1
|
Wenzel C, Elbert VK, Haug S, Voigt K, Weber F, Balasopoulou V, Roden E, Zablotski Y, Meissner M, Knubben-Schweizer G. Establishment of the complete life cycle of Calicophoron daubneyi under experimental conditions. Vet Parasitol 2025; 334:110391. [PMID: 39818125 DOI: 10.1016/j.vetpar.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
The complex life cycle of the rumen fluke Calicophoron daubneyi is similar to that of the liver fluke Fasciola hepatica. Interestingly, C. daubneyi and F. hepatica share the same intermediate host, Galba truncatula. However, in contrast to its relative, experimental production of metacercariae is a major challenge for C. daubneyi, hampering a detailed analysis of its life cycle, especially in the definitive host. G. truncatula snails collected from natural habitats were bred in glass Petri dishes and fed dried organic lettuce leaves. C. daubneyi eggs were obtained from feces of naturally infected cattle and incubated until miracidia were hatching. Subsequently, these miracidia were allowed to infect snails, which were kept under specific laboratory conditions to monitor the shedding of metacercariae. In total, 177 G. truncatula snails were exposed to C. daubneyi miracidia during eleven snail infection trials. Sixty-eight of these snails survived for longer than 30 days post-infection (p.i.). From day 35 p.i., seven snails from five trials started shedding an average number of 106 metacercariae (range: 38-186) per snail. Three ewe lambs (aged 7-10 months) were inoculated orally with 150 metacercariae each. A different batch of metacercariae (obtained from three different snail trials) was used for each lamb. Another two lambs served as controls. All animals were regularly examined clinically, hematologically and coproscopically, using sedimentation techniques for the detection of trematode eggs. Low numbers of C. daubneyi eggs were detected in fecal samples of two of the three inoculated lambs on day 86 post-inoculation (yielding ≤ 2 epg), but only one lamb continued to shed eggs (up to 6 epg) until the end of the experiment (day 104 post-inoculation). None of the animals showed any abnormal clinical findings or blood parameters throughout the course of the study. Production of C. daubneyi metacercariae under laboratory conditions is reported, followed by experimental infection of the definitive host, thus completing the full life cycle of this parasite under experimental conditions. However, neither the survival rate of the snails nor the amount of metacercariae produced were comparable to previously published experiments using F. hepatica, necessitating further optimization of the laboratory protocols. Nevertheless, the results can serve as a starting point for more in-depth studies of this increasingly important trematode.
Collapse
Affiliation(s)
- Christoph Wenzel
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleißheim, Germany.
| | - Verena K Elbert
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleißheim, Germany.
| | - Sandra Haug
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleißheim, Germany.
| | - Katja Voigt
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleißheim, Germany.
| | - Frank Weber
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleißheim, Germany.
| | - Viktoria Balasopoulou
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleißheim, Germany.
| | - Eva Roden
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleißheim, Germany.
| | - Yury Zablotski
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleißheim, Germany.
| | - Markus Meissner
- Chair for Experimental Parasitology, Ludwig-Maximilians-Universität München, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany.
| | - Gabriela Knubben-Schweizer
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität München, Sonnenstrasse 16, 85764 Oberschleißheim, Germany.
| |
Collapse
|
2
|
Ali MH, Hossain MS, Labony SS, Dey AR, Paul J, Khan MAHNA, Alim MA, Anisuzzaman. Conventional and Advanced Methods Used for the Diagnosis of Fascioliosis, a Food-Borne Zoonotic Disease. J Parasitol Res 2025; 2025:1353367. [PMID: 39816526 PMCID: PMC11732280 DOI: 10.1155/japr/1353367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
Fascioliosis is a food-borne zoonotic helminth infection caused by flatworms belonging to the family Fasciolidae, primarily affecting ruminants. The chronic form of fascioliosis is the most prevalent and is characterized by anemia, weight loss, cirrhosis, and liver dysfunction, along with atrophy, jaundice, and bottle jaw. In humans, infection results in fever, nausea, skin rashes, and severe abdominal pain. Climate changes and human-driven environmental alterations have contributed to an increasing incidence of fascioliosis in various regions. Fasciola species are widely distributed and have a high occurrence in tropical countries. Approximately 2.4-17 million humans are afflicted by fascioliosis in tropical and subtropical areas, with an additional 180 million facing the risk of infection. Fascioliosis poses a notable threat to ruminants; over 700 million production animals are at risk, and global annual financial losses surpass $3.2 billion. Conventional coprological methods and advanced molecular techniques are employed to diagnose fascioliosis in animals and humans. Within endemic areas, timely and accurate diagnosis is critical for successful prevention and treatment. Molecular approaches such as various PCR techniques and serological methods are extensively utilized to diagnose fascioliosis. In this review, we describe various conventional coprological and advanced DNA-based PCR techniques along with serological methods used for the screening, monitoring, and specific diagnosis of clinical and subclinical fascioliosis in humans and animals. The information accumulated in this review will be helpful for the diagnosis of fascioliosis in the field and research laboratories.
Collapse
Affiliation(s)
- Md Haydar Ali
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Pathology and Parasitology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md. Shahadat Hossain
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sharmin Shahid Labony
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Anita Rani Dey
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Joydeep Paul
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | | | - Md. Abdul Alim
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Anisuzzaman
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
3
|
Soler P, Gurevitz JM, Morales JM, Larroza M. Modeling the effects of water temperature on the population dynamics of Galba viatrix and infection by Fasciola hepatica: a two-year survey in Andean Patagonia, Argentina. PeerJ 2024; 12:e18648. [PMID: 39717044 PMCID: PMC11665429 DOI: 10.7717/peerj.18648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
Background The trematode parasite Fasciola hepatica (liver fluke) can infect livestock, wild mammals, and humans, generating serious economic losses worldwide. Aquatic or amphibious snails of the Lymnaeidae family are the intermediate host of this parasite. Both snail population dynamics and parasite development are closely associated with temperature, although most field studies have recorded air temperature rather than water temperature. Our aim was to statistically model the population dynamics of lymnaeid snails and their infection by F. hepatica under natural environmental conditions in Northwest Andean Patagonia. Methods For two years, we sampled snails monthly in four bodies of water, while registering water and air temperature hourly, and assessing F. hepatica infection in snails. Hierarchical Bayesian modeling allowed us to estimate the functional relationship between water temperature and population growth, the probability of detecting snails, and infection by F. hepatica. Results A total of 1,411 Galba viatrix snails were collected, identified, and analyzed for F. hepatica infection. All sites showed seasonal variation in the number of snails collected and in water temperature as well as sharp variations in snail counts between surveys adjacent in time. The hierarchical model revealed that water temperature acts, at least, at two different time scales: water temperature at the time of sampling determines snail detection probability, whereas the average water temperature between sampling dates affects lymnaeid population growth. We found maximum F. hepatica prevalences in snails of 40% (2/5 and 4/10), followed by 33% (65/197). These are the highest prevalences recorded in G. viatrix populations in Argentina to date. Our modeling evidenced that the positive effects of water temperature on infection probability increases with snail size and prevalence on the previous survey, while previous prevalence strongly enhances the effects of snail size. Conclusions Our results underscore the high temporal and spatial variability in the population of snails and the prevalence of F. hepatica, as well as the major impact temperature has on detecting snails. Our models provide quantifications of the effects of water temperature on the population growth of G. viatrix, its detection, and infection under natural field conditions. These are crucial steps towards generating mechanistic models of F. hepatica transmission that would facilitate the design and simulation of potential interventions based on treatments and on environmental and livestock management, taking into account the specific characteristics of each region.
Collapse
Affiliation(s)
- Paula Soler
- Grupo de Salud Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), San Carlos de Bariloche, Río Negro, Argentina
- INTA-CONICET, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), Río Negro, Argentina
| | - Juan Manuel Gurevitz
- Universidad Nacional del Comahue–CONICET, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Río Negro, Argentina
| | - Juan Manuel Morales
- Universidad Nacional del Comahue–CONICET, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Río Negro, Argentina
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Marcela Larroza
- Grupo de Salud Animal, Instituto Nacional de Tecnología Agropecuaria (INTA), San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
4
|
Dowling A, Lawrence KE, Scott I, Howe L, Pomroy WE. The use of a Bayesian latent class model to estimate the test characteristics of three liver fluke diagnostic tests under New Zealand field conditions. Vet Parasitol 2024; 332:110305. [PMID: 39293340 DOI: 10.1016/j.vetpar.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
The liver fluke Fasciola hepatica is a trematode parasite of farmed livestock with worldwide distribution, causing chronic production losses and possible death from hepatobiliary damage. The effective management of liver fluke infection requires diagnostic tests which can accurately identify infected animals at both the individual and herd level. However, the accuracy of liver fluke diagnostic tests performed on individual New Zealand cattle is currently unknown. The aim of this study was to use a Bayesian latent class model (LCM) to estimate the test characteristics of three liver fluke diagnostic tests, the coproantigen ELISA, the IDEXX antibody ELISA and the faecal egg count. One hundred and twenty dairy cows each from two dairy farms were blood and faecal sampled in April 2021. The samples were transported to Massey University, Palmerston North, and the three diagnostic tests completed following the respective manufacturer instructions. A Bayesian LCM model, adapted from the original Hui and Walter 2 tests 2 populations model, was built to estimate the test characteristics of the three diagnostic tests in the two dairy herds. The model was implemented in JAGS using Markov chain Monte Carlo sampling. The first 30,000 iterations were discarded as burn-in, and the next 200,000 iterations were used to construct the posterior distributions. Uninformed priors, beta (1,1), were used as the prior distributions for the prevalence estimation and informed beta priors, based on published results, were used as the prior distributions for estimating the sensitivity and specificity of each diagnostic test. Model convergence was confirmed by inspection of trace plots and examination of the results of the Gelman and Rubin test. The results found that the coproantigen ELISA test was the most accurate for diagnosing liver fluke infection in individual animals with a sensitivity = 0.98 (95 % CI 0.95-1.00) and specificity = 0.95 (95 % CI 0.81-1.00) compared to the IDEXX antibody ELISA test, sensitivity = 0.39 (95 % CI 0.32-0.47) and specificity = 0.86 (95 % CI 0.75-0.96) or the FEC, sensitivity = 0.23 (95 % CI 0.17-0.30) and specificity = 0.92 (95 % CI 0.86-0.97). Based on these results clinicians should be encouraged to use the coproantigen ELISA test to diagnose liver fluke infection in individual cattle.
Collapse
Affiliation(s)
- A Dowling
- PGG Wrightson Limited, 1 Robin Mann Place, Christchurch, New Zealand.
| | - K E Lawrence
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - I Scott
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - L Howe
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - W E Pomroy
- School of Veterinary Science, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
5
|
Gunyakti Kilinc S, Kesik HK, Celik F, Simsek S. First report and molecular characterisation of an adult liver fluke (Fasciola hepatica) in a brown bear (Ursus arctos) in Türkiye. Vet Parasitol Reg Stud Reports 2024; 56:101142. [PMID: 39550192 DOI: 10.1016/j.vprsr.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024]
Abstract
Fascioliasis, caused by the parasite Fasciola hepatica, is a worldwide zoonotic disease that can have serious consequences for livestock, certain wild animals and humans. This study was conducted to morphologically and molecularly characterise a F. hepatica isolate from a brown bear. After examination of the internal organs, a Fasciola sp. isolate was obtained from the bile ducts of the liver. The adult parasite was morphologically analysed under a stereomicroscope and identified as F. hepatica. Measurements of body length, body width and ventral sucker area were then recorded. After isolation of the genomic DNA, a partial gene of the mitochondrial cytochrome oxidase subunit 1 (mt-CO1) was amplified by PCR. The amplified mt-CO1 PCR products were sequenced by one-way sequence analysis. According to the BLAST search results, the sequence of the isolate was identified as F. hepatica. In conclusion, this is the first report on the occurrence of F. hepatica in brown bears and the molecular characterisation of the isolate.
Collapse
Affiliation(s)
- Seyma Gunyakti Kilinc
- Department of Parasitology, Faculty of Veterinary Medicine, University of Bingol, Bingol, Türkiye.
| | - Harun Kaya Kesik
- Department of Parasitology, Faculty of Veterinary Medicine, University of Bingol, Bingol, Türkiye
| | - Figen Celik
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Türkiye
| | - Sami Simsek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Türkiye
| |
Collapse
|
6
|
Dowling A, Lawrence KE, Howe L, Scott I, Pomroy WE. Assessment of accuracy of liver fluke diagnostic tests using the gold standard of total worm counts. Vet Parasitol Reg Stud Reports 2024; 54:101102. [PMID: 39237240 DOI: 10.1016/j.vprsr.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024]
Abstract
In many regions of New Zealand liver fluke is endemic, infecting most grazing ruminants, including cattle, sheep, and deer. Restricting the economic losses and welfare costs associated with liver fluke relies on accurately identifying those animals with a production limiting infection. This has proven a difficult goal and although several antemortem quantitative tests are available, including faecal egg counts (FEC), serum ELISA and copro-antigen ELISA, none can be considered a gold standard test of liver fluke infection. The accepted gold standard test for fascioliasis is the total fluke count, which is both laborious and can only be completed at post-mortem. This study aimed to compare the performance of four liver fluke diagnostic tests, against the results of a gold standard total fluke count test. Two groups of cattle were selected, 29 culled mixed age beef cows (MAC) and ten 30-month-old steers. The cattle were blood sampled and faecal sampled prior to slaughter and their whole livers recovered post slaughter at the abattoir. Liveweight was also recorded at slaughter. After collection, each liver was weighed, scored for gross pathology, then serum, faeces and livers were frozen at -20 °C for later analysis. Faecal egg counts and F. hepatica copro-antigen ELISA tests were completed on the faecal samples and total fluke counts were completed on the livers. Fasciola hepatica antibody concentration in serum samples were quantified using a commercial ELISA test. Poisson regression models were built to model the association between each diagnostic test and the total fluke count, and a linear regression model was built to examine the relationship between each diagnostic test and live weight at slaughter. The median fluke count was significantly higher in MAC than steers (p = 0.01), and F. hepatica eggs were present in 100% steers and 66% MAC. There was a significant effect of copro-antigen ELISA value on total fluke count (p < 0.0001), with a coproantigen ELISA value = 20.1 predicting 10 flukes and a value = 44.8 predicting 30 flukes. There was also a significant effect of FEC on total fluke count (p = 0.002) but the R-squared value for this model was lower. There was no association between liver fibrosis score or antibody ELISA test and total fluke count (p = 0.95, p = 0.73, respectively). There was a significant effect of total fluke count (p = 0.03) on liveweight at slaughter, with liveweight falling 20.4 kg for each unit increase in loge (total fluke count). There was no effect of FEC (p = 0.11), antibody ELISA (p = 0.55) or copro-antigen ELISA value (p = 0.16) on liveweight at slaughter. Taken together, these results show that the coproantigen ELISA test is the better test for estimating the true liver fluke burden and that the number of flukes in the liver has a negative effect on cattle live weights at slaughter.
Collapse
Affiliation(s)
- A Dowling
- PGG Wrightson Limited, 1 Robin Mann Place, Christchurch, New Zealand.
| | - K E Lawrence
- Massey University, Palmerston North, New Zealand.
| | - L Howe
- Massey University, Palmerston North, New Zealand.
| | - I Scott
- Massey University, Palmerston North, New Zealand.
| | - W E Pomroy
- Massey University, Palmerston North, New Zealand.
| |
Collapse
|
7
|
Burden DJ, Bartley DJ, Besier RB, Claerebout E, Elliott TP, Höglund J, Rehbein S, Torres-Acosta JFJ, Van Wyk JA, Yazwinski T. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.): Third edition of the guideline for evaluating efficacy of anthelmintics in ruminants (bovine, ovine, caprine). Vet Parasitol 2024; 329:110187. [PMID: 38728835 DOI: 10.1016/j.vetpar.2024.110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
This guideline is aimed at those who are involved in the assessment of anthelmintic efficacy in ruminant livestock species (bovine, ovine and caprine). The intent is to provide a framework that can be adopted worldwide for the testing of anthelmintics in ruminants, such that studies carried out in different countries can be compared and thereby unnecessary duplication can be reduced. Recommendations are made for the selection, housing and feeding of study animals, the type of studies required, the method used to conduct those studies, the assessment of results and the standards for defining anthelmintic efficacy.
Collapse
Affiliation(s)
- D J Burden
- Duilio Veterinary Parasitology, The Vicarage, Church Lane, Churcham, Gloucester, UK.
| | - D J Bartley
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - R B Besier
- College of Environmental and Life Sciences, Murdoch University, Perth, WA, Australia
| | - E Claerebout
- Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - T P Elliott
- Centre for Animal Research and Teaching, University of New England, Armidale, NSW, Australia
| | - J Höglund
- Section for Parasitology, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S Rehbein
- Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Rohrdorf, Germany
| | - J F J Torres-Acosta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - J A Van Wyk
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - T Yazwinski
- University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
8
|
Hu Y, Zhan RJ, Lu SL, Zhang YY, Zhou MY, Huang H, Wang DD, Zhang T, Huang ZX, Zhou YF, Lv ZY. Global distribution of zoonotic digenetic trematodes: a scoping review. Infect Dis Poverty 2024; 13:46. [PMID: 38877531 PMCID: PMC11177464 DOI: 10.1186/s40249-024-01208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/19/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Digenetic trematodes, including blood flukes, intestinal flukes, liver flukes, lung flukes, and pancreatic flukes, are highly diverse and distributed widely. They affect at least 200 million people worldwide, so better understanding of their global distribution and prevalence are crucial for controlling and preventing human trematodiosis. Hence, this scoping review aims to conduct a comprehensive investigation on the spatio-temporal distribution and epidemiology of some important zoonotic digenetic trematodes. METHODS We conducted a scoping review by searching PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure, and Wanfang databases for articles, reviews, and case reports of zoonotic digenetic trematodes, without any restrictions on the year of publication. We followed the inclusion and exclusion criteria to identify relevant studies. And relevant information of the identified studies were collected and summarized. RESULTS We identified a total of 470 articles that met the inclusion criteria and were included in the review finally. Our analysis revealed the prevalence and global distribution of species in Schistosoma, Echinostoma, Isthmiophora, Echinochasmus, Paragonimus, Opisthorchiidae, Fasciolidae, Heterophyidae, and Eurytrema. Although some flukes are distributed worldwide, developing countries in Asia and Africa are still the most prevalent areas. Furthermore, there were some overlaps between the distribution of zoonotic digenetic trematodes from the same genus, and the prevalence of some zoonotic digenetic trematodes was not entirely consistent with their global distribution. The temporal disparities in zoonotic digenetic trematodes may attribute to the environmental changes. The gaps in our knowledge of the epidemiology and control of zoonotic digenetic trematodes indicate the need for large cohort studies in most countries. CONCLUSIONS This review provides important insights into the prevalence and global distribution of some zoonotic digenetic trematodes, firstly reveals spatio-temporal disparities in these digenetic trematodes. Countries with higher prevalence rate could be potential sources of transmitting diseases to other areas and are threat for possible outbreaks in the future. Therefore, continued global efforts to control and prevent human trematodiosis, and more international collaborations are necessary in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| | - Rong-Jian Zhan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Lin Lu
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yi-Yang Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Min-Yu Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Hui Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Ding-Ding Wang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Tao Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Zi-Xin Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Yun-Fei Zhou
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, Hainan, China
| | - Zhi-Yue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
9
|
Neira G, Mera Y Sierra R, Cremaschi F, Sohaefer N, González M, Godoy D, Scarcella S. Blood parameters and parasite burden in cattle with chronic fascioliasis. Acta Trop 2024; 254:107200. [PMID: 38552997 DOI: 10.1016/j.actatropica.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Fascioliasis is a trematodiasis that affects domestic and wild animals as well as humans worldwide. It is a well-recognized disease in livestock, were it produces serious economic losses. Yet in cattle, there is limited information about the burden of liver flukes and its relation to the eggs per gram shed to the environment. There is also lack of knowledge on the effect of parasite load in blood parameters of infected animals, which is important to evaluate the severity and progression of the disease. The objective of this work was to gain insight in these aspects. Cattle from Mendoza province, Argentina, were inspected at a farm and at the abattoir determining the presence or absence of Fasciola hepatica. Each animal was sampled for blood and feces and in the slaughterhouse the livers were inspected. Hematology and blood chemistry parameters were determined, feces were examined for F. hepatica eggs by a quantitative sedimentation technique and livers were thoroughly inspected to determine the number of flukes. Infected cattle presented a mild burden of liver flukes per animal, strongly correlated (r = 0.72) to the number of eggs per gram of feces. The total number of eggs (X̄=35,100) shed per animal to the environment and the type of livestock management techniques in the region exacerbate the role of cattle as efficient reservoirs of this disease. Statistically significant lower red blood cell, lymphocyte and neutrophil counts were observed in infected compared to uninfected animals. All hepatic parameters tested showed highly statistically significant differences (p < 0.001) as well as proteins by cause of rise of globulins in infected cattle. The correlation between the amount of flukes in the liver and the number of eggs per gram of faces indicates coprology as a reliable and cost-effective method to infer parasite burden. The impact of fascioliasis on blood parameters can be of aid for the veterinary practitioner on the assessment of this disease on cattle.
Collapse
Affiliation(s)
- Gisela Neira
- Centro de Investigación en Parasitología Regional (CIPAR), Universidad Juan Agustín Maza, Avenida Acceso Este, Lateral Sur 2245, Guaymallén, Mendoza, Argentina, CP M5519; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP B7000GHG, Argentina.
| | - Roberto Mera Y Sierra
- Centro de Investigación en Parasitología Regional (CIPAR), Universidad Juan Agustín Maza, Avenida Acceso Este, Lateral Sur 2245, Guaymallén, Mendoza, Argentina, CP M5519
| | - Franco Cremaschi
- Centro de Investigación en Parasitología Regional (CIPAR), Universidad Juan Agustín Maza, Avenida Acceso Este, Lateral Sur 2245, Guaymallén, Mendoza, Argentina, CP M5519
| | - Noelia Sohaefer
- Centro de Investigación en Parasitología Regional (CIPAR), Universidad Juan Agustín Maza, Avenida Acceso Este, Lateral Sur 2245, Guaymallén, Mendoza, Argentina, CP M5519
| | - Mariana González
- Centro de Investigación en Parasitología Regional (CIPAR), Universidad Juan Agustín Maza, Avenida Acceso Este, Lateral Sur 2245, Guaymallén, Mendoza, Argentina, CP M5519
| | - Dayana Godoy
- Centro de Investigación en Parasitología Regional (CIPAR), Universidad Juan Agustín Maza, Avenida Acceso Este, Lateral Sur 2245, Guaymallén, Mendoza, Argentina, CP M5519; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP B7000GHG, Argentina
| | - Silvana Scarcella
- Laboratorio de Biología Molecular y Celular, Centro de Investigaciones Veterinarias (CIVETAN-CONICET), Universidad del Centro de la Provincia de Buenos Aires, Campus Universitario, Tandil, Provincia de Buenos Aires, Argentina, CP B7000GHG; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP B7000GHG, Argentina
| |
Collapse
|
10
|
Rendle D, Hughes K, Bowen M, Bull K, Cameron I, Furtado T, Peachey L, Sharpe L, Hodgkinson J. BEVA primary care clinical guidelines: Equine parasite control. Equine Vet J 2024; 56:392-423. [PMID: 38169127 DOI: 10.1111/evj.14036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND There is a lack of consensus on how best to balance our need to minimise the risk of parasite-associated disease in the individual horse, with the need to limit the use of anthelmintics in the population to preserve their efficacy through delaying further development of resistance. OBJECTIVES To develop evidence-based guidelines utilising a modified GRADE framework. METHODS A panel of veterinary scientists with relevant expertise and experience was convened. Relevant research questions were identified and developed with associated search terms being defined. Evidence in the veterinary literature was evaluated using the GRADE evidence-to-decision framework. Literature searches were performed utilising CAB abstracts and PubMed. Where there was insufficient evidence to answer the research question the panel developed practical guidance based on their collective knowledge and experience. RESULTS Search results are presented, and recommendation or practical guidance were made in response to 37 clinically relevant questions relating to the use of anthelmintics in horses. MAIN LIMITATIONS There was insufficient evidence to answer many of the questions with any degree of certainty and practical guidance frequently had to be based upon extrapolation of relevant information and the panel members' collective experience and opinions. CONCLUSIONS Equine parasite control practices and current recommendations have a weak evidence base. These guidelines highlight changes in equine parasite control that should be considered to reduce the threat of parasite-associated disease and delay the development of further anthelmintic resistance.
Collapse
Affiliation(s)
| | - Kristopher Hughes
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Mark Bowen
- Medicine Vet Referrals, Nottinghamshire, UK
| | - Katie Bull
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Tamzin Furtado
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - Laura Peachey
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| |
Collapse
|
11
|
Flores-Velázquez LM, Ruiz-Campillo MT, Herrera-Torres G, Martínez-Moreno Á, Martínez-Moreno FJ, Zafra R, Buffoni L, Rufino-Moya PJ, Molina-Hernández V, Pérez J. Fasciolosis: pathogenesis, host-parasite interactions, and implication in vaccine development. Front Vet Sci 2023; 10:1270064. [PMID: 38149297 PMCID: PMC10750376 DOI: 10.3389/fvets.2023.1270064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/28/2023] Open
Abstract
Fasciola hepatica is distributed worldwide, causing substantial economic losses in the animal husbandry industry. Human fasciolosis is an emerging zoonosis in Andean America, Asia, and Africa. The control of the disease, both in humans and animals, is based on using anthelmintic drugs, which has resulted in increased resistance to the most effective anthelmintics, such as triclabendazole, in many countries. This, together with the concerns about drug residues in food and the environment, has increased the interest in preventive measures such as a vaccine to help control the disease in endemic areas. Despite important efforts over the past two decades and the work carried out with numerous vaccine candidates, none of them has demonstrated consistent and reproducible protection in target species. This is at least in part due to the high immunomodulation capacity of the parasite, making ineffective the host response in susceptible species such as ruminants. It is widely accepted that a deeper knowledge of the host-parasite interactions is needed for a more rational design of vaccine candidates. In recent years, the use of emerging technologies has notably increased the amount of data about these interactions. In the present study, current knowledge of host-parasite interactions and their implication in Fasciola hepatica vaccine development is reviewed.
Collapse
Affiliation(s)
- Luis Miguel Flores-Velázquez
- Unidad de Anatomía, Histología y Patología Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias Naturales, Universidad San Sebastián, Campus Puerto Montt, Puerto Montt, Chile
| | - María Teresa Ruiz-Campillo
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Guillem Herrera-Torres
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Álvaro Martínez-Moreno
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Martínez-Moreno
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Zafra
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Leandro Buffoni
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Pablo José Rufino-Moya
- Departamento de Sanidad Animal (Área de Parasitología), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
12
|
Dube A, Kalinda C, Manyangadze T, Mindu T, Chimbari MJ. Effects of temperature on the life history traits of intermediate host snails of fascioliasis: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011812. [PMID: 38048345 PMCID: PMC10721167 DOI: 10.1371/journal.pntd.0011812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/14/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The impact of climate change has led to variations in various biological processes, leading to altered transmission dynamics of infectious diseases, including snail-borne diseases (SBDs). Fascioliasis is one of the neglected zoonotic tropical snail-borne diseases caused by the trematode of the genus Fasciola. This review focused on laboratory experimental and model studies that evaluate the potential effect of temperature change on the ecology and biology of the intermediate host snails (IHS) of Fasciola. METHODS A literature search was conducted on Google Scholar, EBSCOhost, and PubMed databases using predefined medical subject heading terms, Boolean operators, and truncation symbols in combination with direct keywords: Fasciolosis AND Temperature, Lymnaea OR Austropeplea OR Radix OR Galba OR Fossaria OR Pseudosuccinea AND growth, fecundity, AND survival at the global scale. Other search terms used were (Fascioliasis AND Temperature), (Lymnaea AND Temperature), (Austropeplea AND Temperature), (Fossaria AND Temperature), (Galba AND Temperature), (Pseudosuccinea AND Temperature), and (Radix AND Temperature). RESULTS The final synthesis included thirty-five published articles. The studies reviewed indicated that temperature rise may alter the distribution, and optimal conditions for breeding, growth, and survival of IHS, ultimately resulting in changing the transmission dynamics of fascioliasis. The literature also confirmed that the life history traits of IHS and their interaction with the liver fluke parasites are driven by temperature, and hence climate change may have profound outcomes on the population size of snails, parasite density, and disease epidemiology. CONCLUSION We concluded that understanding the impact of temperature on the growth, fecundity, and survival of IHS may broaden our knowledge of the possible effects of climate change and hence inform fascioliasis control programs.
Collapse
Affiliation(s)
- Agrippa Dube
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Chester Kalinda
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
- University of Global Health Equity (UGHE), Bill and Joyce Cummings Institute of Global Health, Kigali Heights, Kigali, Rwanda
| | - Tawanda Manyangadze
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
- Geosciences Department, School Geosciences, Disaster and Sustainable Development, Faculty of Science and Engineering, Bindura University of Science and Technology, Bindura, Zimbabwe
| | - Tafadzwa Mindu
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Moses John Chimbari
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
- Office of the Pro-Vice Chancellor: Academic Affairs, Research and Innovation, Great Zimbabwe University, Masvingo, Zimbabwe
| |
Collapse
|
13
|
Kahl A, von Samson-Himmelstjerna G, Helm CS, Hodgkinson J, Williams D, Weiher W, Terhalle W, Steuber S, Krücken J. Coproscopical diagnosis of patent Fasciola hepatica infections in sheep - A comparison between standard sedimentation, FLUKEFINDER® and a combination of both. Vet Parasitol 2023; 319:109956. [PMID: 37182357 DOI: 10.1016/j.vetpar.2023.109956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
The liver fluke Fasciola hepatica is a highly pathogenic and zoonotic trematode with a cosmopolitan distribution. In livestock, infections may lead to significant economic losses if not diagnosed promptly and treated effectively. Particularly for small ruminants, the standard method for the detection of fluke infection is based on coproscopical methods such as the sedimentation method, which detects F. hepatica eggs in faecal samples. In this respect a recent innovative coproscopical approach to diagnose patent infections is the FLUKEFINDER® method, which relies on differential sieving before sedimentation. These two methods and a combination of both methods that allows larger amounts of faeces to be processed with the FLUKEFINDER® apparatus were compared, to assess which method is most appropriate to determine the prevalence and intensity of F. hepatica egg shedding. The methods were compared for their ability to recover eggs from ovine faecal samples containing different numbers of fluke eggs per gram (EPG) of faeces and diluting the samples further by mixing with faeces from uninfected sheep. To compare the specificity of the test procedures, positive and negative samples with a low EPG were analysed in parallel by an investigator blinded to the nature of the samples. Significant differences concerning the EPG outcome were found: The FLUKEFINDER® method demonstrated the highest EPG values (p < 0.001) in the undiluted samples as well as in all mixing levels, followed by the modified FLUKEFINDER® method. The standard sedimentation showed the lowest EPG values and the highest variability between technical replicates. The precision of the FLUKEFINDER® method and the modified FLUKEFINDER® method were significantly higher than the precision of the standard sedimentation as determined by comparison of variability between technical replicates. The highest raw egg counts were detected using the modified FLUKEFINDER® method. The FLUKEFINDER® method and the combined method showed a sensitivity of 100 % even at the lowest egg concentrations, whereas the sensitivity of the standard sedimentation was 98.1 % for the same set of samples (i.e. one false negative sample). In a separate investigation aiming to estimate the specificity no differences were found between the three methods: all protocols showed 100 % specificity and were able to correctly distinguish between truly positive and truly negative samples without any evidence of cross-contamination between positive and negative samples processed in parallel.
Collapse
Affiliation(s)
- Alexandra Kahl
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 13163 Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 13163 Berlin, Germany
| | - Christina S Helm
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 13163 Berlin, Germany
| | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L3 5RF Liverpool, UK
| | - Diana Williams
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L3 5RF Liverpool, UK
| | - Wiebke Weiher
- Federal Office of Consumer Protection and Food Safety, Mauerstr. 39-42, 10117 Berlin, Germany
| | - Werner Terhalle
- Federal Office of Consumer Protection and Food Safety, Mauerstr. 39-42, 10117 Berlin, Germany
| | - Stephan Steuber
- Federal Office of Consumer Protection and Food Safety, Mauerstr. 39-42, 10117 Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 13163 Berlin, Germany.
| |
Collapse
|
14
|
Mas-Coma S, Valero MA, Bargues MD. Human and Animal Fascioliasis: Origins and Worldwide Evolving Scenario. Clin Microbiol Rev 2022; 35:e0008819. [PMID: 36468877 PMCID: PMC9769525 DOI: 10.1128/cmr.00088-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fascioliasis is a plant- and waterborne zoonotic parasitic disease caused by two trematode species: (i) Fasciola hepatica in Europe, Asia, Africa, the Americas, and Oceania and (ii) F. gigantica, which is restricted to Africa and Asia. Fasciolid liver flukes infect mainly herbivores as ruminants, equids, and camelids but also omnivore mammals as humans and swine and are transmitted by freshwater Lymnaeidae snail vectors. Two phases may be distinguished in fasciolid evolution. The long predomestication period includes the F. gigantica origin in east-southern Africa around the mid-Miocene, the F. hepatica origin in the Near-Middle East of Asia around the latest Miocene to Early Pliocene, and their subsequent local spread. The short postdomestication period includes the worldwide spread by human-guided movements of animals in the last 12,000 years and the more recent transoceanic anthropogenic introductions of F. hepatica into the Americas and Oceania and of F. gigantica into several large islands of the Pacific with ships transporting livestock in the last 500 years. The routes and chronology of the spreading waves followed by both fasciolids into the five continents are redefined on the basis of recently generated knowledge of human-guided movements of domesticated hosts. No local, zonal, or regional situation showing disagreement with historical records was found, although in a few world zones the available knowledge is still insufficient. The anthropogenically accelerated evolution of fasciolids allows us to call them "peridomestic endoparasites." The multidisciplinary implications for crucial aspects of the disease should therefore lead the present baseline update to be taken into account in future research studies.
Collapse
Affiliation(s)
- Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - M. Adela Valero
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| | - M. Dolores Bargues
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIII, Madrid, Spain
| |
Collapse
|
15
|
Nyagura I, Malatji MP, Mukaratirwa S. Occurrence of Fasciola (Digenea: Fasciolidae) Species in Livestock, Wildlife and Humans, and the Geographical Distribution of Their Intermediate Hosts in South Africa-A Scoping Review. Front Vet Sci 2022; 9:935428. [PMID: 35937292 PMCID: PMC9347419 DOI: 10.3389/fvets.2022.935428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
This review was conducted to provide an update on the status of the occurrence of Fasciola species in livestock, wildlife and humans, and the geographical distribution of snail intermediate host (IH) species in South Africa. The literature search was conducted on four electronic databases using the Boolean operators in combination with predetermined search terms for thematic analysis. Results showed that Fasciola species have been reported in six out of nine provinces of South Africa in the last six decades (1960-2021), with both F. hepatica and F. gigantica infecting vertebrate hosts and F. hepatica and Fasciola spp infecting humans. Results also showed that most studies relied on morphological identification of eggs and flukes without molecular confirmation, which might have led to the misidentification of specimens, especially when immature. Fasciola hepatica has been documented in Limpopo, Mpumalanga, and KwaZulu-Natal provinces. The occurrences of Galba truncatula as the probable snail IH for F. hepatica in the three provinces has been documented while Pseudosuccinea columella has only been documented in Mpumalanga and KwaZulu-Natal provinces. The occurrence of F. gigantica to date has been reported in Mpumalanga and KwaZulu-Natal provinces, with overlapping distribution with F. hepatica. Radix natalensis, the main IH of F. gigantica has been documented in all the three provinces, while the two alien Radix species (R. auricularia and R. rubiginosa) were documented in KwaZulu-Natal province and have been implicated elsewhere with the transmission of F. gigantica. The presence of Fasciola spp eggs and antibodies in humans were documented in the Eastern Cape and the Western Cape provinces, where both P. columella and G. truncatula are known to be present. The prevalence of Fasciola spp infection in livestock ranged from 9.1 to 37.67 %, with an estimated annual financial loss ranging from R44930.26-129901 in cattle production in the Eastern Cape province of South Africa. This review reaffirms the scarcity of information on the occurrence and burden of fasciolosis in South Africa, and further highlights the importance of future research covering all provinces of the country and assessing the public health significance of the disease in resource-poor livestock communities in the areas where the parasite is endemic.
Collapse
Affiliation(s)
- Ignore Nyagura
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Mokgadi Pulane Malatji
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
- Foundational Research and Services, South African National Biodiversity Institute, Pretoria, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
- One Health Centre for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
16
|
Bennett APS, de la Torre-Escudero E, Dermott SSE, Threadgold LT, Hanna REB, Robinson MW. Fasciola hepatica Gastrodermal Cells Selectively Release Extracellular Vesicles via a Novel Atypical Secretory Mechanism. Int J Mol Sci 2022; 23:ijms23105525. [PMID: 35628335 PMCID: PMC9143473 DOI: 10.3390/ijms23105525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The liver fluke, Fasciola hepatica, is an obligate blood-feeder, and the gastrodermal cells of the parasite form the interface with the host’s blood. Despite their importance in the host–parasite interaction, in-depth proteomic analysis of the gastrodermal cells is lacking. Here, we used laser microdissection of F. hepatica tissue sections to generate unique and biologically exclusive tissue fractions of the gastrodermal cells and tegument for analysis by mass spectrometry. A total of 226 gastrodermal cell proteins were identified, with proteases that degrade haemoglobin being the most abundant. Other detected proteins included those such as proton pumps and anticoagulants which maintain a microenvironment that facilitates digestion. By comparing the gastrodermal cell proteome and the 102 proteins identified in the laser microdissected tegument with previously published tegument proteomic datasets, we showed that one-quarter of proteins (removed by freeze–thaw extraction) or one-third of proteins (removed by detergent extraction) previously identified as tegumental were instead derived from the gastrodermal cells. Comparative analysis of the laser microdissected gastrodermal cells, tegument, and F. hepatica secretome revealed that the gastrodermal cells are the principal source of secreted proteins, as well as showed that both the gastrodermal cells and the tegument are likely to release subpopulations of extracellular vesicles (EVs). Microscopical examination of the gut caeca from flukes fixed immediately after their removal from the host bile ducts showed that selected gastrodermal cells underwent a progressive thinning of the apical plasma membrane which ruptured to release secretory vesicles en masse into the gut lumen. Our findings suggest that gut-derived EVs are released via a novel atypical secretory route and highlight the importance of the gastrodermal cells in nutrient acquisition and possible immunomodulation by the parasite.
Collapse
Affiliation(s)
- Adam P. S. Bennett
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Eduardo de la Torre-Escudero
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Susan S. E. Dermott
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Lawrence T. Threadgold
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
| | - Robert E. B. Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, UK;
| | - Mark W. Robinson
- School of Biological Sciences, The Queen’s University of Belfast, Belfast BT9 5DL, UK; (A.P.S.B.); (E.d.l.T.-E.)
- Correspondence: ; Tel.: +44-(0)28-9097-2120
| |
Collapse
|
17
|
Roessler AS, Oehm AW, Knubben-Schweizer G, Groll A. A machine learning approach for modelling the occurrence of Galba truncatula as the major intermediate host for Fasciola hepatica in Switzerland. Prev Vet Med 2022; 200:105569. [PMID: 35042123 DOI: 10.1016/j.prevetmed.2022.105569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/28/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
Fasciolosis caused by the trematode Fasciola hepatica is an important parasitosis in both livestock and humans across the globe. Chronic infections in cattle are associated with considerable economic losses. As a prerequisite for an effective control and prevention of fasciolosis in cattle fine-scale predictive models on farm-level are needed. Since disease transmission will only occur where the mollusc intermediate host is present, the objective of our research was to develop a regression model that allows to predict the local presence or absence of Galba truncatula as principal intermediate host for Fasciola hepatica in Switzerland. By implementing generalized linear mixed models (GLMMs) a total amount of 70 variables were analysed for their potential influence on the likelihood πi of finding Galba truncatula at a certain site. Important site-specific features could be considered by selecting suitable modelling procedures. The statistical software R was used to conduct regression analysis, performing the grplasso and the glmmLasso method. The selection of parameters was based on 10-fold cross validation and the Bayesian Information Criterion (BIC). This yielded a total number of 19 potential predictor variables for the grplasso and 13 variables for the glmmLasso model, which also included random effects. Nine variables appeared to be relevant predictors for the occurrence of Galba truncatula in both models. These included reed/humid area, spring water, water bodies within a 100 m radius, and trees/bushes as powerful positive predictors. High soil depth, temperatures frequently exceeding 30 °C in the year preceding the search for snails and temperatures below 0 °C especially in the second year before were identified to exert an adverse effect on the occurrence of Galba truncatula. Temperatures measured near ground level proved to be more powerful predictors than macroclimatic parameters. Precipitation values seemed to be of minor impact in the given setting. Both regression models may be convenient for a fine-scale prediction of the occurrence of Galba truncatula, and thus provide useful approaches for the development of future spatial transmission models, mapping the risk of fasciolosis in Switzerland on farm-level.
Collapse
Affiliation(s)
- Anne S Roessler
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität Munich, Sonnenstrasse 16, 85764, Oberschleissheim, Germany.
| | - Andreas W Oehm
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität Munich, Sonnenstrasse 16, 85764, Oberschleissheim, Germany.
| | - Gabriela Knubben-Schweizer
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilians-Universität Munich, Sonnenstrasse 16, 85764, Oberschleissheim, Germany.
| | - Andreas Groll
- Work group Statistical Methods for Big Data, Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany.
| |
Collapse
|
18
|
Barbour T, Cwiklinski K, Lalor R, Dalton JP, De Marco Verissimo C. The Zoonotic Helminth Parasite Fasciola hepatica: Virulence-Associated Cathepsin B and Cathepsin L Cysteine Peptidases Secreted by Infective Newly Excysted Juveniles (NEJ). Animals (Basel) 2021; 11:ani11123495. [PMID: 34944270 PMCID: PMC8698070 DOI: 10.3390/ani11123495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Fasciolosis, caused by the worm parasite Fasciola hepatica (liver fluke), is a global disease of farm animals and a neglected disease of humans. Infection arises from the ingestion of resistant metacercariae that contaminate vegetation. Within the intestine, the parasite excysts as an active larvae, the newly excysted juvenile (NEJ), that borrows through the intestinal wall to infect the host and migrates to the liver. NEJ release, tissue penetration and migration are facilitated by enzymes secreted by the parasite, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these enzymes is growing, we have yet to understand why the parasites require all four of them to invade the host. In this study, we produced functional recombinant forms of these enzymes and demonstrated that they vary greatly in terms of activity, optimal pH and substrate specificity, suggesting that, combined, these enzymes provide the parasite with an efficient digestion system for different host tissues and molecules. We also identified several compounds that inhibited the activity of these enzymes, but did not affect the ability of the larvae to excyst or survive. However, this does not exclude these enzymes as targets for development of drugs or vaccines. Abstract Fasciolosis caused by Fasciola hepatica is a major global disease of livestock and an important neglected helminthiasis of humans. Infection arises when encysted metacercariae are ingested by the mammalian host. Within the intestine, the parasite excysts as a newly excysted juvenile (NEJ) that penetrates the intestinal wall and migrates to the liver. NEJ excystment and tissue penetration are facilitated by the secretion of cysteine peptidases, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these peptidases is growing, we have yet to understand why multiple enzymes are required for parasite invasion. Here, we produced functional recombinant forms of these four peptidases and compared their physio-biochemical characteristics. Our studies show great variation of their pH optima for activity, substrate specificity and inhibitory profile. Carboxy-dipeptidase activity was exhibited exclusively by FhCB1. Our studies suggest that, combined, these peptidases create a powerful hydrolytic cocktail capable of digesting the various host tissues, cells and macromolecules. Although we found several inhibitors of these enzymes, they did not show potent inhibition of metacercarial excystment or NEJ viability in vitro. However, this does not exclude these peptidases as targets for future drug or vaccine development.
Collapse
Affiliation(s)
- Tara Barbour
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
| | - Krystyna Cwiklinski
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - John Pius Dalton
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Carolina De Marco Verissimo
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
- Correspondence:
| |
Collapse
|
19
|
Mas-Coma S, Funatsu IR, Angles R, Buchon P, Mas-Bargues C, Artigas P, Valero MA, Bargues MD. Domestic pig prioritized in one health action against fascioliasis in human endemic areas: Experimental assessment of transmission capacity and epidemiological evaluation of reservoir role. One Health 2021; 13:100249. [PMID: 33997234 PMCID: PMC8091924 DOI: 10.1016/j.onehlt.2021.100249] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The Northern Bolivian Altiplano is the human fascioliasis hyperendemic area where the highest prevalences and intensities in humans have been reported. Preventive chemotherapy was implemented in the last ten years. Surveillance showed high human infection and re-infection rates in between the annual triclabendazole monodose treatments. A complementary One Health control action was launched to decrease the infection risk. Among the multidisciplinary axes, there is the need to establish animal reservoir species priorities for a more efficient control. Laboratory and field studies were performed for the first time to assess the Fasciola hepatica transmission capacity of the pig and its potential reservoir role. The experimental follow-up of altiplanic pig isolates through altiplanic Galba truncatula snail vector isolates were performed at different miracidial doses and different day/night temperatures. Experiments included egg embryonation, miracidial infectivity, lymnaeid snail infection, intramolluscan larval development, cercarial production, chronobiology of the cercarial shedding, vector survival to infection, metacercarial infectivity of mammal host, and adult stage development. Surveys included the assessment of prevalence, intensity, egg measurements and egg shedding rates in nature. Pig contribution was evaluated by comparing with the main altiplanic reservoirs sheep and cattle. Results demonstrated that the pig assures the whole F. hepatica life cycle and participates in its transmission in this area. The fast egg embryonation, high cercarial production, long multi-wave shedding chronobiological pattern in monomiracidial infections at permanent 20 °C temperature, and the high daily egg outputs per pig are worth mentioning. The high infection risk suggests early infection of freely running piglets and evolutionary long-term adaptation of the liver fluke to this omnivorous mammal, despite its previously evoked resistance or non-suitability. Genetic, physiological and immune similarities with humans may also underlie the parasite adaptation to humans in this area. The pig should be accordingly included for appropriate control measures within a One Health action against human fascioliasis. The pig should henceforth be considered in epidemiological studies and control initiatives not only in fascioliasis endemic areas with human infection risk on other Andean countries, but also in rural areas of Latin America, Africa and Asia where domestic pigs are allowed to run freely.
Collapse
Affiliation(s)
- Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Ilra R. Funatsu
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Rene Angles
- Cátedra de Parasitología, Facultad de Medicina, Universidad Mayor de San Andrés (UMSA), Av. Saavedra, Miraflores, La Paz, Bolivia
| | - Paola Buchon
- Unidad de Limnología, Instituto de Ecología, Universidad Mayor de San Andrés (UMSA), Calle 27 y Andrés Bello s/n, Cota Cota, La Paz, Bolivia
| | - Cristina Mas-Bargues
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibañez No. 15, 46010, Valencia, Spain
| | - Patricio Artigas
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - M. Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - M. Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
20
|
Lalor R, Cwiklinski K, Calvani NED, Dorey A, Hamon S, Corrales JL, Dalton JP, De Marco Verissimo C. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence 2021; 12:2839-2867. [PMID: 34696693 PMCID: PMC8632118 DOI: 10.1080/21505594.2021.1996520] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite’s excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke’s survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.
Collapse
Affiliation(s)
- Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
21
|
Mas-Coma S, Cafrune MM, Funatsu IR, Mangold AJ, Angles R, Buchon P, Fantozzi MC, Artigas P, Valero MA, Bargues MD. Fascioliasis in Llama, Lama glama, in Andean Endemic Areas: Experimental Transmission Capacity by the High Altitude Snail Vector Galba truncatula and Epidemiological Analysis of Its Reservoir Role. Animals (Basel) 2021; 11:ani11092693. [PMID: 34573658 PMCID: PMC8470536 DOI: 10.3390/ani11092693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The infection by the liver fluke Fasciola hepatica in South American camelids, mainly llamas and alpacas, has been the focus of many studies. However, their capacity to participate in the transmission of the disease and their potential reservoir role in human or animal endemic areas have never been studied. Therefore, all development stages of an isolate from Argentine llama of the high Andean plateau have been experimentally investigated, from egg embryogenesis to metacercarial infectivity, by using the vector snail Galba truncatula from the high altitude Bolivian Altiplano human hyperendemic area. Although eggs shed by llamas may successfully develop until the adult stage in a subsequent mammal host, the transmission capacity of the llama proved to be pronouncedly less efficient than that of other hosts as sheep and cattle. Moreover, the low prevalences, intensities, and daily fecal outputs of liver fluke eggs in llama in Andean endemic areas, together with their peculiar defecating behavior in dung piles always far from freshwater collections, indicate that the contribution of this camelid should be considered negligible. Therefore, the llama does not need to receive priority within fascioliasis control initiatives, although it may play a disease-spreading role if used as a pack animal. Abstract South American camelids are definitive hosts of Fasciola hepatica. However, their capacity to participate in the transmission and epidemiology of fascioliasis has never been appropriately studied. Therefore, an F. hepatica isolate from Argentine llama is for the first time analyzed using Galba truncatula lymnaeids from Bolivia. Experimental follow-up studies included egg embryogenesis, miracidial infection of lymnaeid snails, intramolluscan larval development, cercarial production, chronobiology of cercarial shedding, vector survival to infection, and metacercarial infectivity of mammal host. Shorter prepatent and patent periods were leading to markedly lower cercarial production, shorter cercarial shedding, and a higher negative impact on snail survival. The usually low liver fluke prevalences and intensities and low daily fecal outputs indicate that llamas do not substantially contribute to fascioliasis transmission. The defecating behavior in dung piles far from freshwater collections prevents lymnaeid infection by eggs shed by this camelid. All results suggest the reservoir role of the llama to be negligible and, therefore, no priority within control measures in endemic areas. However, llamas may play a disease-spreading role if used as pack animals in rural areas. In the Northern Bolivian Altiplano human hyperendemic area, neither llamas nor alpacas should be considered for control measures within a One Health action.
Collapse
Affiliation(s)
- Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain; (I.R.F.); (M.C.F.); (P.A.); (M.A.V.)
- Correspondence: (S.M.-C.); (M.D.B.)
| | - Maria Mercedes Cafrune
- Instituto de Investigación Animal del Chaco Semiárido, Área de Investigación en Salud Animal, Estación Experimental Agropecuaria Salta, Instituto Nacional de Tecnología Agropecuaria (INTA), Ministerio de Agricultura, Ganadería y Pesca CIAP, Ruta Nacional 68–km 172, Cerrillos A4403, Salta, Argentina;
| | - Ilra Renata Funatsu
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain; (I.R.F.); (M.C.F.); (P.A.); (M.A.V.)
| | - Atilio Jose Mangold
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnologia Agropecuaria (INTA), Ministerio de Agricultura, Ganadería y Pesca, CC 22 INTA Rafaela, Rafaela 2300, Santa Fe, Argentina;
| | - Rene Angles
- Cátedra de Parasitología, Facultad de Medicina, Universidad Mayor de San Andrés (UMSA), Av. Saavedra, Miraflores, La Paz, Bolivia;
| | - Paola Buchon
- Unidad de Limnología, Instituto de Ecología, Universidad Mayor de San Andrés (UMSA), Campus Calle 27, Cota Cota, La Paz, Bolivia;
| | - Maria Cecilia Fantozzi
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain; (I.R.F.); (M.C.F.); (P.A.); (M.A.V.)
| | - Patricio Artigas
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain; (I.R.F.); (M.C.F.); (P.A.); (M.A.V.)
| | - Maria Adela Valero
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain; (I.R.F.); (M.C.F.); (P.A.); (M.A.V.)
| | - Maria Dolores Bargues
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain; (I.R.F.); (M.C.F.); (P.A.); (M.A.V.)
- Correspondence: (S.M.-C.); (M.D.B.)
| |
Collapse
|
22
|
DNA Multi-Marker Genotyping and CIAS Morphometric Phenotyping of Fasciola gigantica-Sized Flukes from Ecuador, with an Analysis of the Radix Absence in the New World and the Evolutionary Lymnaeid Snail Vector Filter. Animals (Basel) 2021; 11:ani11092495. [PMID: 34573461 PMCID: PMC8472080 DOI: 10.3390/ani11092495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Fasciolid flukes collected from sheep and cattle in Ecuador showed a high diversity in DNA sequences whose analyses indicated introductions from South America, European and North American countries. These results agree with the numerous livestock importations performed by Ecuador. Abnormally big-sized liver flukes were found in Ecuadorian sheep. The morphometric phenotypic CIAS study showed that its size maximum and mean very pronouncedly and significantly surpassed those of the Fasciola hepatica populations from South America and Spain and proved to be intermediate between standard F. hepatica and F. gigantica populations. Such a feature is only known in intermediate fasciolid forms in Old World areas where the two species and their specific lymnaeid snail vectors overlap. This argues about a past hybridization after F. gigantica importation from Pakistan and/or introduction of intermediate hybrids previously generated in USA. The lack of heterozygotic rDNA ITS positions differentiating the two species, and of introgressed fragments and heteroplasmic positions in mtDNA genes, indicate a post-hybridization period sufficiently long as for rDNA concerted evolution to complete homogenization and mtDNA to return to homoplasmy. The vector specificity filter due to Radix absence should act as a driving force in accelerating such lineage evolution. Public health implications are finally emphasized. Abstract Fascioliasis is a disease caused by Fasciola hepatica worldwide transmitted by lymnaeid snails mainly of the Galba/Fossaria group and F. gigantica restricted to parts of Africa and Asia and transmitted by Radix lymnaeids. Concern has recently risen regarding the high pathogenicity and human infection capacity of F. gigantica. Abnormally big-sized fasciolids were found infecting sheep in Ecuador, the only South American country where F. gigantica has been reported. Their phenotypic comparison with F. hepatica infecting sheep from Peru, Bolivia and Spain, and F. gigantica from Egypt and Vietnam demonstrated the Ecuadorian fasciolids to have size-linked parameters of F. gigantica. Genotyping of these big-sized fasciolids by rDNA ITS-2 and ITS-1 and mtDNA cox1 and nad1 and their comparison with other countries proved the big-sized fasciolids to belong to F. hepatica. Neither heterozygotic ITS position differentiated the two species, and no introgressed fragments and heteroplasmic positions in mtDNA were found. The haplotype diversity indicates introductions mainly from other South American countries, Europe and North America. Big-sized fasciolids from Ecuador and USA are considered to be consequences of F.gigantica introductions by past livestock importations. The vector specificity filter due to Radix absence should act as driving force in the evolution in such lineages.
Collapse
|
23
|
Kelley JM, Stevenson MA, Rathinasamy V, Rawlin G, Beddoe T, Spithill TW. Analysis of daily variation in the release of faecal eggs and coproantigen of Fasciola hepatica in naturally infected dairy cattle and the impact on diagnostic test sensitivity. Vet Parasitol 2021; 298:109504. [PMID: 34271316 DOI: 10.1016/j.vetpar.2021.109504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
The liver fluke, Fasciola hepatica (F. hepatica) is a widespread parasite infection in dairy cattle in Victoria, South-eastern Australia. Robust diagnosis of fluke infection is needed in dairy cattle to identify sub-clinical infections which often go unnoticed, causing significant production losses. We tested the coproantigen ELISA (cELISA) and the FlukeFinder faecal egg count kit® on naturally infected cows in a fluke endemic region of Victoria. The aim of the study was to investigate the variation in the release of coproantigens and eggs into faeces over a 5-day period, at the morning (AM) and afternoon (PM) milkings, and to assess the impact of the timing of faecal sample collection on diagnostic test sensitivity. Ten cows were enrolled into the study based on positive F. hepatica faecal egg counts (LFEC) and faecal samples from the ten cows were collected twice daily, at the 7-9 AM and 4-6 PM milking, for five consecutive days. At the conclusion of the sampling period, the cows were euthanized and F. hepatica burden determined at necropsy. A moderate negative correlation between cow age and cELISA optical density (OD) was observed using data from all samples (R -0.63; 95 % CI -0.68 to -0.57). Over the 5-day sampling period, we observed within-animal variation between days for both the cELISA OD (2.6-8.9 fold) and LFEC (5-16 fold), with more variation in values observed in the PM samples for both tests. The correlation with total fluke burden was higher in the AM sampling using both the cELISA and LFEC (R 0.64 and 0.78, respectively). The sensitivity was 100 % for the cELISA using various cut offs from the literature (0.014 OD, 0.030 OD, and 1.3 % or 1.6 % of the positive control). The sensitivity of the FlukeFinder kit® (based on 588 faecal samples and not accounting for lack of independence in the data) was 88 % (95 % CI 85 %-90 %). Seventy one false negatives were recorded from the 588 LFEC tests all of which were observed in the cows with fluke burdens <14 flukes; 42 of the 71 false negative LFECs occurred in one individual cow which had the lowest burden of nine flukes. In dairy cows, the cut-off for production losses due to fasciolosis is estimated at> 10 fluke. Both the cELISA and the LFEC identified all cows that had burdens equal to or greater than this cut-off. Five of the ten cows also exhibited relatively high paramphistome egg counts.
Collapse
Affiliation(s)
- Jane M Kelley
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Mark A Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Vignesh Rathinasamy
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Grant Rawlin
- Department of Jobs, Precincts and Regions, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
24
|
Ferreira APPN, Costa ALO, Becattini RM, Ferreira MAND, Paixão HPRD, Coscarelli D, Vidigal THDA, Lima WDS, Pereira CADJ. Integrative taxonomy: combining molecular and morphological characteristics to identify Lymnaea (Galba) cubensis, intermediate host of Fasciola hepatica. ACTA ACUST UNITED AC 2021; 30:e026320. [PMID: 34161492 DOI: 10.1590/s1984-29612021052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Despite the epidemiological importance of the Lymnaeidae family regarding transmission of Fasciola hepatica, knowledge about the diversity and distribution of these molluscs and the role of each species in the expansion of fasciolosis remains sparse. Classical morphological (n=10) identification was performed in lymneids from Lagoa Santa, a municipality in the state of Minas Gerais, Brazil, along with molecular and phylogenetic analysis (n=05) based on the partial nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I gene (COI mtDNA) and ribosomal internal transcribed spacer II (ITS-2 rDNA). The shell morphology made it possible to distinguish the lymneids of Lagoa Santa from Pseudosuccinea columella. Differences found in the penile complex and prostate shape allowed this species to be distinguished from Galba truncatula. However, the homogeneity of reproductive tract characteristics among Lymnaea (Galba) cubensis, L. viator and L. neotropica confirmed that these characteristics show low taxonomic reliability for identifying cryptic species. Genetic divergence analysis for the COI mtDNA gene and ITS-2 region of rDNA revealed greater similarity to Lymnaea (Galba) cubensis. Thus, correct species differentiation is important for monitoring the epidemiological risk of fasciolosis in the state of Minas Gerais, where cases of the disease have increased over recent years.
Collapse
Affiliation(s)
- Ana Paula Pereira Neves Ferreira
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Andréia Luiza Oliveira Costa
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Raphael Meira Becattini
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Mônica Alves Neves Diniz Ferreira
- Laboratório Laboratório de Patologia Comparada, Departamento de Patologia, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Hugo Pinto Rezende da Paixão
- Laboratório de Malacologia e Sistemática Molecular, Departamento de Zoologia, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Daniel Coscarelli
- Laboratório de Malacologia e Sistemática Molecular, Departamento de Zoologia, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Teofânia Helena Dutra Amorim Vidigal
- Laboratório de Malacologia e Sistemática Molecular, Departamento de Zoologia, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Walter Dos Santos Lima
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| | - Cíntia Aparecida de Jesus Pereira
- Laboratório de Helmintologia Veterinária, Departamento de Parasitologia, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG, Brasil
| |
Collapse
|
25
|
Zerna G, Spithill TW, Beddoe T. Current Status for Controlling the Overlooked Caprine Fasciolosis. Animals (Basel) 2021; 11:1819. [PMID: 34207215 PMCID: PMC8235714 DOI: 10.3390/ani11061819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023] Open
Abstract
The disease fasciolosis is caused by the liver flukes Fasciola hepatica and F. gigantica, which infect a wide range of mammals and production livestock, including goats. These flatworm parasites are globally distributed and predicted to cost the livestock industry a now conservative USD 3 billion per year in treatment and lowered on-farm productivity. Infection poses a risk to animal welfare and results in lowered fertility rates and reduced production yields of meat, milk and wool. This zoonotic disease is estimated to infect over 600 million animals and up to 2.4 million humans. Current and future control is threatened with the global emergence of flukes resistant to anthelmintics. Drug resistance calls for immediate on-farm parasite management to ensure treatments are effective and re-infection rates are kept low, while a sustainable long-term control method, such as a vaccine, is being developed. Despite the recent expansion of the goat industry, particularly in developing countries, there are limited studies on goat-focused vaccine control studies and the effectiveness of drug treatments. There is a requirement to collate caprine-specific fasciolosis knowledge. This review will present the current status of liver fluke caprine infections and potential control methods for application in goat farming.
Collapse
Affiliation(s)
| | | | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3083, Australia; (G.Z.); (T.W.S.)
| |
Collapse
|
26
|
Rathinasamy V, Tran L, Swan J, Kelley J, Hosking C, Williamson G, Knowles M, Elliott T, Rawlin G, Spithill TW, Beddoe T. Towards understanding the liver fluke transmission dynamics on farms: Detection of liver fluke transmitting snail and liver fluke-specific environmental DNA in water samples from an irrigated dairy farm in Southeast Australia. Vet Parasitol 2021; 291:109373. [PMID: 33578197 DOI: 10.1016/j.vetpar.2021.109373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/27/2022]
Abstract
Livestock production around the world is impacted by liver fluke (Fasciola spp.) infection resulting in serious economic losses to the beef, dairy and sheep industries with significant losses of about $90 million per annum in Australia. Triclabendazole (TCBZ) is the most effective anthelmintic treatment available to control liver fluke infections; however, the widespread emergence of TCBZ resistance in livestock threatens liver fluke control. Alternative control measures to lower exposure of livestock to liver fluke infection would help to preserve the usefulness of current anthelmintic treatments. Environmental DNA (eDNA) based identification of liver fluke and the intermediate snail host in the water bodies is a robust method to assess the risk of liver fluke infection on farms. In this study, we used a multiplex quantitative PCR assay of water samples to detect and quantify eDNA of Fasciola hepatica (F. hepatica) and Austropeplea tomentosa (A. tomentosa), a crucial intermediate snail host for liver fluke transmission in South-east Australia. Water samples were collected from an irrigation channel for a period of 7 months in 2016 (February, March, May, September, October, November and December) at a dairy farm located at Maffra, Victoria, South-east Australia. Using an effective eDNA extraction method, the multiplex qPCR assay allows for the independent but simultaneous detection of eDNA released from liver fluke life stages and snails using specific primers and a probe targeting the ITS-2 region of the liver fluke and snail, respectively, with minimal inhibition from contaminants in field collected water samples. The sensitivity of this assay to detect eDNA of liver fluke and snails was observed to be 14 fg and 50 fg, respectively, in the presence of field collected water samples. Differential levels of liver fluke and snail specific eDNA in water were observed at the time points analysed in this study. The successful detection of eDNA specific to liver fluke and snails from the field collected water samples provides a precedent for the use of this method as a monitoring tool to determine the prevalence of liver fluke and liver fluke-transmitting snails in irrigation regions. Further, this method has the enormous potential to allow an assessment of the liver fluke transmission zones on farms and to inform the application of effective control strategies.
Collapse
Affiliation(s)
- Vignesh Rathinasamy
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia
| | - Lily Tran
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia
| | - Jaclyn Swan
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia
| | - Jane Kelley
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia
| | - Chris Hosking
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia
| | - Genevieve Williamson
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia
| | - Michaela Knowles
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia
| | - Timothy Elliott
- Invetus, Armidale Research Centre, Armidale, New South Wales, Australia
| | - Grant Rawlin
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia; Department of Jobs, Precincts and Regions, Bundoora, Vic, Australia
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia.
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic, Australia; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, Australia.
| |
Collapse
|
27
|
Mas-Coma S, Buchon P, Funatsu IR, Angles R, Artigas P, Valero MA, Bargues MD. Sheep and Cattle Reservoirs in the Highest Human Fascioliasis Hyperendemic Area: Experimental Transmission Capacity, Field Epidemiology, and Control Within a One Health Initiative in Bolivia. Front Vet Sci 2020; 7:583204. [PMID: 33195605 PMCID: PMC7655135 DOI: 10.3389/fvets.2020.583204] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The Northern Bolivian Altiplano is the human fascioliasis hyperendemic area where the highest prevalences and intensities of infection by Fasciola hepatica in humans have been reported. Four animal species are the reservoir species for F. hepatica in this area, namely, sheep, cattle, pigs, and donkeys. Livestock for the Aymara inhabitants is crucial because vegetable cultures are not viable due to the inhospitality of the very high altitude of 3,820-4,100 m. A One Health initiative has been implemented in this area in recent years, as the first such control action in a human endemic area ever. Among the different control axes included, special focus is devoted to the two main reservoirs sheep and cattle. Egg embryonation, miracidial infectivity, intramolluscan development, cercarial production, infected snail survival, and metacercarial infectivity were experimentally studied in altiplanic sheep and cattle isolates. These laboratory studies were performed using altiplanic isolates of the lymnaeid species Galba truncatula, the only vector present in the hyperendemic area. Experiments were made at constant 12 h day/12 h night and varying 20/20°C and 22/5°C photoperiods. Infections were implemented using mono-, bi-, and trimiracidial doses. Results demonstrate that sheep and cattle have the capacity to assure F. hepatica transmission in this very high-altitude area. Field surveys included prevalence studies by coprology on fecal samples from 1,202 sheep and 2,690 cattle collected from different zones of the Northern Bolivian Altiplano. Prevalences were pronouncedly higher and more homogeneous in sheep (63.1%; range: 38.9-68.5%) than in cattle (20.6%; range: 8.2-43.3%) in each one of the different zones. Although similarities between the prevalences in sheep and cattle appeared in the zones of the highest and lowest infection rates, this disappeared in the other zones due to cattle treatments. Comparison with past surveys demonstrates that this hyperendemic area is stable from the disease transmission point of view. Therefore, the control design should prioritize sheep and cattle within the One Health action. Studies performed in the Bolivian Altiplano furnish a baseline for future initiatives to assess the transmission and epidemiological characteristics of fascioliasis in the way for its control in other high altitude Andean endemic areas.
Collapse
Affiliation(s)
- Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Paola Buchon
- Unidad de Limnología, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Ilra R Funatsu
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - Rene Angles
- Cátedra de Parasitología, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Patricio Artigas
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - M Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| | - M Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
28
|
Valero MA, Gironès N, Reguera-Gomez M, Pérez-Crespo I, López-García MP, Quesada C, Bargues MD, Fresno M, Mas-Coma S. Impact of fascioliasis reinfection on Fasciola hepatica egg shedding: relationship with the immune-regulatory response. Acta Trop 2020; 209:105518. [PMID: 32371223 DOI: 10.1016/j.actatropica.2020.105518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/29/2022]
Abstract
Fascioliasis is a disease caused by liver flukes. In human fascioliasis hyperendemic areas, reinfection and chronicity are the norm. Control strategies in humans require the use of egg count techniques to calculate the appropriate treatment dose for colic risk prevention. The present study investigates how fascioliasis reinfection affects liver fluke egg shedding and its relationship with the immune-regulatory response. The experimental design reproduced the usual reinfection/chronicity conditions in human fascioliasis endemic areas and included Fasciola hepatica primo-infected Wistar rats (PI) and rats reinfected at 4 weeks (R4), 8 weeks (R8), 12 weeks (R12), and negative control rats. In a longitudinal study (0-20 weeks post-infection, p.i.), serical IgG1 levels and eggs per gram of faeces (epg) were analyzed. In a cross-sectional study, the expression of the genes associated with Th1 (Ifng, Il12a, Il12b, Nos2), Th2 (Il4, Arg1), Treg (Foxp3, Il10, Tgfb, Ebi3), and Th17 (Il17) in the spleen and thymus was analyzed. In R8 and R12, transiently higher averages of epg and epg/worm in reinfected groups vs PI group were detected at least in the weeks following reinfection. The kinetics of IgG1 levels shows that reinfected groups followed a pattern similar to the one in the PI group, but transiently higher averages of IgG1 levels in reinfected groups vs the PI group were detected in the weeks following reinfection. Epg correlated with IgG1 levels and also with systemic Il10 and thymic Ifng, and Il10 expression levels. These results suggest that epg depends on the Th1 and Treg phenotype and that the determination of the fluke burden by epg is likely to be an overestimation in cases of recent reinfection in low burden situations. A strategy to facilitate the implementation of epg count techniques and the subsequent decision on the appropriate treatment dose for each patient to prevent colic risk is required.
Collapse
Affiliation(s)
- M Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Nuria Gironès
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain.
| | - Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Ignacio Pérez-Crespo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - M Pilar López-García
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Carla Quesada
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - M Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Manuel Fresno
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049 Madrid, Spain
| | - Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
29
|
Nasreldin N, Zaki RS. Biochemical and immunological investigation of fascioliasis in cattle in Egypt. Vet World 2020; 13:923-930. [PMID: 32636589 PMCID: PMC7311878 DOI: 10.14202/vetworld.2020.923-930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Fasciola hepatica and Fasciola gigantica are two commonly reported liver flukes that cause fascioliasis in ruminants. Among the members of the genus Fasciola, F. hepatica was identified in the study area. Fascioliasis is a major disease that affects the production of livestock by causing liver damage. F. hepatica has developed advanced mechanisms to trick, elude, and alter the host immune response, similar to an extrinsic stressor. These mechanisms consequently affect the animals' physiological and metabolic functions in vivo and postmortem changes, which have significant influences on animal welfare and meat quality development. Therefore, this study aimed to determine the current prevalence of cattle fascioliasis at abattoirs in El-Kharga city, New Valley Governorate, Egypt, and to investigate the changes in serum biochemical and immunological parameters and oxidative stress factors due to Fasciola spp. infection in terms of meat quality and immune response. MATERIALS AND METHODS A total of 226 cattle were inspected for the presence of Fasciola spp. The liver of each cattle was examined by making several incisions for detecting adult Fasciola spp. in El- Kharga. The blood samples were collected to analyze the changes in serum biochemical and immunological parameters and oxidative stress factors. RESULTS Of the 226 cattle, 38 (16.81%) were positive for F. hepatica at the postmortem examination. Cattle infected with F. hepatica had highly elevated serum alanine aminotransferase, aspartate aminotransferase, glutamate dehydrogenase, γ-glutamyl transferase, urea, and creatinine levels. Immunological cytokine profiles showed significantly increased serum interleukin (IL)-4, IL-10, and transforming growth factor-beta levels and a significantly decreased interferon-γ level. Furthermore, oxidative stress profiles showed significantly increased serum malondialdehyde and nitric oxide levels and significantly decreased total antioxidant capacity and reduced glutathione level. CONCLUSION This study demonstrated that F. hepatica infection alone is an oxidative stress factor that affects slaughtered animals, leading to biochemical and metabolic alterations in the early postmortem period.
Collapse
Affiliation(s)
- Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, P.O. Box 72511, Egypt
| | - Rania Samir Zaki
- Department of Food Hygiene, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
30
|
Howell AK, Williams DJL. The Epidemiology and Control of Liver Flukes in Cattle and Sheep. Vet Clin North Am Food Anim Pract 2020; 36:109-123. [PMID: 32029178 DOI: 10.1016/j.cvfa.2019.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fasciola hepatica, Fasciola gigantica, and Fascioloides magna are liver flukes causing disease in cattle and sheep. Damage to the liver due to F hepatica and F gigantica results in clinical disease and/or production losses. F magna seems to have little effect in cattle but causes high mortality in sheep. The fluke life cycle involves an aquatic or amphibious snail intermediate host and thus requires suitable moisture and temperature conditions. F magna requires the presence of deer. Drug treatment is the mainstay of control and needs to be applied considering the life cycle and epidemiology of the parasite.
Collapse
Affiliation(s)
- Alison K Howell
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK.
| | - Diana J L Williams
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| |
Collapse
|
31
|
Kelley JM, Rathinasamy V, Elliott TP, Rawlin G, Beddoe T, Stevenson MA, Spithill TW. Determination of the prevalence and intensity of Fasciola hepatica infection in dairy cattle from six irrigation regions of Victoria, South-eastern Australia, further identifying significant triclabendazole resistance on three properties. Vet Parasitol 2019; 277:109019. [PMID: 31918044 DOI: 10.1016/j.vetpar.2019.109019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022]
Abstract
Fasciola hepatica (liver fluke) is a widespread parasite infection of livestock in Victoria, South-eastern Australia, where high rainfall and a mild climate is suitable for the main intermediate host Austropeplea tomentosa. The aims of this study were to quantify the prevalence and intensity of F. hepatica in dairy cattle in the irrigated dairy regions of Victoria and determine if triclabendazole resistance was present in infected herds. Cattle in 83 herds from the following six irrigation regions were tested for F. hepatica: Macalister Irrigation District (MID), Upper Murray (UM), Murray Valley (MV), Central Goulburn (CG), Torrumbarry (TIA) and Loddon Valley (LV). Twenty cattle from each herd were tested using the F. hepatica faecal egg count (FEC) as well as the coproantigen ELISA (cELISA). The mean individual animal true prevalence of F. hepatica across all regions was 39 % (95 % credible interval [CrI] 27%-51%) by FEC and 39 % (95 % CrI 27%-50%) by cELISA with the highest true prevalence (75-80 %) found in the MID. Our results show that 46 % of the herds that took part in this study were likely to experience fluke-associated production losses, based on observations that herd productivity is impaired when the true within-herd prevalence is > 25 %. Using the FEC and cELISA reduction tests, triclabendazole resistance was assessed on 3 herds in total (2 from the 83 in the study; and 1 separate herd that did not take part in the prevalence study) and resistance was confirmed in all 3 herds. This study has confirmed that F. hepatica is endemic in several dairy regions in Victoria: triclabendazole resistance may be contributing to the high prevalence in some herds. From our analysis, we estimate that the state-wide economic loss associated with fasciolosis is in the order of AUD 129 million (range AUD 38-193 million) per year or about AUD 50,000 (range AUD 15,000-75,000) per herd per year.
Collapse
Affiliation(s)
- Jane M Kelley
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora Victoria 3083, Australia
| | - Vignesh Rathinasamy
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora Victoria 3083, Australia
| | | | - Grant Rawlin
- Department of Jobs, Precincts and Regions, Centre for AgriBioscience, La Trobe University, Bundoora Victoria 3083, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora Victoria 3083, Australia
| | - Mark A Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria 3010, Australia
| | - Terry W Spithill
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora Victoria 3083, Australia.
| |
Collapse
|
32
|
Zhang XX, Cwiklinski K, Hu RS, Zheng WB, Sheng ZA, Zhang FK, Elsheikha HM, Dalton JP, Zhu XQ. Complex and dynamic transcriptional changes allow the helminth Fasciola gigantica to adjust to its intermediate snail and definitive mammalian hosts. BMC Genomics 2019; 20:729. [PMID: 31606027 PMCID: PMC6790025 DOI: 10.1186/s12864-019-6103-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/13/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The tropical liver fluke, Fasciola gigantica causes fasciolosis, an important disease of humans and livestock. We characterized dynamic transcriptional changes associated with the development of the parasite in its two hosts, the snail intermediate host and the mammalian definitive host. RESULTS Differential gene transcription analysis revealed 7445 unigenes transcribed by all F. gigantica lifecycle stages, while the majority (n = 50,977) exhibited stage-specific expression. Miracidia that hatch from eggs are highly transcriptionally active, expressing a myriad of genes involved in pheromone activity and metallopeptidase activity, consistent with snail host finding and invasion. Clonal expansion of rediae within the snail correlates with increased expression of genes associated with transcription, translation and repair. All intra-snail stages (miracidia, rediae and cercariae) require abundant cathepsin L peptidases for migration and feeding and, as indicated by their annotation, express genes putatively involved in the manipulation of snail innate immune responses. Cercariae emerge from the snail, settle on vegetation and become encysted metacercariae that are infectious to mammals; these remain metabolically active, transcribing genes involved in regulation of metabolism, synthesis of nucleotides, pH and endopeptidase activity to assure their longevity and survival on pasture. Dramatic growth and development following infection of the mammalian host are associated with high gene transcription of cell motility pathways, and transport and catabolism pathways. The intra-mammalian stages temporally regulate key families of genes including the cathepsin L and B proteases and their trans-activating peptidases, the legumains, during intense feeding and migration through the intestine, liver and bile ducts. While 70% of the F. gigantica transcripts share homology with genes expressed by the temperate liver fluke Fasciola hepatica, gene expression profiles of the most abundantly expressed transcripts within the comparable lifecycle stages implies significant species-specific gene regulation. CONCLUSIONS Transcriptional profiling of the F. gigantica lifecycle identified key metabolic, growth and developmental processes the parasite undergoes as it encounters vastly different environments within two very different hosts. Comparative analysis with F. hepatica provides insight into the similarities and differences of these parasites that diverged > 20 million years ago, crucial for the future development of novel control strategies against both species.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, People's Republic of China
| | - Krystyna Cwiklinski
- National Centre for Biomedical and Engineering Science (NCBES), School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Wen-Bin Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Zhao-An Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530005, People's Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - John P Dalton
- National Centre for Biomedical and Engineering Science (NCBES), School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
33
|
Luther RA, Wang D, Kim TK, Khalili K, Gold WL. Crawling Into View. Clin Infect Dis 2019; 69:1079-1081. [DOI: 10.1093/cid/ciy950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ryan A Luther
- Department of Medicine, University of Toronto, Canada
| | - David Wang
- Joint Department of Medical Imaging, University of Toronto, Canada
| | - Tae Kyoung Kim
- Joint Department of Medical Imaging, University of Toronto, Canada
| | - Korosh Khalili
- Joint Department of Medical Imaging, University of Toronto, Canada
| | - Wayne L Gold
- Department of Medicine, University of Toronto, Canada
- Department of Medicine, University Health Network, Toronto, Canada
| |
Collapse
|
34
|
Garcia-Campos A, Correia CN, Naranjo-Lucena A, Garza-Cuartero L, Farries G, Browne JA, MacHugh DE, Mulcahy G. Fasciola hepatica Infection in Cattle: Analyzing Responses of Peripheral Blood Mononuclear Cells (PBMC) Using a Transcriptomics Approach. Front Immunol 2019; 10:2081. [PMID: 31555289 PMCID: PMC6727689 DOI: 10.3389/fimmu.2019.02081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
The parasitic helminth Fasciola hepatica (liver fluke) causes economic loss to the livestock industry globally and also causes zoonotic disease. New control strategies such as vaccines are urgently needed, due to the rise of drug resistance in parasite populations. Vaccine development requires a comprehensive understanding of the immunological events during infection. Previous in vivo studies by our group have investigated global differentially expressed genes (DEGs) in ovine peripheral blood mononuclear cells (PBMC) in response to both acute and chronic F. hepatica infection. This work demonstrated that pathways involved in the pathogenesis of ovine fasciolosis included fibrosis, inhibition of macrophage nitric oxide production, and antibody isotype switching, among others. Transcriptomic changes in PBMC populations following F. hepatica infection in cattle, in which the disease phenotype is quite different, have not yet been examined. Using RNA sequencing we investigated gene expression changes in PBMC isolated from 9 non-infected and 11 F. hepatica-experimentally-infected calves immediately before infection, at 1 and at 14 weeks post-infection. Longitudinal time-course comparisons between groups revealed 21 and 1,624 DEGs driven exclusively by F. hepatica infection in cattle at acute and chronic stages, respectively. These results show that fewer DEGs at the acute stage of infection can be identified in cattle, as compared with sheep. In addition, the log2 fold-changes of these DEGs were relatively low (−1 to 3) reflecting the different clinical presentation of F. hepatica infection in cattle. Gene pathways for hepatic fibrosis and hepatic cholestasis along with apoptosis of antigen-presenting cells were enriched at chronic stages. Our results reflect the major differences in the disease phenotype between cattle and sheep and may indicate pathways to target in vaccine development.
Collapse
Affiliation(s)
| | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | | | - Gabriella Farries
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Grace Mulcahy
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Hodgkinson JE, Kaplan RM, Kenyon F, Morgan ER, Park AW, Paterson S, Babayan SA, Beesley NJ, Britton C, Chaudhry U, Doyle SR, Ezenwa VO, Fenton A, Howell SB, Laing R, Mable BK, Matthews L, McIntyre J, Milne CE, Morrison TA, Prentice JC, Sargison ND, Williams DJL, Wolstenholme AJ, Devaney E. Refugia and anthelmintic resistance: Concepts and challenges. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:51-57. [PMID: 31125837 PMCID: PMC6531808 DOI: 10.1016/j.ijpddr.2019.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Anthelmintic resistance is a threat to global food security. In order to alleviate the selection pressure for resistance and maintain drug efficacy, management strategies increasingly aim to preserve a proportion of the parasite population in 'refugia', unexposed to treatment. While persuasive in its logic, and widely advocated as best practice, evidence for the ability of refugia-based approaches to slow the development of drug resistance in parasitic helminths is currently limited. Moreover, the conditions needed for refugia to work, or how transferable those are between parasite-host systems, are not known. This review, born of an international workshop, seeks to deconstruct the concept of refugia and examine its assumptions and applicability in different situations. We conclude that factors potentially important to refugia, such as the fitness cost of drug resistance, the degree of mixing between parasite sub-populations selected through treatment or not, and the impact of parasite life-history, genetics and environment on the population dynamics of resistance, vary widely between systems. The success of attempts to generate refugia to limit anthelmintic drug resistance are therefore likely to be highly dependent on the system in hand. Additional research is needed on the concept of refugia and the underlying principles for its application across systems, as well as empirical studies within systems that prove and optimise its usefulness.
Collapse
Affiliation(s)
- Jane E Hodgkinson
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Ray M Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Fiona Kenyon
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Eric R Morgan
- School of Biological Sciences, Queen's University Belfast, Chlorine Gardens, Belfast, BT9 5BL, UK
| | - Andrew W Park
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA; Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, UK
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Nicola J Beesley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, EH25 9RG, UK
| | - Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Vanessa O Ezenwa
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA; Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, L69 7ZB, UK
| | - Sue B Howell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Louise Matthews
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Jennifer McIntyre
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Catherine E Milne
- SRUC, Peter Wilson Building, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Thomas A Morrison
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Jamie C Prentice
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Neil D Sargison
- Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, EH25 9RG, UK
| | - Diana J L Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
36
|
George S, George A, Rolfe P, Emery D. Comparative assessment of faecal diagnostics for detection and predictive modelling of endemic Fasciola hepatica infection in sheep and cattle on Australian farms. Vet Parasitol 2019; 1:100001. [PMID: 32909553 PMCID: PMC7458369 DOI: 10.1016/j.vpoa.2018.100001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 01/30/2023]
Abstract
The diagnosis, monitoring and flukicide efficacy testing of fasciolosis on-farm is reliant on non-terminal methods. The coproantigen ELISA (cELISA) has been recommended for diagnosis of fasciolosis and associated flukicide efficacy testing as an alternative to fluke egg counts for monitoring parasitism. Recently experimental multi-age infections have suggested that the reliability of efficacy results can be improved by a second cELISA testing at 6 weeks post-treatment (wpt) in addition to the generally accepted 1 wpt. A field study was conducted to determine the suitability of faecal fluke egg counts (FFEC) and cELISA as diagnostic, drug efficacy testing and epidemiological tools on Australian sheep and cattle farms. Faecal samples from sheep and/or cattle on three endemic farms were taken at monthly intervals for 12 months and examined by both methods. Normal farm management was maintained during the study period and opportunistic efficacy testing, in line with each farm's normal flukicide management was undertaken. Additionally, the suitability of the Ollerenshaw Index as a predictive model for fasciolosis under Australian conditions was examined. While both diagnostics demonstrated their value in the farm environment, the current data demonstrate a distinct and significant increase in diagnostic sensitivity for epidemiological studies by using the two tests in parallel. The agreement between the two diagnostics was found to be higher in cattle, despite the poor sensitivity of FFEC in this species. Similar levels of agreement between the two tests were demonstrated at both sheep properties, regardless of the marked difference in the intensity of F. hepatica challenge. Linear regression models demonstrated the results of the two diagnostics utilized in parallel were explained substantially (R2 = 0.91) as were series data (R2 = 0.88) when the respective models were fitted. In contrast, the fitted models for FFEC (R2 = 0.54) and cELISA (R2 = 0.58) were poor explanations for test outcomes. The outcomes of these models support previous findings that suggest that the two diagnostic tests are best utilized together, particularly in parallel. The application of the Ollerenshaw Index to Australian conditions requires further investigation.
Collapse
Affiliation(s)
- S.D. George
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, Australia
- Elanco Animal Health, Yarrandoo R&D Centre, 245 Western Road, Kemps Creek, NSW, 2178, Australia
| | - A.J. George
- Elanco Animal Health, Yarrandoo R&D Centre, 245 Western Road, Kemps Creek, NSW, 2178, Australia
| | - P.F. Rolfe
- Elanco Animal Health, Yarrandoo R&D Centre, 245 Western Road, Kemps Creek, NSW, 2178, Australia
| | - D.L. Emery
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Screening the Pathogen Box for Identification of New Chemical Agents with Anti- Fasciola hepatica Activity. Antimicrob Agents Chemother 2019; 63:AAC.02373-18. [PMID: 30602522 DOI: 10.1128/aac.02373-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Fascioliasis is an infectious parasitic disease distributed globally and caused by the liver fluke Fasciola hepatica or F. gigantica This neglected tropical disease affects both animals and humans, and it represents a latent public health problem due to the significant economic losses related to its effects on animal husbandry. For decades, triclabendazole has been the unique anti-Fasciola drug that can effectively treat this disease. However, triclabendazole resistance in fascioliasis has more recently been reported around the world, and thus, the discovery of novel drugs is an urgent need. The aim of this study was to investigate the fasciocidal properties of 400 compounds contained in the Pathogen Box. The first stage of the screening was carried out by measuring the fasciocidal activity on metacercariae at a concentration of 33 μM each compound (the standard dose). Subsequently, the activities of the most active compounds (n = 33) at their 50% inhibitory concentration (IC50) values against metacercariae were assayed, and the results showed that 13 compounds had IC50s of ≤10 μM. The second stage queried the activities of these compounds at 33 μM against adult flukes, with seven of the compounds producing high mortality rates of >50%. Four hit compounds were selected on the basis of their predicted nontoxic properties, and the IC50 values obtained for adult worms were <10 μM; thus, these compounds represented the best fasciocidal compounds tested here. A cytotoxicity assay on four types of cell lines demonstrated that three compounds were nontoxic at their most active concentration. In conclusion, three hit compounds identified in this proof-of-concept study are potential candidates in the discovery of new fasciocidal drugs. Further studies are warranted.
Collapse
|
38
|
Cwiklinski K, Donnelly S, Drysdale O, Jewhurst H, Smith D, De Marco Verissimo C, Pritsch IC, O'Neill S, Dalton JP, Robinson MW. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. ADVANCES IN PARASITOLOGY 2019; 104:113-164. [PMID: 31030768 DOI: 10.1016/bs.apar.2019.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fasciolosis caused by trematode parasites of the genus Fasciola is a global disease of livestock, particularly cattle, sheep, water buffalo and goats. It is also a major human zoonosis with reports suggesting that 2.4-17 million people are infected worldwide, and 91.1 million people currently living at risk of infection. A unique feature of these worms is their reliance on a family of developmentally-regulated papain-like cysteine peptidases, termed cathepsins. These proteolytic enzymes play central roles in virulence, infection, tissue migration and modulation of host innate and adaptive immune responses. The availability of a Fasciola hepatica genome, and the exploitation of transcriptomic and proteomic technologies to probe parasite growth and development, has enlightened our understanding of the cathepsin-like cysteine peptidases. Here, we clarify the structure of the cathepsin-like cysteine peptidase families and, in this context, review the phylogenetics, structure, biochemistry and function of these enzymes in the host-parasite relationship.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sheila Donnelly
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; The School of Life Sciences, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| | - Orla Drysdale
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Heather Jewhurst
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - David Smith
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Izanara C Pritsch
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Sandra O'Neill
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
39
|
Aragaw K, Tilahun H. Coprological study of trematode infections and associated host risk factors in cattle during the dry season in and around Bahir Dar, northwest Ethiopia. Vet Anim Sci 2018; 7:100041. [PMID: 32734064 PMCID: PMC7386688 DOI: 10.1016/j.vas.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 11/04/2022] Open
Abstract
This study was conducted to estimate the prevalence and identify risk factors associated with trematode infections in cattle in and around Bahir Dar, northwest Ethiopia. Fecal samples collected from randomly selected 369 cattle were examined using simple sedimentation technique for differential trematode eggs count. The animals were found shedding eggs of three groups of trematodes, namely Fasciola spp., paramphistomes and Schistosoma spp. The overall prevalence of trematodes was 61.0%, and specific prevalence for Fasciola, paramphistomes and Schistosoma was 20.1%, 48.5% and 16.5%, respectively. A substantial overlap was observed in the occurrence of Fasciola and paramphistomes. The prevalence of all the three trematodes identified in this study was significantly (P < 0.05) associated with body condition and breed, while the prevalence of Fasciola and paramphistomes was also associated with age. The mean (± SE) fecal egg count per gram of feces (EPG) for Fasciola, paramphistomes and Schistosoma was 4.3 (± 0.55), 25.7 (± 2.11) and 3.1 (± 0.42), respectively. EPG of Fasciola was significantly correlated with EPG of paramphistomes (P < 0.001). The EPG for all the three trematodes was associated with body condition and breed of animals (P < 0.05), while EPG for paramphistomes was also affected by age of the animals (P < 0.05). The prevalence of all the three major trematodes of animal health importance with high rate of mixed infection along with poor body condition, suggests substantial economic loss incurred due to reduced productivity in cattle in the study area.
Collapse
Affiliation(s)
- Kassaye Aragaw
- Hawassa University, School of Veterinary Medicine, P.O.Box 05, Hawassa, Ethiopia
| | - Hana Tilahun
- Hawassa University, School of Veterinary Medicine, P.O.Box 05, Hawassa, Ethiopia
| |
Collapse
|
40
|
First phenotypic and genotypic description of Fasciola hepatica infecting highland cattle in the state of Mexico, Mexico. INFECTION GENETICS AND EVOLUTION 2018; 64:231-240. [DOI: 10.1016/j.meegid.2018.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 12/20/2022]
|
41
|
Beesley NJ, Caminade C, Charlier J, Flynn RJ, Hodgkinson JE, Martinez‐Moreno A, Martinez‐Valladares M, Perez J, Rinaldi L, Williams DJL. Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound Emerg Dis 2018; 65 Suppl 1:199-216. [PMID: 28984428 PMCID: PMC6190748 DOI: 10.1111/tbed.12682] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 12/16/2022]
Abstract
Fasciola hepatica is a trematode parasite with a global distribution, which is responsible for considerable disease and production losses in a range of food producing species. It is also identified by WHO as a re-emerging neglected tropical disease associated with endemic and epidemic outbreaks of disease in human populations. In Europe, F. hepatica is mostly associated with disease in sheep, cattle and goats. This study reviews the most recent advances in our understanding of the transmission, diagnosis, epidemiology and the economic impact of fasciolosis. We also focus on the impact of the spread of resistance to anthelmintics used to control F. hepatica and consider how vaccines might be developed and applied in the context of the immune-modulation driven by the parasite. Several major research gaps are identified which, when addressed, will contribute to providing focussed and where possible, bespoke, advice for farmers on how to integrate stock management and diagnosis with vaccination and/or targeted treatment to more effectively control the parasite in the face of increasing the prevalence of infection and spread of anthelmintic resistance that are likely to be exacerbated by climate change.
Collapse
Affiliation(s)
- N. J. Beesley
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
| | - C. Caminade
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
- Health Protection Research Unit in
Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK
| | | | - R. J. Flynn
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
| | - J. E. Hodgkinson
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
| | | | | | - J. Perez
- Universidad de CordobaCordobaSpain
| | - L. Rinaldi
- Department of Veterinary Medicine
and Animal ProductionsUniversity of Naples Federico IINapoliItaly
| | - D. J. L. Williams
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
42
|
Moazeni M, Ahmadi A, Mootabi Alavi A. A new method for laboratory rearing of Galba truncatula, the intermediate host of Fasciola hepatica. Vet Parasitol 2018; 253:12-15. [PMID: 29604994 DOI: 10.1016/j.vetpar.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 07/16/2017] [Accepted: 02/02/2018] [Indexed: 11/16/2022]
Abstract
In this study a relatively large and open top aquarium was designed, constructed and introduced as a suitable habitat for nutrition, growth and development as well as for egg laying and breeding of Galba truncatula under laboratory conditions. The soil and water used in the aquarium were collected from the locality in which the snails were collected. The aquarium was placed in a laboratory with temperature of 18-32 ºC and relative humidity of 22-37% respectively, according to the season. The artificial light was controlled by a light timer, giving 12 h of light and 12 h of darkness. The snails were fed with dried lettuce leaves, Cyperus alternifolius (aquatic plant), Spirulina (algae), Orthotrichum rupestre (moss) and cuttlebone (a supplementary source of calcium). Approximately five weeks after the start of study, there was evidence of reproduction and success in rearing of G. truncatula by the appearance of eggs and small snails (0.1-0.5 mm) in the aquarium. In conclusion, large scale laboratory rearing of G. truncatula is a feasible task. The method may be improved by balancing the temperature and relative humidity as well as by optimizing the soil type, the water quality and the type of food.
Collapse
Affiliation(s)
- Mohammad Moazeni
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Amin Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Mootabi Alavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
43
|
Cwiklinski K, Dalton JP. Advances in Fasciola hepatica research using 'omics' technologies. Int J Parasitol 2018; 48:321-331. [PMID: 29476869 DOI: 10.1016/j.ijpara.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
The liver fluke Fasciola hepatica is an economically important pathogen of livestock worldwide, as well as being an important neglected zoonosis. Parasite control is reliant on the use of drugs, particularly triclabendazole, which is effective against multiple parasite stages. However, the spread of parasites resistant to triclabendazole has intensified the pursuit for novel control strategies. Emerging 'omics' technologies are helping advance our understanding of liver fluke biology, specifically the molecules that act at the host-parasite interface and are central to infection, virulence and long-term survival within the definitive host. This review discusses the technological sequencing advances that have facilitated the unbiased analysis of liver fluke biology, resulting in an extensive range of 'omics' datasets. In addition, we highlight the 'omics' studies of host responses to F. hepatica infection that, when combined with the parasite datasets, provide the opportunity for integrated analyses of host-parasite interactions. These extensive datasets will form the foundation for future in-depth analysis of F. hepatica biology and development, and the search for new drug or vaccine interventions.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK; Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
44
|
Cwiklinski K, Jewhurst H, McVeigh P, Barbour T, Maule AG, Tort J, O'Neill SM, Robinson MW, Donnelly S, Dalton JP. Infection by the Helminth Parasite Fasciola hepatica Requires Rapid Regulation of Metabolic, Virulence, and Invasive Factors to Adjust to Its Mammalian Host. Mol Cell Proteomics 2018; 17:792-809. [PMID: 29321187 PMCID: PMC5880117 DOI: 10.1074/mcp.ra117.000445] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
The parasite Fasciola hepatica infects a broad range of mammals with
impunity. Following ingestion of parasites (metacercariae) by the host, newly
excysted juveniles (NEJ) emerge from their cysts, rapidly penetrate the duodenal wall
and migrate to the liver. Successful infection takes just a few hours and involves
negotiating hurdles presented by host macromolecules, tissues and micro-environments,
as well as the immune system. Here, transcriptome and proteome analysis of ex
vivo F. hepatica metacercariae and NEJ reveal the rapidity and multitude
of metabolic and developmental alterations that take place in order for the parasite
to establish infection. We found that metacercariae despite being encased in a cyst
are metabolically active, and primed for infection. Following excystment, NEJ expend
vital energy stores and rapidly adjust their metabolic pathways to cope with their
new and increasingly anaerobic environment. Temperature increases induce neoblast
proliferation and the remarkable up-regulation of genes associated with growth and
development. Cysteine proteases synthesized by gastrodermal cells are secreted to
facilitate invasion and tissue degradation, and tegumental transporters, such as
aquaporins, are varied to deal with osmotic/salinity changes. Major proteins of the
total NEJ secretome include proteases, protease inhibitors and anti-oxidants, and an
array of immunomodulators that likely disarm host innate immune effector cells. Thus,
the challenges of infection by F. hepatica parasites are met by
rapid metabolic and physiological adjustments that expedite tissue invasion and
immune evasion; these changes facilitate parasite growth, development and maturation.
Our molecular analysis of the critical processes involved in host invasion has
identified key targets for future drug and vaccine strategies directed at preventing
parasite infection.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK;
| | - Heather Jewhurst
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Paul McVeigh
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Tara Barbour
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Aaron G Maule
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jose Tort
- ¶Departamento de Genética, Facultad de Medicina, Universidad de la República, Uruguay
| | | | - Mark W Robinson
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- **The i3 Institute and School of Medical and Molecular Biosciences, University of Technology, Sydney, Australia
| | - John P Dalton
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
45
|
Characterization of multiple life stages of two Australian Fasciola hepatica isolates in sheep. Vet Parasitol 2017; 248:4-9. [DOI: 10.1016/j.vetpar.2017.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022]
|
46
|
Takeuchi-Storm N, Denwood M, Hansen TVA, Halasa T, Rattenborg E, Boes J, Enemark HL, Thamsborg SM. Farm-level risk factors for Fasciola hepatica infection in Danish dairy cattle as evaluated by two diagnostic methods. Parasit Vectors 2017; 10:555. [PMID: 29121986 PMCID: PMC5679181 DOI: 10.1186/s13071-017-2504-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background The prevalence of bovine fasciolosis in Denmark is increasing but appropriate guidelines for control are currently lacking. In order to help develop a control strategy for liver fluke, a risk factor study of farm management factors was conducted and the utility of bulk tank milk (BTM ELISA) as a tool for diagnosis in Danish dairy cattle farms was assessed. Methods This case-control study aimed to identify farm-level risk factors for fasciolosis in Danish dairy farms (> 50 animals slaughtered in 2013) using two diagnostic methods: recordings of liver condemnation at slaughter, and farm-level Fasciola hepatica antibody levels in BTM. A case farm was defined as having a minimum of 3 incidents of liver condemnation due to liver fluke at slaughter (in any age group) during 2013, and control farms were located within 10 km of at least one case farm and had no history of liver condemnation due to liver fluke during 2011–2013. The selected farmers were interviewed over telephone about grazing and control practices, and BTM from these farms was collected and analysed by ELISA in 2014. The final complete dataset consisting of 131 case and 63 control farms was analysed using logistic regression. Results Heifers grazing on wet pastures, dry cows grazing on wet pastures, herd size, breed and concurrent beef cattle production were identified as risk factors associated with being classified as a case farm. With the categorised BTM ELISA result as the response variable, heifers grazing on wet pastures, dry cows grazing on wet pastures, and purchase of cows were identified as risk factors. Within the case and control groups, 74.8 and 12.7% of farms were positive for fasciolosis on BTM ELISA, respectively. The differences are likely to be related to the detection limit of the farm-level prevalence by the BTM ELISA test, time span between slaughter data and BTM, and the relatively low sensitivity of liver inspection at slaughter. Conclusions Control of bovine fasciolosis in Denmark should target heifers and dry cows through grazing management and appropriate anthelmintic treatment, and BTM ELISA can be a useful diagnostic tool for fasciolosis in Danish dairy farms. Electronic supplementary material The online version of this article (10.1186/s13071-017-2504-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nao Takeuchi-Storm
- Department of Veterinary and Animal Sciences, Research Group for Veterinary Parasitology, University of Copenhagen, Dyrlægevej 100, DK-1871, Frederiksberg C, Denmark.
| | - Matthew Denwood
- Department of Veterinary and Animal Sciences, Section for Animal Welfare and Disease Control, University of Copenhagen, Grønnegårdsvej 8, DK-1870, Frederiksberg C, Denmark
| | - Tina Vicky Alstrup Hansen
- Department of Veterinary and Animal Sciences, Research Group for Veterinary Parasitology, University of Copenhagen, Dyrlægevej 100, DK-1871, Frederiksberg C, Denmark
| | - Tariq Halasa
- National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, DK-2800, Kgs. Lyngby, Denmark
| | - Erik Rattenborg
- SEGES, Landbrug & Fødevarer F.m.b.A, Agro Food Park 15, DK-8200, Aarhus N, Denmark
| | - Jaap Boes
- SEGES, Landbrug & Fødevarer F.m.b.A, Agro Food Park 15, DK-8200, Aarhus N, Denmark
| | - Heidi Larsen Enemark
- Section for Parasitology, Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106, Oslo, Norway
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, Research Group for Veterinary Parasitology, University of Copenhagen, Dyrlægevej 100, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
47
|
George S, Vanhoff K, Baker K, Lake L, Rolfe P, Seewald W, Emery D. Application of a coproantigen ELISA as an indicator of efficacy against multiple life stages of Fasciola hepatica infections in sheep. Vet Parasitol 2017; 246:60-69. [DOI: 10.1016/j.vetpar.2017.08.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
48
|
Caron Y, Celi-Erazo M, Hurtrez-Boussès S, Lounnas M, Pointier JP, Saegerman C, Losson B, Benítez-Ortíz W. Is Galba schirazensis (Mollusca, Gastropoda) an intermediate host of Fasciola hepatica (Trematoda, Digenea) in Ecuador? Parasite 2017; 24:24. [PMID: 28664841 PMCID: PMC5492793 DOI: 10.1051/parasite/2017026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/14/2017] [Indexed: 11/25/2022] Open
Abstract
Fasciolosis is a widely distributed disease in livestock in South America but knowledge about the epidemiology and the intermediate hosts is relatively scarce in Ecuador. For three months, lymnaeid snails were sampled (n = 1482) in Pichincha Province at two sites located in a highly endemic area. Snails were identified (based on morphology and ITS-2 sequences) and the infection status was established through microscopic dissection and a multiplex polymerase chain reaction (PCR)-based technique. Techniques based on morphology were not useful to accurately name the collected snail species. Comparison with available DNA sequences showed that a single snail species was collected, Galba schirazensis. Live rediae were observed in 1.75% (26/1482) and Fasciola sp. DNA was detected in 6% (89/1482) of collected snails. The COX-1 region permitted identification of the parasite as Fasciola hepatica. The relative sensitivity and specificity of the microscope study, compared to PCR results, were 25.84% and 99.78%, respectively. The mean size of the snails recorded positive for F. hepatica through crushing and microscopy was significantly higher than the mean size of negative snails, but there was no such difference in PCR-positive snails. The role of G. schirazensis as an intermediate host of F. hepatica in Ecuador is discussed and the hypothesis of an adaptation of the parasite to this invasive snail is proposed. For the first time, an epidemiological survey based on molecular biology-based techniques assessed the possible role of lymnaeid snails in the epidemiology of fasciolosis in Ecuador.
Collapse
Affiliation(s)
- Yannick Caron
-
Parasitology and Pathology of Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège Quartier Vallée 2, 6 Avenue de Cureghem 4000
Liège Belgium
| | - Maritza Celi-Erazo
-
International Center for Zoonosis, Day Hospital, Central University of Ecuador PO Box 17-03-100
Quito Ecuador
| | - Sylvie Hurtrez-Boussès
-
MIVEGEC, UMR IRD 224-CNRS 5290-UM 911 Avenue Agropolis 34394
Montpellier France
-
Department of Biology Ecology (Sciences Faculty), Montpellier University 2 Place Pierre Viala 34060
Montpellier France
| | - Mannon Lounnas
-
MIVEGEC, UMR IRD 224-CNRS 5290-UM 911 Avenue Agropolis 34394
Montpellier France
| | - Jean-Pierre Pointier
-
PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Perpignan University 58 Avenue Paul Alduy 66860
Perpignan France
| | - Claude Saegerman
-
Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège Quartier Vallée 2, 7A-7D Avenue de Cureghem 4000
Liège Belgium
| | - Bertrand Losson
-
Parasitology and Pathology of Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège Quartier Vallée 2, 6 Avenue de Cureghem 4000
Liège Belgium
| | - Washington Benítez-Ortíz
-
International Center for Zoonosis, Day Hospital, Central University of Ecuador PO Box 17-03-100
Quito Ecuador
-
Veterinary Medicine and Zootechny Faculty, Avenida América, Central University of Ecuador PO Box 17-03-100
Quito Ecuador
| |
Collapse
|
49
|
Abstract
Trematode infections cause serious economic losses to livestock worldwide. Global production losses due to fasciolosis alone exceed US$3 billion annually. Many trematode infections are also zoonotic and thus a public health concern. The World Health Organization has estimated that about 56 million people worldwide are infected by at least one zoonotic trematode species, and up to 750 million people are at risk of infection. Fasciolosis caused by the fluke Fasciola gigantica is endemic in Nigeria and is one of the most common causes of liver condemnation in abattoirs. Total cattle losses from Fasciola infection in Nigeria have been estimated to cost £32.5 million. Other trematode infections of cattle, including paramphistomosis, dicrocoeliasis and schistosomiasis, have all been reported in various parts of Nigeria, with varying prevalence. Most publications on trematode infections are limited to Nigerian local and national journals, with very few international reports. This paper therefore summarized the current data on distribution, control and zoonotic trematode infections in Nigeria and other African countries. We also identified research gaps and made recommendations for future research and areas for funding for policy/planning.
Collapse
|
50
|
Kesik-Brodacka M, Lipiec A, Kozak Ljunggren M, Jedlina L, Miedzinska K, Mikolajczak M, Plucienniczak A, Legocki AB, Wedrychowicz H. Immune response of rats vaccinated orally with various plant-expressed recombinant cysteine proteinase constructs when challenged with Fasciola hepatica metacercariae. PLoS Negl Trop Dis 2017; 11:e0005451. [PMID: 28333957 PMCID: PMC5383346 DOI: 10.1371/journal.pntd.0005451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/06/2017] [Accepted: 03/02/2017] [Indexed: 12/07/2022] Open
Abstract
Background Cysteine proteinases of Fasciola hepatica are important candidates for vaccine antigens because of their role in fluke biology and host-parasite relationships. In our previous experiments, we found that a recombinant cysteine proteinase cloned from adult F. hepatica (CPFhW) can protect rats against liver fluke infections when it is administered intramuscularly or intranasally in the form of cDNA. We also observed considerable protection upon challenge following mucosal vaccination with inclusion bodies containing recombinant CPFhW produced in Escherichia coli. In this study, we explore oral vaccination, which may be the desired method of delivery and is potentially capable of preventing infections at the site of helminth entry. To provide antigen encapsulation and to protect the vaccine antigen from degradation in the intestinal tract, transgenic plant-based systems are used. Methodology In the present study, we aimed to evaluate the protective ability of mucosal vaccinations of 12-week-old rats with CPFhW produced in a transgenic-plant-based system. To avoid inducing tolerance and to maximise the immune response induced by oral immunisation, we used the hepatitis B virus (HBV) core protein (HBcAg) as a carrier. Animals were immunised with two doses of the antigen and challenged with 25 or 30 metacercariae of F. hepatica. Conclusions We obtained substantial protection after oral administration of the plant-produced hybrids of CPFhW and HBcAg. The highest level of protection (65.4%) was observed in animals immunised with transgenic plants expressing the mature CPFhW enzyme flanked by Gly-rich linkers and inserted into c/e1 epitope of truncated HBcAg. The immunised rats showed clear IgG1 and IgM responses to CPFhW for 4 consecutive weeks after the challenge. Infection with Fasciola hepatica, a liver fluke, is one of the most significant veterinary problems due to the worldwide distribution of this parasite, a wide spectrum of host organisms and the resulting economic loss. Human fasciolosis caused by F. hepatica is recognised by the World Health Organization as an important emerging but neglected tropical disease. Development of an effective vaccine against this disease is becoming a priority, especially as the appearance of drug-resistant strains undermine the currently employed drug-based treatments. The two primary issues when developing a vaccine are the selection of an appropriate vaccine antigen and the route of antigen administration. In our studies, we use one of the F. hepatica cysteine proteinases, which are promising antigens for vaccine construction. We evaluate the immunogenicity and protective ability of various modifications of this cysteine proteinase produced in plants. We show that substantial protection can be obtained when plant-expressed hybrid proteins are administered orally.
Collapse
Affiliation(s)
| | - Agnieszka Lipiec
- Division of Parasitology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Luiza Jedlina
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Andrzej Plucienniczak
- Department of Bioengineering, Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | - Andrzej B. Legocki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Halina Wedrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|