1
|
Osetrova M, Zavolskova M, Mazin P, Stekolschikova E, Vladimirov G, Efimova O, Morozova A, Zorkina Y, Andreyuk D, Kostyuk G, Nikolaev E, Khaitovich P. Mass Spectrometry Imaging of Two Neocortical Areas Reveals the Histological Selectivity of Schizophrenia-Associated Lipid Alterations. CONSORTIUM PSYCHIATRICUM 2024; 5:4-16. [PMID: 39526011 PMCID: PMC11542914 DOI: 10.17816/cp15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Schizophrenia is a psychiatric disorder known to affect brain structure and functionality. Structural changes in the brain at the level of gross anatomical structures have been fairly well studied, while microstructural changes, especially those associated with changes in the molecular composition of the brain, are still being investigated. Of special interest are lipids and metabolites, for which some previous studies have shown association with schizophrenia. AIM To utilize a spatially resolved analysis of the brain lipidome composition to investigate the degree and nature of schizophrenia-associated lipidome alterations in the gray and white matter structures of two neocortical regions - the dorsolateral prefrontal cortex (Brodmann area 9, BA9) and the posterior part of the superior temporal gyrus (Brodmann area 22, posterior part, BA22p), as well compare the distribution of the changes between the two regions and tissue types. METHODS We employed Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging (MALDI-MSI), supplemented by a statistical analysis, to examine the lipid composition of brain sections. A total of 24 neocortical sections from schizophrenia patients (n=2) and a healthy control group (n=2), representing the two aforementioned neocortical areas, were studied, yielding data for 131 lipid compounds measured across more than a million MALDI-MSI pixels. RESULTS Our findings revealed an uneven distribution of schizophrenia-related lipid alterations across the two neocortical regions. The BA22p showed double the differences in its subcortical white matter structures compared to BA9, while less bias was detected in the gray matter layers. While the schizophrenia-associated lipid differences generally showed good agreement between brain regions at the lipid class level for both gray and white matter, there were consistently more discrepancies for white matter structures. CONCLUSION Our study found a consistent yet differential association of schizophrenia with the brain lipidome composition of distinct neocortical areas, particularly subcortical white matter. These findings highlight the need for broader brain coverage in future schizophrenia research and underscore the potential of spatially resolved molecular analysis methods in identifying structure-specific effects.
Collapse
|
2
|
Pantazopoulos H, Katsel P, Haroutunian V, Chelini G, Klengel T, Berretta S. Molecular signature of extracellular matrix pathology in schizophrenia. Eur J Neurosci 2021; 53:3960-3987. [PMID: 33070392 PMCID: PMC8359380 DOI: 10.1111/ejn.15009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Growing evidence points to a critical involvement of the extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Decreases of perineuronal nets (PNNs) and altered expression of chondroitin sulphate proteoglycans (CSPGs) in glial cells have been identified in several brain regions. GWAS data have identified several SZ vulnerability variants of genes encoding for ECM molecules. Given the potential relevance of ECM functions to the pathophysiology of this disorder, it is necessary to understand the extent of ECM changes across brain regions, their region- and sex-specificity and which ECM components contribute to these changes. We tested the hypothesis that the expression of genes encoding for ECM molecules may be broadly disrupted in SZ across several cortical and subcortical brain regions and include key ECM components as well as factors such as ECM posttranslational modifications and regulator factors. Gene expression profiling of 14 neocortical brain regions, caudate, putamen and hippocampus from control subjects (n = 14/region) and subjects with SZ (n = 16/region) was conducted using Affymetrix microarray analysis. Analysis across brain regions revealed widespread dysregulation of ECM gene expression in cortical and subcortical brain regions in SZ, impacting several ECM functional key components. SRGN, CD44, ADAMTS1, ADAM10, BCAN, NCAN and SEMA4G showed some of the most robust changes. Region-, sex- and age-specific gene expression patterns and correlation with cognitive scores were also detected. Taken together, these findings contribute to emerging evidence for large-scale ECM dysregulation in SZ and point to molecular pathways involved in PNN decreases, glial cell dysfunction and cognitive impairment in SZ.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Neurobiology and Anatomical SciencesUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Pavel Katsel
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Vahram Haroutunian
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Gabriele Chelini
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
| | - Torsten Klengel
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Translational Molecular Genomics LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryUniversity Medical Center GöttingenGöttingenGermany
| | - Sabina Berretta
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Program in NeuroscienceHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
3
|
Hertzberg L, Maggio N, Muler I, Yitzhaky A, Majer M, Haroutunian V, Zuk O, Katsel P, Domany E, Weiser M. Comprehensive Gene Expression Analysis Detects Global Reduction of Proteasome Subunits in Schizophrenia. Schizophr Bull 2021; 47:785-795. [PMID: 33141894 PMCID: PMC8084431 DOI: 10.1093/schbul/sbaa160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The main challenge in the study of schizophrenia is its high heterogeneity. While it is generally accepted that there exist several biological mechanisms that may define distinct schizophrenia subtypes, they have not been identified yet. We performed comprehensive gene expression analysis to search for molecular signals that differentiate schizophrenia patients from healthy controls and examined whether an identified signal was concentrated in a subgroup of the patients. METHODS Transcriptome sequencing of 14 superior temporal gyrus (STG) samples of subjects with schizophrenia and 15 matched controls from the Stanley Medical Research Institute (SMRI) was performed. Differential expression and pathway enrichment analysis results were compared to an independent cohort. Replicability was tested on 6 additional independent datasets. RESULTS The 2 STG cohorts showed high replicability. Pathway enrichment analysis of the down-regulated genes pointed to proteasome-related pathways. Meta-analysis of differential expression identified down-regulation of 12 of 39 proteasome subunit genes in schizophrenia. The signal of proteasome subunits down-regulation was replicated in 6 additional datasets (overall 8 cohorts with 267 schizophrenia and 266 control samples, from 5 brain regions). The signal was concentrated in a subgroup of patients with schizophrenia. CONCLUSIONS We detected global down-regulation of proteasome subunits in a subgroup of patients with schizophrenia. We hypothesize that the down-regulation of proteasome subunits leads to proteasome dysfunction that causes accumulation of ubiquitinated proteins, which has been recently detected in a subgroup of schizophrenia patients. Thus, down-regulation of proteasome subunits might define a biological subtype of schizophrenia.
Collapse
Affiliation(s)
- Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, Affiliated to the Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inna Muler
- Childhood Leukemia Research Institute and the Department of Pediatric Hemato-Oncology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Majer
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Mount Sinai School of Medicine, New York, NY
- Department of Psychiatry, James J Peters VA Medical Center, Bronx, NY
| | - Or Zuk
- Department of Statistics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pavel Katsel
- Departments of Psychiatry and Neuroscience, The Mount Sinai School of Medicine, New York, NY
| | - Eytan Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Mark Weiser
- Department of Psychiatry, Chaim Sheba Medical Center, Ramat-Gan and the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol 2018; 56:4653-4679. [DOI: 10.1007/s12035-018-1396-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
5
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Ersland KM, Skrede S, Stansberg C, Steen VM. Subchronic olanzapine exposure leads to increased expression of myelination-related genes in rat fronto-medial cortex. Transl Psychiatry 2017; 7:1262. [PMID: 29187753 PMCID: PMC5802494 DOI: 10.1038/s41398-017-0008-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/14/2017] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a psychotic disorder with severe and disabling symptoms, such as hallucinations, delusions, blunted affect and social withdrawal. The neuropathology remains elusive, but disturbances in immunity-related processes, neuronal connectivity and myelination have consistently been linked to schizophrenia. Antipsychotic drugs can be efficient in reducing symptoms, acting primarily on the dopamine system, but additional biological targets are likely to exist. Here we have screened for novel mechanisms of action in an animal model, using adult rats exposed to long-acting olanzapine, achieving stable and clinically relevant antipsychotic drug concentrations. By microarray-based examination of global gene expression in the fronto-medial cortex, at the single gene- and gene-set level, we observed downregulation of two neuropeptide-encoding genes, Vgf and Cort (fold change -1,25 and -1,48, respectively) in response to olanzapine exposure. Furthermore, we demonstrated significant upregulation of five out of ~2000 GO predefined gene sets after olanzapine exposure. Strikingly, all were linked to myelination and oligodendrocyte development; "Ensheathment of neurons", "Axon ensheathment", "Myelination", "Myelin sheath" and "Oligodendrocyte development" (FDR-values < 25). Sixteen of the leading edge genes in these gene sets were analysed independently by qPCR, of which 11 genes displayed significant upregulation, including Plp1, Mal, Mag and Cnp (fold change: 1,30, 1,50, 1,30 and 1,15, respectively). Several of the upregulated genes (e.g. MAG, MAL and CNP) have previously been reported as downregulated in post-mortem brain samples from schizophrenia patients. Although caution needs to be taken when extrapolating results from animal studies to humans, the data suggest a role for olanzapine in alleviating myelination-related dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Kari M. Ersland
- 0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5021 Norway ,0000 0004 1936 7443grid.7914.bThe Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Silje Skrede
- 0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5021 Norway ,0000 0004 1936 7443grid.7914.bThe Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christine Stansberg
- 0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5021 Norway ,0000 0004 1936 7443grid.7914.bThe Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Vidar M. Steen
- 0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5021 Norway ,0000 0004 1936 7443grid.7914.bThe Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Ribarič S. The Rationale for Insulin Therapy in Alzheimer's Disease. Molecules 2016; 21:molecules21060689. [PMID: 27240327 PMCID: PMC6273626 DOI: 10.3390/molecules21060689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with a prevalence that increases with age. By 2050, the worldwide number of patients with AD is projected to reach more than 140 million. The prominent signs of AD are progressive memory loss, accompanied by a gradual decline in cognitive function and premature death. AD is the clinical manifestation of altered proteostasis. The initiating step of altered proteostasis in most AD patients is not known. The progression of AD is accelerated by several chronic disorders, among which the contribution of diabetes to AD is well understood at the cell biology level. The pathological mechanisms of AD and diabetes interact and tend to reinforce each other, thus accelerating cognitive impairment. At present, only symptomatic interventions are available for treating AD. To optimise symptomatic treatment, a personalised therapy approach has been suggested. Intranasal insulin administration seems to open the possibility for a safe, and at least in the short term, effective symptomatic intervention that delays loss of cognition in AD patients. This review summarizes the interactions of AD and diabetes from the cell biology to the patient level and the clinical results of intranasal insulin treatment of cognitive decline in AD.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
von Bernhardi R, Cornejo F, Parada GE, Eugenín J. Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2015; 9:426. [PMID: 26578886 PMCID: PMC4623426 DOI: 10.3389/fncel.2015.00426] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Aging is the main risk factor for Alzheimer’s disease (AD); being associated with conspicuous changes on microglia activation. Aged microglia exhibit an increased expression of cytokines, exacerbated reactivity to various stimuli, oxidative stress, and reduced phagocytosis of β-amyloid (Aβ). Whereas normal inflammation is protective, it becomes dysregulated in the presence of a persistent stimulus, or in the context of an inflammatory environment, as observed in aging. Thus, neuroinflammation can be a self-perpetuating deleterious response, becoming a source of additional injury to host cells in neurodegenerative diseases. In aged individuals, although transforming growth factor β (TGFβ) is upregulated, its canonical Smad3 signaling is greatly reduced and neuroinflammation persists. This age-related Smad3 impairment reduces protective activation while facilitating cytotoxic activation of microglia through several cellular mechanisms, potentiating microglia-mediated neurodegeneration. Here, we critically discuss the role of TGFβ-Smad signaling on the cytotoxic activation of microglia and its relevance in the pathogenesis of AD. Other protective functions, such as phagocytosis, although observed in aged animals, are not further induced by inflammatory stimuli and TGFβ1. Analysis in silico revealed that increased expression of receptor scavenger receptor (SR)-A, involved in Aβ uptake and cell activation, by microglia exposed to TGFβ, through a Smad3-dependent mechanism could be mediated by transcriptional co-factors Smad2/3 over the MSR1 gene. We discuss that changes of TGFβ-mediated regulation could at least partially mediate age-associated microglia changes, and, together with other changes on inflammatory response, could result in the reduction of protective activation and the potentiation of cytotoxicity of microglia, resulting in the promotion of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Francisca Cornejo
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Guillermo E Parada
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jaime Eugenín
- Laboratory of Neural Systems, Faculty of Chemistry and Biology, Department of Biology, Universidad de Santiago de Chile Santiago, Chile
| |
Collapse
|
9
|
Yang Y, Song W. Molecular links between Alzheimer's disease and diabetes mellitus. Neuroscience 2013; 250:140-50. [PMID: 23867771 DOI: 10.1016/j.neuroscience.2013.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023]
Abstract
Substantial epidemiological evidence shows an increased risk for developing Alzheimer's disease (AD) in people with diabetes. Yet the underlying molecular mechanisms still remain to be elucidated. This article reviews the current studies on common pathological processes of Alzheimer's disease and diabetes with particular focus on potential mechanisms through which diabetes affects the initiation and progression of Alzheimer's disease. Impairment of insulin signaling, inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, APOEε4 and cholesterol appear to be important mediators and are likely to act synergistically in promoting AD pathology.
Collapse
Affiliation(s)
- Y Yang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
10
|
Borjabad A, Volsky DJ. Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer's disease, and Multiple Sclerosis. J Neuroimmune Pharmacol 2012; 7:914-26. [PMID: 23065460 PMCID: PMC3515772 DOI: 10.1007/s11481-012-9409-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/26/2012] [Indexed: 01/01/2023]
Abstract
HIV-Associated Neurocognitive Disorders (HAND) is a common manifestation of HIV infection that afflicts about 50 % of HIV-positive individuals. As people with access to antiretroviral treatments live longer, HAND can be found in increasing segments of populations at risk for other chronic, neurodegenerative conditions such as Alzheimer's disease (AD) and Multiple Sclerosis (MS). If brain diseases of diverse etiologies utilize similar biological pathways in the brain, they may coexist in a patient and possibly exacerbate neuropathogenesis and morbidity. To test this proposition, we conducted comparative meta-analysis of selected publicly available microarray datasets from brain tissues of patients with HAND, AD, and MS. In pair-wise and three-way analyses, we found a large number of dysregulated genes and biological processes common to either HAND and AD or HAND and MS, or to all three diseases. The common characteristic of all three diseases was up-regulation of broadly ranging immune responses in the brain. In addition, HAND and AD share down-modulation of processes involved, among others, in synaptic transmission and cell-cell signaling while HAND and MS share defective processes of neurogenesis and calcium/calmodulin-dependent protein kinase activity. Our approach could provide insight into the identification of common disease mechanisms and better intervention strategies for complex neurocognitive disorders.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, Columbia University, New York, NY 10019, USA.
| | | |
Collapse
|
11
|
Molecular signatures in post-mortem brain tissue of younger individuals at high risk for Alzheimer's disease as based on APOE genotype. Mol Psychiatry 2011; 16:836-47. [PMID: 20479757 PMCID: PMC2953572 DOI: 10.1038/mp.2010.57] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized histopathologically by neuritic plaques and neurofibrillary tangles. The objective of this transcriptional profiling study was to identify both neurosusceptibility and intrinsic neuroprotective factors at the molecular level, not confounded by the downstream consequences of pathology. We thus studied post-mortem cortical tissue in 28 cases that were non-APOE4 carriers (called the APOE3 group) and 13 cases that were APOE4 carriers. As APOE genotype is the major genetic risk factor for late-onset AD, the former group was at low risk for development of the disease and the latter group was at high risk for the disease. Mean age at death was 42 years and none of the brains had histopathology diagnostic of AD at the time of death. We first derived interregional difference scores in expression between cortical tissue from a region relatively invulnerable to AD (primary somatosensory cortex, BA 1/2/3) and an area known to be susceptible to AD pathology (middle temporal gyrus, BA 21). We then contrasted the magnitude of these interregional differences in between-group comparisons of the APOE3 (low risk) and APOE4 (high risk) genotype groups. We identified 70 transcripts that differed significantly between the groups. These included EGFR, CNTFR, CASP6, GRIA2, CTNNB1, FKBPL, LGALS1 and PSMC5. Using real-time quantitative PCR, we validated these findings. In addition, we found regional differences in the expression of APOE itself. We also identified multiple Kyoto pathways that were disrupted in the APOE4 group, including those involved in mitochondrial function, calcium regulation and cell-cycle reentry. To determine the functional significance of our transcriptional findings, we used bioinformatics pathway analyses to demonstrate that the molecules listed above comprised a network of connections with each other, APOE, and APP and MAPT. Overall, our results indicated that the abnormalities that we observed in single transcripts and in signaling pathways were not the consequences of diagnostic plaque and tangle pathology, but preceded it and thus may be a causative link in the long molecular prodrome that results in clinical AD.
Collapse
|
12
|
Ginsberg SD, Alldred MJ, Che S. Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer's disease. Neurobiol Dis 2011; 45:99-107. [PMID: 21821124 DOI: 10.1016/j.nbd.2011.07.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/07/2011] [Accepted: 07/20/2011] [Indexed: 11/28/2022] Open
Abstract
To evaluate molecular signatures of an individual cell type in comparison to the associated region relevant towards understanding the pathogenesis of Alzheimer's disease (AD), CA1 pyramidal neurons and the surrounding hippocampal formation were microaspirated via laser capture microdissection (LCM) from neuropathologically confirmed AD and age-matched control (CTR) subjects as well as from wild type mouse brain using single population RNA amplification methodology coupled with custom-designed microarray analysis with real-time quantitative polymerase-chain reaction (qPCR) validation. CA1 pyramidal neurons predominantly displayed downregulation of classes of transcripts related to synaptic transmission in AD versus CTR. Regional hippocampal dissections displayed downregulation of several overlapping genes found in the CA1 neuronal population related to neuronal expression, as well as upregulation of select transcripts indicative of admixed cell types including glial-associated markers and immediate-early and cell death genes. Gene level distributions observed in CA1 neurons and regional hippocampal dissections in wild type mice paralleled expression mosaics seen in postmortem human tissue. Microarray analysis was validated in qPCR studies using human postmortem brain tissue and CA1 sector and regional hippocampal dissections obtained from a mouse model of AD/Down syndrome (Ts65Dn mice) and normal disomic (2N) littermates. Classes of transcripts that have a greater percentage of the overall hybridization signal intensity within single neurons tended to be genes related to neuronal communication. The converse was also found, as classes of transcripts such as glial-associated markers were under represented in CA1 pyramidal neuron expression profiles relative to regional hippocampal dissections. These observations highlight a dilution effect that is likely to occur in conventional regional microarray and qPCR studies. Thus, single population studies of specific neurons and intrinsic circuits will likely yield informative gene expression profile data that may be subthreshold and/or underrepresented in regional studies with an admixture of cell types.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA.
| | | | | |
Collapse
|
13
|
Radu A, Hristescu G, Katsel P, Haroutunian V, Davis KL. Microarray database mining and cell differentiation defects in schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 696:67-74. [PMID: 21431547 DOI: 10.1007/978-1-4419-7046-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The causes of schizophrenia remain unknown, but a key role of oligodendrocytes and of the myelination process carried out by them has gained increasing support. The adult human brain parenchyma contains a relatively large population of progenitor cells that can generate oligodendrocytes. Defects in these adult oligodendrocyte progenitor cells (OPCs) or in their proliferation/differentiation have received little attention as potential causes of schizophrenia yet. We compared the set of genes whose expression is modified in schizophrenia, as revealed by our microarray studies, with genes specifically expressed in stem cells, as revealed by studies on human embryonic stem cells. We also evaluated the genes that are upregulated when stem cells engage in differentiation programs. These genes can be viewed as fingerprints or signatures for differentiation processes. The comparisons revealed that a substantial fraction of the genes downregulated in the brains of persons with schizophrenia belong to the differentiation signature. A plausible interpretation of our observations is that a cell differentiation process, possibly of adult OPCs to oligodendrocytes, is perturbed in schizophrenia. These observations constitute an incentive for a new direction of study, aimed at investigating the potential role of OPCs in schizophrenia.
Collapse
Affiliation(s)
- Aurelian Radu
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
14
|
Avramopoulos D, Szymanski M, Wang R, Bassett S. Gene expression reveals overlap between normal aging and Alzheimer's disease genes. Neurobiol Aging 2010; 32:2319.e27-34. [PMID: 20570407 DOI: 10.1016/j.neurobiolaging.2010.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 03/23/2010] [Accepted: 04/20/2010] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a common cause of dementia with a strong genetic component and risk sharply increasing with age. We performed two parallel microarray experiments to independently identify genes involved in normal aging and genes involved in AD using RNA extracted from the temporal lobe of 22 late onset AD and 23 control brain donors. We found that AD is accompanied by significant changes in the expression of many genes with upregulation of genes involved in inflammation and in transcription regulation and downregulation of genes involved in neuronal functions. The changes with healthy aging involved multiple genes but were not as strong. Replicating and strengthening previous reports, we find a highly significant overlap between genes changing expression with age and those changing in AD, and we observe that those changes are most often in the same direction. This result supports an overlap between the biological processes of normal aging and susceptibility to AD and suggests that age related genes expression changes might increase the risk of developing AD.
Collapse
Affiliation(s)
- Dimitrios Avramopoulos
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, 733 N. Broadway, Baltimore, MD, USA
| | | | | | | |
Collapse
|
15
|
von Bernhardi R, Tichauer JE, Eugenín J. Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem 2009; 112:1099-114. [PMID: 20002526 DOI: 10.1111/j.1471-4159.2009.06537.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among multiple structural and functional brain changes, aging is accompanied by an increase of inflammatory signaling in the nervous system as well as a dysfunction of the immune system elsewhere. Although the long-held view that aging involves neurocognitive impairment is now dismissed, aging is a major risk factor for neurodegenerative diseases such as Alzheimer;s disease, Parkinson;s disease and Huntington's disease, among others. There are many age-related changes affecting the brain, contributing both to certain declining in function and increased frailty, which could singly and collectively affect neuronal viability and vulnerability. Among those changes, both inflammatory responses in aged brains and the altered regulation of toll like receptors, which appears to be relevant for understanding susceptibility to neurodegenerative processes, are linked to pathogenic mechanisms of several diseases. Here, we review how aging and pro-inflammatory environment could modulate microglial phenotype and its reactivity and contribute to the genesis of neurodegenerative processes. Data support our idea that age-related microglial cell changes, by inducing cytotoxicity in contrast to neuroprotection, could contribute to the onset of neurodegenerative changes. This view can have important implications for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta, Santiago, Chile.
| | | | | |
Collapse
|
16
|
Stober G, Ben-Shachar D, Cardon M, Falkai P, Fonteh AN, Gawlik M, Glenthoj BY, Grunblatt E, Jablensky A, Kim YK, Kornhuber J, McNeil TF, Muller N, Oranje B, Saito T, Saoud M, Schmitt A, Schwartz M, Thome J, Uzbekov M, Durany N, Riederer P. Schizophrenia: from the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World J Biol Psychiatry 2009; 10:127-55. [PMID: 19396704 DOI: 10.1080/15622970902898980] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective. The phenotypic complexity, together with the multifarious nature of the so-called "schizophrenic psychoses", limits our ability to form a simple and logical biologically based hypothesis for the disease group. Biological markers are defined as biochemical, physiological or anatomical traits that are specific to particular conditions. An important aim of biomarker discovery is the detection of disease correlates that can be used as diagnostic tools. Method. A selective review of the WFSBP Task Force on Biological Markers in schizophrenia is provided from the central nervous system to phenotypes, functional brain systems, chromosomal loci with potential genetic markers to the peripheral systems. Results. A number of biological measures have been proposed to be correlated with schizophrenia. At present, not a single biological trait in schizophrenia is available which achieves sufficient specificity, selectivity and is based on causal pathology and predictive validity to be recommended as diagnostic marker. Conclusions. With the emergence of new technologies and rigorous phenotypic subclassification the identification of genetic bases and assessment of dynamic disease related alterations will hopefully come to a new stage in the complex field of psychiatric research.
Collapse
Affiliation(s)
- Gerald Stober
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wurzburg, Wurzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sims R, Hollingworth P, Moskvina V, Dowzell K, O'Donovan MC, Powell J, Lovestone S, Brayne C, Rubinsztein D, Owen MJ, Williams J, Abraham R. Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer's disease. Neurosci Lett 2009; 461:54-9. [PMID: 19477230 DOI: 10.1016/j.neulet.2009.05.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/14/2009] [Accepted: 05/18/2009] [Indexed: 01/29/2023]
Abstract
Psychotic symptoms are common in individuals with Alzheimer's disease (AD), and define a phenotype associated with more rapid cognitive and functional decline. Evidence suggests that psychotic symptoms may be influenced by genetic factors, and recent studies in schizophrenia, bipolar affective disorder (BPAD) and Alzheimer's disease with psychosis (AD+P) suggest that psychosis susceptibility or modifier genes may act across diseases. We hypothesised that oligodendrocyte lineage transcription factor 2 (OLIG2), a regulator of white matter development and a candidate gene for schizophrenia, may also be associated with psychotic symptoms in AD. We genotyped 11 SNPs in OLIG2 previously tested for association with schizophrenia [L. Georgieva, V. Moskvina, T. Peirce, N. Norton, N.J. Bray, L. Jones, P. Holmans, S. Macgregor, S. Zammit, J. Wilkinson, H. Williams, I. Nikolov, N. Williams, D. Ivanov, K.L. Davis, V. Haroutunian, J.D. Buxbaum, N. Craddock, G. Kirov, M.J. Owen, M.C. O'Donovan, Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia, Proc. Natl. Acad. Sci. U.S.A. 103 (33) (2006) 12469-12474] and tested these for association with AD and AD+P. Significant evidence for association of psychotic symptoms within cases was identified for two SNPs, rs762237 (allelic P=0.002, OR=1.42, corrected P=0.019) and rs2834072 (allelic P=0.004, OR=1.41, corrected P=0.05).
Collapse
Affiliation(s)
- R Sims
- Department of Psychological Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF144XN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Haroutunian V, Katsel P, Schmeidler J. Transcriptional vulnerability of brain regions in Alzheimer's disease and dementia. Neurobiol Aging 2009; 30:561-73. [PMID: 17845826 PMCID: PMC2746014 DOI: 10.1016/j.neurobiolaging.2007.07.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/16/2007] [Accepted: 07/22/2007] [Indexed: 10/22/2022]
Abstract
This study determined (a) the association between stages of Alzheimer's disease (AD) and overall gene expression change, and (b) brain regions of greatest vulnerability to transcriptional change as the disease progressed. Fifteen cerebrocortical sites and the hippocampus were examined in persons with either no cognitive impairment or neuropathology, or with only AD-associated lesions. Cases were stratified into groups of 7-19 based on the degree of cognitive impairment (clinical dementia rating scale, CDR); neurofibrillary tangle distribution and severity (Braak staging) or density of cerebrocortical neuritic plaque (NP; grouping by NP density). Transcriptional change was assessed by Affymetrix U133 mRNA microarray analysis. The results suggested that (a) gene expression changes in the temporal and prefrontal cortices are more closely related to disease severity than other regions examined; (b) more genes are down-regulated at any given disease severity stage than up-regulated; (c) the degree of gene expression change in a given regions depends on the disease severity classification scheme used; and (d) the classification of cases by CDR provides a more orderly gradient of gene expression change in most brain regions than Braak staging or NP grouping.
Collapse
Affiliation(s)
- Vahram Haroutunian
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
19
|
Abstract
Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression.
Collapse
|
20
|
Simpson JE, Hosny O, Wharton SB, Heath PR, Holden H, Fernando MS, Matthews F, Forster G, O'Brien JT, Barber R, Kalaria RN, Brayne C, Shaw PJ, Lewis CE, Ince PG. Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways. Stroke 2008; 40:369-75. [PMID: 19109541 DOI: 10.1161/strokeaha.108.529214] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE White matter lesions (WML) in brain aging are linked to dementia and depression. Ischemia contributes to their pathogenesis but other mechanisms may contribute. We used RNA microarray analysis with functional pathway grouping as an unbiased approach to investigate evidence for additional pathogenetic mechanisms. METHODS WML were identified by MRI and pathology in brains donated to the Medical Research Council Cognitive Function and Ageing Study Cognitive Function and Aging Study. RNA was extracted to compare WML with nonlesional white matter samples from cases with lesions (WM[L]), and from cases with no lesions (WM[C]) using RNA microarray and pathway analysis. Functional pathways were validated for selected genes by quantitative real-time polymerase chain reaction and immunocytochemistry. RESULTS We identified 8 major pathways in which multiple genes showed altered RNA transcription (immune regulation, cell cycle, apoptosis, proteolysis, ion transport, cell structure, electron transport, metabolism) among 502 genes that were differentially expressed in WML compared to WM[C]. In WM[L], 409 genes were altered involving the same pathways. Genes selected to validate this microarray data all showed the expected changes in RNA levels and immunohistochemical expression of protein. CONCLUSIONS WML represent areas with a complex molecular phenotype. From this and previous evidence, WML may arise through tissue ischemia but may also reflect the contribution of additional factors like blood-brain barrier dysfunction. Differential expression of genes in WM[L] compared to WM[C] indicate a "field effect" in the seemingly normal surrounding white matter.
Collapse
Affiliation(s)
- Julie E Simpson
- Academic Units of Pathology, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Katsel P, Davis KL, Li C, Tan W, Greenstein E, Kleiner Hoffman LB, Haroutunian V. Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes. Neuropsychopharmacology 2008; 33:2993-3009. [PMID: 18322470 DOI: 10.1038/npp.2008.19] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The goal of this study was to determine what signaling pathways may elicit myelin-specific gene expression deficits in schizophrenia (SZ). Microarray analyses indicated that genes associated with canonical cell cycle pathways were significantly affected in the anterior cingulate gyrus (ACG), the region exhibiting the most profound myelin-specific gene expression changes, in persons with SZ (N=16) as compared with controls (N=19). Detected gene expression changes of key regulators of G1/S phase transition and genes central to oligodendrocyte differentiation were validated using qPCR in the ACG in an independent cohort (Ns=45/34). The relative abundance of phosphorylated retinoblastoma protein (pRb) was increased in the white matter underlying the ACG in SZ subjects (Ns=12). The upregulation of cyclin D1 gene expression and the downregulation of p57(Kip2), accompanied by increased cyclin D/CDK4-dependent phosphorylation of pRb, acting as a checkpoint for G1/S phase transition, suggest abnormal cell cycle re-entry in postmitotic oligodendrocytes in SZ. Furthermore, gene expression profiling of brain samples from myelin mutant animal models, quaking and myelin-associated glycoprotein (MAG) null mice, showed that cell cycle gene expression changes were not a necessary consequence of the reduced gene expression of structural myelin proteins, such as MAG. While, quaking, a known modulator of cell cycle activity during oligodendrocyte differentiation impairs the expression of multiple myelin genes, including those that are affected in SZ. These data suggest that the normal patterns of cell cycle gene and protein expression are disrupted in SZ and that this disruption may contribute to the oligodendroglial deficits observed in SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY 10468, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 2008; 1239:235-48. [PMID: 18778695 DOI: 10.1016/j.brainres.2008.08.023] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 08/04/2008] [Indexed: 12/30/2022]
Abstract
Results from clinical and imaging studies provide evidence for changes in schizophrenia with disease progression, however, the underlying molecular differences that may occur at different stages of illness have not been investigated. To test the hypothesis that the molecular basis for schizophrenia changes from early to chronic illness, we profiled genome-wide expression patterns in prefrontal cortex of schizophrenic subjects at different stages of illness, along with their age- and sex-matched controls. Results show that gene expression profiles change dramatically depending on the stage of illness, whereby the greatest number and magnitude of gene expression differences were detected in subjects with short-term illness (<or=4 years from diagnosis). Comprehensive pathways analyses revealed that each defined stage of illness was associated with dysfunction in both distinct, as well as overlapping systems. Short-term illness was particularly associated with disruptions in gene transcription, metal ion binding, RNA processing and vesicle-mediated transport. In contrast, long-term illness was associated with inflammation, stimulus-response and immune functions. We validated expression differences of 12 transcripts associated with these various functions by real-time PCR analysis. While only four genes, SAMSN1, CDC42BPB, DSC2 and PTPRE, were consistently expressed across all groups, there was dysfunction in overlapping systems among all stages, including cellular signal transduction, lipid metabolism and protein localization. Our results demonstrate that the molecular basis for schizophrenia changes from early to chronic stages, providing evidence for a changing nature of schizophrenia with disease progression.
Collapse
|
23
|
Abstract
Alzheimer disease (AD) is a major cause of dementia. Several mechanisms have been postulated to explain its pathogenesis, beta-amyloid (A beta toxicity, cholinergic dysfunction, Tau hyper-phosphorylation, oxidative damage, synaptic dysfunction and inflammation secondary to senile plaques, among others. Glial cells are the major producers of inflammatory mediators, and cytotoxic activation of glial cells is linked to several neurodegenerative diseases; however, whether inflammation is a consequence or the cause of neurodegeneration is still unclear. I propose that inflammation and cellular stress associated with aging are key events in the development of AD through the induction of glial dysfunction. Dysregulated inflammatory response can elicit glial cell activation by compounds which are normally poorly reactive. Inflammation can also be the major cause of defective handling of A beta and the amyloid precursor protein (APP). Here I review evidence that support the proposal that dysfunctional glia and the resulting neuroinflammation can explain many features of AD. Evidence supports the notion that damage caused by inflammation is not only a primary cause of neurodegeneration but also an inducer for the accumulation of A beta in AD. Dysfunctional glia can result in impaired neuronal function in AD, as well as in many progressive neurodegenerative disorders. We show that microglial cell activation is enhanced under pro-inflammatory conditions, indicating that glial cell responses to A beta related proteins can be critically dependent on the priming of glial cells by pro-inflammatory factors.
Collapse
|
24
|
Papapetropoulos S, Shehadeh L, McCorquodale D. Optimizing human post-mortem brain tissue gene expression profiling in Parkinson's disease and other neurodegenerative disorders: from target "fishing" to translational breakthroughs. J Neurosci Res 2008; 85:3013-24. [PMID: 17503538 DOI: 10.1002/jnr.21355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insights on the etiopathogenesis of common neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD) have been largely based on the discovery of gene mutations in genetically determined forms. Although these discoveries have been helpful in elucidating the basic molecular pathogenesis of familial forms, they represent a small fraction of cases, leaving the large majority classified as idiopathic. In the postgenomic era, brain tissue gene expression profiling has allowed relative quantitative assessment of thousands of genes simultaneously from one tissue sample, providing clues for novel candidate genes and processes implicated in neurodegenerative disorders. Some remain critical of "fishing expedition" science, but gene expression profiling is a discovery-based procedure well suited for the study of largely idiopathic and multifactorial diseases. However, the technology is still under development, and many methodological and biological aspects contribute to the heterogeneous results obtained from gene expression profiling. In this Review, we discuss the advantages and limitations of this technology in simple terms and identify the key variables that influence/limit gene expression profiling-derived translational breakthroughs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Spiridon Papapetropoulos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | | | |
Collapse
|
25
|
Buxbaum JD, Georgieva L, Young JJ, Plescia C, Kajiwara Y, Jiang Y, Moskvina V, Norton N, Peirce T, Williams H, Craddock NJ, Carroll L, Corfas G, Davis KL, Owen MJ, Harroch S, Sakurai T, O'Donovan MC. Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Mol Psychiatry 2008; 13:162-72. [PMID: 17579610 PMCID: PMC5567789 DOI: 10.1038/sj.mp.4001991] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/04/2007] [Accepted: 02/06/2007] [Indexed: 12/30/2022]
Abstract
Neuregulin and the neuregulin receptor ERBB4 have been genetically and functionally implicated in schizophrenia. In this study, we used the yeast two-hybrid system to identify proteins that interact with ERBB4, to identify genes and pathways that might contribute to schizophrenia susceptibility. We identified the MAGI scaffolding proteins as ERBB4-binding proteins. After validating the interaction of MAGI proteins with ERBB4 in mammalian cells, we demonstrated that ERBB4 expression, alone or in combination with ERBB2 or ERBB3, led to the tyrosine phosphorylation of MAGI proteins, and that this could be further enhanced with receptor activation by neuregulin. As MAGI proteins were previously shown to interact with receptor phosphotyrosine phosphatase beta/zeta (RPTPbeta), we postulated that simultaneous binding of MAGI proteins to RPTPbeta and ERBB4 forms a phosphotyrosine kinase/phosphotyrosine phosphatase complex. Studies in cultured cells confirmed both a spatial and functional association between ERBB4, MAGI and RPTPbeta. Given the evidence for this functional association, we examined the genes coding for MAGI and RPTPbeta for genetic association with schizophrenia in a Caucasian United Kingdom case-control cohort (n= approximately 1400). PTPRZ1, which codes for RPTPbeta, showed significant, gene-wide and hypothesis-wide association with schizophrenia in our study (best individual single-nucleotide polymorphism allelic P=0.0003; gene-wide P=0.0064; hypothesis-wide P=0.026). The data provide evidence for a role of PTPRZ1, and for RPTPbeta signaling abnormalities, in the etiology of schizophrenia. Furthermore, the data indicate a role for RPTPbeta in the modulation of ERBB4 signaling that may in turn provide further support for an important role of neuregulin/ERBB4 signaling in the molecular basis of schizophrenia.
Collapse
Affiliation(s)
- J D Buxbaum
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Thomas EA. Molecular profiling of antipsychotic drug function: convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol 2007; 34:109-28. [PMID: 17220533 DOI: 10.1385/mn:34:2:109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 11/30/1999] [Accepted: 06/21/2006] [Indexed: 02/05/2023]
Abstract
Despite great progress in antipsychotic drug research, the molecular mechanisms by which these drugs work have remained elusive. High-throughput gene profiling methods have advanced this field by allowing the simultaneous investigation of hundreds to thousands of genes. However, different methodologies, choice of brain region, and drugs studied have made comparisons across different studies difficult. Because of the complexity of gene expression changes caused by drugs, teasing out the most relevant expression differences is a challenging task. One approach is to focus on gene expression changes that converge on the same systems that were previously deemed important to the pathology of psychiatric disorders. From the microarray studies performed on human postmortem brain samples from schizophrenics, the systems most implicated to be dysfunctional are synaptic machinery, oligodendrocyte/myelin function, and mitochondrial/ubiquitin metabolism. Drugs may act directly or indirectly to compensate for underlying pathological deficits in schizophrenia or via other mechanisms that converge on these pathways. Side effects, consisting of motor and metabolic dysfunction (which occur with typical and atypical drugs, respectively), also may be mediated by gene expression changes that have been reported in these studies. This article surveys both the convergent antipsychotic mechanisms and the genes that may be responsible for other effects elicited by antipsychotic drugs.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
27
|
Narayan S, Kass KE, Thomas EA. Chronic haloperidol treatment results in a decrease in the expression of myelin/oligodendrocyte-related genes in the mouse brain. J Neurosci Res 2007; 85:757-65. [PMID: 17177202 DOI: 10.1002/jnr.21161] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Schizophrenia is a complex psychiatric illness that manifests as a combination of positive symptoms, negative symptoms, and cognitive deficits. Antipsychotic drugs, such as haloperidol, attenuate dopamine receptor signaling in neurons and constitute the frontline treatment for the positive symptoms of schizophrenia. However, haloperidol treatment has also been reported to exacerbate preexisting negative symptoms/cognitive deficits and the severity of these deficits has been correlated with white matter pathology in schizophrenia. Indeed, several studies implicate oligodendrocyte function in the pathophysiology of schizophrenia, but it is unknown whether these effects are related to drug treatment. It is well established that haloperidol alters gene expression in neurons. However, its effect on oligodendrocytes is unknown. In this study, we investigate the effects of chronic haloperidol treatment on the expression of eight genes known to play critical roles in myelin/oligodendrocyte function. We treated male mice with haloperidol (2 mg/kg/day) for 30 days and measured gene expression changes by using in situ hybridization analysis and quantitative densitometry. Haloperidol caused a decrease in the expression of these genes in several white matter regions of the mouse CNS. In contrast, clozapine (10 mg/kg/day) had no effect on the expression of a subset of these genes. This has important implications for both disease pathology and the consideration of treatment options for patients.
Collapse
Affiliation(s)
- Sujatha Narayan
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
28
|
Transcriptome alterations in schizophrenia: disturbing the functional architecture of the dorsolateral prefrontal cortex. PROGRESS IN BRAIN RESEARCH 2007; 158:141-52. [PMID: 17027695 DOI: 10.1016/s0079-6123(06)58007-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The availability of methods for quantifying tissue concentrations of messenger RNAs in the postmortem of the human brain has provided a number of new findings in schizophrenia. However, understanding how these findings actually relate to the disease process of schizophrenia requires knowledge both of the factors that might give rise to such changes in gene expression and of the impact of these changes on the function of the affected neural circuits. Consequently, this chapter provides a review of the potential causes and consequences of some of the schizophrenia-related transcriptome changes in the dorsolateral prefrontal cortex, a brain region implicated in the pathophysiology of certain core cognitive deficits in this illness.
Collapse
|
29
|
Papapetropoulos S, McCorquodale D. Gene-expression profiling in Parkinson’s disease: discovery of valid biomarkers, molecular targets and biochemical pathways. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.1.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past decade, several gene mutations have been described in families with a Mendelian inheritance pattern of Parkinson’s disease (PD), using linkage mapping. These cases represent only a small percentage (<5%) of the patients who develop PD. The current understanding of the mechanisms that underlie aspects of the neurodegenerative process of PD is based mainly on research of functional pathways related to these genes. However, even with knowledge of these pathways, the number of relevant genes may still be very large. In the post-genomic era, seven high-throughput gene array studies have attempted to identify candidate genes and biochemical pathways in PD. In this review, results from these studies and different factors influencing optimal target and biomarker discovery with gene-expression profiling are discussed.
Collapse
Affiliation(s)
- Spiridon Papapetropoulos
- University of Miami, Department of Neurology, Miller School of Medicine, 1501 NW 9th Avenue (NPF), Room 4004, Miami, FL 33136, USA
| | - Donald McCorquodale
- University of Miami, Department of Neurology, Miller School of Medicine, 1501 NW 9th Avenue (NPF), Room 4004, Miami, FL 33136, USA
| |
Collapse
|
30
|
Badea A, Nicholls PJ, Johnson GA, Wetsel WC. Neuroanatomical phenotypes in the reeler mouse. Neuroimage 2006; 34:1363-74. [PMID: 17185001 PMCID: PMC1945208 DOI: 10.1016/j.neuroimage.2006.09.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 09/13/2006] [Accepted: 09/18/2006] [Indexed: 11/29/2022] Open
Abstract
The reeler mouse (Reln) has been proposed as a neurodevelopmental model for certain neurological and psychiatric conditions and has been studied by qualitative histochemistry and electron microscopy. Using magnetic resonance microscopy (MRM), we have quantitated for the first time the neuromorphology of Reln mice at a resolution of 21.5 microm. The neuroanatomical phenotypes of heterozygous and homozygous mutant Reln mice were compared to those of wild type (WT) littermates using morphometry and texture analysis. The cortical, hippocampal, and cerebellar phenotypes of the heterozygous and homozygous mutant Reln mice were confirmed, and new features were revealed. The Reln(rl/rl) mice possessed a smaller brain, and both Reln(rl/+) and Reln(rl/rl) mice had increased ventricles compared to WT controls. Shape differences were found between WT and Reln(rl/rl) brains, specifically in cerebellum, olfactory bulbs, dorsomedial frontal and parietal cortex, certain regions of temporal and occipital lobes, as well as in the lateral ventricles and ventral hippocampus. These findings suggest that certain brain regions may be more severely impacted by the Reln mutation than others. Gadolinium-based active staining demonstrated that layers of the hippocampus were disorganized in Reln(rl/rl) mice and differences in thickness of these layers were identified between WT and Reln(rl/rl) mice. The intensity distributions characteristic to the dorsal, middle, and ventral hippocampus were altered in the Reln(rl/rl), especially in the ventral hippocampus. These differences were quantified using skewness and modeling the intensity distributions with a Gaussian mixture. Our results suggest that structural features of Reln(rl/rl) brain most closely phenocopy those of patients with Norman-Roberts lissencephaly.
Collapse
Affiliation(s)
- Alexandra Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA
| | - Peter J. Nicholls
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - G. Allan Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
- Cell Biology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
31
|
Abstract
With its hallucinations, delusions, thought disorder, and cognitive deficits, schizophrenia affects the most basic human processes of perception, emotion, and judgment. Evidence increasingly suggests that schizophrenia is a subtle disorder of brain development and plasticity. Genetic studies are beginning to identify proteins of candidate genetic risk factors for schizophrenia, including dysbindin, neuregulin 1, DAOA, COMT, and DISC1, and neurobiological studies of the normal and variant forms of these genes are now well justified. We suggest that DISC1 may offer especially valuable insights. Mechanistic studies of the properties of these candidate genes and their protein products should clarify the molecular, cellular, and systems-level pathogenesis of schizophrenia. This can help redefine the schizophrenia phenotype and shed light on the relationship between schizophrenia and other major psychiatric disorders. Understanding these basic pathologic processes may yield novel targets for the development of more effective treatments.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | |
Collapse
|
32
|
Mitelman SA, Newmark RE, Torosjan Y, Chu KW, Brickman AM, Haznedar MM, Hazlett EA, Tang CY, Shihabuddin L, Buchsbaum MS. White matter fractional anisotropy and outcome in schizophrenia. Schizophr Res 2006; 87:138-59. [PMID: 16854563 DOI: 10.1016/j.schres.2006.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 06/03/2006] [Accepted: 06/07/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Disparate white matter fractional anisotropy (FA) findings have been reported in patients with schizophrenia in recent years. This may in part reflect heterogeneity of subjects in the studies, including differences in outcome and severity of the illness. We examined whether there is a relationship between white matter FA and outcome in patients with schizophrenia. METHOD Diffusion-tensor images were obtained in 41 normal subjects and 104 patients with schizophrenia, divided into good-outcome (n=51) and poor-outcome (Kraepelinian; n=53) subtypes based on their ability for self-care. White matter FA and its relationship to regional tissue volumes were evaluated across 40 individual Brodmann's areas using a semi-automated parcellation technique. RESULTS Overall white matter FA was lower in schizophrenia patients than normal subjects, with regional reductions in widespread temporoparietal and selected prefrontal white matter regions. In schizophrenia patients, lower regional white matter FA was associated with lower regional gray matter volumes. In comparison to normal subjects, overall white matter FA was reduced in patients with poor outcomes in both hemispheres, but to a lesser extent and only in the right hemisphere in good-outcome patients. Lower regional FA was associated with larger regional white matter volumes in good-outcome group. CONCLUSIONS Global FA reductions implicate white matter as tissue type in the pathophysiology of schizophrenia. In contrast to poor outcome, good outcome in schizophrenia patients may be associated with less extensive FA reductions, higher FA in regional frontal and cingulate white matter, and correlated increases in regional white matter volumes, particularly in the left hemisphere.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Neuroscience-PET Laboratory, Box 1505, Mount Sinai Medical Center, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kobayashi M, Michaut L, Ino A, Honjo K, Nakajima T, Maruyama Y, Mochizuki H, Ando M, Ghangrekar I, Takahashi K, Saigo K, Ueda R, Gehring WJ, Furukubo-Tokunaga K. Differential microarray analysis of Drosophila mushroom body transcripts using chemical ablation. Proc Natl Acad Sci U S A 2006; 103:14417-22. [PMID: 16971484 PMCID: PMC1599978 DOI: 10.1073/pnas.0606571103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mushroom bodies (MBs) are the centers for olfactory associative learning and elementary cognitive functions in the Drosophila brain. As a way to systematically elucidate genes preferentially expressed in MBs, we have analyzed genome-wide alterations in transcript profiles associated with MB ablation by hydroxyurea. We selected 100 genes based on microarray data and examined their expression patterns in the brain by in situ hybridization. Seventy genes were found to be expressed in the posterodorsal cortex, which harbors the MB cell bodies. These genes encode proteins of diverse functions, including transcription, signaling, cell adhesion, channels, and transporters. Moreover, we have examined developmental functions of 40 of the microarray-identified genes by transgenic RNA interference; 8 genes were found to cause mild-to-strong MB defects when suppressed with a MB-Gal4 driver. These results provide important information not only on the repertoire of genes that control MB development but also on the repertoire of neural factors that may have important physiological functions in MB plasticity.
Collapse
Affiliation(s)
- Masatomo Kobayashi
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Lydia Michaut
- Department of Cell Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Ayako Ino
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Ken Honjo
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Taiki Nakajima
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yasushi Maruyama
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroaki Mochizuki
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mai Ando
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Indrayani Ghangrekar
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kuniaki Takahashi
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan; and
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan
| | - Ryu Ueda
- Genetic Strains Research Center, National Institute of Genetics, Mishima 411-8540, Japan; and
| | - Walter J. Gehring
- Department of Cell Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
- To whom correspondence may be addressed. E-mail:
or
| | - Katsuo Furukubo-Tokunaga
- *Graduate School of Life and Environmental Sciences and Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8572, Japan
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
34
|
Abstract
Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
35
|
Youdim MBH, Amit T, Bar-Am O, Weinreb O, Yogev-Falach M. Implications of co-morbidity for etiology and treatment of neurodegenerative diseases with multifunctional neuroprotective-neurorescue drugs; ladostigil. Neurotox Res 2006; 10:181-92. [PMID: 17197368 DOI: 10.1007/bf03033355] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The recent therapeutic approach in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of several multifunction drugs. These include ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate], which combines the pharmacophore-neuroprotective effects of rasagiline, a selective monoamine oxidase (MAO)-B inhibitor, with the cholinesterase (ChE) inhibitory activity of rivastigmine or iron chelating moiety such as M30. In the case of M30 the pharmacophore of brain permeable iron chelator VK-28 plus the MAO inhibitor-neuroprotective propargylamine moiety of rasagiline are combined in a single molecule as a potential treatment for Alzheimer's disease, Lewy body disease, and Parkinson's disease with dementia. Here, we discuss the activities of ladostigil in terms of its cholinesterase cognitive enhancing potential, antiParkinson, antidepressant, neuroprotection and APP (amyloid precursor protein) processing potential. One major attribute of ladostigil is its neuroprotective activity in neuronal cell cultures and in vivo. Employing an apoptotic model of neuroblastoma SK-N-SH cells, the molecular mechanism of its neuroprotective activity has been determined. The current studies show that ladostigil significantly decreased apoptosis via inhibition of the cleavage and prevention of caspase-3 activation through a mechanism related to regulation of the Bcl-2 family proteins, resulting in reduced levels of Bad and Bax and induced levels of Bcl-2. In addition, ladostigil elevated the levels of pPKC(pan). We have also followed the regulation of APP processing and found that ladostigil markedly decreased apoptotic-induced levels of holo-APP, as well as stimulated the release of the non-amyloidogenic soluble APP (sAPPalpha) into the conditioned medium via a established protein kinsae C-MAPkinase dependent pathway. Similar to ladostigil, its S-isomer, TV3279, which is a ChE inhibitor lacking MAO inhibitory activity, exerted similar neuroprotective properties and APP processing, suggesting that the mode of action is independent of MAO inhibition. These effects were shown to reside in the propargylamine moiety. These findings indicate that the dual actions of the anti-apoptotic-neuroprotective activity and the ability to modulate APP processing, could make ladostigil a potentially valuable drug for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Rappaport Family Faculty of Medicine, Eve Topf and NPF Centers for Neurodegenerative Diseases Department of Pharmacology Haifa, Israel.
| | | | | | | | | |
Collapse
|
36
|
Harry GJ, Lawler C, Brunssen SH. Maternal infection and white matter toxicity. Neurotoxicology 2006; 27:658-70. [PMID: 16787664 PMCID: PMC1592133 DOI: 10.1016/j.neuro.2006.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/01/2006] [Accepted: 05/10/2006] [Indexed: 12/11/2022]
Abstract
Studies examining maternal infection as a risk factor for neurological disorders in the offspring have suggested that altered maternal immune status during pregnancy can be considered as an adverse event in prenatal development. Infection occurring in the mother during the gestational period has been implicated in multiple neurological effects. The current manuscript will consider the issue of immune/inflammatory conditions during prenatal development where adverse outcomes have been linked to maternal systemic infection. The discussions will focus primary on white matter and oligodendrocytes as they have been identified as target processes. This white matter damage occurs in very early preterm infants and in various other human diseases currently being examined for a linkage to maternal or early developmental immune status. The intent is to draw attention to the impact of altered immune status during pregnancy on the offspring for the consideration of such contributing factors to the general assessment of developmental neurotoxicology.
Collapse
Affiliation(s)
- G Jean Harry
- Neurotoxicology Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health/DHHS, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
37
|
Mirnics K, Levitt P, Lewis DA. Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 2006; 60:163-76. [PMID: 16616896 DOI: 10.1016/j.biopsych.2006.02.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 02/08/2006] [Indexed: 11/30/2022]
Abstract
Transcriptome profiling using DNA microarrays are data-driven approaches with the potential to uncover unanticipated relationships between gene expression alterations and psychiatric disorders. Studies to date have yielded both convergent and divergent findings. Differences may be explained, at least in part, by the use of a variety of microarray platforms and analytical approaches. Consistent findings across studies suggest, however, that important relationships may exist between altered gene expression and genetic susceptibility to psychiatric disorders. For example, GAD67, RGS4, DTNBP1, NRG1, and GABRAB2 show expression alterations in the postmortem brain of subjects with schizophrenia, and these genes have been also implicated as putative, heritable schizophrenia susceptibility genes. Thus, we propose that for some genes, altered expression in the postmortem human brain may have a dual origin: polymorphisms in the candidate genes themselves or upstream genetic-environmental factors that converge to alter their expression level. We hypothesize that certain gene products, which function as "molecular hubs," commonly show altered expression in psychiatric disorders and confer genetic susceptibility for one or more diseases. Microarray gene expression studies are ideally suited to reveal these putative disease-associated molecular hubs and to identify promising candidates for genetic association studies.
Collapse
Affiliation(s)
- Károly Mirnics
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA. karoly+@pitt.edu
| | | | | |
Collapse
|
38
|
Zhao Z, Ksiezak-Reding H, Riggio S, Haroutunian V, Pasinetti GM. Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res 2006; 84:1-14. [PMID: 16581231 DOI: 10.1016/j.schres.2006.02.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 01/30/2006] [Accepted: 02/03/2006] [Indexed: 12/20/2022]
Abstract
Schizophrenia is associated with abnormalities in glucose metabolism that may lead to insulin resistance and a 3 fold higher incidence of type II diabetes mellitus. The goal of the present studies was to assess the role of insulin-dependent Akt signaling in schizophrenia and in animal and cellular models of insulin resistance. Our studies revealed a functional decrease in insulin receptor (IR)-mediated signal transduction in the dorsolateral prefrontal cortex (BA46) of medicated schizophrenics relative to control patients using post-mortem brain material. We found approximately 50% decreases in the content and autophosphorylation levels of IRbeta and approximately 76-78% decreases in Akt content and activity (pSer(473)-Akt). The inhibition of IRbeta signaling was accompanied by an elevated content of glycogen synthase kinase (GSK)-3 alpha and GSK-3beta without significant changes in phospho-Ser(21/9) GSK-3 alpha/beta levels. A cellular model of insulin resistance was induced by IRbeta knockdown (siRNA). As in schizophrenia, the IRbeta knockdown cells demonstrated a reduction in the Akt content and activity. Total GSK-3 alpha/beta content remained unaltered, but phospho-Ser(21/9) GSK-3 alpha/beta levels were reduced indicating a net increase in the overall enzyme activity similar to that in schizophrenia. Insulin resistance phenotype was induced in mice by treatment with antipsychotic drug, clozapine. Behavioral testing showed decreases in startle response magnitude in animals treated with clozapine for 68 days. The treatment resulted in a functional inhibition of IRbeta but the Akt activation status remained unaltered. Changes in GSK-3 alpha/beta were consistent with a net decrease in the enzyme activity, as opposed to that in schizophrenia. The results suggest that alterations in insulin-dependent Akt signaling in schizophrenia are similar to those observed in our cellular but not animal models of insulin resistance. In animal model, clozapine ameliorates IRbeta deficits at the GSK-3 alpha/beta level, which may justify its role in treatment of schizophrenia. Our studies suggest that aberrant IR function may be important in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Zhong Zhao
- Neuroinflammation Research Laboratories, Mount Sinai School of Medicine and Bronx Veterans Affairs Medical Center, New York, NY 10468, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
With the increasing application of genomic and proteomic technologies to the research of neurological and psychiatric disorders it has become imperative that the postmortem tissue utilized be of the highest quality possible. Every step of the research design, from identifying donors, acquiring sufficient information for accurate diagnosis, to assessing tissue quality has to be carefully considered. In order to obtain high-quality RNA and protein from the postmortem brain tissue a standardized system of brain collection, dissection, and storage must be employed and key ante- and postmortem factors must be considered. Reliable RNA expression and protein data can be obtained from postmortem brains with relatively long postmortem intervals (PMIs) if the agonal factors and acidosis are not severe. While pH values are correlated with RNA integrity number (RIN), a higher pH does not guarantee intact RNA. Consequently RNA integrity must be assessed for every case before it is included in a study. An analysis of anti- and postmortem factors in a large brain collection has revealed that several diagnostic groups have significantly lower pH values than other groups, however, they do not have significantly lower RIN values. Moreover, the lower pH of these groups is not entirely due to agonal factors and/or smoking, indicating that these subjects may have additional metabolic abnormalities that contribute to the lower pH values.
Collapse
|
40
|
Abstract
The ability to form tenable hypotheses regarding the neurobiological basis of normative functions as well as mechanisms underlying neurodegenerative and neuropsychiatric disorders is often limited by the highly complex brain circuitry and the cellular and molecular mosaics therein. The brain is an intricate structure with heterogeneous neuronal and nonneuronal cell populations dispersed throughout the central nervous system. Varied and diverse brain functions are mediated through gene expression, and ultimately protein expression, within these cell types and interconnected circuits. Large-scale high-throughput analysis of gene expression in brain regions and individual cell populations using modern functional genomics technologies has enabled the simultaneous quantitative assessment of dozens to hundreds to thousands of genes. Technical and experimental advances in the accession of tissues, RNA amplification technologies, and the refinement of downstream genetic methodologies including microarray analysis and real-time quantitative PCR have generated a wellspring of informative studies pertinent to understanding brain structure and function. In this review, we outline the advantages as well as some of the potential challenges of applying high throughput functional genomics technologies toward a better understanding of brain tissues and diseases using animal models as well as human postmortem tissues.
Collapse
|
41
|
McInnes LA, Lauriat TL. RNA metabolism and dysmyelination in schizophrenia. Neurosci Biobehav Rev 2006; 30:551-61. [PMID: 16445981 DOI: 10.1016/j.neubiorev.2005.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 10/27/2005] [Accepted: 10/27/2005] [Indexed: 12/18/2022]
Abstract
Decreased expression of a subset of oligodendrocyte and myelin-related genes is the most consistent finding among gene expression studies of postmortem brain tissue from subjects with schizophrenia (SCZ), although heritable variants have yet to be found that can explain the bulk of this data. However, expression of the glial gene Quaking (QKI), encoding an RNA binding (RBP) essential for myelination, was recently found to be decreased in SCZ brain. Both oligodendrocyte/myelin related genes, and other RBPs that are known or predicted to be targets of QKI, are also decreased in SCZ. Two different quaking mutant mice share some pathological features in common with SCZ, including decreased expression of myelin-related genes and dysmyelination, without gross destruction of white matter. Therefore, although these mice are not a model of SCZ per se, understanding the similarities and differences in gene expression between brains from these mice and subjects with SCZ could help parse out distinct genetic pathways underlying SCZ.
Collapse
Affiliation(s)
- L Alison McInnes
- Department of Psychiatry and Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
42
|
Katsel P, Davis KL, Gorman JM, Haroutunian V. Variations in differential gene expression patterns across multiple brain regions in schizophrenia. Schizophr Res 2005; 77:241-52. [PMID: 15923110 DOI: 10.1016/j.schres.2005.03.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 11/23/2022]
Abstract
Large-scale gene expression studies in schizophrenia (SZ) have generally focused on the dorsolateral prefrontal cortex. Despite a wealth of evidence implicating multiple other brain regions in the disease, studies of other brain regions have been less frequent and have rarely been performed in the same subjects. We analyzed postmortem gene expression in the frontal, cingulate, temporal, parietal and occipital cortices (Brodmann areas 8, 10, 44, 46, 23/31, 24/32, 20, 21, 22, 36/28, 7 and 17, respectively) as well as in the hippocampus, caudate nucleus and putamen of persons with schizophrenia and control subjects (N's = 13) using Affymetrix GeneChip microarrays. Under identical data filtering conditions, the superior temporal cortex (BA22) of schizophrenia subjects showed the maximal number of altered transcripts (approximately 1200) compared to controls. Anterior and posterior cingulate cortices (BA23/31, 24/32) and the hippocampus followed the superior temporal cortex with two-times lower numbers of altered transcripts. The dorsolateral prefrontal cortex (BA46), a frequent target of SZ-associated studies, showed substantially fewer altered transcripts (approximately 33). These regional differences in differentially expressed genes could not be accounted for by factors such as total numbers of genes expressed or the filtering conditions and criteria used for identification of differentially expressed genes. These findings suggest that the temporal and cingulate cortices and the hippocampal formation represent brain regions of particular abnormality in SZ and may be more susceptible to the disease process(es) than other regions thus far studied.
Collapse
Affiliation(s)
- P Katsel
- Department of Psychiatry, The Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6575, USA
| | | | | | | |
Collapse
|