1
|
Nagamine T. Merits and demerits of administering esketamine in preventing postpartum depression following cesarean section. World J Clin Cases 2024; 12:6883-6886. [DOI: 10.12998/wjcc.v12.i36.6883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/31/2024] Open
Abstract
Emergency cesarean section is associated with the development of postpartum depression. Esketamine has been demonstrated to have a rapid onset of antidepressant effects. Randomized controlled trials and meta-analyses have demonstrated the efficacy of esketamine in preventing postpartum depression after cessarean section. However, the data included in these analyses were derived from elective cesarean sections and differed in the dose and timing of esketamine administration. Esketamine is a dissociative anesthetic with a dose-dependent risk of inducing psychotic symptoms, including hallucinations. In the setting of cesarean section, esketamine should be administered with caution and only if the potential benefits outweigh the risks.
Collapse
Affiliation(s)
- Takahiko Nagamine
- Department of Psychiatric Internal Medicine, Sunlight Brain Research Center, Hofu 7470066, Yamaguchi, Japan
| |
Collapse
|
2
|
Wilson CA, Miller BW, Renton RM, Lominac KD, Szumlinski KK. Investigation into the biomolecular bases of blunted cocaine-induced glutamate release within the nucleus accumbens elicited by adolescent exposure to phenylpropanolamine. Drug Alcohol Depend 2024; 264:112465. [PMID: 39427535 DOI: 10.1016/j.drugalcdep.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Globally, phenylpropanolamine (PPA) is a prevalent primary active ingredient in over-the-counter cough and cold, as well as weight-loss medications. Previously, we showed that a sensitization of cocaine-induced glutamate release within the nucleus accumbens (NAC) and the expression of cocaine-conditioned reward is not apparent in adult mice with a prior history of repeated PPA exposure during adolescence. As NAC glutamate is a purported driver of cocaine reward and reinforcement, the present study employed in vivo microdialysis and immunoblotting approaches to inform as to the receptor and transporter anomalies that might underpin the disrupted glutamate response to cocaine in adolescent PPA-exposed mice. For this, male and female C57BL/6J mice were pretreated, once daily, with either 0 or 40mg/kg PPA during post-natal days 35-44. Adolescent PPA pretreatment significantly altered the expression of mGlu2/3 and α2 receptors in the NAC, with less robust changes detected for EAAT2, D2 receptors, DAT and NET. However, we detected no overt change in the capacity of these receptors or transporters to affect extracellular glutamate levels in adolescent PPA-pretreated mice. The present findings contrast with the pronounced changes in the capacity of mGlu2/3 receptors, EAAT, DAT and NET to regulate NAC extracellular glutamate reported previously for juvenile PPA-pretreated mice, indicating further that the long-term biochemical consequences of PPA depend on the critical period of neurodevelopment during which an individual is PPA-exposed, although the specific biomolecular changes underpinning the cocaine phenotype produced by adolescent PPA remain to be elucidated.
Collapse
Affiliation(s)
- Casey A Wilson
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Bailey W Miller
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rachel M Renton
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kevin D Lominac
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
3
|
Zinellu A, Tommasi S, Carru C, Sotgia S, Mangoni AA. A systematic review and meta-analysis of nitric oxide-associated arginine metabolites in schizophrenia. Transl Psychiatry 2024; 14:439. [PMID: 39414767 PMCID: PMC11484908 DOI: 10.1038/s41398-024-03157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
There is increasing interest in the pathophysiological role of arginine metabolism in schizophrenia, particularly in relation to the modulation of the endogenous messenger nitric oxide (NO). The assessment of specific arginine metabolites that, unlike NO, are stable can provide useful insights into NO regulatory enzymes such as isoform 1 of dimethylarginine dimethylaminohydrolase (DDAH1) and arginase. We investigated the role of arginine metabolomics in schizophrenia by conducting a systematic review and meta-analysis of the circulating concentrations of arginine metabolites associated with DDAH1, arginase, and NO synthesis [arginine, citrulline, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), dimethylamine, and ornithine] in this patient group. We searched PubMed, Scopus, and Web of Science from inception to the 31st of May 2023 for studies investigating arginine metabolites in patients with schizophrenia and healthy controls. The JBI Critical Appraisal Checklist for analytical studies and GRADE were used to assess the risk of bias and the certainty of evidence, respectively (PROSPERO registration number: CRD42023433000). Twenty-one studies were identified for analysis. There were no significant between-group differences in arginine, citrulline, and SDMA. By contrast, patients with schizophrenia had significantly higher ADMA (DDAH1 substrate, standard mean difference, SMD = 1.23, 95% CI 0.86-1.61, p < 0.001; moderate certainty of evidence), dimethylamine (DDAH1 product, SMD = 0.47, 95% CI 0.24-0.70, p < 0.001; very low certainty of evidence), and ornithine concentrations (arginase product, SMD = 0.32, 95% CI 0.16-0.49, p < 0.001; low certainty of evidence). In subgroup analysis, the pooled SMD for ornithine was significantly different in studies of untreated, but not treated, patients. Our study suggests that DDAH1 and arginase are dysregulated in schizophrenia. Further studies are warranted to investigate the expression/activity of these enzymes in the brain of patients with schizophrenia and the effects of targeted treatments.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital of Sassari (AOU), Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia.
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
4
|
Keshavan MS, Song SH. Neuroscience in Pictures: 3. Schizophrenia. Asian J Psychiatr 2024; 102:104278. [PMID: 39427364 DOI: 10.1016/j.ajp.2024.104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Schizophrenia is a complex, heritable brain disorder characterized by psychotic, negative, cognitive, mood, and motor symptoms. This pictorial review explores the multifaceted nature of schizophrenia, from its etiology to prevention strategies. We discuss the interplay of genetic and environmental risk factors, neurobiological underpinnings, and stepwise progression. Recent advances in understanding circuit-level pathophysiology and neurotransmitter systems beyond dopamine are highlighted along with neuropathological findings, particularly the exaggerated synaptic pruning hypothesis. Based on these developments, we present an updated perspective on pharmacological interventions. Finally, we outline preventative strategies across different stages, emphasizing early intervention. This overview, designed as a teaching resource, aims to provide trainees, clinicians and researchers with a current understanding of schizophrenia's neurobiological underpinnings and the implications of such understanding to the evolving landscape of its diagnosis and management.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Seo Ho Song
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Vartzoka F, Parlantza MA, Tarantilis PA, Pitsikas N. Co-administration of sub-effective doses of the constituents of Crocus sativus L. crocins with those of the antipsychotics clozapine and risperidone counteract memory deficits caused by blockade of the NMDA receptor in rats. Phytother Res 2024; 38:4140-4150. [PMID: 39031890 DOI: 10.1002/ptr.8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/03/2024] [Accepted: 05/25/2024] [Indexed: 07/22/2024]
Abstract
Experimental evidence indicates that the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists ketamine and MK-801 induce schizophrenia-like symptoms in rodents, including cognitive deficits. Crocins are among the active components of the plant Crocus sativus L. and were found to be effective in different models of psychiatric disorders comprising schizophrenia. The present study was designed to evaluate the efficacy of the joint administration of sub-effective doses of crocins with those of the atypical antipsychotics clozapine and risperidone in alleviating nonspatial recognition and emotional memory deficits induced either by ketamine (3 mg/kg) or MK-801 (0.1 mg/kg) in the rat. To this end, the object recognition and the step-through passive avoidance tests were used. Co-administration of sub-effective doses of crocins (5 mg/kg) with those of clozapine (0.1 mg/kg) or risperidone (0.03 mg/kg) counteracted nonspatial recognition and emotional memory deficits induced by NMDA receptor antagonists. The current findings suggest that this combinatorial treatment was efficacious in attenuating cognitive impairments related to the blockade of the NMDA receptor. In addition, the present results support the potential of crocins as an adjunctive drug for the therapy of schizophrenia.
Collapse
Affiliation(s)
- Foteini Vartzoka
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Maria Anastasia Parlantza
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Petros A Tarantilis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
6
|
Fayedeh F, Khorashadizadeh S, Yousefi M, Abbasifar S, Erfanian N, Rafiee M, Ghasemi F. CTLA-4 expression and polymorphisms in Schizophrenia; a systematic review of literature. Mol Biol Rep 2024; 51:431. [PMID: 38520576 DOI: 10.1007/s11033-024-09299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/29/2024] [Indexed: 03/25/2024]
Abstract
Schizophrenia constitutes a severe psychiatric disorder with detrimental impacts on individuals, their support systems, and the broader economy. Extensive research has revealed a notable association between variations in the Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) gene and an increased susceptibility to schizophrenia.This study represents the first systematic review of the literature investigating the impact of CTLA-4 polymorphisms and expression on the development and progression of schizophrenia.Our investigation involved a comprehensive search strategy, using a combination of title, abstract, and MESH terms in four databases, including PubMed, Scopus, Web of Science, and Google Scholar, until August 29th, 2023. The complete texts of the identified records were obtained and rigorously assessed based on predefined exclusion and inclusion criteria. Out of the numerous records, a total of 88 were identified through the databases. 10 studies met the criteria; therefore, their quality was assessed and included in this systematic study. The records were then categorized into polymorphism and expression groups. Our investigation emphasizes an association between rs3087243, rs231779, rs231777, rs16840252, rs5742909, and rs231775 polymorphisms and the development of schizophrenia. The results demonstrate a correlation between CTLA-4 polymorphisms and schizophrenia, compelling the need for further research to thoroughly examine the role of CTLA-4 in schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Farzad Fayedeh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Yousefi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Abbasifar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mitra Rafiee
- Cellular and Molecular Research Center, Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran.
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Ivanova E, Matyushkin A, Sorokina A, Alexeeva S, Miroshkina I, Kachalov K, Voronina T, Durnev A. Low-Affinity NMDA Receptor Antagonist Hemantane in a Topical Formulation Attenuates Arthritis Induced by Freund's Complete Adjuvant in Rats. Adv Pharm Bull 2024; 14:241-252. [PMID: 38585463 PMCID: PMC10997923 DOI: 10.34172/apb.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/12/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose N-methyl-D-aspartate (NMDA) receptors that are expressed by T-cells modulate T-cell proliferation, cytotoxicity and cell migration toward chemokines. Several studies have shown an anti-inflammatory effect of NMDA receptor antagonists. This study compares the effect of the noncompetitive low-affinity NMDA receptor antagonist N-(2-adamantyl)-hexamethyleneimine hydrochloride (hemantane) in a topical formulation (gel) with the cyclooxygenase (COX) inhibitor diclofenac in a topical formulation (gel) in rats with arthritis induced by Freund's Complete Adjuvant (FCA). Methods On day 14 after an FCA injection into the left hind paw, rats with contralateral hind paw edema were selected for further investigation (29/65). They were treated with 5% hemantane gel or 1% diclofenac gel applied locally to hind paws daily for 2 weeks starting 14 days after the FCA injection. Rats with arthritis were examined hind paw edema, hyperalgesia, and motor deficits; their body weight and hematological parameters were recorded. The rats were euthanized on day 28, followed by histological examination of the ankle joint (HE stain). Results Rats with arthritis exhibited hind paw inflammation and hyperalgesia, motor deficits, changes of hematological parameters, reduced weight gain and spleen hypertrophy. Histological examination of the ankle joint revealed degenerative-dystrophic lesions of the cartilaginous tissue, proliferative inflammation of the synovium, edema and lymphocytic/macrophage infiltration of periarticular tissues. Hemantane gel reduced hind paw edema, pain, motor deficits and histological signs of inflammation; its effect was comparable to diclofenac gel. Conclusion Hemantane gel alleviates FCA-induced arthritis in rats, and its effect is comparable to diclofenac gel.
Collapse
Affiliation(s)
- Elena Ivanova
- Laboratory of Psychopharmacology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Alexander Matyushkin
- Laboratory of Psychopharmacology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Alexandra Sorokina
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Svetlana Alexeeva
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Irina Miroshkina
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Kirill Kachalov
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Tatyana Voronina
- Laboratory of Psychopharmacology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| | - Andrey Durnev
- Laboratory of Drug toxicology, FSBI Zakusov Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
8
|
de Almeida V, Mendes ND, Zuccoli GS, Reis-de-Oliveira G, Almeida GM, Podolsky-Gondim GG, Neder L, Martins-de-Souza D, Sebollela A. NMDA glutamate receptor antagonist MK-801 induces proteome changes in adult human brain slices which are partially counteracted by haloperidol and clozapine. J Neurochem 2024; 168:238-250. [PMID: 38332572 DOI: 10.1111/jnc.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Niele Dias Mendes
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Division of Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Sao Paulo, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Glaucia M Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Guilherme Gozzoli Podolsky-Gondim
- Division of Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Sao Paulo, Brazil
| | - Luciano Neder
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, Sao Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Sao Paulo, Brazil
- D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Holter KM, Lekander AD, Pierce BE, Sands LP, Gould RW. Use of Quantitative Electroencephalography to Inform Age- and Sex-Related Differences in NMDA Receptor Function Following MK-801 Administration. Pharmaceuticals (Basel) 2024; 17:237. [PMID: 38399452 PMCID: PMC10892193 DOI: 10.3390/ph17020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Sex- and age-related differences in symptom prevalence and severity have been widely reported in patients with schizophrenia, yet the underlying mechanisms contributing to these differences are not well understood. N-methyl-D-aspartate (NMDA) receptor hypofunction contributes to schizophrenia pathology, and preclinical models often use NMDA receptor antagonists, including MK-801, to model all symptom clusters. Quantitative electroencephalography (qEEG) represents a translational approach to measure neuronal activity, identify targetable biomarkers in neuropsychiatric disorders and evaluate possible treatments. Abnormalities in gamma power have been reported in patients with schizophrenia and correspond to psychosis and cognitive impairment. Further, as gamma power reflects cortical glutamate and GABA signaling, it is highly sensitive to changes in NMDA receptor function, and NMDA receptor antagonists aberrantly increase gamma power in rodents and humans. To evaluate the role of sex and age on NMDA receptor function, MK-801 (0.03-0.3 mg/kg, SC) was administered to 3- and 9-month-old male and female Sprague-Dawley rats that were implanted with wireless EEG transmitters to measure cortical brain function. MK-801-induced elevations in gamma power were observed in 3-month-old male and female and 9-month-old male rats. In contrast, 9-month-old female rats demonstrated blunted maximal elevations across a wide dose range. Importantly, MK-801-induced hyperlocomotor effects, a common behavioral screen used to examine antipsychotic-like activity, were similar across all groups. Overall, sex-by-age-related differences in gamma power support using qEEG as a translational tool to evaluate pathological progression and predict treatment response across a heterogeneous population.
Collapse
Affiliation(s)
| | | | | | | | - Robert W. Gould
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.M.H.)
| |
Collapse
|
10
|
Sapienza J, Agostoni G, Dall'Acqua S, Sut S, Nasini S, Martini F, Marchesi A, Bechi M, Buonocore M, Cocchi F, Cavallaro R, Spangaro M, Comai S, Bosia M. The kynurenine pathway in treatment-resistant schizophrenia at the crossroads between pathophysiology and pharmacotherapy. Schizophr Res 2024; 264:71-80. [PMID: 38101180 DOI: 10.1016/j.schres.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Two cardinal elements in the complex and multifaceted pathophysiology of schizophrenia (SCZ) are neuroinflammation and dysregulation of glutamatergic neurotransmission, with the latter being especially involved in treatment-resistant schizophrenia (TRS). Interestingly, the Kynurenine (KYN) pathway (KP) is at the crossroad between them, constituting a potential causal link and a therapeutic target. Although there is preclinical and clinical evidence indicating a dysregulation of KP associated with the clinical phenotype of SCZ, clinical studies investigating the possible relationship between changes in biomarkers of the KP and response to pharmacotherapy are still limited. Therefore, we have studied possible differences in the circulating levels of biomarkers of the metabolism of tryptophan along the KP in 43 responders to first-line treatments (FLR) and 32 TRS patients treated with clozapine, and their possible associations with psychopathology in the two subgroups. Plasma levels of KYN were significantly higher in TRS patients than in FLR patients, indicating a greater activation of KP. Furthermore, the levels of quinolinic (NMDA receptor agonist) and kynurenic acid (NMDA negative allosteric modulator) showed a negative and a positive correlation with several dimensions and the overall symptomatology in the whole sample and in FLR, but not in TRS, suggesting a putative modulating effect of clozapine elicited through the NMDA receptors. Despite the cross-sectional design of the study that prevents us from demonstrating causation, these findings show a significant relationship among circulating KP biomarkers, psychopathology, and response to pharmacotherapy in SCZ. Therefore, plasma KP biomarkers should be further investigated for developing personalized medicine approaches in SCZ.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Giulia Agostoni
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Marchesi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Bechi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariachiara Buonocore
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Marta Bosia
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Husain MO, Chaudhry IB, Khoso AB, Husain MI, Ansari MA, Mehmood N, Naqvi HA, Nizami AT, Talib U, Rajput AH, Bassett P, Foussias G, Deakin B, Husain N. Add-on Sodium Benzoate and N-Acetylcysteine in Patients With Early Schizophrenia Spectrum Disorder: A Multicenter, Double-Blind, Randomized Placebo-Controlled Feasibility Trial. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae004. [PMID: 39144112 PMCID: PMC11207662 DOI: 10.1093/schizbullopen/sgae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Oxidative stress pathways may play a role in schizophrenia through direct neuropathic actions, microglial activation, inflammation, and by interfering with NMDA neurotransmission. N-acetylcysteine (NAC) has been shown to improve negative symptoms of schizophrenia, however, results from trials of other compounds targeting NMDA neurotransmission have been mixed. This may reflect poor target engagement but also that risk mechanisms act in parallel. Sodium Benzoate (NaB) could have an additive with NAC to act on several pathophysiological mechanisms implicated in schizophrenia. Study Design A multicenter, 12 weeks, 2 × 2 factorial design, randomized double-blind placebo-controlled feasibility trial of NaB and NAC added to standard treatment in 68 adults with early schizophrenia. Primary feasibility outcomes included recruitment, retention, and completion of assessments as well as acceptability of the study interventions. Psychosis symptoms, functioning, and cognitive assessments were also assessed. Study Results We recruited our desired sample (n = 68) and retained 78% (n = 53) at 12 weeks, supporting the feasibility of recruitment and retention. There were no difficulties in completing clinical outcome schedules. Medications were well tolerated with no dropouts due to side effects. This study was not powered to detect clinical effect and as expected no main effects were found on the majority of clinical outcomes. Conclusions We demonstrated feasibility of conducting a clinical trial of NaB and NAC. Given the preliminary nature of this study, we cannot draw firm conclusions about the clinical efficacy of either agent, and a large-scale trial is needed to examine if significant differences between treatment groups emerge. Trial Registration ClinicalTrials.gov: NCT03510741.
Collapse
Affiliation(s)
- Muhammad Omair Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Imran Bashir Chaudhry
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
- Department of Psychiatry, Ziauddin University, Karachi, Pakistan
- Pakistan Institute of Living and Learning, Karachi, Pakistan
| | - Ameer B Khoso
- Pakistan Institute of Living and Learning, Karachi, Pakistan
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Moin Ahmed Ansari
- Department of Psychiatry, Liaquat University of Medical and Health Sciences, Hyderabad, Pakistan
| | - Nasir Mehmood
- Karwan e Hayat, Institute for Mental Health Care, Karachi, Pakistan
| | - Haider A Naqvi
- Department of Psychiatry, Dow University Health Sciences, Karachi, Pakistan
| | - Asad Tamizuddin Nizami
- Institute of Psychiatry, WHO Collaborating Centre for Mental Health Research and Training, Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Uroosa Talib
- Karwan e Hayat, Institute for Mental Health Care, Karachi, Pakistan
| | - Aatir H Rajput
- Department of Psychiatry, Liaquat University of Medical and Health Sciences, Hyderabad, Pakistan
| | | | - George Foussias
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bill Deakin
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
| | - Nusrat Husain
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
- Mersey Care NHS Foundation Trust, Prescott, UK
- Institute of Population and Mental Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Panov G, Panova P. Neurobiochemical Disturbances in Psychosis and their Implications for Therapeutic Intervention. Curr Top Med Chem 2024; 24:1784-1798. [PMID: 38265370 DOI: 10.2174/0115680266282773240116073618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
Psychosis, marked by the emergence of psychotic symptoms, delves into the intricate dance of neurotransmitter dynamics, prominently featuring dopamine as a key orchestrator. In individuals living with psychotic conditions, the finely tuned balance of dopamine becomes disrupted, setting off a cascade of perceptual distortions and the manifestation of psychotic symptoms. A lot of factors can impact dopamine metabolism, further complicating its effects. From genetic predispositions to environmental stressors and inflammation, the delicate equilibrium is susceptible to various influences. The sensorium, the origin of incoming information, loses its intrinsic valence in this complex interplay. The concept of the "signal-to-noise ratio" encapsulates dopamine's role as a molecular switch in neural networks, influencing the flow of information serving the basic biological functions. This nuanced modulation acts as a cognitive prism, shaping how the world is perceived. However, in psychosis, this balance is disrupted, steering individuals away from a shared reality. Understanding dopamine's centrality requires acknowledging its unique status among neurotransmitters. Unlike strictly excitatory or inhibitory counterparts, dopamine's versatility allows it to toggle between roles and act as a cognitive director in the neural orchestra. Disruptions in dopamine synthesis, exchange, and receptor representation set off a chain reaction, impacting the delivery of biologically crucial information. The essence of psychosis is intricately woven into the delicate biochemical ballet choreographed by dopamine. The disruption of this neurotransmitter not only distorts reality but fundamentally reshapes the cognitive and behavioral field of our experience. Recognizing dopamine's role as a cognitive prism provides vital insights into the multifaceted nature of psychotic conditions, offering avenues for targeted therapeutic interventions aimed at restoring this delicate neurotransmitter balance.
Collapse
Affiliation(s)
- Georgi Panov
- Psychiatric Clinic, University Hospital for Active Treatment "Prof. Dr. Stoyan Kirkovich," Trakia University, Stara Zagora, 6000, Bulgaria
- Department "Neurology, Psychiatry, Psychology," Medical Faculty of University "Prof. Dr. Asen Zlatarov," Burgas, 8000, Bulgaria
| | | |
Collapse
|
13
|
Kumon H, Yoshino Y, Funahashi Y, Ochi S, Iga JI, Ueno SI. Effects of gestational haloperidol exposure on mRNA expressions related to glutamate and GABA receptors in offspring. IBRO Neurosci Rep 2023; 15:281-286. [PMID: 37860710 PMCID: PMC10582061 DOI: 10.1016/j.ibneur.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023] Open
Abstract
Antipsychotic treatment is vital for patients with schizophrenia even in the perinatal period, but the impact at the molecular biological level on offspring is unclear. The aim of the present study was to investigate the effects of intraperitoneal haloperidol injection to pregnant mice on glutamate and GABA receptors in the brain of offspring mice. Eight-week-old pregnant mice were treated with either intraperitoneal haloperidol or normal saline injection, and their offspring were defined as F1 mice. In addition, eight-week-old male mice were used as acute mice that were intraperitoneally injected with haloperidol or normal saline for 20 days. mRNA expression levels were measured by RT-qPCR. Western blotting was performed of the frontal lobes of F1 mice. In the hippocampi of F1 mice, Grik3 (p = 0.023) and Gabra3 (p = 0.004) mRNA expression levels were significantly higher in the haloperidol group than in the control group, whereas Gria2 (p < 0.001) and Grin2a (p < 0.001) mRNA expression levels were significantly lower in the haloperidol group than in the control group. Gria2 (p = 0.015), and Grik3 (p = 0.037), and Grin2a (p = 0.012) mRNA expression levels were significantly lower in the haloperidol group than in the control group in the frontal lobes of F1 mice. In the hippocampi of acute mice, Grik3 (p = 0.049) and Gabra3 (p = 0.007) mRNA expression levels were significantly decreased in the haloperidol group. Fetal exposure to haloperidol can affect glutamate and GABA receptors through mRNA expression changes in the brain of offspring.
Collapse
Affiliation(s)
| | | | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791–0295, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791–0295, Japan
| | | | - Shu-ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791–0295, Japan
| |
Collapse
|
14
|
Zhong Y, Tubbs JD, Leung PBM, Zhan N, Hui TCK, Ho KKY, Hung KSY, Cheung EFC, So HC, Lui SSY, Sham PC. Early-onset schizophrenia is associated with immune-related rare variants in a Chinese sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.21.23298115. [PMID: 38045317 PMCID: PMC10690336 DOI: 10.1101/2023.11.21.23298115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Rare variants are likely to contribute to schizophrenia (SCZ), given the large discrepancy between the heritability estimated from twin and GWAS studies. Furthermore, the nature of the rare-variant contribution to SCZ may vary with the "age-at-onset" (AAO), since early-onset has been suggested as being indicative of neurodevelopment deviance. Objective To examine the association of rare deleterious coding variants in early- and adult-onset SCZ in a Chinese sample. Method Exome sequencing was performed on DNA from 197 patients with SCZ spectrum disorder and 82 healthy controls (HC) of Chinese ancestry recruited in Hong Kong. We also gathered AAO information in the majority of SCZ samples. Patients were classified into early-onset (EOS, AAO<18) and adult-onset (AOS, AAO>18). We collapsed the rare variants to improve statistical power and examined the overall association of rare variants in SCZ versus HC, EOS versus HC, and AOS versus HC at the gene and gene-set levels by Sequence Kernel Association Test. The quantitative rare-variant association test of AAO was also conducted. We focused on variants which were predicted to have a medium or high impact on the protein-encoding process as defined by Ensembl. We applied a 100000-time permutation test to obtain empirical p-values, with significance threshold set at p < 1e -3 to control family-wise error rates. Moreover, we compared the burden of targeted rare variants in significant risk genes and gene sets in cases and controls. Results Based on several binary-trait association tests (i.e., SCZ vs HC, EOS vs HC and AOS vs HC), we identified 7 candidate risk genes and 20 gene ontology biological processes (GOBP) terms, which exhibited higher burdens in SCZ than in controls. Based on quantitative rare-variant association tests, we found that alterations in 5 candidate risk genes and 7 GOBP pathways were significantly correlated with AAO. Based on biological and functional profiles of the candidate risk genes and gene sets, our findings suggested that, in addition to the involvement of perturbations in neural systems in SCZ in general, altered immune responses may be specifically implicated in EOS. Conclusion Disrupted immune responses may exacerbate abnormal perturbations during neurodevelopment and trigger the early onset of SCZ. We provided evidence of rare variants increasing SCZ risk in the Chinese population.
Collapse
|
15
|
Yazla E, Cetin I, Kayadibi H. Assessing the relationship between antipsychotic drug use and prolidase enzyme activity and oxidative stress in schizophrenia patients: a case-control study. Int Clin Psychopharmacol 2023; 38:394-401. [PMID: 37490605 DOI: 10.1097/yic.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND The relationship between proline, its association with oxidative stress, and its connection to schizophrenia is a subject that has not been sufficiently investigated. OBJECTIVE The aim of this study is to evaluate the possible effects of atypical and combined (typical and atypical) antipsychotic use on serum prolidase enzyme activity (SPEA) and serum oxidative stress parameters, and to assess the relationship between SPEA and oxidative stress in patients with schizophrenia. METHODS A total of 57 patients with schizophrenia, of which 34 were using atypical (AAPG) and 23 were using combined (typical and atypical) (CAPG) antipsychotic therapy, and 28 healthy volunteers (control group) were included in this case-control study. RESULTS SPEA levels of AAPG and CAPG were significantly lower than that of control group ( P = 0.003). The oxidative stress index (OSI) value of AAPG was significantly higher than the other two groups ( P = 0.001). SPEA (<1860 U/l) and OSI (≥0.54) could discriminate schizophrenia patients with antipsychotic therapy from control groups ( P = 0.001 and P = 0.007, respectively). Lower SPEA levels were associated with antipsychotic use ( P = 0.007). CONCLUSION The SPEA values of patients with schizophrenia on antipsychotics were significantly lower compared to controls. OSI values were significantly higher in atypical antipsychotic recipients compared to those on combined antipsychotics and healthy controls.
Collapse
Affiliation(s)
- Ece Yazla
- Department of Psychiatry, Hitit University Faculty of Medicine
| | - Ihsan Cetin
- Department of Medical Biochemistry, Hitit University Faculty of Medicine, Corum
| | - Huseyin Kayadibi
- Department of Biochemistry, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey
| |
Collapse
|
16
|
León-Ortiz P, Rivera-Chávez LF, Torres-Ruíz J, Reyes-Madrigal F, Carrillo-Vázquez D, Moncada-Habib T, Cassiano-Quezada F, Cadenhead KS, Gómez-Martín D, de la Fuente-Sandoval C. Systemic inflammation and cortical neurochemistry in never-medicated first episode-psychosis individuals. Brain Behav Immun 2023; 111:270-276. [PMID: 37149107 PMCID: PMC10330452 DOI: 10.1016/j.bbi.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Studies of cellular and cytokine profiles have contributed to the inflammation hypothesis of schizophrenia; however, precise markers of inflammatory dysfunction remain elusive. A number of proton magnetic resonance spectroscopy (1H-MRS) studies in patients with first-episode psychosis (FEP) have shown higher brain levels of metabolites such as glutamate, myo-inositol (mI) and choline-containing compounds (tCho), suggesting neuroinflammation. Here, we present peripheral inflammatory profiles in antipsychotic-naive FEP patients and age-and-sex matched healthy controls, as well as cortical glutamate, mI and tCho levels using 1H-MRS. Inflammatory profiles were analyzed using cytokine production by peripheral blood mononuclear cells, that were either spontaneous or stimulated, in 48 FEP patients and 23 controls. 1H-MRS of the medial prefrontal cortex was obtained in 29 FEP patients and 18 controls. Finally, 16 FEP patients were rescanned after 4 weeks of treatment (open-label) with Risperidone. FEP patients showed a higher proportion of proinflammatory Th1/Th17 subset, and an increased spontaneous production of Interleukin (IL)-6, IL-2 and IL-4 compared with the control group. Results obtained from 1H-MRS showed no significant difference in either glutamate, mI or tCho between FEP and control groups. At baseline, CD8% showed a negative correlation with glutamate in FEP patients; after 4 weeks of risperidone treatment, the FEP group exhibited a decrease in glutamate levels which positively correlated with CD4 + T cells. Nevertheless, these correlations did not survive correction for multiple comparisons. FEP patients show evidence of immune dysregulation, affecting both the innate and adaptive immune response, with a predominantly Th2 signature. These findings, along with the changes produced by antipsychotic treatment, could be associated with both systemic and central inflammatory processes in schizophrenia.
Collapse
Affiliation(s)
- Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Luis F Rivera-Chávez
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Jiram Torres-Ruíz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Daniel Carrillo-Vázquez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tomás Moncada-Habib
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Fabiola Cassiano-Quezada
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | |
Collapse
|
17
|
Katsanou L, Fragkiadaki E, Kampouris S, Konstanta A, Vontzou A, Pitsikas N. The Nitric Oxide (NO) Donor Molsidomine Counteract Social Withdrawal and Cognition Deficits Induced by Blockade of the NMDA Receptor in the Rat. Int J Mol Sci 2023; 24:ijms24076866. [PMID: 37047839 PMCID: PMC10095209 DOI: 10.3390/ijms24076866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
The deficiency of the gaseous molecule nitric oxide (NO) seems to be critically involved in the pathogenesis of schizophrenia. Thus, molecules that can normalize NO levels, as are NO donors, might be of utility for the medication of this psychiatric disease. The aim of the present study was to detect the ability of the NO donor molsidomine to reduce schizophrenia-like impairments produced by the blockade of the N-methyl-D-aspartate (NMDA) receptor in rats. Molsidomine's ability to attenuate social withdrawal and spatial recognition memory deficits induced by the NMDA receptor antagonist ketamine were assessed using the social interaction and the object location test, respectively. Further, the efficacy of the combination of sub-effective doses of molsidomine with sub-effective doses of the atypical antipsychotic clozapine in alleviating non-spatial recognition memory deficits was evaluated utilizing the object recognition task. Molsidomine (2 and 4 mg/kg) attenuated social withdrawal and spatial recognition memory deficits induced by ketamine. Co-administration of inactive doses of molsidomine (1 mg/kg) and clozapine (0.1 mg/kg) counteracted delay-dependent and ketamine-induced non-spatial recognition memory deficits. The current findings suggest that molsidomine is sensitive to glutamate hypofunction since it attenuated behavioral impairments in animal models mimicking the negative symptoms and cognitive deficits of schizophrenia. Additionally, the present results support the potential of molsidomine as an adjunctive drug for the therapy of schizophrenia.
Collapse
Affiliation(s)
- Lamprini Katsanou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Evangelia Fragkiadaki
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Sotirios Kampouris
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Anastasia Konstanta
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Aikaterini Vontzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| | - Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| |
Collapse
|
18
|
van Hooijdonk CFM, van der Pluijm M, Bosch I, van Amelsvoort TAMJ, Booij J, de Haan L, Selten JP, Giessen EVD. The substantia nigra in the pathology of schizophrenia: A review on post-mortem and molecular imaging findings. Eur Neuropsychopharmacol 2023; 68:57-77. [PMID: 36640734 DOI: 10.1016/j.euroneuro.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Dysregulation of striatal dopamine is considered to be an important driver of pathophysiological processes in schizophrenia. Despite being one of the main origins of dopaminergic input to the striatum, the (dys)functioning of the substantia nigra (SN) has been relatively understudied in schizophrenia. Hence, this paper aims to review different molecular aspects of nigral functioning in patients with schizophrenia compared to healthy controls by integrating post-mortem and molecular imaging studies. We found evidence for hyperdopaminergic functioning in the SN of patients with schizophrenia (i.e. increased AADC activity in antipsychotic-free/-naïve patients and elevated neuromelanin accumulation). Reduced GABAergic inhibition (i.e. decreased density of GABAergic synapses, lower VGAT mRNA levels and lower mRNA levels for GABAA receptor subunits), excessive glutamatergic excitation (i.e. increased NR1 and Glur5 mRNA levels and a reduced number of astrocytes), and several other disturbances implicating the SN (i.e. immune functioning and copper concentrations) could potentially underlie this nigral hyperactivity and associated striatal hyperdopaminergic functioning in schizophrenia. These results highlight the importance of the SN in schizophrenia pathology and suggest that some aspects of molecular functioning in the SN could potentially be used as treatment targets or biomarkers.
Collapse
Affiliation(s)
- Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands.
| | - Marieke van der Pluijm
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Iris Bosch
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Therese A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
19
|
Ogyu K, Matsushita K, Honda S, Wada M, Tamura S, Takenouchi K, Tobari Y, Kusudo K, Kato H, Koizumi T, Arai N, Koreki A, Matsui M, Uchida H, Fujii S, Onaya M, Hirano Y, Mimura M, Nakajima S, Noda Y. Decrease in gamma-band auditory steady-state response in patients with treatment-resistant schizophrenia. Schizophr Res 2023; 252:129-137. [PMID: 36641960 DOI: 10.1016/j.schres.2023.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Thirty percent of patients with schizophrenia do not respond to non-clozapine antipsychotics and are termed treatment-resistant schizophrenia (TRS). The 40-Hz auditory steady-state response (ASSR) is a well-known to be reduced in patients with schizophrenia compared to healthy controls (HCs), suggesting impaired gamma oscillation in schizophrenia. Given no ASSR study on TRS, we aimed to examine the neurophysiological basis of TRS employing 40-Hz ASSR paradigm. METHOD We compared ASSR measures among HCs, patients with non-TRS, and patients with TRS. TRS criteria were defined by a score of 4 or higher on two items of the Positive and Negative Syndrome Scale (PANSS) positive symptoms despite standard antipsychotic treatment. Participants were examined for ASSR with 40-Hz click-train stimulus, and then time-frequency analysis was performed to calculate evoked power and phase-locking factor (PLF) of 40-Hz ASSR. RESULTS A total of 79 participants were included: 27 patients with TRS (PANSS = 92.6 ± 15.8); 27 patients with non-TRS (PANSS = 63.3 ± 14.7); and 25 HCs. Evoked power in 40-Hz ASSR was lower in the TRS group than in the HC group (F2,79 = 8.37, p = 0.015; TRS vs. HCs: p = 0.012, d = 1.1) while no differences in PLF were found between the groups. CONCLUSION These results suggest that glutamatergic and GABAergic neurophysiological dysfunctions are involved in the pathophysiology of TRS. Our findings warrant more comprehensive and longitudinal studies for deep phenotyping of TRS.
Collapse
Affiliation(s)
- Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Karin Matsushita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shunsuke Tamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazumasa Takenouchi
- Department of Clinical Laboratory Medicine, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Faculty of Environment and Information Studies, Keio University, Kanagawa, Kanagawa 252-0882, Japan
| | - Keisuke Kusudo
- Department of Psychiatry, National Hospital Organization Chiba Medical Center, Chiba 260-8606, Japan
| | - Hideo Kato
- Department of Epileptology, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Teruki Koizumi
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Naohiro Arai
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiro Koreki
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Mie Matsui
- Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1164, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Kanagawa 252-0882, Japan
| | - Mitsumoto Onaya
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba 266-0007, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
20
|
Holter KM, Pierce BE, Gould RW. Metabotropic glutamate receptor function and regulation of sleep-wake cycles. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:93-175. [PMID: 36868636 PMCID: PMC10973983 DOI: 10.1016/bs.irn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bethany E Pierce
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
21
|
Could psychedelic drugs have a role in the treatment of schizophrenia? Rationale and strategy for safe implementation. Mol Psychiatry 2023; 28:44-58. [PMID: 36280752 DOI: 10.1038/s41380-022-01832-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a widespread psychiatric disorder that affects 0.5-1.0% of the world's population and induces significant, long-term disability that exacts high personal and societal cost. Negative symptoms, which respond poorly to available antipsychotic drugs, are the primary cause of this disability. Association of negative symptoms with cortical atrophy and cell loss is widely reported. Psychedelic drugs are undergoing a significant renaissance in psychiatric disorders with efficacy reported in several conditions including depression, in individuals facing terminal cancer, posttraumatic stress disorder, and addiction. There is considerable evidence from preclinical studies and some support from human studies that psychedelics enhance neuroplasticity. In this Perspective, we consider the possibility that psychedelic drugs could have a role in treating cortical atrophy and cell loss in schizophrenia, and ameliorating the negative symptoms associated with these pathological manifestations. The foremost concern in treating schizophrenia patients with psychedelic drugs is induction or exacerbation of psychosis. We consider several strategies that could be implemented to mitigate the danger of psychotogenic effects and allow treatment of schizophrenia patients with psychedelics to be implemented. These include use of non-hallucinogenic derivatives, which are currently the focus of intense study, implementation of sub-psychedelic or microdosing, harnessing of entourage effects in extracts of psychedelic mushrooms, and blocking 5-HT2A receptor-mediated hallucinogenic effects. Preclinical studies that employ appropriate animal models are a prerequisite and clinical studies will need to be carefully designed on the basis of preclinical and translational data. Careful research in this area could significantly impact the treatment of one of the most severe and socially debilitating psychiatric disorders and open an exciting new frontier in psychopharmacology.
Collapse
|
22
|
Kandilarova S, Stoyanov D, Aryutova K, Paunova R, Mantarkov M, Mitrev I, Todeva-Radneva A, Specht K. Effective Connectivity Between the Orbitofrontal Cortex and the Precuneus Differentiates Major Psychiatric Disorders: Results from a Transdiagnostic Spectral DCM Study. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:180-190. [PMID: 34533450 DOI: 10.2174/1871527320666210917142815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND & OBJECTIVE We have previously identified aberrant connectivity of the left precuneus, ventrolateral prefrontal cortex, anterior cingulate cortex, and anterior insula in patients with either a paranoid (schizophrenia), or a depressive syndrome (both unipolar and bipolar). In the current study, we attempted to replicate and expand these findings by including a healthy control sample and separating the patients in a depressive episode into two groups: unipolar and bipolar depression. We hypothesized that the connections between those major nodes of the resting state networks would demonstrate different patterns in the three patient groups compared to the healthy subjects. METHODS Resting-state functional MRI was performed on a sample of 101 participants, of which 26 patients with schizophrenia (current psychotic episodes), 24 subjects with Bipolar Disorder (BD), 33 with Major Depressive Disorder (MDD) (both BD and MDD patients were in a current depressive episode), and 21 healthy controls. Spectral Dynamic Causal Modeling was used to calculate the coupling values between eight regions of interest, including the anterior precuneus (PRC), anterior hippocampus, anterior insula, angular gyrus, lateral Orbitofrontal Cortex (OFC), middle frontal gyrus, planum temporale, and anterior thalamus. RESULTS & CONCLUSION We identified disturbed effective connectivity from the left lateral orbitofrontal cortex to the left anterior precuneus that differed significantly between unipolar depression, where the influence was inhibitory, and bipolar depression, where the effect was excitatory. A logistic regression analysis correctly classified 75% of patients with unipolar and bipolar depression based solely on the coupling values of this connection. In addition, patients with schizophrenia demonstrated negative effective connectivity from the anterior PRC to the lateral OFC, which distinguished them from healthy controls and patients with major depression. Future studies with unmedicated patients will be needed to establish the replicability of our findings.
Collapse
Affiliation(s)
- Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Katrin Aryutova
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Rossitsa Paunova
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Mladen Mantarkov
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Ivo Mitrev
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Anna Todeva-Radneva
- Department of Psychiatry and Medical Psychology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Division of Translational Neuroscience, Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Steinert JR, Amal H. The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radic Biol Med 2023; 194:71-83. [PMID: 36435368 DOI: 10.1016/j.freeradbiomed.2022.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Nitric oxide and other redox active molecules such as oxygen free radicals provide essential signalling in diverse neuronal functions, but their excess production and insufficient scavenging induces cytotoxic redox stress which is associated with numerous neurodegenerative and neurological conditions. A further component of redox signalling is mediated by a homeostatic regulation of divalent metal ions, the imbalance of which contributes to neuronal dysfunction. Additional antioxidant molecules such as glutathione and enzymes such as super oxide dismutase are involved in maintaining a physiological redox status within neurons. When cellular processes are perturbed and generation of free radicals overwhelms the antioxidants capacity of the neurons, a resulting redox damage leads to neuronal dysfunction and cell death. Cellular sources for production of redox-active molecules may include NADPH oxidases, mitochondria, cytochrome P450 and nitric oxide (NO)-generating enzymes, such as endothelial, neuronal and inducible NO synthases. Several neurodegenerative and developmental neurological conditions are associated with an imbalanced redox state as a result of neuroinflammatory processes leading to nitrosative and oxidative stress. Ongoing research aims at understanding the causes and consequences of such imbalanced redox homeostasis and its role in neuronal dysfunction.
Collapse
Affiliation(s)
- Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham, NG7 2NR, UK.
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
24
|
Benesh JL, Mueller TM, Meador-Woodruff JH. AMPA receptor subunit localization in schizophrenia anterior cingulate cortex. Schizophr Res 2022; 249:16-24. [PMID: 32014361 DOI: 10.1016/j.schres.2020.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
The glutamate hypothesis of schizophrenia suggests that altered glutamatergic transmission occurs in this illness, although precise mechanisms of dysregulation remain elusive. AMPA receptors (AMPARs), a subtype of ionotropic glutamate receptor, are the main facilitators of fast, excitatory neurotransmission in the brain, and changes in AMPAR number or composition at synapses can regulate synaptic strength and plasticity. Prior evidence of abnormal expression of transmembrane AMPAR regulatory proteins (TARPs) in schizophrenia suggests defective trafficking of AMPARs, which we propose could lead to altered AMPAR expression at excitatory synapses. To test this hypothesis, we isolated subcellular fractions enriched for endoplasmic reticulum (ER) and synapses from anterior cingulate cortex (ACC) from schizophrenia (N = 18) and comparison (N = 18) subjects, and measured glutamate receptor subunits (GluA1, GluA2, GluA3, GluA4, NR1, NR2A, NR2B, and NR3A) and TARP member γ2 (stargazin) in homogenates and subcellular fractions by western blot analysis. We found decreased expression of stargazin and an increased ratio of GluA2:stargazin in ACC homogenates, while in the synapse fraction we identified a decrease in GluA1 and reduced ratios of GluA1:stargazin and GluA1:GluA2 in schizophrenia. The amount of stargazin in the ER fraction was not different, but the relative amount of ER/Total stargazin was increased in schizophrenia. Together, these findings suggest that associations between stargazin and AMPA subunits are abnormal, potentially affecting forward trafficking or synaptic stability of GluA1-containing AMPARs. These data provide evidence that altered interactions with trafficking proteins may contribute to glutamate dysregulation in schizophrenia.
Collapse
Affiliation(s)
- Jana L Benesh
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, 1720 2nd Ave S., Birmingham, AL 35294, United States of America
| | - Toni M Mueller
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, 1720 2nd Ave S., Birmingham, AL 35294, United States of America.
| | - James H Meador-Woodruff
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, 1720 2nd Ave S., Birmingham, AL 35294, United States of America
| |
Collapse
|
25
|
Chesters RA, Pepper F, Morgan C, Cooper JD, Howes OD, Vernon AC, Stone JM. Brain volume in chronic ketamine users - relationship to sub-threshold psychotic symptoms and relevance to schizophrenia. Psychopharmacology (Berl) 2022; 239:3421-3429. [PMID: 34228135 PMCID: PMC9584979 DOI: 10.1007/s00213-021-05873-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/05/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE Ketamine may model aspects of schizophrenia arising through NMDA receptor activity deficits. Although acute ketamine can induce effects resembling both positive and negative psychotic symptoms, chronic use may be a closer model of idiopathic psychosis. OBJECTIVES We tested the hypotheses that ketamine users had lower brain volumes, as measured using MRI, and greater sub-threshold psychotic symptoms relative to a poly-drug user control group. METHODS Ketamine users (n = 17) and poly-drug using controls (n = 19) were included in the study. All underwent volumetric MRI imaging and measurement of sub-threshold psychotic symptoms using the Comprehensive Assessment of At-Risk Mental State (CAARMS). Freesurfer was used to analyse differences in regional brain volume, cortical surface area and thickness between ketamine users and controls. The relationship between CAARMS ratings and brain volume was also investigated in ketamine users. RESULTS Ketamine users were found to have significantly lower grey matter volumes of the nucleus accumbens, caudate nucleus, cerebellum and total cortex (FDR p < 0.05; Cohen's d = 0.36-0.75). Within the cortex, ketamine users had significantly lower grey matter volumes within the frontal, temporal and parietal cortices (Cohen's d 0.7-1.31; FDR p < 0.05). They also had significantly higher sub-threshold psychotic symptoms (p < 0.05). Frequency of ketamine use showed an inverse correlation with cerebellar volume (p < 0.001), but there was no relationship between regional brain volumes and sub-threshold psychotic symptoms. CONCLUSIONS Chronic ketamine use may cause lower grey matter volumes as well as inducing sub-threshold psychotic symptoms, although these likely arise through distinct mechanisms.
Collapse
Affiliation(s)
- Robert A Chesters
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 8AF, UK
| | - Fiona Pepper
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 8AF, UK
| | | | - Jonathan D Cooper
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 8AF, UK
- Departments of Pediatrics, Genetics and Neurology, Medical School, Washington University in St Louis, 660S Euclid Ave, St Louis, MO, 63110, USA
| | - Oliver D Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 8AF, UK
- South London and Maudsley NHS Trust, London, SE5 8AZ, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Anthony C Vernon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - James M Stone
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 8AF, UK.
- South London and Maudsley NHS Trust, London, SE5 8AZ, UK.
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, BN1 9RY, UK.
- Sussex Partnership NHS Foundation Trust, Eastbourne, BN21 2UD, UK.
| |
Collapse
|
26
|
Titulaer J, Radhe O, Danielsson K, Dutheil S, Marcus MM, Jardemark K, Svensson TH, Snyder GL, Ericson M, Davis RE, Konradsson-Geuken Å. Lumateperone-mediated effects on prefrontal glutamatergic receptor-mediated neurotransmission: A dopamine D 1 receptor dependent mechanism. Eur Neuropsychopharmacol 2022; 62:22-35. [PMID: 35878581 DOI: 10.1016/j.euroneuro.2022.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Lumateperone is a novel drug approved for the treatment of schizophrenia in adults and depressive episodes associated with bipolar depression in adults, as monotherapy and as adjunctive therapy with lithium or valproate treatment in the United States. Lumateperone simultaneously modulates key neurotransmitters, such as serotonin, dopamine, and glutamate, implicated in serious mental illness. In patients with schizophrenia, lumateperone was shown to improve positive symptoms along with negative and depressive symptoms, while also enhancing prosocial behavior. Moreover, in patients with bipolar I or II disorder, lumateperone improved depressive symptoms as well. To further understand the mechanisms related to lumateperone's clinical response, the aim of this study was to investigate the effect of lumateperone on dopaminergic- and glutamatergic signaling in the rat medial prefrontal cortex (mPFC). We used the conditioned avoidance response (CAR) test to determine the antipsychotic-like effect of lumateperone, electrophysiology in vitro to study lumateperone's effects on NMDA- and AMPA-induced currents in the mPFC, and the neurochemical techniques microdialysis and amperometry to measure dopamine- and glutamate release in the rat mPFC. Our results demonstrate that lumateperone; i) significantly suppressed CAR in rats, indicating an antipsychotic-like effect, ii) facilitated NMDA and AMPA receptor-mediated currents in the mPFC, in a dopamine D1-dependent manner, and iii) significantly increased dopamine and glutamate release in the rat mPFC. To the extent that these findings can be translated to humans, the ability of lumateperone to activate these pathways may contribute to its demonstrated effectiveness in safely improving symptoms related to neuropsychiatric disorder including mood alterations.
Collapse
Affiliation(s)
- J Titulaer
- Section of Neuropharmacology and Addiction Research, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | - O Radhe
- Section of Neuropharmacology and Addiction Research, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - K Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - S Dutheil
- Intra-Cellular Therapies, Inc., New York, NY, United States
| | - M M Marcus
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - K Jardemark
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - T H Svensson
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - G L Snyder
- Intra-Cellular Therapies, Inc., New York, NY, United States
| | - M Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - R E Davis
- Intra-Cellular Therapies, Inc., New York, NY, United States
| | - Å Konradsson-Geuken
- Section of Neuropharmacology and Addiction Research, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Gu X, Zhang G, Wang Q, Song J, Li Y, Xia C, Zhang T, Yang L, Sun J, Zhou M. Integrated network pharmacology and hepatic metabolomics to reveal the mechanism of Acanthopanax senticosus against major depressive disorder. Front Cell Dev Biol 2022; 10:900637. [PMID: 35990602 PMCID: PMC9389016 DOI: 10.3389/fcell.2022.900637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Objective:Acanthopanax senticosus (Rupr. et Maxim.) Harms (ASH) is a traditional herbal medicine widely known for its antifatigue and antistress effects, as well as tonifying qi, invigorating spleen and kidney, and tranquilizing the mind. Recent evidence suggests that ASH has a therapeutic effect on major depressive disorder (MDD), but its mechanism is still unclear. The current study aimed to investigate the effect of ASH on MDD and potential therapeutic mechanisms. Materials and Methods: The chemical compound potential target network was predicted based on network pharmacology. Simultaneously, chronic unpredictable mild stress (CUMS) model mice were orally administrated ASH with three dosages (400, 200, and 100 mg/kg) for 6 weeks, and hepatic metabolomics based on gas chromatography–mass spectrometry (GC–MS) was carried out to identify differential metabolites and related metabolic pathways. Next, the integrated analysis of metabolomics and network pharmacology was applied to find the key target. Finally, molecular docking technology was employed to define the combination of the key target and the corresponding compounds. Results: A total of 13 metabolites and four related metabolic pathways were found in metabolomics analysis. From the combined analysis of network pharmacology and metabolomics, six targets (DAO, MAOA, MAOB, GAA, HK1, and PYGM) are the overlapping targets and two metabolic pathways (glycine, serine, and threonine metabolism and starch and sucrose metabolism) are the most related pathways. Finally, DAO, MAOA, MAOB, GAA, HK1, and PYGM were verified bounding well to their corresponding compounds including isofraxidin, eleutheroside B1, eleutheroside C, quercetin, kaempferol, and acacetin. Conclusion: Based on these results, it was implied that the potential mechanism of ASH on MDD was related to the regulation of metabolism of several excitatory amino acids and carbohydrates, as well as the expression of DAO, MAOA, MAOB, GAA, HK1, and PYGM.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanying Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Song
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Li
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jijia Sun
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jijia Sun, ; Mingmei Zhou,
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jijia Sun, ; Mingmei Zhou,
| |
Collapse
|
28
|
Zepeda NC, Crown LM, Medvidovic S, Choi W, Sheth M, Bergosh M, Gifford R, Folz C, Lam P, Lu G, Featherstone R, Liu CY, Siegel SJ, Lee DJ. Frequency-specific medial septal nucleus deep brain stimulation improves spatial memory in MK-801-treated male rats. Neurobiol Dis 2022; 170:105756. [PMID: 35584727 PMCID: PMC9343054 DOI: 10.1016/j.nbd.2022.105756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/24/2021] [Accepted: 05/11/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Few treatments exist for the cognitive symptoms of schizophrenia. Pharmacological agents resulting in glutamate N-methyl-d-aspartate (NMDA) receptor hypofunction, such as MK-801, mimic many of these symptoms and disrupt neural activity. Recent evidence suggests that deep brain stimulation (DBS) of the medial septal nucleus (MSN) can modulate medial prefrontal cortex (mPFC) and hippocampal activity and improve spatial memory. OBJECTIVE Here, we examine the effects of acute MK-801 administration on oscillatory activity within the septohippocampal circuit and behavior. We also evaluate the potential for MSN stimulation to improve cognitive behavioral measures following MK-801 administration. METHODS 59 Sprague Dawley male rats received either acute intraperitoneal (IP) saline vehicle injections or MK-801 (0.1 mg/kg). Theta (5-12 Hz), low gamma (30-50 Hz) and high frequency oscillatory (HFO) power were analyzed in the mPFC, MSN, thalamus and hippocampus. Rats underwent MSN theta (7.7 Hz), gamma (100 Hz) or no stimulation during behavioral tasks (Novel object recognition (NOR), elevated plus maze, Barnes maze (BM)). RESULTS Injection of MK-801 resulted in frequency-specific changes in oscillatory activity, decreasing theta while increasing HFO power. Theta, but not gamma, stimulation enhanced the anxiolytic effects of MK-801 on the elevated plus maze. While MK-801 treated rats exhibited spatial memory deficits on the Barnes maze, those that also received MSN theta, but not gamma, stimulation found the escape hole sooner. CONCLUSIONS These findings demonstrate that acute MK-801 administration leads to altered neural activity in the septohippocampal circuit and impaired spatial memory. Further, these findings suggest that MSN theta-frequency stimulation improves specific spatial memory deficits and may be a possible treatment for cognitive impairments caused by NMDA hypofunction.
Collapse
Affiliation(s)
- Nancy C. Zepeda
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lindsey M. Crown
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sasha Medvidovic
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wooseong Choi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Megha Sheth
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matthew Bergosh
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Raymond Gifford
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Caroline Folz
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Phillip Lam
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Featherstone
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charles Y. Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA,USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, USA
| | - Steven J. Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darrin J. Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA,USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, USA,Corresponding author at: Department of Neurological Surgery, Keck School of Medicine, University of Southern California, 1200 North State Street, Suite 3300, Los Angeles, CA 90033. (D.J. Lee)
| |
Collapse
|
29
|
Fleming LM, Jaynes FJB, Thompson SL, Corlett PR, Taylor JR. Targeted effects of ketamine on perceptual expectation during mediated learning in rats. Psychopharmacology (Berl) 2022; 239:2395-2405. [PMID: 35389087 PMCID: PMC9296571 DOI: 10.1007/s00213-022-06128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
RATIONALE While neural correlates of hallucinations are known, the mechanisms have remained elusive. Mechanistic insight is more practicable in animal models, in which causal relationships can be established. Recent work developing animal models of hallucination susceptibility has focused on the genesis of perceptual expectations and perceptual decision-making. Both processes are encompassed within mediated learning, which involves inducing a strong perceptual expectation via associative learning, retrieving that memory representation, and deciding whether this internally generated percept is predictive of an external outcome. Mediated learning in rodents is sensitive to many psychotomimetic manipulations. However, we do not know if these manipulations selectively alter learning of perceptual expectations versus their retrieval because of their presence throughout all task phases. OBJECTIVES Here, we used mediated learning to study the targeted effect of a psychotomimetic agent on the retrieval of perceptual expectation. METHODS We administered (R,S)-ketamine to rats selectively during the devaluation phase of a mediated learning task, when the representation of the expected cue is retrieved, to test the hypothesis that internally generated perceptual experiences underlie this altered mediated learning. RESULTS We found that ketamine increased only mediated learning at a moderate dose in rats, but impaired direct learning at the high dose. CONCLUSIONS These results suggest that ketamine can augment retrieval of perceptual expectations and thus this may be how it induces hallucination-like experiences in humans. More broadly, mediated learning may unite the conditioning, perceptual decision-making, and even reality monitoring accounts of psychosis in a manner that translates across species.
Collapse
Affiliation(s)
- Leah M Fleming
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Frances-Julia B Jaynes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, University of New Haven, New Haven, CT, USA
- Department of Psychiatry, University of Connecticut Health, Farmington, CT, USA
| | - Summer L Thompson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Philip R Corlett
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
30
|
Wada M, Noda Y, Iwata Y, Tsugawa S, Yoshida K, Tani H, Hirano Y, Koike S, Sasabayashi D, Katayama H, Plitman E, Ohi K, Ueno F, Caravaggio F, Koizumi T, Gerretsen P, Suzuki T, Uchida H, Müller DJ, Mimura M, Remington G, Grace AA, Graff-Guerrero A, Nakajima S. Dopaminergic dysfunction and excitatory/inhibitory imbalance in treatment-resistant schizophrenia and novel neuromodulatory treatment. Mol Psychiatry 2022; 27:2950-2967. [PMID: 35444257 DOI: 10.1038/s41380-022-01572-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Antipsychotic drugs are the mainstay in the treatment of schizophrenia. However, one-third of patients do not show adequate improvement in positive symptoms with non-clozapine antipsychotics. Additionally, approximately half of them show poor response to clozapine, electroconvulsive therapy, or other augmentation strategies. However, the development of novel treatment for these conditions is difficult due to the complex and heterogenous pathophysiology of treatment-resistant schizophrenia (TRS). Therefore, this review provides key findings, potential treatments, and a roadmap for future research in this area. First, we review the neurobiological pathophysiology of TRS, particularly the dopaminergic, glutamatergic, and GABAergic pathways. Next, the limitations of existing and promising treatments are presented. Specifically, this article focuses on the therapeutic potential of neuromodulation, including electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation. Finally, we propose multivariate analyses that integrate various perspectives of the pathogenesis, such as dopaminergic dysfunction and excitatory/inhibitory imbalance, thereby elucidating the heterogeneity of TRS that could not be obtained by conventional statistics. These analyses can in turn lead to a precision medicine approach with closed-loop neuromodulation targeting the detected pathophysiology of TRS.
Collapse
Affiliation(s)
- Masataka Wada
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Hideaki Tani
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Kyushu University, Fukuoka, Japan.,Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruyuki Katayama
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fumihiko Ueno
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fernando Caravaggio
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Teruki Koizumi
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.,Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Philip Gerretsen
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Takefumi Suzuki
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ariel Graff-Guerrero
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan. .,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| |
Collapse
|
31
|
Coumarin derivatives as inhibitors of d-amino acid oxidase and monoamine oxidase. Bioorg Chem 2022; 123:105791. [DOI: 10.1016/j.bioorg.2022.105791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022]
|
32
|
Grinevich VP, Zakirov AN, Berseneva UV, Gerasimova EV, Gainetdinov RR, Budygin EA. Applying a Fast-Scan Cyclic Voltammetry to Explore Dopamine Dynamics in Animal Models of Neuropsychiatric Disorders. Cells 2022; 11:cells11091533. [PMID: 35563838 PMCID: PMC9100021 DOI: 10.3390/cells11091533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023] Open
Abstract
Progress in the development of technologies for the real-time monitoring of neurotransmitter dynamics has provided researchers with effective tools for the exploration of etiology and molecular mechanisms of neuropsychiatric disorders. One of these powerful tools is fast-scan cyclic voltammetry (FSCV), a technique which has progressively been used in animal models of diverse pathological conditions associated with alterations in dopamine transmission. Indeed, for several decades FSCV studies have provided substantial insights into our understanding of the role of abnormal dopaminergic transmission in pathogenetic mechanisms of drug and alcohol addiction, Parkinson’s disease, schizophrenia, etc. Here we review the applications of FSCV to research neuropsychiatric disorders with particular attention to recent technological advances.
Collapse
Affiliation(s)
- Vladimir P. Grinevich
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Amir N. Zakirov
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Uliana V. Berseneva
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Elena V. Gerasimova
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Raul R. Gainetdinov
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
- Institute of Translational Biomedicine and St. Petersburg State University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg 199034, Russia
| | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
- Correspondence:
| |
Collapse
|
33
|
Bigdai EV, Samoilov VO. Role of Neurotransmitters in the Functioning of Olfactory Sensory Neurons. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
The glutamate/N-methyl-d-aspartate receptor (NMDAR) model of schizophrenia at 35: On the path from syndrome to disease. Schizophr Res 2022; 242:56-61. [PMID: 35125283 DOI: 10.1016/j.schres.2022.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
|
35
|
Chimeric Structures in Mental Illnesses-"Magic" Molecules Specified for Complex Disorders. Int J Mol Sci 2022; 23:ijms23073739. [PMID: 35409098 PMCID: PMC8998808 DOI: 10.3390/ijms23073739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mental health problems cover a wide spectrum of diseases, including mild to moderate anxiety, depression, alcohol/drug use disorders, as well as bipolar disorder and schizophrenia. Pharmacological treatment seems to be one of the most effective opportunities to recover function efficiently and satisfactorily. However, such disorders are complex as several target points are involved. This results in a necessity to combine different types of drugs to obtain the necessary therapeutic goals. There is a need to develop safer and more effective drugs. Considering that mental illnesses share multifactorial processes, the paradigm of one treatment with multiple modes of action rather than single-target strategies would be more effective for successful therapies. Therefore, hybrid molecules that combine two pharmacophores in one entity show promise, as they possess the desired therapeutic index with a small off-target risk. This review aims to provide information on chimeric structures designed for mental disorder therapy (i.e., schizophrenia and depression), and new types of drug candidates currently being tested. In addition, a discussion on some benefits and limitations of multifunctional, bivalent drug candidates is also given.
Collapse
|
36
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
37
|
Murashko AA, Pavlov KA, Pavlova OV, Gurina OI, Shmukler A. Antibodies against N-Methyl D-Aspartate Receptor in Psychotic Disorders: A Systematic Review. Neuropsychobiology 2022; 81:1-18. [PMID: 34000730 DOI: 10.1159/000515930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The objective of this study was to provide comprehensive evidence synthesis including all available up-to-date data about the prevalence of N-methyl D-aspartate receptor (NMDAR) antibodies (ABs) in psychotic patients in order to evaluate the clinical relevance of ABs as well as to specify potential explanations of the heterogeneity of the findings and determine areas for further research. METHODS A literature search was conducted using the PubMed/Medline, Web of Knowledge, and Scopus databases. RESULTS Forty-seven studies and 4 systematic reviews (including 2 meta-analyses) were included in the present review. Studies that used cell-based assays (CBAs) provided heterogeneous results on AB prevalence, obviously depending on the type of detection assay and sample characteristics. Improvement of AB detection methods is necessary to determine the real prevalence of ABs across different groups of patients and healthy people. Live CBAs seem to have better sensitivity but probably poorer specificity than fixed CBAs. Moreover, some links between AB-positive status and acute symptoms are possible. A small amount of data on immunotherapy in AB-positive patients raises the possibility of its effectiveness but obviously require further research. CONCLUSIONS NMDAR ABs are definitely present in a subset of psychotic patients. NMDAR ABs might shape psychosis and underlie some symptoms, and immunotherapy might be regarded as a treatment option for patients failing to respond to other therapies.
Collapse
Affiliation(s)
- Alexey A Murashko
- Department of Translational Psychiatry, Moscow Research Institute of Psychiatry, The Branch of V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Konstantin A Pavlov
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Olga V Pavlova
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Olga I Gurina
- Department of Fundamental and Applied Neurobiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Alexander Shmukler
- Department of Translational Psychiatry, Moscow Research Institute of Psychiatry, The Branch of V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| |
Collapse
|
38
|
Loureiro CM, Fachim HA, Harte MK, Dalton CF, Reynolds GP. Subchronic PCP effects on DNA methylation and protein expression of NMDA receptor subunit genes in the prefrontal cortex and hippocampus of female rats. J Psychopharmacol 2022; 36:238-244. [PMID: 35102781 DOI: 10.1177/02698811211069109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) dysfunction is implicated in schizophrenia, and NMDAR antagonists, such as phencyclidine (PCP), can induce behaviours that mimic aspects of the disorder. AIMS We investigated DNA methylation of Grin1, Grin2a and Grin2b promoter region and NR1 and NR2 protein expression in the prefrontal cortex (PFC) and hippocampus of adult female Lister-hooded rats following subchronic PCP (scPCP) administration. We also determined whether any alterations were tissue-specific. METHODS Rats were divided into two groups that received vehicle (0.9% saline) or 2 mg/kg PCP twice a day for 7 days (n = 10 per group). After behavioural testing (novel object recognition), to confirm a cognitive deficit, brains were dissected and NMDAR subunit DNA methylation and protein expression were analysed by pyrosequencing and ELISA. Line-1 methylation was determined as a measure of global methylation. Data were analysed using Student's t-test and Pearson correlation. RESULTS The scPCP administration led to Grin1 and Grin2b hypermethylation and reduction in NR1 protein in both PFC and hippocampus. No significant differences were observed in Line-1 or Grin2a methylation and NR2 protein. CONCLUSIONS The scPCP treatment resulted in increased DNA methylation at promoter sites of Grin1 and Grin2b NMDAR subunits in two brain areas implicated in schizophrenia, independent of any global change in DNA methylation, and are similar to our observations in a neurodevelopmental animal model of schizophrenia - social isolation rearing post-weaning. Moreover, these alterations may contribute to the changes in protein expression for NMDAR subunits demonstrating the potential importance of epigenetic mechanisms in schizophrenia.
Collapse
Affiliation(s)
- Camila M Loureiro
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Helene A Fachim
- Department of Endocrinology and Metabolism, Salford Royal Foundation Trust, Salford, UK
| | - Michael K Harte
- Division of Pharmacy & Optometry, University of Manchester, Manchester, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
39
|
Adenosine Receptors in Neuropsychiatric Disorders: Fine Regulators of Neurotransmission and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23031219. [PMID: 35163142 PMCID: PMC8835915 DOI: 10.3390/ijms23031219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Adenosine exerts an important role in the modulation of central nervous system (CNS) activity. Through the interaction with four G-protein coupled receptor (GPCR) subtypes, adenosine subtly regulates neurotransmission, interfering with the dopaminergic, glutamatergic, noradrenergic, serotoninergic, and endocannabinoid systems. The inhibitory and facilitating actions of adenosine on neurotransmission are mainly mediated by A1 and A2A adenosine receptors (ARs), respectively. Given their role in the CNS, ARs are promising therapeutic targets for neuropsychiatric disorders where altered neurotransmission represents the most likely etiological hypothesis. Activating or blocking ARs with specific pharmacological agents could therefore restore the balance of altered neurotransmitter systems, providing the rationale for the potential treatment of these highly debilitating conditions. In this review, we summarize and discuss the most relevant studies concerning AR modulation in psychotic and mood disorders such as schizophrenia, bipolar disorders, depression, and anxiety, as well as neurodevelopment disorders such as autism spectrum disorder (ASD), fragile X syndrome (FXS), attention-deficit hyperactivity disorder (ADHD), and neuropsychiatric aspects of neurodegenerative disorders.
Collapse
|
40
|
What Can We Learn from Animal Models to Study Schizophrenia? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:15-33. [DOI: 10.1007/978-3-030-97182-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Veselinović T, Neuner I. Progress and Pitfalls in Developing Agents to Treat Neurocognitive Deficits Associated with Schizophrenia. CNS Drugs 2022; 36:819-858. [PMID: 35831706 PMCID: PMC9345797 DOI: 10.1007/s40263-022-00935-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 12/11/2022]
Abstract
Cognitive impairments associated with schizophrenia (CIAS) represent a central element of the symptomatology of this severe mental disorder. CIAS substantially determine the disease prognosis and hardly, if at all, respond to treatment with currently available antipsychotics. Remarkably, all drugs presently approved for the treatment of schizophrenia are, to varying degrees, dopamine D2/D3 receptor blockers. In turn, rapidly growing evidence suggests the immense significance of systems other than the dopaminergic system in the genesis of CIAS. Accordingly, current efforts addressing the unmet needs of patients with schizophrenia are primarily based on interventions in other non-dopaminergic systems. In this review article, we provide a brief overview of the available evidence on the importance of specific systems in the development of CIAS. In addition, we describe the promising targets for the development of new drugs that have been used so far. In doing so, we present the most important candidates that have been investigated in the field of the specific systems in recent years and present a summary of the results available at the time of drafting this review (May 2022), as well as the currently ongoing studies.
Collapse
Affiliation(s)
- Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Aachen, Germany
| |
Collapse
|
42
|
Zuccoli GS, Reis-de-Oliveira G, Garbes B, Falkai P, Schmitt A, Nakaya HI, Martins-de-Souza D. Linking proteomic alterations in schizophrenia hippocampus to NMDAr hypofunction in human neurons and oligodendrocytes. Eur Arch Psychiatry Clin Neurosci 2021; 271:1579-1586. [PMID: 33751207 DOI: 10.1007/s00406-021-01248-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Glutamatergic neurotransmission dysfunction and the early involvement of the hippocampus have been proposed to be important aspects of the pathophysiology of schizophrenia. Here, we performed proteomic analysis of hippocampus postmortem samples from schizophrenia patients as well as neural cells-neurons and oligodendrocytes-treated with MK-801, an NMDA receptor antagonist. There were similarities in processes such as oxidative stress and apoptotic process when comparing hippocampus samples with MK-801-treated neurons, and in proteins synthesis when comparing hippocampus samples with MK-801-treated oligodendrocytes. This reveals that studying the effects of glutamatergic dysfunction in different neural cells can contribute to a better understanding of what it is observed in schizophrenia patients' postmortem brains.
Collapse
Affiliation(s)
- Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruna Garbes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University of Munich (LMU), Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig Maximillian University of Munich (LMU), Munich, Germany
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil. .,Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brasil. .,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil. .,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
43
|
Abstract
Neuropsychiatric diseases have traditionally been studied from brain, and mind-centric perspectives. However, mounting epidemiological and clinical evidence shows a strong correlation of neuropsychiatric manifestations with immune system activation, suggesting a likely mechanistic interaction between the immune and nervous systems in mediating neuropsychiatric disease. Indeed, immune mediators such as cytokines, antibodies, and complement proteins have been shown to affect various cellular members of the central nervous system in multitudinous ways, such as by modulating neuronal firing rates, inducing cellular apoptosis, or triggering synaptic pruning. These observations have in turn led to the exciting development of clinical therapies aiming to harness this neuro-immune interaction for the treatment of neuropsychiatric disease and symptoms. Besides the clinic, important theoretical fundamentals can be drawn from the immune system and applied to our understanding of the brain and neuropsychiatric disease. These new frameworks could lead to novel insights in the field and further potentiate the development of future therapies to treat neuropsychiatric disease.
Collapse
|
44
|
Becske M, Marosi C, Molnár H, Fodor Z, Tombor L, Csukly G. Distractor filtering and its electrophysiological correlates in schizophrenia. Clin Neurophysiol 2021; 133:71-82. [PMID: 34814018 DOI: 10.1016/j.clinph.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/07/2021] [Accepted: 10/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Patients with schizophrenia are characterized by compromised working memory (WM) performance and increased distractibility. Theta synchronization (especially over the frontal midline areas) is related to cognitive control and executive processes during WM encoding and retention. Alpha event-related desynchronization (ERD) is associated with information processing and attention. METHODS Participants (35 patients and 39 matched controls) performed a modified Sternberg WM task, containing salient and non-salient distractor items in the retention period. A high-density 128 channel EEG was recorded during the task. Theta (4-7 Hz) and fast alpha (10-13 Hz) event-related spectral perturbation (ERSP) were analyzed during the retention and encoding period. RESULTS Patients with schizophrenia showed worse WM performance and increased attentional distractibility in terms of lower hit rates and increased distractor-related commission errors compared to healthy controls. Theta synchronization was modulated by condition (learning vs. distractor) in both groups but it was modulated by salience only in controls. Furthermore, salience of distractors modulated less the fast alpha ERD in patients. CONCLUSIONS Our results suggest that patients with schizophrenia process salient and non-salient distracting information less efficiently and show weaker cognitive control compared to controls. SIGNIFICANCE These differences may partly account for diminished WM performance and increased distractibility in schizophrenia.
Collapse
Affiliation(s)
- Melinda Becske
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Csilla Marosi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Hajnalka Molnár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - László Tombor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
45
|
Cieślik P, Siekierzycka A, Radulska A, Płoska A, Burnat G, Brański P, Kalinowski L, Wierońska JM. Nitric Oxide-Dependent Mechanisms Underlying MK-801- or Scopolamine-Induced Memory Dysfunction in Animals: Mechanistic Studies. Int J Mol Sci 2021; 22:12282. [PMID: 34830164 PMCID: PMC8624219 DOI: 10.3390/ijms222212282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
MK-801, an NMDA receptor antagonist, and scopolamine, a cholinergic receptor blocker, are widely used as tool compounds to induce learning and memory deficits in animal models to study schizophrenia or Alzheimer-type dementia (AD), respectively. Memory impairments are observed after either acute or chronic administration of either compound. The present experiments were performed to study the nitric oxide (NO)-related mechanisms underlying memory dysfunction induced by acute or chronic (14 days) administration of MK-801 (0.3 mg/kg, i.p.) or scopolamine (1 mg/kg, i.p.). The levels of L-arginine and its derivatives, L-citrulline, L-glutamate, L-glutamine and L-ornithine, were measured. The expression of constitutive nitric oxide synthases (cNOS), dimethylaminohydrolase (DDAH1) and protein arginine N-methyltransferases (PMRTs) 1 and 5 was evaluated, and the impact of the studied tool compounds on cGMP production and NMDA receptors was measured. The studies were performed in both the cortex and hippocampus of mice. S-nitrosylation of selected proteins, such as GLT-1, APP and tau, was also investigated. Our results indicate that the availability of L-arginine decreased after chronic administration of MK-801 or scopolamine, as both the amino acid itself as well as its level in proportion to its derivatives (SDMA and NMMA) were decreased. Additionally, among all three methylamines, SDMA was the most abundant in the brain (~70%). Administration of either compound impaired eNOS-derived NO production, increasing the monomer levels, and had no significant impact on nNOS. Both compounds elevated DDAH1 expression, and slight decreases in PMRT1 and PMRT5 in the cortex after scopolamine (acute) and MK-801 (chronic) administration were observed in the PFC, respectively. Administration of MK-801 induced a decrease in the cGMP level in the hippocampus, accompanied by decreased NMDA expression, while increased cGMP production and decreased NMDA receptor expression were observed after scopolamine administration. Chronic MK-801 and scopolamine administration affected S-nitrosylation of GLT-1 transport protein. Our results indicate that the analyzed tool compounds used in pharmacological models of schizophrenia or AD induce changes in NO-related pathways in the brain structures involved in cognition. To some extent, the changes resemble those observed in human samples.
Collapse
Affiliation(s)
- Paulina Cieślik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
| | - Anna Siekierzycka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (A.R.); (A.P.)
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (A.R.); (A.P.)
- Biobanking and Biomoleclular Resources Research Infrastructure Consortium Poland (BBMRI.pl), 7 Dębinki Street, 80-211 Gdańsk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (A.R.); (A.P.)
- Biobanking and Biomoleclular Resources Research Infrastructure Consortium Poland (BBMRI.pl), 7 Dębinki Street, 80-211 Gdańsk, Poland
| | - Grzegorz Burnat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (A.R.); (A.P.)
- Biobanking and Biomoleclular Resources Research Infrastructure Consortium Poland (BBMRI.pl), 7 Dębinki Street, 80-211 Gdańsk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, University of Technology, 11/12 Narutowicza, 80-233 Gdańsk, Poland
| | - Joanna M. Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
| |
Collapse
|
46
|
Itahashi T, Noda Y, Iwata Y, Tarumi R, Tsugawa S, Plitman E, Honda S, Caravaggio F, Kim J, Matsushita K, Gerretsen P, Uchida H, Remington G, Mimura M, Aoki YY, Graff-Guerrero A, Nakajima S. Dimensional distribution of cortical abnormality across antipsychotics treatment-resistant and responsive schizophrenia. NEUROIMAGE-CLINICAL 2021; 32:102852. [PMID: 34638035 PMCID: PMC8527893 DOI: 10.1016/j.nicl.2021.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Different etiology is assumed in treatment-resistant
and responsive schizophrenia. Patients with treatment-resistant schizophrenia were
classified from controls. Patients with non-treatment-resistant schizophrenia
were classified from controls. Two classifications reached area under the curve as
high as 0.69 and 0.85. Area under the curve remained as high as 0.69 when
two classifiers were swapped.
Background One-third of patients with schizophrenia are
treatment-resistant to non-clozapine antipsychotics (TRS), while the rest
respond (NTRS). Examining whether TRS and NTRS represent different
pathophysiologies is an important step toward precision
medicine. Methods Focusing on cortical thickness (CT), we analyzed
international multi-site cross-sectional datasets of magnetic resonance imaging
comprising 110 patients with schizophrenia (NTRS = 46, TRS = 64) and 52 healthy
controls (HCs). We utilized a logistic regression with L1-norm regularization to
find brain regions related to either NTRS or TRS. We conducted nested 10-fold
cross-validation and computed the accuracy and area under the curve (AUC). Then,
we applied the NTRS classifier to patients with TRS, and vice
versa. Results Patients with NTRS and TRS were classified from HCs with
65% and 78% accuracies and with the AUC of 0.69 and 0.85
(p = 0.014 and < 0.001, corrected), respectively.
The left planum temporale (PT) and left anterior insula/inferior frontal gyrus
(IFG) contributed to both NTRS and TRS classifiers. The left supramarginal gyrus
only contributed to NTRS and right superior temporal sulcus and right lateral
orbitofrontal cortex only to the TRS. The NTRS classifiers successfully
distinguished those with TRS from HCs with the AUC of 0.78
(p < 0.001), while the TRS classifiers classified
those with NTRS from HCs with the AUC of 0.69
(p = 0.015). Conclusion Both NTRS and TRS could be distinguished from HCs on the
basis of CT. The CT pathological basis of NTRS and TRS has commonalities, and
TRS presents unique CT features.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Iwata
- Department of Neuropsychiatry, University of Yamanashi Faculty of Medicine, Yamanashi, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Fernando Caravaggio
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Julia Kim
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Karin Matsushita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Philip Gerretsen
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Gary Remington
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.
| |
Collapse
|
47
|
Aryutova K, Stoyanov D. Pharmaco-Magnetic Resonance as a Tool for Monitoring the Medication-Related Effects in the Brain May Provide Potential Biomarkers for Psychotic Disorders. Int J Mol Sci 2021; 22:9309. [PMID: 34502214 PMCID: PMC8430741 DOI: 10.3390/ijms22179309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
The neurodegenerative and neurodevelopmental hypotheses represent the basic etiological framework for the origin of schizophrenia. Additionally, the dopamine hypothesis, adopted more than two decades ago, has repeatedly asserted the position of dopamine as a pathobiochemical substrate through the action of psychostimulants and neuroleptics on the mesolimbic and mesocortical systems, giving insight into the origin of positive and negative schizophrenic symptoms. Meanwhile, cognitive impairments in schizophrenia remain incompletely understood but are thought to be present during all stages of the disease, as well as in the prodromal, interictal and residual phases. On the other hand, observations on the effects of NMDA antagonists, such as ketamine and phencyclidine, reveal that hypoglutamatergic neurotransmission causes not only positive and negative but also cognitive schizophrenic symptoms. This review aims to summarize the different hypotheses about the origin of psychoses and to identify the optimal neuroimaging method that can serve to unite them in an integral etiological framework. We systematically searched Google scholar (with no concern to the date published) to identify studies investigating the etiology of schizophrenia, with a focus on impaired central neurotransmission. The complex interaction between the dopamine and glutamate neurotransmitter systems provides the long-needed etiological concept, which combines the neurodegenerative hypothesis with the hypothesis of impaired neurodevelopment in schizophrenia. Pharmaco-magnetic resonance imaging is a neuroimaging method that can provide a translation of scientific knowledge about the neural networks and the disruptions in and between different brain regions, into clinically applicable and effective therapeutic results in the management of severe psychotic disorders.
Collapse
Affiliation(s)
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
48
|
Decreased Brain pH and Pathophysiology in Schizophrenia. Int J Mol Sci 2021; 22:ijms22168358. [PMID: 34445065 PMCID: PMC8395078 DOI: 10.3390/ijms22168358] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Postmortem studies reveal that the brain pH in schizophrenia patients is lower than normal. The exact cause of this low pH is unclear, but increased lactate levels due to abnormal energy metabolism appear to be involved. Schizophrenia patients display distinct changes in mitochondria number, morphology, and function, and such changes promote anaerobic glycolysis, elevating lactate levels. pH can affect neuronal activity as H+ binds to numerous proteins in the nervous system and alters the structure and function of the bound proteins. There is growing evidence of pH change associated with cognition, emotion, and psychotic behaviors. Brain has delicate pH regulatory mechanisms to maintain normal pH in neurons/glia and extracellular fluid, and a change in these mechanisms can affect, or be affected by, neuronal activities associated with schizophrenia. In this review, we discuss the current understanding of the cause and effect of decreased brain pH in schizophrenia based on postmortem human brains, animal models, and cellular studies. The topic includes the factors causing decreased brain pH in schizophrenia, mitochondria dysfunction leading to altered energy metabolism, and pH effects on the pathophysiology of schizophrenia. We also review the acid/base transporters regulating pH in the nervous system and discuss the potential contribution of the major transporters, sodium hydrogen exchangers (NHEs), and sodium-coupled bicarbonate transporters (NCBTs), to schizophrenia.
Collapse
|
49
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
50
|
Holter KM, Lekander AD, LaValley CM, Bedingham EG, Pierce BE, Sands LP, Lindsley CW, Jones CK, Gould RW. Partial mGlu 5 Negative Allosteric Modulator M-5MPEP Demonstrates Antidepressant-Like Effects on Sleep Without Affecting Cognition or Quantitative EEG. Front Neurosci 2021; 15:700822. [PMID: 34276300 PMCID: PMC8283128 DOI: 10.3389/fnins.2021.700822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 01/28/2023] Open
Abstract
Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor subtype 5 (mGlu5) demonstrate anxiolytic-like and antidepressant-like effects yet concern regarding adverse effect liability remains. Functional coupling of mGlu5 with ionotropic N-methyl-D-aspartate receptors (NMDARs) represents a potential mechanism through which full inhibition leads to adverse effects, as NMDAR inhibition can induce cognitive impairments and psychotomimetic-like effects. Recent development of "partial" mGlu5 NAMs, characterized by submaximal but saturable levels of blockade, may represent a novel development approach to broaden the therapeutic index of mGlu5 NAMs. This study compared the partial mGlu5 NAM, M-5MPEP, with the full mGlu5 NAM, VU0424238 on sleep, cognition, and brain function alone and in combination with a subthreshold dose of the NMDAR antagonist, MK-801, using a paired-associates learning (PAL) cognition task and electroencephalography (EEG) in rats. M-5MPEP and VU0424238 decreased rapid eye movement (REM) sleep and increased REM sleep latency, both putative biomarkers of antidepressant-like activity. Neither compound alone affected accuracy, but 30 mg/kg VU0424238 combined with MK-801 decreased accuracy on the PAL task. Using quantitative EEG, VU0424238, but not M-5MPEP, prolonged arousal-related elevations in high gamma power, and, in combination, VU0424238 potentiated effects of MK-801 on high gamma power. Together, these studies further support a functional interaction between mGlu5 and NMDARs that may correspond with cognitive impairments. Present data support further development of partial mGlu5 NAMs given their potentially broader therapeutic index than full mGlu5 NAMs and use of EEG as a translational biomarker to titrate doses aligning with therapeutic versus adverse effects.
Collapse
Affiliation(s)
- Kimberly M. Holter
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alex D. Lekander
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christina M. LaValley
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - Bethany E. Pierce
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - L. Paul Sands
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Robert W. Gould
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|