1
|
Nakazato R, Matsuda Y, Ijaz F, Ikegami K. Circadian oscillation in primary cilium length by clock genes regulates fibroblast cell migration. EMBO Rep 2023; 24:e56870. [PMID: 37971148 DOI: 10.15252/embr.202356870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Various mammalian cells have autonomous cellular clocks that are produced by the transcriptional cycle of clock genes. Cellular clocks provide circadian rhythms for cellular functions via transcriptional and cytoskeletal regulation. The vast majority of mammalian cells possess a primary cilium, an organelle protruding from the cell surface. Here, we investigated the little-known relationship between circadian rhythm and primary cilia. The length and number of primary cilia showed circadian dynamics both in vitro and in vivo. The circadian rhythm of primary cilium length was abolished by SR9011 and Bmal1 knockout. A centrosomal protein, pericentrin, transiently accumulates in centriolar satellites, the base of primary cilia at the shortest cilia phase, and induces elongation of primary cilia at the longest cilia phase in the circadian rhythm of primary cilia. In addition, rhythmic cell migration during wound healing depends on the length of primary cilia and affects the rate of wound healing. Our findings demonstrate that the circadian dynamics of primary cilium length by clock genes control fibroblast migration and could provide new insights into chronobiology.
Collapse
Affiliation(s)
- Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Matsuda
- Hiroshima University School of Medicine, Hiroshima, Japan
| | - Faryal Ijaz
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
2
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
3
|
Onodera S, Azuma T. Hedgehog-Related Mutation Causes Bone Malformations with or without Hereditary Gene Mutations. Int J Mol Sci 2023; 24:12903. [PMID: 37629084 PMCID: PMC10454035 DOI: 10.3390/ijms241612903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The hedgehog (Hh) family consists of numerous signaling mediators that play important roles at various stages of development. Thus, the Hh pathway is essential for bone tissue development and tumorigenesis. Gorlin syndrome is a skeletal and tumorigenic disorder caused by gain-of-function mutations in Hh signaling. In this review, we first present the phenotype of Gorlin syndrome and the relationship between genotype and phenotype in bone and craniofacial tissues, including the causative gene as well as other Hh-related genes. Next, the importance of new diagnostic methods using next-generation sequencing and multiple gene panels will be discussed. We summarize Hh-related genetic disorders, including cilia disease, and the genetics of Hh-related bone diseases.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
4
|
Chen Z, Lei Y, Finnell RH, Ding Y, Su Z, Wang Y, Xie H, Chen F. Whole-exome sequencing study of hypospadias. iScience 2023; 26:106663. [PMID: 37168556 PMCID: PMC10165268 DOI: 10.1016/j.isci.2023.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Hypospadias results from the impaired urethral development, which is influenced by androgens, but its genetic etiology is still unknown. Through whole exome sequencing analysis, we identified NR5A1, SRD5A2, and AR as mutational hotspots in the etiology of severe hypospadias, as these genes are related to androgen signaling. Additionally, rare damaging variants in cilia-related outer dynein arm heavy chain (ODNAH) genes (DNAH5, DNAH8, DNAH9, DNAH11, and DNAH17) (p = 8.5 × 10-47) were significantly enriched in hypospadias cases. The Dnah8 KO mice exhibited significantly decreased testosterone levels, which had an impact on urethral development and disrupted steroid biosynthesis. Combined with trios data, transcriptomic, and phenotypical and proteomic characterization of a mouse model, our work links ciliary genes with hypospadias. Overall, a panel of ODNAH genes with rare damaging variants was identified in 24% of hypospadias patients, providing significant insights into the underlying pathogenesis of hypospadias as well as genetic counseling.
Collapse
Affiliation(s)
- Zhongzhong Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Urogenital Development Research Center, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Ding
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhixi Su
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yaping Wang
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fang Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Center For Hypospadias Pediatric College, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
5
|
Silva DF, Cavadas C. Primary cilia shape hallmarks of health and aging. Trends Mol Med 2023:S1471-4914(23)00071-0. [PMID: 37137787 DOI: 10.1016/j.molmed.2023.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
Primary cilia are specialized organelles that sense changes in extracellular milieu, and their malfunction is responsible for several disorders (ciliopathies). Increasing evidence shows that primary cilia regulate tissue and cellular aging related features, which led us to review the evidence on their role in potentiating and/or accelerating the aging process. Primary cilia malfunction is associated with some age-related disorders, from cancer to neurodegenerative and metabolic disorders. However, there is limited understanding of molecular pathways underlying primary cilia dysfunction, resulting in scarce ciliary-targeted therapies available. Here, we discuss the findings on primary cilia dysfunction as modulators of the health and aging hallmarks, and the pertinence of ciliary pharmacological targeting to promote healthy aging or treat age-related diseases.
Collapse
Affiliation(s)
- Diana Filipa Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
6
|
Legal T, Tong M, Black C, Valente Paterno M, Gaertig J, Bui KH. Molecular architecture of the ciliary tip revealed by cryo-electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522627. [PMID: 36711791 PMCID: PMC9881849 DOI: 10.1101/2023.01.03.522627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cilia are essential organelles that protrude from the cell body. Cilia are made of a microtubule-based structure called the axoneme. In most types of cilia, the ciliary tip is distinct from the rest of the cilium. Here, we used cryo-electron tomography and subtomogram averaging to obtain the structure of the ciliary tip of the ciliate Tetrahymena thermophila. We show the microtubules in the tip are highly cross-linked with each other and stabilised by luminal proteins, plugs and cap proteins at the plus ends. In the tip region, the central pair lacks the typical projections and twists significantly. By analysing cells lacking a ciliary tip-enriched protein CEP104/FAP256 by cryo-electron tomography and proteomics, we discovered candidates for the central pair cap complex and explain potential functions of CEP104/FAP256. These data provide new insights into the function of the ciliary tip and inform about the mechanisms of ciliary assembly and length regulation.
Collapse
Affiliation(s)
- T Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - M Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - C Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - M Valente Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - J Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, United States of America
| | - K H Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| |
Collapse
|
7
|
Lindner LA, Derstroff D, Oliver D, Reimann K. Distribution of ciliary adaptor proteins tubby and TULP3 in the organ of Corti. Front Neurosci 2023; 17:1162937. [PMID: 37144094 PMCID: PMC10151737 DOI: 10.3389/fnins.2023.1162937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Tubby-like proteins are membrane-associated adaptors that mediate directional trafficking into primary cilia. In inner ear sensory epithelia, cilia-including the hair cell's kinocilium-play important roles as organizers of polarity, tissue architecture and cellular function. However, auditory dysfunction in tubby mutant mice was recently found to be related to a non-ciliary function of tubby, the organization of a protein complex in sensory hair bundles of auditory outer hair cells (OHCs). Targeting of signaling components into cilia in the cochlea might therefore rather rely on closely related tubby-like proteins (TULPs). In this study, we compared cellular and subcellular localization of tubby and TULP3 in the mouse inner ear sensory organs. Immunofluorescence microscopy confirmed the previously reported highly selective localization of tubby in the stereocilia tips of OHCs and revealed a previously unnoticed transient localization to kinocilia during early postnatal development. TULP3 was detected in the organ of Corti and vestibular sensory epithelium, where it displayed a complex spatiotemporal pattern. TULP3 localized to kinocilia of cochlear and vestibular hair cells in early postnatal development but disappeared subsequently before the onset of hearing. This pattern suggested a role in targeting ciliary components into kinocilia, possibly related to the developmental processes that shape the sensory epithelia. Concurrent with loss from kinocilia, pronounced TULP3 immunolabeling progressively appeared at microtubule bundles in non-sensory Pillar (PCs) and Deiters cells (DC). This subcellular localization may indicate a novel function of TULP proteins associated with the formation or regulation of microtubule-based cellular structures.
Collapse
Affiliation(s)
- Laura A. Lindner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Dennis Derstroff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Katrin Reimann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Katrin Reimann,
| |
Collapse
|
8
|
Life-Saver or Undertaker: The Relationship between Primary Cilia and Cell Death in Vertebrate Embryonic Development. J Dev Biol 2022; 10:jdb10040052. [PMID: 36547474 PMCID: PMC9783631 DOI: 10.3390/jdb10040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The development of multicellular organisms requires a tightly coordinated network of cellular processes and intercellular signalling. For more than 20 years, it has been known that primary cilia are deeply involved in the mediation of intercellular signalling and that ciliary dysfunction results in severe developmental defects. Cilia-mediated signalling regulates cellular processes such as proliferation, differentiation, migration, etc. Another cellular process ensuring proper embryonic development is cell death. While the effect of cilia-mediated signalling on many cellular processes has been extensively studied, the relationship between primary cilia and cell death remains largely unknown. This article provides a short review on the current knowledge about this relationship.
Collapse
|
9
|
Chen C, Hu J, Ling K. The Role of Primary Cilia-Associated Phosphoinositide Signaling in Development. J Dev Biol 2022; 10:51. [PMID: 36547473 PMCID: PMC9785882 DOI: 10.3390/jdb10040051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Primary cilia are microtube-based organelles that extend from the cell surface and function as biochemical and mechanical extracellular signal sensors. Primary cilia coordinate a series of signaling pathways during development. Cilia dysfunction leads to a pleiotropic group of developmental disorders, termed ciliopathy. Phosphoinositides (PIs), a group of signaling phospholipids, play a crucial role in development and tissue homeostasis by regulating membrane trafficking, cytoskeleton reorganization, and organelle identity. Accumulating evidence implicates the involvement of PI species in ciliary defects and ciliopathies. The abundance and localization of PIs in the cell are tightly regulated by the opposing actions of kinases and phosphatases, some of which are recently discovered in the context of primary cilia. Here, we review several cilium-associated PI kinases and phosphatases, including their localization along cilia, function in regulating the ciliary biology under normal conditions, as well as the connection of their disease-associated mutations with ciliopathies.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Best S, Yu J, Lord J, Roche M, Watson CM, Bevers RPJ, Stuckey A, Madhusudhan S, Jewell R, Sisodiya SM, Lin S, Turner S, Robinson H, Leslie JS, Baple E, Toomes C, Inglehearn C, Wheway G, Johnson CA. Uncovering the burden of hidden ciliopathies in the 100 000 Genomes Project: a reverse phenotyping approach. J Med Genet 2022; 59:1151-1164. [PMID: 35764379 PMCID: PMC9691823 DOI: 10.1136/jmedgenet-2022-108476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis. METHODS We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (BBS1, BBS10, ALMS1, OFD1, DYNC2H1, WDR34, NPHP1, TMEM67, CEP290), representative of the full phenotypic spectrum of multisystemic primary ciliopathies. We mapped genotype data 'backwards' onto available clinical data to assess potential matches against phenotypes. Participants with novel molecular diagnoses and key clinical features compatible with the identified disease gene were reported to recruiting clinicians. RESULTS We identified 62 reportable molecular diagnoses with variants in these nine ciliopathy genes. Forty-four have been reported by 100K, 5 were previously unreported and 13 are new diagnoses. We identified 11 participants with unreportable, novel molecular diagnoses, who lacked key clinical features to justify reporting to recruiting clinicians. Two participants had likely pathogenic structural variants and one a deep intronic predicted splice variant. These variants would not be prioritised for review by standard 100K diagnostic pipelines. CONCLUSION Reverse phenotyping improves the rate of successful molecular diagnosis for unsolved 100K participants with primary ciliopathies. Previous analyses likely missed these diagnoses because incomplete HPO term entry led to incorrect gene panel choice, meaning that pathogenic variants were not prioritised. Better phenotyping data are therefore essential for accurate variant interpretation and improved patient benefit.
Collapse
Affiliation(s)
- Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Jing Yu
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jenny Lord
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Matthew Roche
- Windsor House Group Practice, Mid Yorkshire Hospitals NHS Trust, Leeds, UK
| | - Christopher Mark Watson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Roel P J Bevers
- Genomics England, Queen Mary University of London, London, UK
| | - Alex Stuckey
- Genomics England, Queen Mary University of London, London, UK
| | | | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sanjay M Sisodiya
- University College London (UCL) Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont, UK
| | - Siying Lin
- Department of Ophthalmology, Torbay and South Devon NHS Foundation Trust, Torquay, UK
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Stephen Turner
- Department of Ophthalmology, Torbay and South Devon NHS Foundation Trust, Torquay, UK
| | - Hannah Robinson
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Emma Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Chris Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Gabrielle Wheway
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Allard BA, Wang W, Pottorf TS, Mumtaz H, Jack BM, Wang HH, Silva LM, Jacobs DT, Wang J, Bumann EE, Tran PV. Thm2 interacts with paralog, Thm1, and sensitizes to Hedgehog signaling in postnatal skeletogenesis. Cell Mol Life Sci 2021; 78:3743-3762. [PMID: 33683377 DOI: 10.1007/s00018-021-03806-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Mutations in the intraflagellar transport-A (IFT-A) gene, THM1, have been identified in skeletal ciliopathies. Here, we report a genetic interaction between Thm1, and its paralog, Thm2, in postnatal skeletogenesis. THM2 localizes to primary cilia, but Thm2 deficiency does not affect ciliogenesis and Thm2-null mice survive into adulthood. However, by postnatal day 14, Thm2-/-; Thm1aln/+ mice exhibit small stature and small mandible. Radiography and microcomputed tomography reveal Thm2-/-; Thm1aln/+ tibia are less opaque and have reduced cortical and trabecular bone mineral density. In the mutant tibial growth plate, the proliferation zone is expanded and the hypertrophic zone is diminished, indicating impaired chondrocyte differentiation. Additionally, mutant growth plate chondrocytes show increased Hedgehog signaling. Yet deletion of one allele of Gli2, a major transcriptional activator of the Hedgehog pathway, exacerbated the Thm2-/-; Thm1aln/+ small phenotype, and further revealed that Thm2-/-; Gli2+/- mice have small stature. In Thm2-/-; Thm1aln/+ primary osteoblasts, a Hedgehog signaling defect was not detected, but bone nodule formation was markedly impaired. This indicates a signaling pathway is altered, and we propose that this pathway may potentially interact with Gli2. Together, our data reveal that loss of Thm2 with one allele of Thm1, Gli2, or both, present new IFT mouse models of osteochondrodysplasia. Our data also suggest Thm2 as a modifier of Hedgehog signaling in postnatal skeletal development.
Collapse
Affiliation(s)
- Bailey A Allard
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Wei Wang
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Hammad Mumtaz
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Henry H Wang
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Luciane M Silva
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Damon T Jacobs
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Jinxi Wang
- Department of Orthopedic Surgery, Medical Center, University of Kansas, Kansas City, KS, 66160, USA
| | - Erin E Bumann
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA.
| |
Collapse
|
12
|
Partisani M, Baron CL, Ghossoub R, Fayad R, Pagnotta S, Abélanet S, Macia E, Brau F, Lacas-Gervais S, Benmerah A, Luton F, Franco M. EFA6A, an exchange factor for Arf6, regulates early steps in ciliogenesis. J Cell Sci 2021; 134:237326. [PMID: 33483367 DOI: 10.1242/jcs.249565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Ciliogenesis is a coordinated process initiated by the recruitment and fusion of pre-ciliary vesicles at the distal appendages of the mother centriole through mechanisms that remain unclear. Here, we report that EFA6A (also known as PSD), an exchange factor for the small G protein Arf6, is involved in early stage of ciliogenesis by promoting the fusion of distal appendage vesicles forming the ciliary vesicle. EFA6A is present in the vicinity of the mother centriole before primary cilium assembly and prior to the arrival of Arl13B-containing vesicles. During ciliogenesis, EFA6A initially accumulates at the mother centriole and later colocalizes with Arl13B along the ciliary membrane. EFA6A depletion leads to the inhibition of ciliogenesis, the absence of centrosomal Rab8-positive structures and the accumulation of Arl13B-positive vesicles around the distal appendages. Our results uncover a novel fusion machinery, comprising EFA6A, Arf6 and Arl13B, that controls the coordinated fusion of ciliary vesicles docked at the distal appendages of the mother centriole.
Collapse
Affiliation(s)
- Mariagrazia Partisani
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Carole L Baron
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Racha Fayad
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur Parc Valrose, 06103 Nice cedex 2, France
| | - Sophie Abélanet
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Eric Macia
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Frédéric Brau
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Sandra Lacas-Gervais
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur Parc Valrose, 06103 Nice cedex 2, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, F-75015, Paris, France
| | - Frédéric Luton
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| | - Michel Franco
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275 CNRS-Université Côte d'Azur, 660, route des lucioles, 06560 Valbonne, France
| |
Collapse
|
13
|
Li S, Wei Z, Li G, Zhang Q, Niu S, Xu D, Mao N, Chen S, Gao X, Cai W, Zhu Y, Zhang G, Li D, Yi X, Yang F, Xu H. Silica Perturbs Primary Cilia and Causes Myofibroblast Differentiation during Silicosis by Reduction of the KIF3A-Repressor GLI3 Complex. Theranostics 2020; 10:1719-1732. [PMID: 32042332 PMCID: PMC6993221 DOI: 10.7150/thno.37049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to determine the effects of Kinesin family member 3A (KIF3A) on primary cilia and myofibroblast differentiation during silicosis by regulating Sonic hedgehog (SHH) signalling. Methods: Changes in primary cilia during silicosis and myofibroblast differentiation were detected in silicotic patients, experimental silicotic rats, and a myofibroblast differentiation model induced by SiO2. We also explored the mechanisms underlying KIF3A regulation of Glioma-associated oncogene homologs (GLIs) involved in myofibroblast differentiation. Results: Primary cilia (marked by ARL13B and Ac-α-Tub) and ciliary-related proteins (IFT 88 and KIF3A) were increased initially and then decreased as silicosis progressed. Loss and shedding of primary cilia were also found during silicosis. Treatment of MRC-5 fibroblasts with silica and then transfection of KIF3A-siRNA blocked activation of SHH signalling, but increased GLI2FL as a transcriptional activator of SRF, and reduced the inhibitory effect of GLI3R on ACTA2. Conclusion: Our findings indicate that primary cilia are markedly altered during silicosis and the loss of KIF3A may promote myofibroblast differentiation induced by SiO2.
Collapse
|
14
|
Functional analysis of new human Bardet-Biedl syndrome loci specific variants in the zebrafish model. Sci Rep 2019; 9:12936. [PMID: 31506453 PMCID: PMC6736949 DOI: 10.1038/s41598-019-49217-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
The multiple genetic approaches available for molecular diagnosis of human diseases have made possible to identify an increasing number of pathogenic genetic changes, particularly with the advent of next generation sequencing (NGS) technologies. However, the main challenge lies in the interpretation of their functional impact, which has resulted in the widespread use of animal models. We describe here the functional modelling of seven BBS loci variants, most of them novel, in zebrafish embryos to validate their in silico prediction of pathogenicity. We show that target knockdown (KD) of known BBS (BBS1, BB5 or BBS6) loci leads to developmental defects commonly associated with ciliopathies, as previously described. These KD pleiotropic phenotypes were rescued by co-injecting human wild type (WT) loci sequence but not with the equivalent mutated mRNAs, providing evidence of the pathogenic effect of these BBS changes. Furthermore, direct assessment of cilia located in Kupffer's vesicle (KV) showed a reduction of ciliary length associated with all the studied variants, thus confirming a deleterious effect. Taken together, our results seem to prove the pathogenicity of the already classified and unclassified new BBS variants, as well as highlight the usefulness of zebrafish as an animal model for in vivo assays in human ciliopathies.
Collapse
|
15
|
Chen HY, Welby E, Li T, Swaroop A. Retinal disease in ciliopathies: Recent advances with a focus on stem cell-based therapies. ACTA ACUST UNITED AC 2019; 4:97-115. [PMID: 31763178 PMCID: PMC6839492 DOI: 10.3233/trd-190038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ciliopathies display extensive genetic and clinical heterogeneity, varying in severity, age of onset, disease progression and organ systems affected. Retinal involvement, as demonstrated by photoreceptor dysfunction or death, is a highly penetrant phenotype among a vast majority of ciliopathies. Photoreceptor cells possess a specialized and modified sensory cilium with membrane discs where efficient photon capture and ensuing signaling cascade initiate the visual process. Disruptions of cilia biogenesis and protein transport lead to impairment of photoreceptor function and eventually degeneration. Despite advances in elucidation of ciliogenesis and photoreceptor cilia defects, we have limited understanding of pathogenic mechanisms underlying retinal phenotype(s) observed in human ciliopathies. Patient-derived induced pluripotent stem cell (iPSC)-based approaches offer a unique opportunity to complement studies with model organisms and examine cilia disease relevant to humans. Three-dimensional retinal organoids from iPSC lines feature laminated cytoarchitecture, apical-basal polarity and emergence of a ciliary structure, thereby permitting pathogenic modeling of human photoreceptors in vitro. Here, we review the biology of photoreceptor cilia and associated defects and discuss recent progress in evolving treatment modalities, especially using patient-derived iPSCs, for retinal ciliopathies.
Collapse
Affiliation(s)
- Holly Yu Chen
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Welby
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiansen Li
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Pala R, Mohieldin AM, Sherpa RT, Kathem SH, Shamloo K, Luan Z, Zhou J, Zheng JG, Ahsan A, Nauli SM. Ciliotherapy: Remote Control of Primary Cilia Movement and Function by Magnetic Nanoparticles. ACS NANO 2019; 13:3555-3572. [PMID: 30860808 PMCID: PMC7899146 DOI: 10.1021/acsnano.9b00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Patients with polycystic kidney disease (PKD) are characterized with uncontrolled hypertension. Hypertension in PKD is a ciliopathy, an abnormal function and/or structure of primary cilia. Primary cilia are cellular organelles with chemo and mechanosensory roles. In the present studies, we designed a cilia-targeted (CT) delivery system to deliver fenoldopam specifically to the primary cilia. We devised the iron oxide nanoparticle (NP)-based technology for ciliotherapy. Live imaging confirmed that the CT-Fe2O3-NPs specifically targeted primary cilia in cultured cells in vitro and vascular endothelia in vivo. Importantly, the CT-Fe2O3-NPs enabled the remote control of the movement and function of a cilium with an external magnetic field, making the nonmotile cilium exhibit passive movement. The ciliopathic hearts displayed hypertrophy with compromised functions in left ventricle pressure, stroke volume, ejection fraction, and overall cardiac output because of prolonged hypertension. The CT-Fe2O3-NPs significantly improved cardiac function in the ciliopathic hypertensive models, in which the hearts also exhibited arrhythmia, which was corrected with the CT-Fe2O3-NPs. Intraciliary and cytosolic Ca2+ were increased when cilia were induced with fluid flow or magnetic field, and this served as a cilia-dependent mechanism of the CT-Fe2O3-NPs. Fenoldopam-alone caused an immediate decrease in blood pressure, followed by reflex tachycardia. Pharmacological delivery profiles confirmed that the CT-Fe2O3-NPs were a superior delivery system for targeting cilia more specifically, efficiently, and effectively than fenoldopam-alone. The CT-Fe2O3-NPs altered the mechanical properties of nonmotile cilia, and these nano-biomaterials had enormous clinical potential for ciliotherapy. Our studies further indicated that ciliotherapy provides a possibility toward personalized medicine in ciliopathy patients.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Ashraf M. Mohieldin
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Rinzhin T. Sherpa
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Sarmed H. Kathem
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Kiumars Shamloo
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
| | - Zhongyue Luan
- Chemical Engineering & Material Sciences, University of California Irvine, Irvine, California 92697, United States
| | - Jing Zhou
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jian-Guo Zheng
- Irvine Materials Research Institute, University of California Irvine, Irvine, California 92697, United States
| | - Amir Ahsan
- Department of Physics, Computer Science & Engineering, Chapman University, Orange, California 92866, United States
| | - Surya M. Nauli
- Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
- Department of Medicine, University of California Irvine, Irvine, California 92868, United States
- Corresponding Author: ; . (S.M.N.)
| |
Collapse
|
17
|
Bae JE, Choi H, Shin DW, Na HW, Park NY, Kim JB, Jo DS, Cho MJ, Lyu JH, Chang JH, Lee EH, Lee TR, Kim HJ, Cho DH. Fine particulate matter (PM2.5) inhibits ciliogenesis by increasing SPRR3 expression via c-Jun activation in RPE cells and skin keratinocytes. Sci Rep 2019; 9:3994. [PMID: 30850686 PMCID: PMC6408442 DOI: 10.1038/s41598-019-40670-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 01/27/2023] Open
Abstract
Exposure to fine particulate matter (PM) with diameter <2.5 µm (PM2.5) causes epithelium injury and endothelial dysfunction. Primary cilia are sensory organelles that transmit extracellular signals into intracellular biochemical responses and have roles in physiology. To date, there have been no studies investigating whether PM2.5 affects primary cilia in skin. We addressed this in the present study using normal human epidermal keratinocytes (NHEKs) and retinal pigment epithelium (RPE) cells. We found that formation of primary cilium is increased in differentiated NHEKs. However, treatment with PM2.5 blocked increased ciliogenesis in NHEKs and RPE cells. Furthermore, PM2.5 transcriptionally upregulated small proline rich protein 3 (SPRR3) expression by activating c-Jun, and ectopic expression of SPRR3 inhibits suppressed the ciliogenesis. Accordingly, treatment with c-Jun activator (anisomycin) induced SPRR3 expression, whereas the inhibitor (SP600125) recovered the ciliated cells and cilium length in PM2.5-treated cells. Moreover, c-Jun inhibitor suppressed upregulation of SPRR3 in PM2.5-treated cells. Taken together, our finding suggested that PM2.5 inhibits ciliogenesis by increasing SPRR3 expression via c-Jun activation in RPE cells and keratinocytes.
Collapse
Affiliation(s)
- Ji-Eun Bae
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.,Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Hyunjung Choi
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, 17074, Republic of Korea
| | - Dong Woon Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Hye-Won Na
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, 17074, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Doo Sin Jo
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Min Ji Cho
- Department of Genetic Engineering, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Jung Ho Lyu
- Department of Genetic Engineering, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, South Korea
| | - Eunjoo H Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Tae Ryong Lee
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, 17074, Republic of Korea
| | - Hyoung-June Kim
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, 17074, Republic of Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
18
|
Yao Q, Liu J, Xiao L, Wang N. Sonic hedgehog signaling instigates high-fat diet-induced insulin resistance by targeting PPARγ stability. J Biol Chem 2019; 294:3284-3293. [PMID: 30573683 PMCID: PMC6398147 DOI: 10.1074/jbc.ra118.004411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major risk for patients with chronic metabolic disorders including type 2 diabetes. Sonic hedgehog (Shh) is a morphogen that regulates the pancreas and adipose tissue formation during embryonic development. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily and one of the most important regulators of insulin action. Here, we evaluated the role and mechanism of Shh signaling in obesity-associated insulin resistance and characterized its effect on PPARγ. We showed that Shh expression was up-regulated in subcutaneous fat from obese mice. In differentiated 3T3-L1 and primary cultured adipocytes from rats, recombinant Shh protein and SAG (an agonist of Shh signaling) activated an extracellular signal-regulated kinase (ERK)-dependent noncanonical pathway and induced PPARγ phosphorylation at serine 112, which decreased PPARγ activity. Meanwhile, Shh signaling degraded PPARγ protein via binding of PPARγ to neural precursor cell-expressed developmentally down-regulated protein 4-1 (NEDD4-1). Furthermore, vismodegib, an inhibitor of Shh signaling, attenuated ERK phosphorylation induced by a high fat diet (HFD) and restored PPARγ protein level, thus ameliorating glucose intolerance and insulin resistance in obese mice. Our finding suggests that Shh in subcutaneous fat decreases PPARγ activity and stability via activation of an ERK-dependent noncanonical pathway, resulting in impaired insulin action. Inhibition of Shh may serve as a potential therapeutic approach to treat obesity-related diabetes.
Collapse
Affiliation(s)
- Qinyu Yao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Jia Liu
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Lei Xiao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Nanping Wang
- the Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
19
|
Han KJ, Wu Z, Pearson CG, Peng J, Song K, Liu CW. Deubiquitylase USP9X maintains centriolar satellite integrity by stabilizing pericentriolar material 1 protein. J Cell Sci 2019; 132:jcs.221663. [PMID: 30584065 DOI: 10.1242/jcs.221663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Centriolar satellites are small cytoplasmic granules that play important roles in regulating the formation of centrosomes and primary cilia. Ubiquitylation of satellite proteins, including the core satellite scaffold protein pericentriolar material 1 (PCM1), regulates centriolar satellite integrity. Currently, deubiquitylases that control centriolar satellite integrity have not been identified. In this study, we find that the deubiquitylase USP9X binds PCM1, and antagonizes PCM1 ubiquitylation to protect it from proteasomal degradation. Knockdown of USP9X in human cell lines reduces PCM1 protein levels, disrupts centriolar satellite particles and causes localization of satellite proteins, such as CEP290, to centrosomes. Interestingly, knockdown of mindbomb 1 (MIB1), a ubiquitin ligase that promotes PCM1 ubiquitylation and degradation, in USP9X-depleted cells largely restores PCM1 protein levels and corrects defects caused by the loss of USP9X. Overall, our study reveals that USP9X is a constituent of centriolar satellites and functions to maintain centriolar satellite integrity by stabilizing PCM1.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Srivastava S, Ramsbottom SA, Molinari E, Alkanderi S, Filby A, White K, Henry C, Saunier S, Miles CG, Sayer JA. A human patient-derived cellular model of Joubert syndrome reveals ciliary defects which can be rescued with targeted therapies. Hum Mol Genet 2018; 26:4657-4667. [PMID: 28973549 PMCID: PMC5886250 DOI: 10.1093/hmg/ddx347] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Joubert syndrome (JBTS) is the archetypal ciliopathy caused by mutation of genes encoding ciliary proteins leading to multi-system phenotypes, including a cerebello-retinal-renal syndrome. JBTS is genetically heterogeneous, however mutations in CEP290 are a common underlying cause. The renal manifestation of JBTS is a juvenile-onset cystic kidney disease, known as nephronophthisis, typically progressing to end-stage renal failure within the first two decades of life, thus providing a potential window for therapeutic intervention. In order to increase understanding of JBTS and its associated kidney disease and to explore potential treatments, we conducted a comprehensive analysis of primary renal epithelial cells directly isolated from patient urine (human urine-derived renal epithelial cells, hURECs). We demonstrate that hURECs from a JBTS patient with renal disease have elongated and disorganized primary cilia and that this ciliary phenotype is specifically associated with an absence of CEP290 protein. Treatment with the Sonic hedgehog (Shh) pathway agonist purmorphamine or cyclin-dependent kinase inhibition (using roscovitine and siRNA directed towards cyclin-dependent kinase 5) ameliorated the cilia phenotype. In addition, purmorphamine treatment was shown to reduce cyclin-dependent kinase 5 in patient cells, suggesting a convergence of these signalling pathways. To our knowledge, this is the most extensive analysis of primary renal epithelial cells from JBTS patients to date. It demonstrates the feasibility and power of this approach to directly assess the consequences of patient-specific mutations in a physiologically relevant context and a previously unrecognized convergence of Shh agonism and cyclin-dependent kinase inhibition as potential therapeutic targets.
Collapse
Affiliation(s)
- Shalabh Srivastava
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.,Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Simon A Ramsbottom
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Elisa Molinari
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sumaya Alkanderi
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Andrew Filby
- Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, UK
| | - Kathryn White
- EM Research Services, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charline Henry
- EM Research Services, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Sophie Saunier
- Inserm UMR-1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Paris Descartes Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Colin G Miles
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - John A Sayer
- Newcastle University, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.,Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| |
Collapse
|
21
|
Itoh M, Ide S, Iwasaki Y, Saito T, Narita K, Dai H, Yamakura S, Furue T, Kitayama H, Maeda K, Takahashi E, Matsui K, Goto YI, Takeda S, Arima M. Arima syndrome caused by CEP290 specific variant and accompanied with pathological cilium; clinical comparison with Joubert syndrome and its related diseases. Brain Dev 2018; 40:259-267. [PMID: 29217415 DOI: 10.1016/j.braindev.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/26/2017] [Accepted: 11/05/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Arima syndrome (AS) is a rare disease and its clinical features mimic those of Joubert syndrome or Joubert syndrome-related diseases (JSRD). Recently, we clarified the AS diagnostic criteria and its severe phenotype. However, genetic evidence of AS remains unknown. We explored causative genes of AS and compared the clinical and genetic features of AS with the other JSRD. PATIENTS AND METHODS We performed genetic analyses of 4 AS patients of 3 families with combination of whole-exome sequencing and Sanger sequencing. Furthermore, we studied cell biology with the cultured fibroblasts of 3 AS patients. RESULTS All patients had a specific homozygous variant (c.6012-12T>A, p.Arg2004Serfs*7) or compound heterozygous variants (c.1711+1G>A; c.6012-12T>A, p.Gly570Aspfs*19;Arg2004Serfs*7) in centrosomal protein 290 kDa (CEP290) gene. These unique variants lead to abnormal splicing and premature termination. Morphological analysis of cultured fibroblasts from AS patients revealed a marked decrease of the CEP290-positive cell number with significantly longer cilium and naked and protruded ciliary axoneme without ciliary membrane into the cytoplasm. CONCLUSION AS resulted in cilia dysfunction from centrosome disruption. The unique variant of CEP290 could be strongly linked to AS pathology. Here, we provided AS specific genetic evidence, which steers the structure and functions of centrosome that is responsible for normal ciliogenesis. This is the first report that has demonstrated the molecular basis of Arima syndrome.
Collapse
Affiliation(s)
- Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Shuhei Ide
- Division of Pediatrics, Tokyo Metropolitan Tobu Medical Center for Persons with Developmental and Multiple Disabilities, Tokyo, Japan
| | - Yuji Iwasaki
- Division of Pediatrics, Tokyo Metropolitan Tobu Medical Center for Persons with Developmental and Multiple Disabilities, Tokyo, Japan
| | - Takashi Saito
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Keishi Narita
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hongmei Dai
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | | | - Takeki Furue
- Department of Pediatric Nephrology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | | | - Keiko Maeda
- Department of Pediatrics, Shizuoka Iryo-Fukushi Center, Shizuoka, Japan
| | - Eihiko Takahashi
- Division of Nephrology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kiyoshi Matsui
- Division of General Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masataka Arima
- Division of Pediatrics, Tokyo Metropolitan Tobu Medical Center for Persons with Developmental and Multiple Disabilities, Tokyo, Japan
| |
Collapse
|
22
|
Silva LM, Jacobs DT, Allard BA, Fields TA, Sharma M, Wallace DP, Tran PV. Inhibition of Hedgehog signaling suppresses proliferation and microcyst formation of human Autosomal Dominant Polycystic Kidney Disease cells. Sci Rep 2018; 8:4985. [PMID: 29563577 PMCID: PMC5862907 DOI: 10.1038/s41598-018-23341-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by mutation of PKD1 or PKD2, which encode polycystin 1 and 2, respectively. The polycystins localize to primary cilia and the functional loss of the polycystin complex leads to the formation and progressive growth of fluid-filled cysts in the kidney. The pathogenesis of ADPKD is complex and molecular mechanisms connecting ciliary dysfunction to renal cystogenesis are unclear. Primary cilia mediate Hedgehog signaling, which modulates cell proliferation and differentiation in a tissue-dependent manner. Previously, we showed that Hedgehog signaling was increased in cystic kidneys of several PKD mouse models and that Hedgehog inhibition prevented cyst formation in embryonic PKD mouse kidneys treated with cAMP. Here, we show that in human ADPKD tissue, Hedgehog target and activator, Glioma 1, was elevated and localized to cyst-lining epithelial cells and to interstitial cells, suggesting increased autocrine and paracrine Hedgehog signaling in ADPKD, respectively. Further, Hedgehog inhibitors reduced basal and cAMP-induced proliferation of ADPKD cells and cyst formation in vitro. These data suggest that Hedgehog signaling is increased in human ADPKD and that suppression of Hedgehog signaling can counter cellular processes that promote cyst growth in vitro.
Collapse
Affiliation(s)
- Luciane M Silva
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Damon T Jacobs
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bailey A Allard
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Madhulika Sharma
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Darren P Wallace
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA. .,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
23
|
Arensdorf AM, Dillard ME, Menke JM, Frank MW, Rock CO, Ogden SK. Sonic Hedgehog Activates Phospholipase A2 to Enhance Smoothened Ciliary Translocation. Cell Rep 2018; 19:2074-2087. [PMID: 28591579 DOI: 10.1016/j.celrep.2017.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
The G protein-coupled receptor Smoothened (Smo) is the signal transducer of the Sonic Hedgehog (Shh) pathway. Smo signals through G protein-dependent and -independent routes, with G protein-independent canonical signaling to Gli effectors requiring Smo accumulation in the primary cilium. The mechanisms controlling Smo activation and trafficking are not yet clear but likely entail small-molecule binding to pockets in its extracellular cysteine-rich domain (CRD) and/or transmembrane bundle. Here, we demonstrate that the cytosolic phospholipase cPLA2α is activated through Gβγ downstream of Smo to release arachidonic acid. Arachidonic acid binds Smo and synergizes with CRD-binding agonists, promoting Smo ciliary trafficking and high-level signaling. Chemical or genetic cPLA2α inhibition dampens Smo signaling to Gli, revealing an unexpected contribution of G protein-dependent signaling to canonical pathway activity. Arachidonic acid displaces the Smo transmembrane domain inhibitor cyclopamine to rescue CRD agonist-induced signaling, suggesting that arachidonic acid may target the transmembrane bundle to allosterically enhance signaling by CRD agonist-bound Smo.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Miriam E Dillard
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jacob M Menke
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Rhodes College St. Jude Summer Plus Program, Rhodes College, Memphis, TN 38112, USA
| | - Matthew W Frank
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To review disorders that are associated with renal cystic disease during prenatal life and to highlight the strong association between renal cystic disease and ciliopathies. RECENT FINDINGS There are numerous causative genes for ciliopathies that can present with cystic kidney disease. In the group of single gene ciliopathies, autosomal dominant polycystic kidney disease is by far the most prevalent one. Other examples are autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome, Meckel-Gruber syndrome, Joubert syndrome and related disorders as well as X-linked orofaciodigital syndrome type 1, respectively. The prevalence of these inherited disorders sums up to about in 1 : 2000 people. These disorders with their hepatorenal fibrocystic character should be classified as multisystem diseases. SUMMARY Understanding of the origin of renal cystic disease and associated disorders is important to make the appropriate prenatal diagnosis and for counseling affected parents. In the future, understanding of the pathophysiology may help to develop new treatment strategies.
Collapse
|
25
|
Scanga HL, Nischal KK. Overarching Concepts and Mechanisms Affecting Phenotypes of Ocular Genetic Conditions. CURRENT GENETIC MEDICINE REPORTS 2017. [DOI: 10.1007/s40142-017-0128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Kunnen SJ, Malas TB, Semeins CM, Bakker AD, Peters DJM. Comprehensive transcriptome analysis of fluid shear stress altered gene expression in renal epithelial cells. J Cell Physiol 2017; 233:3615-3628. [PMID: 29044509 PMCID: PMC5765508 DOI: 10.1002/jcp.26222] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022]
Abstract
Renal epithelial cells are exposed to mechanical forces due to flow‐induced shear stress within the nephrons. Shear stress is altered in renal diseases caused by tubular dilation, obstruction, and hyperfiltration, which occur to compensate for lost nephrons. Fundamental in regulation of shear stress are primary cilia and other mechano‐sensors, and defects in cilia formation and function have profound effects on development and physiology of kidneys and other organs. We applied RNA sequencing to get a comprehensive overview of fluid‐shear regulated genes and pathways in renal epithelial cells. Functional enrichment‐analysis revealed TGF‐β, MAPK, and Wnt signaling as core signaling pathways up‐regulated by shear. Inhibitors of TGF‐β and MAPK/ERK signaling modulate a wide range of mechanosensitive genes, identifying these pathways as master regulators of shear‐induced gene expression. However, the main down‐regulated pathway, that is, JAK/STAT, is independent of TGF‐β and MAPK/ERK. Other up‐regulated cytokine pathways include FGF, HB‐EGF, PDGF, and CXC. Cellular responses to shear are modified at several levels, indicated by altered expression of genes involved in cell‐matrix, cytoskeleton, and glycocalyx remodeling, as well as glycolysis and cholesterol metabolism. Cilia ablation abolished shear induced expression of a subset of genes, but genes involved in TGF‐β, MAPK, and Wnt signaling were hardly affected, suggesting that other mechano‐sensors play a prominent role in the shear stress response of renal epithelial cells. Modulations in signaling due to variations in fluid shear stress are relevant for renal physiology and pathology, as suggested by elevated gene expression at pathological levels of shear stress compared to physiological shear.
Collapse
Affiliation(s)
- Steven J Kunnen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tareq B Malas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis M Semeins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
DeVaul N, Koloustroubis K, Wang R, Sperry AO. A novel interaction between kinase activities in regulation of cilia formation. BMC Cell Biol 2017; 18:33. [PMID: 29141582 PMCID: PMC5688660 DOI: 10.1186/s12860-017-0149-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023] Open
Abstract
Background The primary cilium is an extension of the cell membrane that encloses a microtubule-based axoneme. Primary cilia are essential for transmission of environmental cues that determine cell fate. Disruption of primary cilia function is the molecular basis of numerous developmental disorders. Despite their biological importance, the mechanisms governing their assembly and disassembly are just beginning to be understood. Cilia growth and disassembly are essential events when cells exit and reenter into the cell cycle. The kinases never in mitosis-kinase 2 (Nek2) and Aurora A (AurA) act to depolymerize cilia when cells reenter the cell cycle from G0. Results Coexpression of either kinase with its kinase dead companion [AurA with kinase dead Nek2 (Nek2 KD) or Nek2 with kinase dead AurA (AurA KD)] had different effects on cilia depending on whether cilia are growing or shortening. AurA and Nek2 are individually able to shorten cilia when cilia are growing but both are required when cilia are being absorbed. The depolymerizing activity of each kinase is increased when coexpressed with the kinase dead version of the other kinase but only when cilia are assembling. Additionally, the two kinases act additively when cilia are assembling but not disassembling. Inhibition of AurA increases cilia number while inhibition of Nek2 significantly stimulates cilia length. The complex functional relationship between the two kinases reflects their physical interaction. Further, we identify a role for a PP1 binding protein, PPP1R42, in inhibiting Nek2 and increasing ciliation of ARPE-19 cells. Conclusion We have uncovered a novel functional interaction between Nek2 and AurA that is dependent on the growth state of cilia. This differential interdependence reflects opposing regulation when cilia are growing or shortening. In addition to interaction between the kinases to regulate ciliation, the PP1 binding protein PPP1R42 directly inhibits Nek2 independent of PP1 indicating another level of regulation of this kinase. In summary, we demonstrate a complex interplay between Nek2 and AurA kinases in regulation of ciliation in ARPE-19 cells. Electronic supplementary material The online version of this article (10.1186/s12860-017-0149-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole DeVaul
- Laboratory of Biochemistry and Genetics, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katerina Koloustroubis
- Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Rong Wang
- Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Ann O Sperry
- Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA.
| |
Collapse
|
28
|
Wu C, Li J, Peterson A, Tao K, Wang B. Loss of dynein-2 intermediate chain Wdr34 results in defects in retrograde ciliary protein trafficking and Hedgehog signaling in the mouse. Hum Mol Genet 2017; 26:2386-2397. [PMID: 28379358 DOI: 10.1093/hmg/ddx127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 11/14/2022] Open
Abstract
The Wdr34 gene encodes an intermediate chain of cytoplasmic dynein 2, the motor for retrograde intraflagellar transport (IFT) in primary cilia. Although mutations in human WDR34 have recently been reported, the association of WDR34 function with Hedgehog (Hh) signaling has not been established, and actual cilia defects in the WDR34 mutant cells have also not been completely characterized. In the present study, we show that Wdr34 mutant mice die in midgestation and exhibit open brain and polydactyly phenotypes. Several Hh-dependent ventral neural cell types are not specified in the mutant neural tube. The expression of the direct Hh targets, Gli1 and Patched 1, is inhibited, while the expression of limb patterning genes that are normally inhibited by the Gli3 repressor is anteriorly expanded in mutant limbs. Comparison of cilia phenotype and function among wild type, Dnchc2 (dynein 2 heavy chain), and Wdr34 mutant cells demonstrates that cilia in both Dnchc2 and Wdr34 mutant cells are stumpy. Several ciliary proteins examined abnormally accumulate in the cilia of both mutant cells. Consistent with its function, overexpressed Wdr34 is occasionally localized to cilia, and Wdr34 is required for the ciliary localization of dynein 2 light intermediate chain Lic3. More interestingly, we show that both Dnchc2 and Wdr34 act between Smo and Gli2/Gli3 in the Hh pathway. Therefore, like Dnchc2, Wdr34 is required for ciliogenesis, retrograde ciliary protein trafficking, and the regulation of Gli2/Gli3 activators and repressors. Furthermore, both Wdr34 and Dnchc2 promote microtubule growth, a novel dynein 2 function in a non-cilia structure.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Genetic Medicine, Weill Medical College of Cornell University, W404, New York, NY 10065,USA
| | - Jia Li
- Department of Genetic Medicine, Weill Medical College of Cornell University, W404, New York, NY 10065,USA.,Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Andrew Peterson
- Department of Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, W404, New York, NY 10065,USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, W404, New York, NY 10065, USA
| |
Collapse
|
29
|
Mitchison HM, Shoemark A. Motile cilia defects in diseases other than primary ciliary dyskinesia: The contemporary diagnostic and research role for transmission electron microscopy. Ultrastruct Pathol 2017; 41:415-427. [PMID: 28925789 DOI: 10.1080/01913123.2017.1370050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrastructural studies have underpinned the cell biological and clinical investigations of the varied roles of motile cilia in health and disease, with a long history since the 1950s. Recent developments from transmission electron microscopy (TEM; cryo-electron microscopy, electron tomography) have yielded higher resolution and fresh insights into the structure and function of these complex organelles. Microscopy in ciliated organisms, disease models, and in patients with ciliopathy diseases has dramatically expanded our understanding of the ubiquity, multisystem involvement, and importance of cilia in normal human development. Here, we review the importance of motile cilia ultrastructural studies in understanding the basis of diseases other than primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Hannah M Mitchison
- a Newlife Birth Defects Research Centre, Experimental and Personalised Medicine, Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health , University College London , London , UK
| | - Amelia Shoemark
- b Department of Paediatric Respiratory Medicine , Royal Brompton & Harefield NHS Trust , London , UK.,c Division of Molecular & Clinical Medicine, School of Medicine , Ninewells Hospital and Medical School , Dundee , UK
| |
Collapse
|
30
|
Furtado MB, Merriner DJ, Berger S, Rhodes D, Jamsai D, O'Bryan MK. Mutations in the Katnb1 gene cause left-right asymmetry and heart defects. Dev Dyn 2017; 246:1027-1035. [PMID: 28791777 DOI: 10.1002/dvdy.24564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The microtubule-severing protein complex katanin is composed two subunits, the ATPase subunit, KATNA1, and the noncatalytic regulatory subunit, KATNB1. Recently, the Katnb1 gene has been linked to infertility, regulation of centriole and cilia formation in fish and mammals, as well as neocortical brain development. KATNB1 protein is expressed in germ cells in humans and mouse, mitotic/meiotic spindles and cilia, although the full expression pattern of the Katnb1 gene has not been described. RESULTS Using a knockin-knockout mouse model of Katnb1 dysfunction we demonstrate that Katnb1 is ubiquitously expressed during embryonic development, although a stronger expression is seen in the crown cells of the gastrulation organizer, the murine node. Furthermore, null and hypomorphic Katnb1 gene mutations show a novel correlation between Katnb1 dysregulation and the development of impaired left-right signaling, including cardiac malformations. CONCLUSIONS Katanin function is a critical regulator of heart development in mice. These findings are potentially relevant to human cardiac development. Developmental Dynamics 246:1027-1035, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milena B Furtado
- The Jackson Laboratory, Bar Harbor, Maine.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - D Jo Merriner
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,The School of Biological Sciences, 25 Rainforest Walk, Monash University, Melbourne, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Danielle Rhodes
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Duangporn Jamsai
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Moira K O'Bryan
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,The School of Biological Sciences, 25 Rainforest Walk, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Sterol targeting drugs reveal life cycle stage-specific differences in trypanosome lipid rafts. Sci Rep 2017; 7:9105. [PMID: 28831063 PMCID: PMC5567337 DOI: 10.1038/s41598-017-08770-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cilia play important roles in cell signaling, facilitated by the unique lipid environment of a ciliary membrane containing high concentrations of sterol-rich lipid rafts. The African trypanosome Trypanosoma brucei is a single-celled eukaryote with a single cilium/flagellum. We tested whether flagellar sterol enrichment results from selective flagellar partitioning of specific sterol species or from general enrichment of all sterols. While all sterols are enriched in the flagellum, cholesterol is especially enriched. T. brucei cycles between its mammalian host (bloodstream cell), in which it scavenges cholesterol, and its tsetse fly host (procyclic cell), in which it both scavenges cholesterol and synthesizes ergosterol. We wondered whether the insect and mammalian life cycle stages possess chemically different lipid rafts due to different sterol utilization. Treatment of bloodstream parasites with cholesterol-specific methyl-β-cyclodextrin disrupts both membrane liquid order and localization of a raft-associated ciliary membrane calcium sensor. Treatment with ergosterol-specific amphotericin B does not. The opposite results were observed with ergosterol-rich procyclic cells. Further, these agents have opposite effects on flagellar sterol enrichment and cell metabolism in the two life cycle stages. These findings illuminate differences in the lipid rafts of an organism employing life cycle-specific sterols and have implications for treatment.
Collapse
|
32
|
Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 2017; 241:294-309. [PMID: 27859258 DOI: 10.1002/path.4843] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
Ciliopathies are inherited human disorders caused by both motile and non-motile cilia dysfunction that form an important and rapidly expanding disease category. Ciliopathies are complex conditions to diagnose, being multisystem disorders characterized by extensive genetic heterogeneity and clinical variability with high levels of lethality. There is marked phenotypic overlap among distinct ciliopathy syndromes that presents a major challenge for their recognition, diagnosis, and clinical management, in addition to posing an on-going task to develop the most appropriate family counselling. The impact of next-generation sequencing and high-throughput technologies in the last decade has significantly improved our understanding of the biological basis of ciliopathy disorders, enhancing our ability to determine the possible reasons for the extensive overlap in their symptoms and genetic aetiologies. Here, we review the diverse functions of cilia in human health and disease and discuss a growing shift away from the classical clinical definitions of ciliopathy syndromes to a more functional categorization. This approach arises from our improved understanding of this unique organelle, revealed through new genetic and cell biological insights into the discrete functioning of subcompartments of the cilium (basal body, transition zone, intraflagellar transport, motility). Mutations affecting these distinct ciliary protein modules can confer different genetic diseases and new clinical classifications are possible to define, according to the nature and extent of organ involvement. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hannah M Mitchison
- Genetics and Genomic Medicine Programme, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Enza Maria Valente
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy.,Neurogenetics Unit, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 00143, Rome, Italy
| |
Collapse
|
33
|
Kirschen GW, Liu H, Lang T, Liang X, Ge S, Xiong Q. The radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury. FRONTIERS IN BIOLOGY 2017; 12:124-138. [PMID: 28473847 PMCID: PMC5412953 DOI: 10.1007/s11515-017-1447-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neuronal primary cilia are sensory organelles that are critically involved in the proper growth, development, and function of the central nervous system (CNS). Recent work also suggests that they signal in the context of CNS injury, and that abnormal ciliary signaling may be implicated in neurological diseases. METHODS We quantified the distribution of neuronal primary cilia alignment throughout the normal adult mouse brain by immunohistochemical staining for the primary cilia marker adenylyl cyclase III (ACIII) and measuring the angles of primary cilia with respect to global and local coordinate planes. We then introduced two different models of acute brain insult-temporal lobe seizure and cerebral ischemia, and re-examined neuronal primary cilia distribution, as well as ciliary lengths and the proportion of neurons harboring cilia. RESULTS Under basal conditions, cortical cilia align themselves radially with respect to the cortical surface, while cilia in the dentate gyrus align themselves radially with respect to the granule cell layer. Cilia of neurons in the striatum and thalamus, by contrast, exhibit a wide distribution of ciliary arrangements. In both cases of acute brain insult, primary cilia alignment was significantly disrupted in a region-specific manner, with areas affected by the insult preferentially disrupted. Further, the two models promoted differential effects on ciliary lengths, while only the ischemia model decreased the proportion of ciliated cells. CONCLUSIONS These findings provide evidence for the regional anatomical organization of neuronal primary cilia in the adult brain and suggest that various brain insults may disrupt this organization.
Collapse
Affiliation(s)
- Gregory W. Kirschen
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
- Molecular & Cellular Pharmacology Program, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hanxiao Liu
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tracy Lang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
- Simons Summer Research Program (SSRP)
| | - Xuelin Liang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
34
|
Abstract
Primary cilia are small, antenna-like structures that detect mechanical and chemical cues and transduce extracellular signals. While mammalian primary cilia were first reported in the late 1800s, scientific interest in these sensory organelles has burgeoned since the beginning of the twenty-first century with recognition that primary cilia are essential to human health. Among the most common clinical manifestations of ciliary dysfunction are renal cysts. The molecular mechanisms underlying renal cystogenesis are complex, involving multiple aberrant cellular processes and signaling pathways, while initiating molecular events remain undefined. Autosomal Dominant Polycystic Kidney Disease is the most common renal cystic disease, caused by disruption of polycystin-1 and polycystin-2 transmembrane proteins, which evidence suggests must localize to primary cilia for proper function. To understand how the absence of these proteins in primary cilia may be remediated, we review intracellular trafficking of polycystins to the primary cilium. We also examine the controversial mechanisms by which primary cilia transduce flow-mediated mechanical stress into intracellular calcium. Further, to better understand ciliary function in the kidney, we highlight the LKB1/AMPK, Wnt, and Hedgehog developmental signaling pathways mediated by primary cilia and misregulated in renal cystic disease.
Collapse
|
35
|
Choi H, Shin JH, Kim ES, Park SJ, Bae IH, Jo YK, Jeong IY, Kim HJ, Lee Y, Park HC, Jeon HB, Kim KW, Lee TR, Cho DH. Primary Cilia Negatively Regulate Melanogenesis in Melanocytes and Pigmentation in a Human Skin Model. PLoS One 2016; 11:e0168025. [PMID: 27941997 PMCID: PMC5152889 DOI: 10.1371/journal.pone.0168025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/25/2016] [Indexed: 11/18/2022] Open
Abstract
The primary cilium is an organelle protruding from the cell body that senses external stimuli including chemical, mechanical, light, osmotic, fluid flow, and gravitational signals. Skin is always exposed to the external environment and responds to external stimuli. Therefore, it is possible that primary cilia have an important role in skin. Ciliogenesis was reported to be involved in developmental processes in skin, such as keratinocyte differentiation and hair formation. However, the relation between skin pigmentation and primary cilia is largely unknown. Here, we observed that increased melanogenesis in melanocytes treated with a melanogenic inducer was inhibited by a ciliogenesis inducer, cytochalasin D, and serum-free culture. However, these inhibitory effects disappeared in GLI2 knockdown cells. In addition, activation of sonic hedgehog (SHH)-smoothened (Smo) signaling pathway by a Smo agonist, SAG inhibited melanin synthesis in melanocytes and pigmentation in a human skin model. On the contrary, an inhibitor of primary cilium formation, ciliobrevin A1, activated melanogenesis in melanocytes. These results suggest that skin pigmentation may be regulated partly by the induction of ciliogenesis through Smo-GLI2 signaling.
Collapse
Affiliation(s)
- Hyunjung Choi
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, Republic of Korea
| | - Ji Hyun Shin
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Eun Sung Kim
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - So Jung Park
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Il-Hong Bae
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, Republic of Korea
| | - Yoon Kyung Jo
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - In Young Jeong
- Department of Medical Science, Korea University Ansan Hospital, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, Republic of Korea
| | - Youngjin Lee
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, Republic of Korea
| | - Hea Chul Park
- Department of Medical Science, Korea University Ansan Hospital, Ansan, Gyeonggi-do, Republic of Korea
| | - Hong Bae Jeon
- Biomedical Research Institute, MEDIPOST Corporation, Seongnam, Gyeonggi-do, Republic of Korea
| | - Ki Woo Kim
- Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Tae Ryong Lee
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, Republic of Korea
- * E-mail: (TRL); (DHC)
| | - Dong-Hyung Cho
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
- * E-mail: (TRL); (DHC)
| |
Collapse
|
36
|
Kiecker C, Graham A, Logan M. Differential Cellular Responses to Hedgehog Signalling in Vertebrates-What is the Role of Competence? J Dev Biol 2016; 4:E36. [PMID: 29615599 PMCID: PMC5831800 DOI: 10.3390/jdb4040036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal-a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH) signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases-including several types of cancer-are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic.
Collapse
Affiliation(s)
- Clemens Kiecker
- Department of Developmental Neurobiology, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| | - Anthony Graham
- Department of Developmental Neurobiology, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| | - Malcolm Logan
- Randall Division of Cell & Molecular Biophysics, King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|
37
|
Giridhar PV, Bell SM, Sridharan A, Rajavelu P, Kitzmiller JA, Na CL, Kofron M, Brandt EB, Ericksen M, Naren AP, Moon C, Khurana Hershey GK, Whitsett JA. Airway Epithelial KIF3A Regulates Th2 Responses to Aeroallergens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4228-4239. [PMID: 27794000 PMCID: PMC5123825 DOI: 10.4049/jimmunol.1600926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022]
Abstract
KIF3A, the gene encoding kinesin family member 3A, is a susceptibility gene locus associated with asthma; however, mechanisms by which KIF3A might influence the pathogenesis of the disorder are unknown. In this study, we deleted the mouse Kif3a gene in airway epithelial cells. Both homozygous and heterozygous Kif3a gene-deleted mice were highly susceptible to aeroallergens from Aspergillus fumigatus and the house dust mite, resulting in an asthma-like pathology characterized by increased goblet cell metaplasia, airway hyperresponsiveness, and Th2-mediated inflammation. Deletion of the Kif3a gene increased the severity of pulmonary eosinophilic inflammation and expression of cytokines (Il-4, Il-13, and Il-17a) and chemokine (Ccl11) RNAs following pulmonary exposure to Aspergillus extract. Inhibition of Kif3a disrupted the structure of motile cilia and impaired mucociliary clearance, barrier function, and epithelial repair, demonstrating additional mechanisms by which deficiency of KIF3A in respiratory epithelial cells contributes to pulmonary pathology. Airway epithelial KIF3A suppresses Th2 pulmonary inflammation and airway hyperresponsiveness following aeroallergen exposure, implicating epithelial microtubular functions in the pathogenesis of Th2-mediated lung pathology.
Collapse
Affiliation(s)
- Premkumar Vummidi Giridhar
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Sheila M Bell
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Anusha Sridharan
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Priya Rajavelu
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Joseph A Kitzmiller
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Cheng-Lun Na
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Matthew Kofron
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Eric B Brandt
- Division of Asthma Research, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Mark Ericksen
- Division of Asthma Research, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Changsuk Moon
- Division of Pulmonary Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229; and
| | - Jeffrey A Whitsett
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229;
| |
Collapse
|
38
|
Hyun J, Jung Y. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling. World J Gastroenterol 2016; 22:6652-6662. [PMID: 27547008 PMCID: PMC4970468 DOI: 10.3748/wjg.v22.i29.6652] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/08/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a repair process in response to damage in the liver; however, severe and chronic injury promotes the accumulation of fibrous matrix, destroying the normal functions and architecture of liver. Hepatic stellate cells (HSCs) are quiescent in normal livers, but in damaged livers, they transdifferentiate into myofibroblastic HSCs, which produce extracellular matrix proteins. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged livers and contributes to liver fibrogenesis by regulating HSC activation. MicroRNAs (miRNAs), endogenous small non-coding RNAs interfering with RNA post-transcriptionally, regulate various cellular processes in healthy organisms. The dysregulation of miRNAs is closely associated with diseases, including liver diseases. Thus, miRNAs are good targets in the diagnosis and treatment of various diseases, including liver fibrosis; however, the regulatory mechanisms of miRNAs that interact with Hh signaling in liver fibrosis remain unclear. We review growing evidence showing the association of miRNAs with Hh signaling. Recent studies suggest that Hh-regulating miRNAs induce inactivation of HSCs, leading to decreased hepatic fibrosis. Although miRNA-delivery systems and further knowledge of interacting miRNAs with Hh signaling need to be improved for the clinical usage of miRNAs, recent findings indicate that the miRNAs regulating Hh signaling are promising therapeutic agents for treating liver fibrosis.
Collapse
|
39
|
Leventea E, Hazime K, Zhao C, Malicki J. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2016; 133:179-227. [PMID: 27263414 DOI: 10.1016/bs.mcb.2016.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilia are microtubule-based protrusions on the surface of most eukaryotic cells. They are found in most, if not all, vertebrate organs. Prominent cilia form in sensory structures, the eye, the ear, and the nose, where they are crucial for the detection of environmental stimuli, such as light and odors. Cilia are also involved in developmental processes, including left-right asymmetry formation, limb morphogenesis, and the patterning of neurons in the neural tube. Some cilia, such as those found in nephric ducts, are thought to have mechanosensory roles. Zebrafish proved very useful in genetic analysis and imaging of cilia-related processes, and in the modeling of mechanisms behind human cilia abnormalities, known as ciliopathies. A number of zebrafish defects resemble those seen in human ciliopathies. Forward and reverse genetic strategies generated a wide range of cilia mutants in zebrafish, which can be studied using sophisticated genetic and imaging approaches. In this chapter, we provide a set of protocols to examine cilia morphology, motility, and cilia-related defects in a variety of organs, focusing on the embryo and early postembryonic development.
Collapse
Affiliation(s)
- E Leventea
- The University of Sheffield, Sheffield, United Kingdom
| | - K Hazime
- The University of Sheffield, Sheffield, United Kingdom
| | - C Zhao
- The University of Sheffield, Sheffield, United Kingdom; Ocean University of China, Qingdao, China
| | - J Malicki
- The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
Jacobs DT, Silva LM, Allard BA, Schonfeld MP, Chatterjee A, Talbott GC, Beier DR, Tran PV. Dysfunction of intraflagellar transport-A causes hyperphagia-induced obesity and metabolic syndrome. Dis Model Mech 2016; 9:789-98. [PMID: 27482817 PMCID: PMC4958314 DOI: 10.1242/dmm.025791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022] Open
Abstract
Primary cilia extend from the plasma membrane of most vertebrate cells and mediate signaling pathways. Ciliary dysfunction underlies ciliopathies, which are genetic syndromes that manifest multiple clinical features, including renal cystic disease and obesity. THM1 (also termed TTC21B or IFT139) encodes a component of the intraflagellar transport-A complex and mutations in THM1 have been identified in 5% of individuals with ciliopathies. Consistent with this, deletion of murine Thm1 during late embryonic development results in cystic kidney disease. Here, we report that deletion of murine Thm1 during adulthood results in obesity, diabetes, hypertension and fatty liver disease, with gender differences in susceptibility to weight gain and metabolic dysfunction. Pair-feeding of Thm1 conditional knock-out mice relative to control littermates prevented the obesity and related disorders, indicating that hyperphagia caused the obese phenotype. Thm1 ablation resulted in increased localization of adenylyl cyclase III in primary cilia that were shortened, with bulbous distal tips on neurons of the hypothalamic arcuate nucleus, an integrative center for signals that regulate feeding and activity. In pre-obese Thm1 conditional knock-out mice, expression of anorexogenic pro-opiomelanocortin (Pomc) was decreased by 50% in the arcuate nucleus, which likely caused the hyperphagia. Fasting of Thm1 conditional knock-out mice did not alter Pomc nor orexogenic agouti-related neuropeptide (Agrp) expression, suggesting impaired sensing of changes in peripheral signals. Together, these data indicate that the Thm1-mutant ciliary defect diminishes sensitivity to feeding signals, which alters appetite regulation and leads to hyperphagia, obesity and metabolic disease. Summary: Disruption of the IFT-A complex gene, Thm1, in adult mice misregulates response to feeding signals, altering appetite regulation and resulting in obesity through hyperphagia.
Collapse
Affiliation(s)
- Damon T Jacobs
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Luciane M Silva
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bailey A Allard
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael P Schonfeld
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anindita Chatterjee
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - George C Talbott
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David R Beier
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Zhong M, Zhao X, Li J, Yuan W, Yan G, Tong M, Guo S, Zhu Y, Jiang Y, Liu Y, Jiang Y. Tumor Suppressor Folliculin Regulates mTORC1 through Primary Cilia. J Biol Chem 2016; 291:11689-97. [PMID: 27072130 DOI: 10.1074/jbc.m116.719997] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Folliculin (FLCN) is the tumor suppressor associated with Birt-Hogg-Dubé (BHD) syndrome that predisposes patients to incident of hamartomas and cysts in multiple organs. Its inactivation causes deregulation in the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. However, the underlying mechanism is poorly defined. In this study, we show that FLCN is a ciliary protein that functions through primary cilia to regulate mTORC1. In response to flow stress, FLCN associates with LKB1 and recruits the kinase to primary cilia for activation of AMPK resided at basal bodies, which causes mTORC1 down-regulation. In cells depleted of FLCN, LKB1 fails to accumulate in primary cilia and AMPK at the basal bodies remains inactive, thus nullifying the inhibitory effect of flow stress on mTORC1 activity. Our results demonstrate that FLCN is part of a flow sensory mechanism that regulates mTORC1 through primary cilia.
Collapse
Affiliation(s)
- Mingming Zhong
- From the Guangdong Provincial Key Laboratory of Proteomics; Key laboratory of Transcriptomics and Proteomics of Ministry of Education of China, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Xuwen Zhao
- From the Guangdong Provincial Key Laboratory of Proteomics; Key laboratory of Transcriptomics and Proteomics of Ministry of Education of China, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Jinmei Li
- From the Guangdong Provincial Key Laboratory of Proteomics; Key laboratory of Transcriptomics and Proteomics of Ministry of Education of China, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Wenjie Yuan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Gonghong Yan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Mingming Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Shuguang Guo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yong Jiang
- From the Guangdong Provincial Key Laboratory of Proteomics; Key laboratory of Transcriptomics and Proteomics of Ministry of Education of China, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China,
| | - Yongjian Liu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| |
Collapse
|
42
|
Saitsu H, Sonoda M, Higashijima T, Shirozu H, Masuda H, Tohyama J, Kato M, Nakashima M, Tsurusaki Y, Mizuguchi T, Miyatake S, Miyake N, Kameyama S, Matsumoto N. Somatic mutations in GLI3 and OFD1 involved in sonic hedgehog signaling cause hypothalamic hamartoma. Ann Clin Transl Neurol 2016; 3:356-65. [PMID: 27231705 PMCID: PMC4863748 DOI: 10.1002/acn3.300] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 01/14/2023] Open
Abstract
Objective Hypothalamic hamartoma (HH) is a congenital anomalous brain tumor. Although most HHs are found without any other systemic features, HH is observed in syndromic disorders such as Pallister–Hall syndrome (PHS) and oral‐facial‐digital syndrome (OFD). Here, we explore the possible involvement of somatic mutations in HH. Methods We analyzed paired blood and hamartoma samples from 18 individuals, including three with digital anomalies, by whole‐exome sequencing. Detected somatic mutations were validated by Sanger sequencing and deep sequencing of target amplicons. The effect of GLI3 mutations on its transcriptional properties was evaluated by luciferase assays using reporters containing eight copies of the GLI‐binding site and a mutated control sequence disrupting GLI binding. Results We found hamartoma‐specific somatic truncation mutations in GLI3 and OFD1, known regulators of sonic hedgehog (Shh) signaling, in two and three individuals, respectively. Deep sequencing of amplicons covering the mutations showed mutant allele rates of 7–54%. Somatic mutations in OFD1 at Xp22 were found only in male individuals. Potential pathogenic somatic mutations in UBR5 and ZNF263 were also identified in each individual. Germline nonsense mutations in GLI3 and OFD1 were identified in each individual with PHS and OFD type I in our series, respectively. The truncated GLI3 showed stronger repressor activity than the wild‐type protein. We did not detect somatic mutations in the remaining 9 individuals. Interpretation Our data indicate that a spectrum of human disorders can be caused by lesion‐specific somatic mutations, and suggest that impaired Shh signaling is one of the pathomechanisms of HH.
Collapse
Affiliation(s)
- Hirotomo Saitsu
- Department of Human Genetics Yokohama City University Graduate School of Medicine Yokohama 236-0004 Japan; Department of Biochemistry Hamamatsu University School of Medicine Hamamatsu 431-3192 Japan
| | - Masaki Sonoda
- Department of Functional Neurosurgery Epilepsy Center Nishi-Niigata Chuo National Hospital Niigata 950-2085 Japan
| | - Takefumi Higashijima
- Department of Functional Neurosurgery Epilepsy Center Nishi-Niigata Chuo National Hospital Niigata 950-2085 Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery Epilepsy Center Nishi-Niigata Chuo National Hospital Niigata 950-2085 Japan
| | - Hiroshi Masuda
- Department of Functional Neurosurgery Epilepsy Center Nishi-Niigata Chuo National Hospital Niigata 950-2085 Japan
| | - Jun Tohyama
- Department of Child Neurology Nishi-Niigata Chuo National Hospital Niigata 950-2085 Japan
| | - Mitsuhiro Kato
- Department of Pediatrics Showa University School of Medicine Tokyo 142-8666 Japan
| | - Mitsuko Nakashima
- Department of Human Genetics Yokohama City University Graduate School of Medicine Yokohama 236-0004 Japan
| | - Yoshinori Tsurusaki
- Clinical Research Institute Kanagawa Children's Medical Center Yokohama 232-8555 Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics Yokohama City University Graduate School of Medicine Yokohama 236-0004 Japan
| | - Satoko Miyatake
- Department of Human Genetics Yokohama City University Graduate School of Medicine Yokohama 236-0004 Japan
| | - Noriko Miyake
- Department of Human Genetics Yokohama City University Graduate School of Medicine Yokohama 236-0004 Japan
| | - Shigeki Kameyama
- Department of Functional Neurosurgery Epilepsy Center Nishi-Niigata Chuo National Hospital Niigata 950-2085 Japan
| | - Naomichi Matsumoto
- Department of Human Genetics Yokohama City University Graduate School of Medicine Yokohama 236-0004 Japan
| |
Collapse
|
43
|
Guo DF, Cui H, Zhang Q, Morgan DA, Thedens DR, Nishimura D, Grobe JL, Sheffield VC, Rahmouni K. The BBSome Controls Energy Homeostasis by Mediating the Transport of the Leptin Receptor to the Plasma Membrane. PLoS Genet 2016; 12:e1005890. [PMID: 26926121 PMCID: PMC4771807 DOI: 10.1371/journal.pgen.1005890] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/31/2016] [Indexed: 02/05/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a highly pleiotropic autosomal recessive disorder associated with a wide range of phenotypes including obesity. However, the underlying mechanism remains unclear. Here, we show that neuronal BBSome is a critical determinant of energy balance through its role in the regulation of the trafficking of the long signaling form of the leptin receptor (LRb). Targeted disruption of the BBSome by deleting the Bbs1 gene from the nervous system causes obesity in mice, and this phenotype is reproduced by ablation of the Bbs1 gene selectively in the LRb-expressing cells, but not from adipocytes. Obesity developed as a consequence of both increased food intake and decreased energy expenditure in mice lacking the Bbs1 gene in LRb-expressing cells. Strikingly, the well-known role of BBS proteins in the regulation of ciliary formation and function is unlikely to account for the obesogenic effect of BBS1 loss as disruption of the intraflagellar transport (IFT) machinery required for ciliogenesis by deleting the Ift88 gene in LRb-expressing cells caused a marginal increase in body weight and adiposity. Instead, we demonstrate that silencing BBS proteins, but not IFT88, impair the trafficking of the LRb to the plasma membrane leading to central leptin resistance in a manner independent of obesity. Our data also demonstrate that postnatal deletion of the Bbs1 gene in the mediobasal hypothalamus can cause obesity in mice, arguing against an early neurodevelopmental origin of obesity in BBS. Our results depict a novel mechanism underlying energy imbalance and obesity in BBS with potential implications in common forms of human obesity. The brain plays an important role in maintaining energy homeostasis. The hormone leptin is a critical afferent signal in metabolic homeostasis through its action in the brain. Here we show that neuronal Bardet-Biedl syndrome (BBS) proteins, encoded by genes that cause obesity when mutated, govern energy homeostasis through the control of cell surface expression of the leptin receptor. Selective disruption of BBS proteins causes obesity in mice and impairs the transport of the leptin receptor to the plasma membrane leading to leptin resistance in a manner independent of obesity. These results establish BBS proteins as a fundamental mechanism underlying transport of the leptin receptor and explain why BBS patients develop obesity.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Huxing Cui
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Daniel R Thedens
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Darryl Nishimura
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States of America
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States of America.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
44
|
Qiao Y, Wen J, Tang F, Martell S, Shomer N, Leung PCK, Stephenson MD, Rajcan-Separovic E. Whole exome sequencing in recurrent early pregnancy loss. Mol Hum Reprod 2016; 22:364-72. [PMID: 26826164 DOI: 10.1093/molehr/gaw008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
STUDY HYPOTHESIS Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). STUDY FINDING We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. WHAT IS KNOWN ALREADY Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. MAIN RESULTS AND THE ROLE OF CHANCE Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in 'complement and coagulation cascades pathway', and 'ciliary motility disorders'. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. LIMITATIONS, REASONS FOR CAUTION The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. STUDY FUNDING AND COMPETING INTERESTS The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS.
Collapse
Affiliation(s)
- Ying Qiao
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Jiadi Wen
- University of Texas, Dallas, TX, USA
| | - Flamingo Tang
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Sally Martell
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Naomi Shomer
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada V6Z 2 K5
| | - Mary D Stephenson
- University of Chicago and University of Illinois at Chicago, Chicago, IL, USA
| | - Evica Rajcan-Separovic
- Department of Pathology, BC Child and Family Research Institute (CFRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
45
|
Rodríguez-Fernández JL, de Lacoba MG. Plasma membrane-associated superstructure: Have we overlooked a new type of organelle in eukaryotic cells? J Theor Biol 2015; 380:346-58. [PMID: 26066286 DOI: 10.1016/j.jtbi.2015.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
A variety of intriguing plasma membrane-associated regions, including focal adhesions, adherens junctions, tight junctions, immunological synapses, neuromuscular junctions and the primary cilia, among many others, have been described in eukaryotic cells. Emphasizing their importance, alteration in their molecular structures induces or correlates with different pathologies. These regions display surface proteins connected to intracellular molecules, including cytoskeletal component, which maintain their cytoarchitecture, and signalling proteins, which regulate their organization and functions. Based on the molecular similarities and other common features observed, we suggest that, despite differences in external appearances, all these regions are just the same superstructure that appears in different locations and cells. We hypothesize that this superstructure represents an overlooked new type of organelle that we call plasma membrane-associated superstructure (PMAS). Therefore, we suggest that eukaryotic cells include classical organelles (e.g. mitochondria, Golgi and others) and also PMAS. We speculate that this new type of organelle might be an innovation associated to the emergence of eukaryotes. Finally we discuss the implications of the hypothesis proposed.
Collapse
Affiliation(s)
- José Luis Rodríguez-Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| | - Mario García de Lacoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid 28040, Spain
| |
Collapse
|
46
|
[Algorithm for the molecular analysis of Bardet-Biedl syndrome in Spain]. Med Clin (Barc) 2015; 145:147-52. [PMID: 25087209 DOI: 10.1016/j.medcli.2014.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Bardet-Biedl syndrome (BBS) is a multisystemic genetic disorder, which is not widespread among the Caucasian population, characterized by a highly variable phenotype and great genetic heterogeneity. BBS belongs to a group of diseases called ciliopathies, caused by defects in the structure and/or function of cilia. Due to the diagnostic complexity of the syndrome, the objective of this study was to analyse our whole group of patients in order to create an algorithm to facilitate the routine molecular diagnosis of BBS. We also calculated several epidemiological parameters in our cohort. PATIENTS AND METHOD We analysed 116 BBS patients belonging to 89 families from the whole Spanish geography. All probands fulfilled diagnosis criteria established for BBS. For this, we used: genotyping microarray, direct sequencing and homozygosis mapping (in consanguineous families). RESULTS By means of the different approaches, it was possible to diagnose 47% of families (21% by genotyping microarray, 18% by direct sequencing of predominant BBS genes, and 8% by homozygosis mapping). With regard to epidemiological data, a prevalence value of 1:407,000 was obtained for BBS in Spain, and a sex ratio of 1.4:1 (men:women). CONCLUSIONS The proposed algorithm, based on the analysis of predominant BBS genes combined with homozygosis mapping, allowed us to confirm the molecular diagnosis in a significant percentage of families with clinically suspected BBS. This diagnostic algorithm will be useful for the improvement of the efficiency of molecular analysis in BBS.
Collapse
|
47
|
Non-Overlapping Distributions and Functions of the VDAC Family in Ciliogenesis. Cells 2015; 4:331-53. [PMID: 26264029 PMCID: PMC4588040 DOI: 10.3390/cells4030331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Centrosomes are major microtubule-organizing centers of animal cells that consist of two centrioles. In mitotic cells, centrosomes are duplicated to serve as the poles of the mitotic spindle, while in quiescent cells, centrosomes move to the apical membrane where the oldest centriole is transformed into a basal body to assemble a primary cilium. We recently showed that mitochondrial outer membrane porin VDAC3 localizes to centrosomes where it negatively regulates ciliogenesis. We show here that the other two family members, VDAC1 and VDAC2, best known for their function in mitochondrial bioenergetics, are also found at centrosomes. Like VDAC3, centrosomal VDAC1 is predominantly localized to the mother centriole, while VDAC2 localizes to centriolar satellites in a microtubule-dependent manner. Down-regulation of VDAC1 leads to inappropriate ciliogenesis, while its overexpression suppresses cilia formation, suggesting that VDAC1 and VDAC3 both negatively regulate ciliogenesis. However, this negative effect on ciliogenesis is not shared by VDAC2, which instead appears to promote maturation of primary cilia. Moreover, because overexpression of VDAC3 cannot compensate for depletion of VDAC1, our data suggest that while the entire VDAC family localizes to centrosomes, they have non-redundant functions in cilogenesis.
Collapse
|
48
|
An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat Cell Biol 2015; 17:1074-1087. [PMID: 26167768 PMCID: PMC4536769 DOI: 10.1038/ncb3201] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 06/05/2015] [Indexed: 12/13/2022]
Abstract
Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and three pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localise to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1/CEP90 and C21orf2/LRRC76 as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2-variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.
Collapse
|
49
|
Shin JH, Bae DJ, Kim ES, Kim HB, Park SJ, Jo YK, Jo DS, Jo DG, Kim SY, Cho DH. Autophagy Regulates Formation of Primary Cilia in Mefloquine-Treated Cells. Biomol Ther (Seoul) 2015; 23:327-32. [PMID: 26157548 PMCID: PMC4489826 DOI: 10.4062/biomolther.2015.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
Primary cilia have critical roles in coordinating multiple cellular signaling pathways. Dysregulation of primary cilia is implicated in various ciliopathies. To identify specific regulators of autophagy, we screened chemical libraries and identified mefloquine, an anti-malaria medicine, as a potent regulator of primary cilia in human retinal pigmented epithelial (RPE) cells. Not only ciliated cells but also primary cilium length was increased in mefloquine-treated RPE cells. Treatment with mefloquine strongly induced the elongation of primary cilia by blocking disassembly of primary cilium. In addition, we found that autophagy was increased in mefloquine-treated cells by enhancing autophagic flux. Both chemical and genetic inhibition of autophagy suppressed ciliogenesis in mefloquine-treated RPE cells. Taken together, these results suggest that autophagy induced by mefloquine positively regulates the elongation of primary cilia in RPE cells.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Dong-Jun Bae
- ASAN Institute for Life Science, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 138-736
| | - Eun Sung Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Han Byeol Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - So Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Yoon Kyung Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Doo Sin Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| | - Dong-Gyu Jo
- The School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sang-Yeob Kim
- ASAN Institute for Life Science, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 138-736
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701
| |
Collapse
|
50
|
Kim ES, Shin JH, Park SJ, Jo YK, Kim JS, Kang IH, Nam JB, Chung DY, Cho Y, Lee EH, Chang JW, Cho DH. Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells. PLoS One 2015; 10:e0118190. [PMID: 25671433 PMCID: PMC4324942 DOI: 10.1371/journal.pone.0118190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/06/2015] [Indexed: 01/16/2023] Open
Abstract
Primary cilia are conserved cellular organelles that regulate diverse signaling pathways. Autophagy is a complex process of cellular degradation and recycling of cytoplasmic proteins and organelles, and plays an important role in cellular homeostasis. Despite its potential importance, the role of autophagy in ciliogenesis is largely unknown. In this study, we identified sertraline as a regulator of autophagy and ciliogenesis. Sertraline, a known antidepressant, induced the growth of cilia and blocked the disassembly of cilia in htRPE cells. Following treatment of sertraline, there was an increase in the number of cells with autophagic puncta and LC3 protein conversion. In addition, both a decrease of ATG5 expression and the treatment of an autophagy inhibitor resulted in the suppression of the sertraline-induced activation of autophagy in htRPE cells. Interestingly, we found that genetic and chemical inhibition of autophagy attenuated the growth of primary cilia in htRPE cells. Taken together, our results suggest that the inhibition of autophagy suppresses sertraline-induced ciliogenesis.
Collapse
Affiliation(s)
- Eun Sung Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji Hyun Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - So Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yoon Kyung Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Il-Hwan Kang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jung-Bum Nam
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Doo-Young Chung
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yoonchul Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - EunJoo H. Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jong Wook Chang
- Research Institute for Future Medicine Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail: (JWC); (DHC)
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
- * E-mail: (JWC); (DHC)
| |
Collapse
|