LIF treatment. By contrast, pretreatment with the STAT3 inhibitor C188-9 or the PI3K/AKT/mTOR inhibitor LY3023414 reversed the LIF-induced inhibition of RGC loss. These results suggested that exogenous LIF treatment inhibited the retinal damage induced by AOH, which was associated with the activation of STAT3 and mTOR/p70S6K signaling. Therefore, LIF may serve a role in neuroprotection for glaucoma treatment.
Collapse
Affiliation(s)
- Jiexuan Lv
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Ruxin Gao
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China
| | - Yao Wang
- Shaanxi Provincial Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Shaanxi Clinical Study Center for Ocular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Medical School, Northwest University, Xi'an, Shaanxi 710002, P.R. China
| | - Changquan Huang
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China,Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian 361001, P.R. China
| | - Renyi Wu
- Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361001, P.R. China,Fujian Provincial Key Laboratory of Corneal and Ocular Surface Diseases, Xiamen, Fujian 361001, P.R. China,Department of Glaucoma, Shanghai Peace Eye Hospital, Shanghai 200437, P.R. China,Correspondence to: Professor Renyi Wu, Eye Institute and Affiliated Xiamen Eye Center of Xiamen University, School of Medicine, Xiamen University, 336 Xiahe Road, Xiamen, Fujian 361001, P.R. China
| |
Collapse
|
15
|
Zhang M, Yang J, Ji K, He X, He T, Xing Y. Inhibition of p66Shc attenuates retinal ischemia-reperfusion injury-induced damage by activating the akt pathway. Exp Eye Res 2022; 220:109082. [PMID: 35513040 DOI: 10.1016/j.exer.2022.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/08/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Retinal ganglion cell (RGC) death is the direct cause of several optic neuropathies. Several studies have reported that the loss of p66Shc ameliorates neuronal injury and vascular abnormalities in ischemia-reperfusion (I/R) injury. However, whether p66Shc is involved in the loss of RGC remains unclear. Therefore, this study aimed to investigate the function of p66Shc due to retinal ischemia in mice. The retinal I/R model was constructed after an intravitreal injection of recombinant adeno-associated viruses (rAAV-EGFP or rAAV-p66Shc-EGFP) for 4 weeks. The expression of p66Shc was detected by western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining. The survival of RGCs was determined using immunofluorescence staining. Retinal function was analyzed based on electroretinogram (ERG) findings. Retinal cell apoptosis was detected by TdT-mediated dUTP nick-end labeling staining. The protein expressions of Akt, phospho-Akt, Bax, and PARP were analyzed by western blotting. After rAAVs were successfully transfected, enhanced green fluorescent protein was expressed in all retinal cell layers, and the level of p66Shc after I/R injury was successfully reduced. We found that inhibition of p66Shc expression remarkably decreased the death of RGCs and prevented the loss of ERG a- and b-wave amplitudes caused by retinal ischemia. Mechanistically, downregulation of p66Shc resulted in reduced Bax, whereas increased phospho-Akt and PARP. Taken together, our study revealed that p66Shc acts through the Akt pathway to protect RGCs from retinal I/R injury-induced apoptosis and retinal dysfunction, making p66Shc a possible therapeutic target for glaucoma treatment.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Jiayi Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Xuejun He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Hubei, China.
| |
Collapse
|
16
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Hirooka K, Kiuchi Y. The Retinal Renin-Angiotensin-Aldosterone System: Implications for Glaucoma. Antioxidants (Basel) 2022; 11:antiox11040610. [PMID: 35453295 PMCID: PMC9029628 DOI: 10.3390/antiox11040610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/26/2022] Open
Abstract
Aldosterone is one of the main effectors of the renin-angiotensin-aldosterone system (RAAS) along with having roles in hypertension, and cardiovascular and renal diseases. Recent evidence has also shown the presence of an active local RAAS within the human eye. It has been shown that at 12 h after a retinal ischemia-reperfusion injury, there is an upregulation of the protein levels of angiotensin II type 1 receptor (AT1-R) in the retina. Furthermore, at 12 h after reperfusion, there is an increase in reactive oxygen species (ROS) production in the retina that is mediated via an NADPH oxidase pathway. This ischemia-reperfusion injury-induced increase of retinal ROS levels and NADPH oxidase expression can be prevented by the administration of an AT1-R antagonist. This suggests that one of the main retinal ischemic injury pathways is via the local RAAS. It has also been reported that progressive retinal ganglion cell loss and glaucomatous optic nerve degeneration without elevated intraocular pressure occur after administration of local or systemic aldosterone. Elucidation of glaucoma pathogenesis, especially normal-tension glaucoma (NTG) subtype by our current animal model can be used for identifying potential therapeutic targets. Based on these results, we are further evaluating NTG prevalence among primary aldosteronism patients.
Collapse
|
18
|
Casson RJ. Medical therapy for glaucoma: A review. Clin Exp Ophthalmol 2022; 50:198-212. [PMID: 35037367 DOI: 10.1111/ceo.13989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
A number of pharmacological targets are exploited to modify the parameters in the Goldmann equation and reduce the intraocular pressure (IOP). This strategy constitutes the foundation for the medical management of glaucoma, the evolution of which, until only recently, has been in relative stagnation. A burst of innovation has produced new ocular hypotensive drugs and long-acting delivery methods, including intracameral delivery, which are expanding the clinician's medical armamentarium. A number of IOP-independent neuroprotection strategies have shown strong potential in animal models of glaucoma, but translational attempts have been surprisingly limited. However, while pharmacological options are expanding, the traditional role of topical medical therapy is being challenged by selective laser trabeculoplasty, micro-invasive glaucoma surgery, and sustained delivery methods. A scientifically rigorous assessment of new treatments will be critical to empower clinicians with evidence-based information to optimise vision preservation and quality of life outcomes for their patients.
Collapse
Affiliation(s)
- Robert J Casson
- Ophthalmic Research Laboratories, Adelaide Health & Medical Science Building, University of Adelaide, Adelaide, Australia.,Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
19
|
Neuroprotection of Retinal Ganglion Cells In Vivo Using the Activation of the Endogenous Cannabinoid Signaling System in Mammalian Eyes. Neuronal Signal 2022; 6:NS20210038. [PMID: 35233292 PMCID: PMC8850705 DOI: 10.1042/ns20210038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Cannabinoid and glutamatergic signaling systems in the human retina coexist and greatly influence one another. Under glaucomatous conditions, excess levels of glutamate accrete in the retinal ganglion cell (RGC) layer. The present study tests the putative neuroprotective effect mediated by cannabinoids at the CB1 and CB2 receptors. In the first experiment, mice were given intravitreal injections of 160 nmol N-methyl-d-aspartic acid (NMDA) in one eye and saline in the paired eye. In the second experiment, both eyes were given NMDA, while one of the two was additionally given the cannabinoid agonist WIN 55,212-2. Ten days later, animals were perfused and the retinae were dissected as wholemounts and stained with Cresyl Violet. Quantitative analysis revealed that 70% of the neurons in the retinal ganglion cell (RGC) layer exposed to NMDA underwent cell death. The addition of the cannabinoid CB1/CB2 agonist doubled the number of neurons surviving the NMDA treatment. These data provide evidence that cannabinoids, either exogenous or endogenous, may be harnessed to provide protection from neurodegenerative diseases, including glaucoma, and from glutamate-induced, and potentially other forms of neurotoxicity, under chronic or acute conditions.
Collapse
|
20
|
Differential susceptibility of retinal ganglion cell subtypes against neurodegenerative diseases. Graefes Arch Clin Exp Ophthalmol 2022; 260:1807-1821. [PMID: 35038014 DOI: 10.1007/s00417-022-05556-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/27/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Retinal ganglion cells (RGCs) are essential to propagate external visual information from the retina to the brain. Death of RGCs is speculated to be closely correlated with blinding retinal diseases, such as glaucoma and traumatic optic neuropathy (TON). Emerging innovative technologies have helped refine and standardize the classification of RGCs; at present, they are classified into more than 40 subpopulations in mammals. These RGC subtypes are identified by a combination of anatomical morphologies, electrophysiological functions, and genetic profiles. Increasing evidence suggests that neurodegenerative diseases do not collectively affect the RGCs. In fact, which RGC subtype exhibits the strongest or weakest susceptibility is hotly debated. Although a consensus has not yet been reached, it is certain that assorted RGCs display differential susceptibility against irreversible degeneration. Interestingly, a single RGC subtype can exhibit various vulnerabilities to optic nerve damage in diverse injury models. Thus, elucidating how susceptible RGC subtypes are to various injuries can protect vulnerable RGCs from damage and improve the possibility of preventing and treating visual impairment caused by neurodegenerative diseases. In this review, we summarize in detail the progress and status quo of research on the type-specific susceptibility of RGCs and point out current limitations and the possible directions for future research in this field.
Collapse
|
21
|
Chaudhry S, Dunn H, Carnt N, White A. Nutritional supplementation in the prevention and treatment of Glaucoma. Surv Ophthalmol 2021; 67:1081-1098. [PMID: 34896192 DOI: 10.1016/j.survophthal.2021.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Glaucoma is a chronic optic neuropathy that creates a significant burden on public health. Oxidative stress is hypothesised to play a role to glaucoma progression, and its reduction is being analysed as a therapeutic target. Dietary antioxidants play a crucial role in helping provide insight into this hypothesis. We reviewed 71 trials, interventional, I -vivo and I -vitro, including 11 randomised controlled trials, to determine if adjunctive nutritional supplementation could lead to a reduction in oxidative stress and prevent glaucomatous progression. Many laboratory findings show that vitamins and natural compounds contain an abundance of intrinsic antioxidative, neuroprotective and vasoprotective properties that show promise in the treatment and prevention of glaucoma. Although there is encouraging early evidence, most clincial findings are inconclusive. The group of B vitamins appear to have the greatest amount of evidence. Other compounds such as flavonoids, carotenoids, curcumin, saffron, CoQ10, Ggngko Biloba and Resveratrol however warrant further investigation in glaucoma patients. Studies of these antioxidants and other nutrients could create adjunctive or alternative preventative and treatment modalities for glaucoma to those currently available.
Collapse
Key Words
- AA, Ascorbic acid
- ARMD, Age Related Macular Degeneration
- CoQ10, Coenzyme Q10
- GON, Glaucomatous Optic Neuropathy
- Hcy, Homocysteine
- IOP, Intraocular pressure
- NO, Nitric Oxide
- NOS, Nitric Oxide Synthase
- NTG, Normal Tension Glaucoma
- POAG, Primary open angle Glaucoma;PEXG, Exfoliation Glaucoma
- PVD Primary vascular dysregulation
- RGC, Retinal Ganglion Cells
- ROS, Reactive Oxygen Species
- SC, Schlemm's Canal
- TM Trabecular Meshwork
- Vitamins, Nutrients, Glaucoma, Supplements, Reactive Oxygen Species, Open Angle Glaucoma, Trabecular Meshwork, Retinal Ganglion Cells, Oxidative Stress. Abbreviations
Collapse
Affiliation(s)
- Sarah Chaudhry
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia.
| | - Hamish Dunn
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead and Central Clinical Schools, Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia; Save Sight Institute, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Nicole Carnt
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead Institute of Medical Research, Westmead, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew White
- Westmead Hospital, Westmead, Sydney, New South Wales, Australia; Westmead and Central Clinical Schools, Discipline of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Westmead Institute of Medical Research, Westmead, New South Wales, Australia; Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia; Save Sight Institute, Sydney Medical School, University of Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Huang H, Kuang X, Zhu X, Cheng H, Zou Y, Du H, Tang H, Zhou L, Zeng J, Liu H, Yan J, Long C, Shen H. Maintaining blood retinal barrier homeostasis to attenuate retinal ischemia-reperfusion injury by targeting the KEAP1/NRF2/ARE pathway with lycopene. Cell Signal 2021; 88:110153. [PMID: 34571190 DOI: 10.1016/j.cellsig.2021.110153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Retinal ischemia-reperfusion (I/R) often results in intractable visual impairments, where blood retinal barrier (BRB) homeostasis mediated by retinal pigment epithelium (RPE) and retinal microvascular endothelium (RME) is crucial. However, strategies targeting the BRB are limited. Thus, we investigated the inconclusive effect of lycopene (LYC) in retinal protection under I/R. LYC elevated cellular viability and reversed oxidative stress in aRPE-19 cells/hRME cells under I/R conditions based on oxygen-glucose deprivation (OGD) in vitro. Molecular analysis showed that LYC promoted NRF2 expression and enhanced the downstream factors of the KEAP1/NRF2/ARE pathway: LYC increased the activities of antioxidants, including SOD and CAT, whereas it enhanced the mRNA expression of HO-1 (ho-1) and NQO-1 (nqo-1). The activation resulted in restrained ROS and MDA. On the other hand, LYC ameliorated the damage to retinal function and morphology in a mouse I/R model, which was established by unilateral ligation of the left pterygopalatine artery/external carotid artery and reperfusion. LYC promoted the expression of NRF2 in both the neural retina and the RPE choroid in vivo. This evidence revealed the potential of LYC in retinal protection under I/R, uncovering the pharmacological effect of the KEAP1/NRF2/ARE pathway in BRB targeting. The study generates new insights into scientific practices in retinal research.
Collapse
Affiliation(s)
- Hao Huang
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xielan Kuang
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaobo Zhu
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hao Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuxiu Zou
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Han Du
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Han Tang
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Linbin Zhou
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jingshu Zeng
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijun Liu
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jianhua Yan
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chongde Long
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Huangxuan Shen
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
23
|
Country MW, Jonz MG. Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (Carassius auratus). J Exp Biol 2021; 224:271844. [PMID: 34402511 DOI: 10.1242/jeb.242634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/11/2021] [Indexed: 01/20/2023]
Abstract
Neurons of the retina require oxygen to survive. In hypoxia, neuronal ATP production is impaired, ATP-dependent ion pumping is reduced, transmembrane ion gradients are dysregulated, and intracellular Ca2+ concentration ([Ca2+]i) increases enough to trigger excitotoxic cell death. Central neurons of the common goldfish (Carassius auratus) are hypoxia tolerant, but little is known about how goldfish retinas withstand hypoxia. To study the cellular mechanisms of hypoxia tolerance, we isolated retinal interneurons (horizontal cells; HCs), and measured [Ca2+]i with Fura-2. Goldfish HCs maintained [Ca2+]i throughout 1 h of hypoxia, whereas [Ca2+]i increased irreversibly in HCs of the hypoxia-sensitive rainbow trout (Oncorhynchus mykiss) with just 20 min of hypoxia. Our results suggest mitochondrial ATP-dependent K+ channels (mKATP) are necessary to stabilize [Ca2+]i throughout hypoxia. In goldfish HCs, [Ca2+]i increased when mKATP channels were blocked with glibenclamide or 5-hydroxydecanoic acid, whereas the mKATP channel agonist diazoxide prevented [Ca2+]i from increasing in hypoxia in trout HCs. We found that hypoxia protects against increases in [Ca2+]i in goldfish HCs via mKATP channels. Glycolytic inhibition with 2-deoxyglucose increased [Ca2+]i, which was rescued by hypoxia in a mKATP channel-dependent manner. We found no evidence of plasmalemmal KATP channels in patch-clamp experiments. Instead, we confirmed the involvement of KATP in mitochondria with TMRE imaging, as hypoxia rapidly (<5 min) depolarized mitochondria in a mKATP channel-sensitive manner. We conclude that mKATP channels initiate a neuroprotective pathway in goldfish HCs to maintain [Ca2+]i and avoid excitotoxicity in hypoxia. This model provides novel insight into the cellular mechanisms of hypoxia tolerance in the retina.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, ON, CanadaK1N 6N5
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, CanadaK1N 6N5.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, CanadaK1H 8M5
| |
Collapse
|
24
|
Park SA, Komáromy AM. Biomechanics of the optic nerve head and sclera in canine glaucoma: A brief review. Vet Ophthalmol 2021; 24:316-325. [PMID: 34402566 DOI: 10.1111/vop.12923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/04/2021] [Accepted: 07/25/2021] [Indexed: 01/17/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness, a progressive optic neuropathy with retinal ganglion cell (RGC) death beginning in the optic nerve head (ONH). A primary risk factor for developing glaucoma is elevated intraocular pressure (IOP). Reducing IOP is the only treatment proven to be effective at delaying disease progression. Nevertheless, even when patients have their IOP reduced, the majority of them continue to lose vision. There are, in both humans and dogs, significant interindividual variabilities in susceptibilities to IOP-induced optic nerve damage. Vision loss progresses much more slowly in Beagles with open-angle glaucoma (OAG) caused by ADAMTS10 mutation. This can be attributed to the mutation-related altered ocular biomechanical properties. The principal site of optic nerve (ON) damage in glaucoma is the ONH. It is suggested that the biomechanical properties of the ONH and the surrounding peripapillary sclera (PPS) contribute to glaucoma development and progression. As far as the beneficial biomechanical properties of the ONH and PPS for a decreased susceptibility and slow progression of glaucoma, data are inconsistent and conflicting. Recent biomechanical studies on beagles with ADAMTS10 mutation demonstrated that the mutant dogs have mechanically weak posterior sclera. This weakness was associated with a reduced collagen density and a lower proportion of insoluble collagen. These changes, observed before glaucoma development, were considered intrinsic characteristics caused by the mutation rather than a secondary effect of IOP elevation. Further studies of ADAMTS10-OAG may elucidate the effects of altered biomechanical properties of ONH and PPS in determining the glaucoma progression.
Collapse
Affiliation(s)
- Shin Ae Park
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
25
|
Shestopalov VI, Spurlock M, Gramlich OW, Kuehn MH. Immune Responses in the Glaucomatous Retina: Regulation and Dynamics. Cells 2021; 10:1973. [PMID: 34440742 PMCID: PMC8391899 DOI: 10.3390/cells10081973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Glaucoma is a multifactorial disease resulting in progressive vision loss due to retinal ganglion cell (RGC) dysfunction and death. Early events in the pathobiology of the disease include oxidative, metabolic, or mechanical stress that acts upon RGC, causing these to rapidly release danger signals, including extracellular ATP, resulting in micro- and macroglial activation and neuroinflammation. Danger signaling also leads to the formation of inflammasomes in the retina that enable maturation of proinflammatory cytokines such IL-1β and IL-18. Chronic neuroinflammation can have directly damaging effects on RGC, but it also creates a proinflammatory environment and compromises the immune privilege of the retina. In particular, continuous synthesis of proinflammatory mediators such as TNFα, IL-1β, and anaphylatoxins weakens the blood-retina barrier and recruits or activates T-cells. Recent data have demonstrated that adaptive immune responses strongly exacerbate RGC loss in animal models of the disease as T-cells appear to target heat shock proteins displayed on the surface of stressed RGC to cause their apoptotic death. It is possible that dysregulation of these immune responses contributes to the continued loss of RGC in some patients.
Collapse
Affiliation(s)
- Valery I. Shestopalov
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Kharkevich Institute for Information Transmission Problems, RAS, 127051 Moscow, Russia
| | - Markus Spurlock
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Oliver W. Gramlich
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Markus H. Kuehn
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Baicalein, Baicalin, and Wogonin: Protective Effects against Ischemia-Induced Neurodegeneration in the Brain and Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8377362. [PMID: 34306315 PMCID: PMC8263226 DOI: 10.1155/2021/8377362] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).
Collapse
|
27
|
Luo LJ, Nguyen DD, Lai JY. Harnessing the tunable cavity of nanoceria for enhancing Y-27632-mediated alleviation of ocular hypertension. Theranostics 2021; 11:5447-5463. [PMID: 33859757 PMCID: PMC8039939 DOI: 10.7150/thno.54525] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Y-27632 is a potent ophthalmic drug for the treatment of ocular hypertension, a globally prevalent eye disease. However, the sustained delivery of Y-27632 by a therapeutic carrier to lesion sites located in the inner segments of the eye for effectively treating the ocular disorder still remains challenging. Methods: To realize the goal, a strategy based on solvothermal-assisted deposition/infiltration in combination with surface modification is utilized to synthesize hollow mesoporous ceria nanoparticles (HMCNs) with tailorable shell thicknesses and drug release profiles. The shell thickness of HMCNs is rationally exploited for achieving sustained drug release and advanced therapeutic benefits. Results: The shell thickness can regulate release profiles of Y-27632, displaying that thick and thin (~40 nm and ~10 nm) shelled HMCNs reveal burst release characteristics (within 2 days) or limited drug loading content (~10% for the 40 nm thick). As a compromise, the HMCNs with moderate shell thickness (~20 nm) possess the most sustained drug release over a period of 10 days. In a rabbit model of glaucoma, a single instillation of the optimized Y-27632-loaded HMCNs can effectively treat glaucoma for 10 days via simultaneously repairing the defected cornea (recovery of ~93% ATP1A1 mRNA levels), restoring the reduced thickness of outer nuclear layer to normal (~64 µm), and restoring ~86% of the impaired photoreceptor cells. Conclusion: A comprehensive study on the importance of HMCN shell thickness in developing long-acting nano eye drops for the efficient management of glaucoma is proposed. The findings suggest a central role of nanobiomaterial structural engineering in developing the long-life eye drops for pharmacological treatment of intraocular diseases.
Collapse
|
28
|
Shen J, Wang Y, Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp Eye Res 2021; 205:108506. [PMID: 33609512 DOI: 10.1016/j.exer.2021.108506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Glaucoma is a neuropathic disease that causes optic nerve damage, loss of retinal ganglion cells (RGCs), and visual field defects. Most glaucoma patients have no early signs or symptoms. Conventional pharmacological glaucoma medications and surgeries that focus on lowering intraocular pressure are not sufficient; RGCs continue to die, and the patient's vision continues to decline. Recent evidence has demonstrated that neuroprotective approaches could be a promising strategy for protecting against glaucoma. In the case of glaucoma, neuroprotection aims to prevent or slow down disease progression by mitigating RGCs death and optic nerve degeneration. Notably, new pharmacologic medications such as antiglaucomatous agents, antibiotics, dietary supplementation, novel neuroprotective molecules, neurotrophic factors, translational methods such as gene therapy and cell therapy, and electrical stimulation-based physiotherapy are emerging to attenuate the death of RGCs, or to make RGCs resilient to attacks. Understanding the roles of these interventions in RGC protection may offer benefits over traditional pharmacological medications and surgeries. In this review, we summarize the recent neuroprotective strategy for glaucoma, both in clinical trials and in laboratory research.
Collapse
Affiliation(s)
- Junhui Shen
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yuanqi Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China; Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
29
|
Souza Monteiro de Araújo D, De Logu F, Adembri C, Rizzo S, Janal MN, Landini L, Magi A, Mattei G, Cini N, Pandolfo P, Geppetti P, Nassini R, Calaza KDC. TRPA1 mediates damage of the retina induced by ischemia and reperfusion in mice. Cell Death Dis 2020; 11:633. [PMID: 32801314 PMCID: PMC7429961 DOI: 10.1038/s41419-020-02863-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress is implicated in retinal cell injury associated with glaucoma and other retinal diseases. However, the mechanism by which oxidative stress leads to retinal damage is not completely understood. Transient receptor potential ankyrin 1 (TRPA1) is a redox-sensitive channel that, by amplifying the oxidative stress signal, promotes inflammation and tissue injury. Here, we investigated the role of TRPA1 in retinal damage evoked by ischemia (1 hour) and reperfusion (I/R) in mice. In wild-type mice, retinal cell numbers and thickness were reduced at both day-2 and day-7 after I/R. By contrast, mice with genetic deletion of TRPA1 were protected from the damage seen in their wild-type littermates. Daily instillation of eye drops containing two different TRPA1 antagonists, an oxidative stress scavenger, or a NADPH oxidase-1 inhibitor also protected the retinas of C57BL/6J mice exposed to I/R. Mice with genetic deletion of the proinflammatory TRP channels, vanilloid 1 (TRPV1) or vanilloid 4 (TRPV4), were not protected from I/R damage. Surprisingly, genetic deletion or pharmacological blockade of TRPA1 also attenuated the increase in the number of infiltrating macrophages and in the levels of the oxidative stress biomarker, 4-hydroxynonenal, and of the apoptosis biomarker, active caspase-3, evoked by I/R. These findings suggest that TRPA1 mediates the oxidative stress burden and inflammation that result in murine retinal cell death. We also found that TRPA1 (both mRNA and protein) is expressed by human retinal cells. Thus, it is possible that inhibition of a TRPA1-dependent pathway could also attenuate glaucoma-related retinal damage.
Collapse
Affiliation(s)
- Daniel Souza Monteiro de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil.,Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Chiara Adembri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Stanislao Rizzo
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), Division of Ophthalmology, University of Florence, Florence, Italy
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, USA
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Nicoletta Cini
- General Laboratory, Careggi University Hospital, Florence, Italy
| | - Pablo Pandolfo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Karin da Costa Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
30
|
Nguyen DD, Luo LJ, Lai JY. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma. Acta Biomater 2020; 111:302-315. [PMID: 32428681 DOI: 10.1016/j.actbio.2020.04.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 01/02/2023]
Abstract
Structural designing of carriers with extended drug release profiles is critically important for achieving long-acting drug delivery systems toward efficient managements of chronic diseases. Here, we present a strategy to exploit the effects of the shell thickness of hollow poly(lactic acid) nanoparticles (HPLA NPs) in sustained glaucoma therapy. Formulations based on pilocarpine-loaded HPLA NPs with tailorable shell thickness ranging from 10 to 100 nm were shown to be highly compatible with human lens epithelial cells in vitro and with rabbit eyes in vivo. Specifically, shell thickness regulated the release of pilocarpine, with thick shells (~70 to 100 nm) providing sustained drug release performance but limited drug-loading efficiency, whereas ultrathin shells (~10 nm) induced the opposite effects. Remarkably, moderately thick shells (~40 nm) showed the most effective release profile of pilocarpine (above the therapeutic levels of ~10 µg/mL for over 56 days). In a rabbit model of glaucoma, single intracameral administration of an HPLA NP-based formulation with shell thickness of ~40 nm sustainably alleviated ocular hypertension for over 56 days, consequently protecting the structural integrity of the corneal endothelium, preserving the electrophysiological functions of the retina, and attenuating retinal and optic nerve degeneration in progressively glaucomatous eyes. The findings therefore implied a promising use of shell thickness effects in the development of long-acting drug delivery systems for pharmacological treatment of chronic ocular diseases. STATEMENT OF SIGNIFICANCE: Owing to their large surface areas and modifiable structures, nanoparticles have been considered as a promising platform for drug delivery; however, achieving drug nanocarrier systems with reduced burst release and sustained therapeutic efficacy remains challenges. This work presents the first report on rational design of hollow poly(lactic acid) nanocarriers for tailoring the structure-property-function relationships toward effective treatment of glaucoma. The shell thickness of the hollow nanocarriers is demonstrated to have influential impacts on pilocarpine encapsulation efficiency and release profile, indicating that the most sustained delivery performance (maintaining the release of pilocarpine above therapeutic level over 56 days) can be obtained for the polymeric nanoparticles with moderate shell thickness of ~40 nm.
Collapse
|
31
|
Naik S, Pandey A, Lewis SA, Rao BSS, Mutalik S. Neuroprotection: A versatile approach to combat glaucoma. Eur J Pharmacol 2020; 881:173208. [PMID: 32464192 DOI: 10.1016/j.ejphar.2020.173208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
In most retinal diseases, neuronal loss is the main cause of vision loss. Neuroprotection is the alteration of neurons and/or their environment to encourage the survival and function of the neurons, especially in environments that are deleterious to the neuronal health. The area of neuroprotection progresses with a therapeutically-based hope of improving vision and clinical outcomes for patients through the developments in neurotrophic therapy, antioxidative therapy, anti-excitotoxic, anti-ischemic, anti-inflammatory, and anti-apoptotic care. In this review, we summarize the various neuroprotection strategies for the treatment of glaucoma, genetics of glaucoma and the role of various nanoplatforms in the treatment of glaucoma.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka State, India.
| |
Collapse
|
32
|
Han L, Zhang M, Yang Z, Diao K, Jia X, Li M, Tian G. Huoxue-Tongluo-Lishui-Decoction is visual-protective against retinal ischemia-reperfusion injury. Pharmacotherapy 2020; 125:109998. [PMID: 32070875 DOI: 10.1016/j.biopha.2020.109998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
Retinal ischemia reperfusion injury (IRI) is a leading cause of visual impairment or blindness, and an effective way to prevent the visual loss needs to be developed. Although decades of clinical application of Huoxue-Tongluo-Lishui-Decoction (HTLD) has demonstrated its reliable clinical efficacy against retinal IRI, no convincing randomized controlled trials were conducted in humans or animals, and the associated mechanism still needs to be explored. To confirm the protective effect of HTLD against retinal IRI and to explore its underlying mechanisms, a standard retinal IRI animal model, randomized controlled trials, objective evaluation and examination methods were adopted in this study. Flash visual evoked potentials (F-VEP) was performed 8 weeks post-reperfusion. The results showed that the medium dose of HTLD had better treatment effects than low dose of HTLD. High dose of HTLD did not further improve visual function relative to medium dose of HTLD, but had poor performance in the latency of P2 wave. The angio-optical coherence tomography (angio-OCT) examination showed that retinal nerve fiber layer (RNFL) became edematous in the early stage, then the edema subsided, and RNFL became thinning in the late stage. HTLD reduced the swelling of RNFL in the early stage and prevented the thinning of RNFL in the late stage. Similar to F-VEP, medium dose of HTLD has the best neural-protective effects against retinal IRI. In mechanisms, HTLD treatment not only enhanced autophagy at 6 h after reperfusion, but extended the enhancing effect until at least 24 h. HTLD treatment significantly reduced the cleaved Caspase-3, cleaved PARP and Caspase-3 activity at 48 h after reperfusion. HTLD inhibited neuro-toxic cytokines expression in retinal IRI by modulating Akt/NF-kB signaling. HTLD treatment enhanced the expressions of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS), and lower the concentration of free glutamate in retina after reperfusion. The phosphorylation of iNOS increased significantly in retinal IRI at 6 h, and HTLD treatment suppressed the phosphorylation of Inducible nitric oxide synthetase (iNOS). In conclusion, HTLD is visual-protective against retinal IRI, and the regulation of autophagy, apoptosis and neuro-toxic mediators may be the underlying mechanisms. These findings may provide new ideas for the clinical treatment of retinal IRI related diseases.
Collapse
Affiliation(s)
- Longhui Han
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China; Tianjin Medical University Eye Hospital/Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China.
| | - Minglian Zhang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China.
| | - Zanzhang Yang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Ke Diao
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Xin Jia
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Mingran Li
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Genquan Tian
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| |
Collapse
|
33
|
Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang D, Wang X, Tian W, Dong X, Zhou L, Zhu X, Liu X, Fan N. scAAV2-Mediated C3 Transferase Gene Therapy in a Rat Model with Retinal Ischemia/Reperfusion Injuries. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:894-903. [PMID: 32382585 PMCID: PMC7200613 DOI: 10.1016/j.omtm.2020.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022]
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) death and axonal loss. Therefore, neuroprotection is important in treating glaucoma. In this study, we explored whether exoenzyme C3 transferase (C3)-based gene therapy could protect retinas in an ischemia/reperfusion (I/R) injury rat model. Self-complementary adeno-associated virus 2 (scAAV2) vectors encoding either C3 protein (scAAV2-C3) or enhanced green fluorescence protein (scAAV2-EGFP) were intravitreally delivered into both eyes of rats, and I/R models (acute ocular hypertension) were made in one eye of each rat at day 7 after the injection. The rats were divided into six groups: scAAV2-C3, scAAV2-C3 with I/R, scAAV2-EGFP, scAAV2-EGFP with I/R, blank control, and blank control with I/R. TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling), immunohistochemistry of cleaved caspase-3, NeuN and Brn-3a, and H&E staining were used to detect apoptotic cells and other changes in the retina. The results showed that scAAV2-C3 significantly reduced the number of apoptotic RGCs and decreased cell loss in the ganglion cell layer after I/R injury, and the I/R-injured retinas treated with scAAV2-C3 were the thickest in all I/R groups. These results suggest that scAAV2-mediated C3 gene therapy is able to protect the rat retina from I/R injury and has potential in the treatment of glaucoma in the future.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Xiaoguang Zhang
- Department of Medicine, Nanchang University, Nanchang 330006, China.,Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Danli Li
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Guo Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Daren Zhang
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Wenhong Tian
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Xiaoyan Dong
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial Hospital, Chengdu, Sichuan 610212, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.,Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial Hospital, Chengdu, Sichuan 610212, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China.,Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
34
|
Pereira-Figueiredo D, Brito R, Araújo DSM, Nascimento AA, Lyra ESB, Cheibub AMSS, Pereira Netto AD, Ventura ALM, Paes-de-Carvalho R, Calaza KC. Caffeine exposure ameliorates acute ischemic cell death in avian developing retina. Purinergic Signal 2020; 16:41-59. [PMID: 32078115 PMCID: PMC7166236 DOI: 10.1007/s11302-020-09687-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
In infants, the main cause of blindness is retinopathy of prematurity that stems in a hypoxic-ischemic condition. Caffeine is a psychoactive compound that at low to moderate concentrations, selectively inhibits adenosine A1 and A2A receptors. Caffeine exerts beneficial effects in central nervous system of adult animal models and humans, whereas it seems to have malefic effect on the developing tissue. We observed that 48-h exposure (during synaptogenesis) to a moderate dose of caffeine (30 mg/kg of egg) activated pro-survival signaling pathways, including ERK, CREB, and Akt phosphorylation, alongside BDNF production, and reduced retinal cell death promoted by oxygen glucose deprivation in the chick retina. Blockade of TrkB receptors and inhibition of CREB prevented caffeine protection effect. Similar signaling pathways were described in previously reported data concerning chemical preconditioning mechanism triggered by NMDA receptors activation, with low concentrations of agonist. In agreement to these data, caffeine increased NMDA receptor activity. Caffeine decreased the levels of the chloride co-transporter KCC2 and delayed the developmental shift on GABAA receptor response from depolarizing to hyperpolarizing. These results suggest that the caffeine-induced delaying in depolarizing effect of GABA could be facilitating NMDA receptor activity. DPCPX, an A1 adenosine receptor antagonist, but not A2A receptor inhibitor, mimicked the effect of caffeine, suggesting that the effect of caffeine occurs through A1 receptor blockade. In summary, an in vivo caffeine exposure could increase the resistance of the retina to ischemia-induced cell death, by triggering survival pathways involving CREB phosphorylation and BDNF production/TrkB activation.
Collapse
Affiliation(s)
- D. Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
| | - R. Brito
- Cellular Signaling and Metabolic Modulation Laboratory, Cellular and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niterói, RJ Brazil
| | - D. S. M. Araújo
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - A. A. Nascimento
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
| | - E. S. B. Lyra
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ Brazil
| | - A. M. S. S. Cheibub
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ Brazil
| | - A. D. Pereira Netto
- Fundamental and Applied Analytical Chemistry Laboratory (LAQAFA), Department of Analytical Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ Brazil
| | - A. L. M. Ventura
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
| | - R. Paes-de-Carvalho
- Laboratory of Cellular Neurobiology, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
| | - K. C. Calaza
- Neurobiology of the Retina Laboratory, Fluminense Federal University, Niterói, RJ Brazil
- Laboratory of Neurochemistry, Department of Neurobiology and Program of Neurosciences, Fluminense Federal University, Niterói, RJ Brazil
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
| |
Collapse
|
35
|
Sia PI, Wood JPM, Chidlow G, Casson R. Creatine is Neuroprotective to Retinal Neurons In Vitro But Not In Vivo. Invest Ophthalmol Vis Sci 2020; 60:4360-4377. [PMID: 31634394 DOI: 10.1167/iovs.18-25858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the neuroprotective properties of creatine in the retina using in vitro and in vivo models of injury. Methods Two different rat retinal culture systems (one containing retinal ganglion cells [RGC] and one not) were subjected to either metabolic stress, via treatments with the mitochondrial complex IV inhibitor sodium azide, or excitotoxic stress, via treatment with N-methyl-D-aspartate for 24 hours, in the presence or absence of creatine (0.5, 1.0, and 5.0 mM). Neuronal survival was assessed by immunolabeling for cell-specific antigens. Putative mechanisms of creatine action were investigated in vitro. Expression of creatine kinase (CK) isoenzymes in the rat retina was examined using Western blotting and immunohistochemistry. The effect of oral creatine supplementation (2%, wt/wt) on retinal and blood creatine levels was determined as well as RGC survival in rats treated with N-methyl-D-aspartate (NMDA; 10 nmol) or high IOP-induced ischemia reperfusion. Results Creatine significantly prevented neuronal death induced by sodium azide and NMDA in both culture systems. Creatine administration did not alter cellular adenosine triphosphate (ATP). Inhibition of CK blocked the protective effect of creatine. Retinal neurons, including RGCs, expressed predominantly mitochondrial CK isoforms, while glial cells expressed exclusively cytoplasmic CKs. In vivo, NMDA and ischemia reperfusion caused substantial loss of RGCs. Creatine supplementation led to elevated blood and retinal levels of this compound but did not significantly augment RGC survival in either model. Conclusions Creatine increased neuronal survival in retinal cultures; however, no significant protection of RGCs was evident in vivo, despite elevated levels of this compound being present in the retina after oral supplementation.
Collapse
Affiliation(s)
- Paul Ikgan Sia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John P M Wood
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Casson
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Elevated Intraocular Pressure Causes Abnormal Reactivity of Mouse Retinal Arterioles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9736047. [PMID: 31976030 PMCID: PMC6954472 DOI: 10.1155/2019/9736047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/27/2019] [Accepted: 11/27/2019] [Indexed: 11/20/2022]
Abstract
Objective Glaucoma is a leading cause of severe visual impairment and blindness. Although high intraocular pressure (IOP) is an established risk factor for the disease, the role of abnormal ocular vessel function in the pathophysiology of glaucoma gains more and more attention. We tested the hypothesis that elevated intraocular pressure (IOP) causes vascular dysfunction in the retina. Methods High IOP was induced in one group of mice by unilateral cauterization of three episcleral veins. The other group received sham surgery only. Two weeks later, retinal vascular preparations were studied by video microscopy in vitro. Reactive oxygen species (ROS) levels and expression of hypoxia markers and of prooxidant and antioxidant redox genes as well as of inflammatory cytokines were determined. Results Strikingly, responses of retinal arterioles to stepwise elevation of perfusion pressure were impaired in the high-IOP group. Moreover, vasodilation responses to the endothelium-dependent vasodilator, acetylcholine, were markedly reduced in mice with elevated IOP, while no differences were seen in response to the endothelium-independent nitric oxide donor, sodium nitroprusside. Remarkably, ROS levels were increased in the retinal ganglion cell layer including blood vessels. Expression of the NADPH oxidase isoform, NOX2, and of the inflammatory cytokine, TNF-α, was increased at the mRNA level in retinal explants. Expression of NOX2, but not of the hypoxic markers, HIF-1α and VEGF-A, was increased in the retinal ganglion cell layer and in retinal blood vessels at the protein level. Conclusion Our data provide first-time evidence that IOP elevation impairs autoregulation and induces endothelial dysfunction in mouse retinal arterioles. Oxidative stress and inflammation, but not hypoxia, appear to be involved in this process.
Collapse
|
37
|
Park JW, Sung MS, Ha JY, Guo Y, Piao H, Heo H, Park SW. Neuroprotective Effect of Brazilian Green Propolis on Retinal Ganglion Cells in Ischemic Mouse Retina. Curr Eye Res 2019; 45:955-964. [PMID: 31842625 DOI: 10.1080/02713683.2019.1705493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The current study was undertaken to investigate whether Brazilian green propolis (BGP) can increase the viability of retinal ganglion cells (RGCs) in ischemic mouse retina, and examined the possible mechanisms underlying this neuroprotection. MATERIALS AND METHODS C57BL/6J mice were subjected to constant elevation of intraocular pressure for 60 min to establish retinal ischemia-reperfusion injury. Mice then received saline or BGP (200 mg/kg) intraperitoneally once daily until sacrifice. The expression of hypoxia-inducing factor (HIF)-1α and glial fibrillary acidic protein (GFAP) and the level of histone acetylation were assessed at 1, 3, and 7 days after injury. The expression of Bax, Bcl-2, p53, NF-κB, Nrf2, and HO-1 were also analyzed at 3 days after injury. The neuroprotective effect of BGP treatment on RGC survival was evaluated using Brn3a immunohistochemical staining. RESULTS The expression of HIF-1α and GFAP was increased and the level of histone acetylation decreased in saline-treated ischemic retinas within 7 days. BGP treatment effectively attenuated the elevated expression of HIF-1α, GFAP, Bax, NF-κB and p53. The expression of Bcl-2, Nrf2, HO-1 and the level of histone acetylation increased by BGP treatment, resulting in a significant difference between BGP-treated and saline-treated retinas. Immunohistochemical staining for Brn3a also revealed that BGP treatment protected against RGC loss in ischemic retina. CONCLUSIONS Our results suggest that BGP has a neuroprotective effect on RGCs through the upregulation of histone acetylation, downregulation of apoptotic stimuli, and suppression of NF-κB mediated inflammatory pathway in ischemic retina. These findings suggest that BGP is a potential neuroprotective agent against RGC loss under oxidative stress.
Collapse
Affiliation(s)
| | - Mi Sun Sung
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Jun Young Ha
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Yue Guo
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Helong Piao
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Hwan Heo
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| | - Sang Woo Park
- Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital , Gwangju, South Korea
| |
Collapse
|
38
|
Sung MS, Heo H, Eom GH, Kim SY, Piao H, Guo Y, Park SW. HDAC2 Regulates Glial Cell Activation in Ischemic Mouse Retina. Int J Mol Sci 2019; 20:ijms20205159. [PMID: 31627491 PMCID: PMC6829428 DOI: 10.3390/ijms20205159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022] Open
Abstract
The current study was undertaken to investigate whether histone deacetylases (HDACs) can modulate the viability of retinal ganglion cells (RGCs) and the activity of glial cells in a mouse model of retinal ischemia-reperfusion (IR) injury. C57BL/6J mice were subjected to constant elevation of intraocular pressure for 60 min to induce retinal IR injury. Expression of macroglial and microglial cell markers (GFAP and Iba1), hypoxia inducing factor (HIF)-1α, and histone acetylation was analyzed after IR injury. To investigate the role of HDACs in the activation of glial cells, overexpression of HDAC1 and HDAC2 isoforms was performed. To determine the effect of HDAC inhibition on RGC survival, trichostatin-A (TSA, 2.5 mg/kg) was injected intraperitoneally. After IR injury, retinal GFAP, Iba1, and HIF-1α were upregulated. Conversely, retinal histone acetylation was downregulated. Notably, adenoviral-induced overexpression of HDAC2 enhanced glial activation following IR injury, whereas overexpression of HDAC1 did not significantly affect glial activation. TSA treatment significantly increased RGC survival after IR injury. Our results suggest that increased activity of HDAC2 is closely related to glial activation in a mouse model of retinal IR injury and inhibition of HDACs by TSA showed neuroprotective potential in retinas with IR injuries.
Collapse
Affiliation(s)
- Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Hwan Heo
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasungun 58128, Korea.
| | - So Young Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Helong Piao
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Yue Guo
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| |
Collapse
|
39
|
Lobanovskaya N, Zharkovsky A. A role of PSA-NCAM in the survival of retinal ganglion cells (RGCs) after kainic acid damage. Neurotoxicology 2019; 72:101-106. [DOI: 10.1016/j.neuro.2019.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
|
40
|
Bao Y, Liu F, Liu X, Huang M, He L, Ramakrishna S, Luo H, Hu H, Li H, Xu Y. Methyl 3,4-dihydroxybenzoate protects retina in a mouse model of acute ocular hypertension through multiple pathways. Exp Eye Res 2019; 181:15-24. [PMID: 30633922 DOI: 10.1016/j.exer.2019.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 01/04/2023]
Abstract
Methyl 3,4 dihydroxybenzoate (MDHB) is a small molecule that shows neuroprotective effects in vitro and in a photoreceptor-degenerative mouse model. Here we investigated whether MDHB protects retina in a mouse model of acute ocular hypertension (AOH) and explores the underlying mechanisms. AOH was induced in mice by increasing intraocular pressure to approximately 90 mmHg for 60 min, then MDHB or vehicle was intraperitoneally injected daily up to 7 days. Immunostaining and multi-electrode array recordings were performed to examine the structure and function of retinas receiving the treatments. Western-blotting was applied to test the expression of several proteins related to oxidative stress and brain-derived neurotrophic factor (BDNF)-initiated signaling. Results showed that AOH injury reduced the number of Brn3a-stained retinal ganglion cells (RGCs) and ChAT-amacrine cells; thinned the inner retinal layers and induced apoptosis. Physiologically, AOH decreased the response of OFF and ON-OFF RGCs. All of these changes were reversed by MDHB-treatment. Mechanistically, MDHB appeared to work on three parallel pathways: (1) MDHB decreased the production of reactive oxygen species, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and cytosol heme oxygenase 1 (HO-1); (2) It upregulated the expression of BDNF and its receptor tropomyosin-related kinase B (TrkB), and activated the downstream AKT pathways; (3) It inhibited reactive gliosis by reducing GFAP and Iba-1 expression. Thus our results suggest that MDHB protects retina against AOH injury by inhibiting oxidative stress, activating the BDNF/AKT signaling and inhibiting inflammatory pathways. Therefore, MDHB may serve as a promising candidate to treat retinal ischemia.
Collapse
Affiliation(s)
- Yiqin Bao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Feng Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Xiaobin Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Mi Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Liumin He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Seeram Ramakrishna
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China; Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Huiling Hu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518000, China.
| | - Hongying Li
- Department of Anatomy, School of Medicine, Jinan University, Guangzhou, China.
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.
| |
Collapse
|
41
|
Christiansen AT, Sørensen NB, Haanes KA, Blixt FW, la Cour M, Warfvinge K, Klemp K, Woldbye DPD, Kiilgaard JF. Neuropeptide Y treatment induces retinal vasoconstriction and causes functional and histological retinal damage in a porcine ischaemia model. Acta Ophthalmol 2018; 96:812-820. [PMID: 30218483 DOI: 10.1111/aos.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of intravitreal neuropeptide Y (NPY) treatment following acute retinal ischaemia in an in vivo porcine model. In addition, we evaluated the vasoconstrictive potential of NPY on porcine retinal arteries ex vivo. METHODS Twelve pigs underwent induced retinal ischaemia by elevated intraocular pressure clamping the ocular perfusion pressure at 5 mmHg for 2 hr followed by intravitreal injection of NPY or vehicle. After 4 weeks, retinas were evaluated functionally by standard and global-flash multifocal electroretinogram (mfERG) and histologically by thickness of retinal layers and number of ganglion cells. Additionally, the vasoconstrictive effects of NPY and its involved receptors were tested using wire myographs and NPY receptor antagonists on porcine retinal arteries. RESULTS Intravitreal injection of NPY after induced ischaemia caused a significant reduction in the mean induced component (IC) amplitude ratio (treated/normal eye) compared to vehicle-treated eyes. This reduction was accompanied by histological damage, where NPY treatment reduced the mean thickness of inner retinal layers and number of ganglion cells. In retinal arteries, NPY-induced vasoconstriction to a plateau of approximately 65% of potassium-induced constriction. This effect appeared to be mediated via Y1 and Y2, but not Y5. CONCLUSION In seeming contrast to previous in vitro studies, intravitreal NPY treatment caused functional and histological damage compared to vehicle after a retinal ischaemic insult. Furthermore, we showed for the first time that NPY induces Y1- and Y2- but not Y5-mediated vasoconstriction in retinal arteries. This constriction could explain the worsening in vivo effect induced by NPY treatment following an ischaemic insult and suggests that future studies on exploring the neuroprotective effects of NPY might focus on other receptors than Y1 and Y2.
Collapse
Affiliation(s)
- Anders T. Christiansen
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Nina B. Sørensen
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian A. Haanes
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Frank W. Blixt
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | - Morten la Cour
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research; Glostrup Research Institute; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - Kristian Klemp
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| | - David P. D. Woldbye
- Laboratory of Neural Plasticity; Department of Neuroscience; University of Copenhagen; Copenhagen Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology; Copenhagen University Hospital; Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
42
|
Nutritional supplementation in the treatment of glaucoma: A systematic review. Surv Ophthalmol 2018; 64:195-216. [PMID: 30296451 DOI: 10.1016/j.survophthal.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/02/2023]
Abstract
Current treatment strategies for glaucoma are limited to halting disease progression and do not restore lost visual function. Intraocular pressure is the main risk factor for glaucoma, and intraocular pressure-lowering treatment remains the mainstay of glaucoma treatment, but even successful intraocular pressure reduction does not stop the progression of glaucoma in all patients. We review the literature to determine whether nutritional interventions intended to prevent or delay the progression of glaucoma could prove to be a valuable addition to the mainstay of glaucoma therapy. A total of 33 intervention trials were included in this review, including 21 randomized controlled trials. These suggest that flavonoids exert a beneficial effect in glaucoma, particularly in terms of improving ocular blood flow and potentially slowing progression of visual field loss. In addition, supplements containing forskolin have consistently demonstrated the capacity to reduce intraocular pressure beyond the levels achieved with traditional therapy alone; however, despite the strong theoretical rationale and initial clinical evidence for the beneficial effect of dietary supplementation as an adjunct therapy for glaucoma, the evidence is not conclusive. More and better quality research is required to evaluate the role of nutritional supplementation in glaucoma.
Collapse
|
43
|
Mahaman YAR, Huang F, Kessete Afewerky H, Maibouge TMS, Ghose B, Wang X. Involvement of calpain in the neuropathogenesis of Alzheimer's disease. Med Res Rev 2018; 39:608-630. [PMID: 30260518 PMCID: PMC6585958 DOI: 10.1002/med.21534] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/11/2018] [Accepted: 07/29/2018] [Indexed: 01/02/2023]
Abstract
Alzheimer’s disease (AD) is the most common (60% to 80%) age‐related disease associated with dementia and is characterized by a deterioration of behavioral and cognitive capacities leading to death in few years after diagnosis, mainly due to complications from chronic illness. The characteristic hallmarks of the disease are extracellular senile plaques (SPs) and intracellular neurofibrillary tangles (NFTs) with neuropil threads, which are a direct result of amyloid precursor protein (APP) processing to Aβ, and τ hyperphosphorylation. However, many indirect underlying processes play a role in this event. One of these underlying mechanisms leading to these histological hallmarks is the uncontrolled hyperactivation of a family of cysteine proteases called calpains. Under normal physiological condition calpains participate in many processes of cells’ life and their activation is tightly controlled. However, with an increase in age, increased oxidative stress and other excitotoxicity assaults, this regulatory system becomes impaired and result in increased activation of these proteases involving them in the pathogenesis of various diseases including neurodegeneration like AD. Reviewed here is a pool of data on the implication of calpains in the pathogenesis of AD, the underlying molecular mechanism, and the potential of targeting these enzymes for AD therapeutics.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Henok Kessete Afewerky
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tanko Mahamane Salissou Maibouge
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bishwajit Ghose
- Department of Social Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Neurodegenerative Disorders, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
44
|
Yu C, Kim BS, Park M, Do YJ, Kong YY, Kim E. FAF1 mediates necrosis through JNK1-mediated mitochondrial dysfunction leading to retinal degeneration in the ganglion cell layer upon ischemic insult. Cell Commun Signal 2018; 16:56. [PMID: 30200976 PMCID: PMC6131785 DOI: 10.1186/s12964-018-0265-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Aberrant cell death induced by ischemic stress is implicated in the pathogenesis of ischemic diseases. Fas-associated factor 1 (FAF1) has been identified as a death-promoting protein. This study demonstrates that FAF1 functions in death signaling triggered by ischemic insult. METHODS The expression changes of FAF1 and phophorylated JNK1 were detected by Western blotting. Immunoprecipitation was employed to investigate protein-protein interaction. We determined the cell death using flow cytometry and lactate dehydrogenase release measurement. To validate the death-promoting role of FAF1 in the retina, we generated conditional retinal FAF1 knockout mice. We used hematoxylin and eosin staining to detect retinal cell death in retinal ganglion cell layer. RESULTS FAF1 was found to function upstream of c-Jun N-terminal kinase 1 (JNK1), followed by mitochondrial dysregulation and necrotic cell death processes upon ischemic insult. We investigated whether FAF1 is involved in the pathogenesis of ischemic diseases using a retinal ischemia model. Indeed, FAF1 potentiated necrosis through JNK1 activation upon ischemic stress in retinal cells demonstrating retinal ganglion-like character. Conditional FAF1 depletion attenuated JNK1 activation in the retinas of Dkk3-Cre;Faf1flox/flox mice and ameliorated death of retinal cells due to elevated intraocular pressure (IOP). CONCLUSIONS Our results show that FAF1 plays a key role in ischemic retinal damage and may be implicated in the pathogenesis of retinal ischemic disease.
Collapse
Affiliation(s)
- Changsun Yu
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Gilheung-gu, Yongin-si, Gyeonggi-do 16924 South Korea
| | - Bok-seok Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Minyoung Park
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
- BeyondBio Inc., Daejeon BioVenture Town, 1662, Yuseong-daero, Yuseong-gu, Daejeon, 34134 South Korea
| | - Yun-Ju Do
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Young-Yun Kong
- School of Biological Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| |
Collapse
|
45
|
Yap TE, Donna P, Almonte MT, Cordeiro MF. Real-Time Imaging of Retinal Ganglion Cell Apoptosis. Cells 2018; 7:E60. [PMID: 29914056 PMCID: PMC6025611 DOI: 10.3390/cells7060060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Monitoring real-time apoptosis in-vivo is an unmet need of neurodegeneration science, both in clinical and research settings. For patients, earlier diagnosis before the onset of symptoms provides a window of time in which to instigate treatment. For researchers, being able to objectively monitor the rates of underlying degenerative processes at a cellular level provides a biomarker with which to test novel therapeutics. The DARC (Detection of Apoptosing Retinal Cells) project has developed a minimally invasive method using fluorescent annexin A5 to detect rates of apoptosis in retinal ganglion cells, the key pathological process in glaucoma. Numerous animal studies have used DARC to show efficacy of novel, pressure-independent treatment strategies in models of glaucoma and other conditions where retinal apoptosis is reported, including Alzheimer’s disease. This may forge exciting new links in the clinical science of treating both cognitive and visual decline. Human trials are now underway, successfully demonstrating the safety and efficacy of the technique to differentiate patients with progressive neurodegeneration from healthy individuals. We review the current perspectives on retinal ganglion cell apoptosis, the way in which this can be imaged, and the exciting advantages that these future methods hold in store.
Collapse
Affiliation(s)
- Timothy E Yap
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Piero Donna
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Melanie T Almonte
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
| | - Maria Francesca Cordeiro
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK.
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK.
| |
Collapse
|
46
|
Methane Medicine: A Rising Star Gas with Powerful Anti-Inflammation, Antioxidant, and Antiapoptosis Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1912746. [PMID: 29743971 PMCID: PMC5878870 DOI: 10.1155/2018/1912746] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 12/23/2022]
Abstract
Methane, the simplest organic compound, was deemed to have little physiological action for decades. However, recently, many basic studies have discovered that methane has several important biological effects that can protect cells and organs from inflammation, oxidant, and apoptosis. Heretofore, there are two delivery methods that have been applied to researches and have been proved to be feasible, including the inhalation of methane gas and injection with the methane-rich saline. This review studies on the clinical development of methane and discusses about the mechanism behind these protective effects. As a new field in gas medicine, this study also comes up with some problems and prospects on methane and further studies.
Collapse
|
47
|
Tehrani S, Delf RK, Cepurna WO, Davis L, Johnson EC, Morrison JC. In Vivo Small Molecule Delivery to the Optic Nerve in a Rodent Model. Sci Rep 2018. [PMID: 29535357 PMCID: PMC5849600 DOI: 10.1038/s41598-018-22737-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small molecule delivery to the optic nerve would allow for exploration of molecular and cellular pathways involved in normal physiology and optic neuropathies such as glaucoma, and provide a tool for screening therapeutics in animal models. We report a novel surgical method for small molecule drug delivery to the optic nerve head (ONH) in a rodent model. In proof-of-principle experiments, we delivered cytochalasin D (Cyt D; a filamentous actin inhibitor) to the junction of the superior optic nerve and globe in rats to target the actin-rich astrocytic cytoskeleton of the ONH. Cyt D delivery was quantified by liquid chromatography and mass spectrometry of isolated optic nerve tissue. One day after Cyt D delivery, anterior ONH filamentous actin bundle content was significantly reduced as assessed by fluorescent-tagged phalloidin labeling, relative to sham delivery. Anterior ONH nuclear counts and axon-specific beta-3 tubulin levels, as well as peripapillary retinal ganglion cell layer nuclear counts were not significantly altered after Cyt D delivery relative to sham delivery. Lastly, the surgical delivery technique caused minimal observable axon degeneration up to 10 days post-surgery. This small molecule delivery technique provides a new approach to studying optic neuropathies in in vivo rodent models.
Collapse
Affiliation(s)
- Shandiz Tehrani
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA.
| | - R Katherine Delf
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - William O Cepurna
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Lauren Davis
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Elaine C Johnson
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - John C Morrison
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
48
|
Demir MN, Ekşioğlu Ü, Altay M, Tök Ö, Yilmaz FG, Acar MA, Duranay M, Duman S. Retinal nerve fiber layer thickness in chronic renal failure without diabetes mellitus. Eur J Ophthalmol 2018; 19:1034-8. [DOI: 10.1177/112067210901900621] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- M. Necati Demir
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara
| | - Ümit Ekşioğlu
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara
| | - Mustafa Altay
- Department of Internal Medicine, Ankara Training and Research Hospital, Ankara - Turkey
| | - Özlem Tök
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara
| | - F. Gül Yilmaz
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara
| | - Mehmet A. Acar
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara
| | - Murat Duranay
- Department of Internal Medicine, Ankara Training and Research Hospital, Ankara - Turkey
| | - Sunay Duman
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara
| |
Collapse
|
49
|
Kadzielawa K, Mathew B, Stelman CR, Lei AZ, Torres L, Roth S. Gene expression in retinal ischemic post-conditioning. Graefes Arch Clin Exp Ophthalmol 2018; 256:935-949. [PMID: 29504043 DOI: 10.1007/s00417-018-3905-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/30/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The pathophysiology of retinal ischemia involves mechanisms including inflammation and apoptosis. Ischemic post-conditioning (Post-C), a brief non-lethal ischemia, induces a long-term ischemic tolerance, but the mechanisms of ischemic post-conditioning in the retina have only been described on a limited basis. Accordingly, we conducted this study to determine the molecular events in retinal ischemic post-conditioning and to identify targets for therapeutic strategies for retinal ischemia. METHODS To determine global molecular events in ischemic post-conditioning, a comprehensive study of the transcriptome of whole retina was performed. We utilized RNA sequencing (RNA-Seq), a recently developed, deep sequencing technique enabling quantitative gene expression, with low background noise, dynamic detection range, and discovery of novel genes. Rat retina was subjected to ischemia in vivo by elevation of intraocular pressure above systolic blood pressure. At 24 h after ischemia, Post-C or sham Post-C was performed by another, briefer period of ischemia, and 24 h later, retinas were collected and RNA processed. RESULTS There were 71 significantly affected pathways in post-conditioned/ischemic vs. normals and 43 in sham post conditioned/ischemic vs. normals. Of these, 28 were unique to Post-C and ischemia. Seven biological pathways relevant to ischemic injury, in Post-C as opposed to sham Post-C, were examined in detail. Apoptosis, p53, cell cycle, JAK-STAT, HIF-1, MAPK and PI3K-Akt pathways significantly differed in the number as well as degree of fold change in genes between conditions. CONCLUSION Post-C is a complex molecular signaling process with a multitude of altered molecular pathways. We identified potential gene candidates in Post-C. Studying the impact of altering expression of these factors may yield insight into new methods for treating or preventing damage from retinal ischemic disorders.
Collapse
Affiliation(s)
- Konrad Kadzielawa
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Biji Mathew
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Clara R Stelman
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Arden Zhengdeng Lei
- Center for Research Bioinformatics, University of Illinois at Chicago, Chicago, IL, USA
| | - Leianne Torres
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Anesthesiology, MC 515, University of Illinois Medical Center, 1740 West Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
50
|
Abstract
Glaucoma is a leading cause of blindness and visual impairment. Treatments that lower intraocular pressure (IOP) tend to delay progression of the condition. However, the target IOP cannot be achieved with monotherapy in many patients. If monotherapy adequately controls IOP and is well tolerated, it should not be changed, but if the therapy is only partially effective, a combination may be used. Combination therapy is eventually needed in many cases of glaucoma. Combinations may be given as adjunctive or preferably as fixed therapies. The mechanism of action and contraindications of the constituent agents should be taken into account when prescribing combinations, for optimal safety and efficacy. As treatment choice expands, prescribing patterns are changing worldwide. Fixed combination therapies are increasingly prescribed in Europe in particular for the treatment of glaucoma. They should be administered according to the current evidence-based guidelines.
Collapse
Affiliation(s)
- C. Traverso
- Ophthalmology Clinic, University of Genova, Genova - Italy
| |
Collapse
|