1
|
Glaesser D, Iwig M. Increased molar ratio of free fatty acids to albumin in blood as cause and early biomarker for the development of cataracts and Alzheimer's disease. Exp Eye Res 2024; 243:109888. [PMID: 38583754 DOI: 10.1016/j.exer.2024.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Cataracts and Alzheimer's disease (AD) are closely linked and are associated with aging and with systemic diseases that increase the molar ratio of free fatty acids to albumin (mFAR) in the blood. From the results of our earlier studies on the development of senile cataracts and from results recently published in the literature on the pathogenesis of Alzheimer's disease, we suggest that there is a common lipotoxic cascade for both diseases, explaining the strong connection between aging, an elevated mFAR in the blood, cataract formation, and AD. Long-chain free fatty acids (FFA) are transported in the blood as FFA/albumin complexes. In young people, vascular albumin barriers in the eyes and brain, very similar in their structure and effect, reduce the FFA/albumin complex concentration from around 650 μmol/l in the blood to 1-3 μmol/l in the aqueous humour of the eyes as well as in the cerebrospinal fluid of the brain. At such low concentrations the fatty acid uptake of the target cells - lens epithelial and brain cells - rises with increasing FFA/albumin complex concentrations, especially when the fatty acid load of albumin molecules is mFAR>1. At higher albumin concentrations, for instance in blood plasma or the interstitial tissue spaces, the fatty acid uptake of the target cells becomes increasingly independent of the FFA/albumin complex concentration and is mainly a function of the mFAR (Richieri et al., 1993). In the blood plasma of young people, the mFAR is normally below 1.0. In people over 40 years old, aging increases the mFAR by decreasing the plasma concentration of albumin and enhancing the plasma concentrations of FFA. The increase in the mFAR in association with C6-unsaturated FFA are risk factors for the vascular albumin barriers (Hennig et al., 1984). Damage to the vascular albumin barrier in the eyes and brain increases the concentration of FFA/albumin complex in the aqueous humour as well as in the cerebrospinal fluid, leading to mitochondrial dysfunction and the death of lens epithelial and brain cells, the development of cataracts, and AD. An age-dependent increase in the concentration of FFA/albumin complex has been found in the aqueous humour of 177 cataract patients, correlating with the mitochondria-mediated apoptotic death of lens epithelial cells, lens opacification and cataracts (Iwig et al., 2004). Mitochondrial dysfunction is also an early crucial event in Alzheimer's pathology, closely connected with the generation of amyloid beta peptides (Leuner et al., 2012). Very recently, amyloid beta production has also been confirmed in the lenses of Alzheimer's patients, causing cataracts (Moncaster et al., 2022). In view of this, we propose that there is a common lipotoxic cascade for senile cataract formation and senile AD, initiated by aging and/or systemic diseases, leading to an mFAR>1 in the blood.
Collapse
Affiliation(s)
- Dietmar Glaesser
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06097, Halle, Germany.
| | - Martin Iwig
- Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06097, Halle, Germany
| |
Collapse
|
2
|
Padrela B, Mahroo A, Tee M, Sneve MH, Moyaert P, Geier O, Kuijer JPA, Beun S, Nordhøy W, Zhu YD, Buck MA, Hoinkiss DC, Konstandin S, Huber J, Wiersinga J, Rikken R, de Leeuw D, Grydeland H, Tippett L, Cawston EE, Ozturk-Isik E, Linn J, Brandt M, Tijms BM, van de Giessen EM, Muller M, Fjell A, Walhovd K, Bjørnerud A, Pålhaugen L, Selnes P, Clement P, Achten E, Anazodo U, Barkhof F, Hilal S, Fladby T, Eickel K, Morgan C, Thomas DL, Petr J, Günther M, Mutsaerts HJMM. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer's disease (DEBBIE-AD): a prospective observational multicohort study protocol. BMJ Open 2024; 14:e081635. [PMID: 38458785 DOI: 10.1136/bmjopen-2023-081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.
Collapse
Affiliation(s)
- Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mervin Tee
- National University Health System, Singapore
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Paulien Moyaert
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Oliver Geier
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Soetkin Beun
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Wibeke Nordhøy
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Yufei David Zhu
- Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Mareike A Buck
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jörn Huber
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Julia Wiersinga
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Roos Rikken
- Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Lynette Tippett
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - Erin E Cawston
- The University of Auckland Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand
| | - Esin Ozturk-Isik
- Bogazici University Institute of Biomedical Engineering, Istanbul, Turkey
| | - Jennifer Linn
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Betty M Tijms
- Neurology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kristine Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Patricia Clement
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Eric Achten
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Udunna Anazodo
- Lawson Health Research Institute, London, Ontario, Canada
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- University College London, London, UK
| | - Saima Hilal
- National University Health System, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Catherine Morgan
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London, London, UK
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| |
Collapse
|
3
|
Carbone MG, Pagni G, Tagliarini C, Imbimbo BP, Pomara N. Can platelet activation result in increased plasma Aβ levels and contribute to the pathogenesis of Alzheimer's disease? Ageing Res Rev 2021; 71:101420. [PMID: 34371202 DOI: 10.1016/j.arr.2021.101420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
One of the central lesions in the brain of subjects with Alzheimer's disease (AD) is represented by aggregates of β-amyloid (Aβ), a peptide of 40-42 amino acids derived from the amyloid precursor protein (APP). The reasons why Aβ accumulates in the brain of individuals with sporadic forms of AD are unknown. Platelets are the primary source of circulating APP and, upon activation, can secrete significant amounts of Aβ into the blood which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. Increased platelet activity can stimulate platelet adhesion to endothelial cells, trigger the recruitment of leukocytes into the vascular wall and cause perivascular inflammation, which can spread inflammation in the brain. Neuroinflammation is fueled by activated microglial cells and reactive astrocytes that release neurotoxic cytokines and chemokines. Platelet activation is also associated with the progression of carotid artery disease resulting in an increased risk of cerebral hypoperfusion which may also contribute to the AD neurodegenerative process. Platelet activation may thus be a pathophysiological mechanism of AD and for the strong link between AD and cerebrovascular diseases. Interfering with platelet activation may represent a promising potential adjunct therapeutic approach for AD.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Luigi Borri 57, 21100, Varese, Italy; Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Giovanni Pagni
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Claudia Tagliarini
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | | | - Nunzio Pomara
- Geriatric Psychiatry Department, Nathan Kline Institute, and Departments of Psychiatry and Pathology, NYU Grossman School of Medicine, 140 Old Orangeburg Road Orangeburg, New York, 10962, United States.
| |
Collapse
|
4
|
Cognitive Dysfunction after Heart Disease: A Manifestation of the Heart-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4899688. [PMID: 34457113 PMCID: PMC8387198 DOI: 10.1155/2021/4899688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The functions of the brain and heart, which are the two main supporting organs of human life, are closely linked. Numerous studies have expounded the mechanisms of the brain-heart axis and its related clinical applications. However, the effect of heart disease on brain function, defined as the heart-brain axis, is less studied even though cognitive dysfunction after heart disease is one of its most frequently reported manifestations. Hypoperfusion caused by heart failure appears to be an important risk factor for cognitive decline. Blood perfusion, the immune response, and oxidative stress are the possible main mechanisms of cognitive dysfunction, indicating that the blood-brain barrier, glial cells, and amyloid-β may play active roles in these mechanisms. Clinicians should pay more attention to the cognitive function of patients with heart disease, especially those with heart failure. In addition, further research elucidating the associated mechanisms would help discover new therapeutic targets to intervene in the process of cognitive dysfunction after heart disease. This review discusses cognitive dysfunction in relation to heart disease and its potential mechanisms.
Collapse
|
5
|
Vardakis JC, Chou D, Guo L, Ventikos Y. Exploring neurodegenerative disorders using a novel integrated model of cerebral transport: Initial results. Proc Inst Mech Eng H 2020; 234:1223-1234. [PMID: 33078663 PMCID: PMC7675777 DOI: 10.1177/0954411920964630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The neurovascular unit (NVU) underlines the complex and symbiotic relationship between brain cells and the cerebral vasculature, and dictates the need to consider both neurodegenerative and cerebrovascular diseases under the same mechanistic umbrella. Importantly, unlike peripheral organs, the brain was thought not to contain a dedicated lymphatics system. The glymphatic system concept (a portmanteau of glia and lymphatic) has further emphasized the importance of cerebrospinal fluid transport and emphasized its role as a mechanism for waste removal from the central nervous system. In this work, we outline a novel multiporoelastic solver which is embedded within a high precision, subject specific workflow that allows for the co-existence of a multitude of interconnected compartments with varying properties (multiple-network poroelastic theory, or MPET), that allow for the physiologically accurate representation of perfused brain tissue. This novel numerical template is based on a six-compartment MPET system (6-MPET) and is implemented through an in-house finite element code. The latter utilises the specificity of a high throughput imaging pipeline (which has been extended to incorporate the regional variation of mechanical properties) and blood flow variability model developed as part of the VPH-DARE@IT research platform. To exemplify the capability of this large-scale consolidated pipeline, a cognitively healthy subject is used to acquire novel, biomechanistically inspired biomarkers relating to primary and derivative variables of the 6-MPET system. These biomarkers are shown to capture the sophisticated nature of the NVU and the glymphatic system, paving the way for a potential route in deconvoluting the complexity associated with the likely interdependence of neurodegenerative and cerebrovascular diseases. The present study is the first, to the best of our knowledge, that casts and implements the 6-MPET equations in a 3D anatomically accurate brain geometry.
Collapse
Affiliation(s)
- John C Vardakis
- CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds, UK
| | - Dean Chou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Liwei Guo
- Department of Mechanical Engineering, University College London, London, UK
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW This review summarizes the evidence for the established vascular/hypoperfusion model and explores the new hypothesis that configures the heart/brain axis as an organ system where similar pathogenic mechanisms exploit physiological and pathological changes. RECENT FINDINGS Although associated by common risk factors, similar epidemiological stratification and common triggers (including inflammation, oxidative stress, and hypoxia), heart failure and Alzheimer's disease have been, for long time, viewed as pathogenically separate illnesses. The silos began to be broken down with the awareness that vascular dysfunction, and loss of cardiac perfusion pump power, trigger biochemical changes, contributing to the typical hallmark of Alzheimer's disease (AD)-the accumulation of Aβ plaques and hyperphosphorylated Tau tangles. Compromised blood flow to the brain becomes the paradigm for the "heart-to-head" connection. Compelling evidence of common genetic variants, biochemical characteristics, and the accumulation of Aβ outside the brain suggests a common pathogenesis for heart failure (HF) and AD. These new findings represent just the beginning of the understanding the complex connection between AD and HF requiring further studies and interdisciplinary approaches. Altogether, the current evidence briefly summarized in this review, highlight a closer and complex relationship between heart failure and Alzheimer's that goes beyond the vascular/perfusion hypothesis. Genetic and biochemical evidence begin to suggest common pathogenic mechanisms between the two diseases involving a systemic defect in the folding of protein or a seeding at distance of the misfolded proteins from one organ to the other.
Collapse
|
7
|
de la Torre JC. Hemodynamic Instability in Heart Failure Intensifies Age-Dependent Cognitive Decline. J Alzheimers Dis 2020; 76:63-84. [PMID: 32444552 DOI: 10.3233/jad-200296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review attempts to examine two key elements in the evolution of cognitive impairment in the elderly who develop heart failure. First, major left side heart parts can structurally and functionally deteriorate from aging wear and tear to provoke hemodynamic instability where heart failure worsens or is initiated; second, heart failure is a major inducer of cognitive impairment and Alzheimer's disease in the elderly. In heart failure, when the left ventricular myocardium of an elderly person does not properly contract, it cannot pump out adequate blood to the brain, raising the risk of cognitive impairment due to the intensification of chronic brain hypoperfusion. Chronic brain hypoperfusion originates from chronically reduced cardiac output which progresses as heart failure worsens. Other left ventricular heart parts, including atrium, valves, myocardium, and aorta can contribute to the physiological shortfall of cardiac output. It follows that hemodynamic instability and perfusion changes occurring from the aging heart's blood pumping deficiency will, in time, damage vulnerable brain cells linked to specific cognitive regulatory sites, diminishing neuronal energy metabolism to a level where progressive cognitive impairment is the outcome. Could cognitive impairment progress be reversed with a heart transplant? Evidence is presented detailing the errant hemodynamic pathways leading to cognitive impairment during aging as an offshoot of inefficient structural and functional heart parts and their contribution to heart failure.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.,University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Holter KE, Kuchta M, Mardal KA. Sub-voxel Perfusion Modeling in Terms of Coupled 3d-1d Problem. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-319-96415-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Abstract
In a somewhat narrow diagnostic lens, Alzheimer disease (AD) has been considered a brain-specific disease characterized by the presence of Aβ (β-amyloid) plaques and tau neural fibrillary tangles and neural inflammation; these pathologies lead to neuronal death and consequently clinical symptoms, such as memory loss, confusion, and impaired cognitive function. However, for decades, researchers have noticed a link between various cardiovascular abnormalities and AD-such as heart failure, coronary artery disease, atrial fibrillation, and vasculopathy. A considerable volume of work has pointed at this head to heart connection, focusing mainly on associations between cerebral hypoperfusion and neuronal degradation. However, new evidence of a possible systemic or metastatic profile to AD calls for further analysis of this connection. Aβ aggregations-biochemically and structurally akin to those found in the typical AD pathology-are now known to be present in the hearts of individuals with idiopathic dilated cardiomyopathy, as well as the hearts of patients with AD. These findings suggest a potential systemic profile of proteinopathies and a new hypothesis for the link between peripheral and central symptoms of heart failure and AD. Herein, we provide an overview of the cardiovascular links to Alzheimer disease.
Collapse
Affiliation(s)
- Joshua M Tublin
- From the College of Nursing (J.M.T., J.M.A., L.E.W.), The Ohio State University, Columbus
| | - Jeremy M Adelstein
- From the College of Nursing (J.M.T., J.M.A., L.E.W.), The Ohio State University, Columbus
| | | | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota, Grand Forks (C.K.C.)
| | - Loren E Wold
- From the College of Nursing (J.M.T., J.M.A., L.E.W.), The Ohio State University, Columbus
- Department of Physiology and Cell Biology, College of Medicine (L.E.W.), The Ohio State University, Columbus
| |
Collapse
|
10
|
Santiago A, Soares LM, Schepers M, Milani H, Vanmierlo T, Prickaerts J, Weffort de Oliveira RM. Roflumilast promotes memory recovery and attenuates white matter injury in aged rats subjected to chronic cerebral hypoperfusion. Neuropharmacology 2018; 138:360-370. [DOI: 10.1016/j.neuropharm.2018.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/24/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
|
11
|
Mehla J, Lacoursiere S, Stuart E, McDonald RJ, Mohajerani MH. Gradual Cerebral Hypoperfusion Impairs Fear Conditioning and Object Recognition Learning and Memory in Mice: Potential Roles of Neurodegeneration and Cholinergic Dysfunction. J Alzheimers Dis 2018; 61:283-293. [PMID: 29154281 DOI: 10.3233/jad-170635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present study, male C57BL/6J mice were subjected to gradual cerebral hypoperfusion by implanting an ameroid constrictor (AC) on the left common carotid artery (CCA) and a stenosis on the right CCA. In the sham group, all surgical procedures were kept the same except no AC was implanted and stenosis was not performed. One month following the surgical procedures, fear conditioning and object recognition tests were conducted to evaluate learning and memory functions and motor functions were assessed using a balance beam test. At the experimental endpoint, mice were perfused and brains were collected for immunostaining and histology. Learning and memory as well as motor functions were significantly impaired in the hypoperfusion group. The immunoreactivity to choline acetyltransferase was decreased in dorsal striatum and basal forebrain of the hypoperfusion group indicating that cholinergic tone in these brain regions was compromised. In addition, an increased number of Fluoro-Jade positive neurons was also found in cerebral cortex, dorsal striatum and hippocampus indicating neurodegeneration in these brain regions. Based on this pattern of data, we argued that this mouse model would be a useful tool to investigate the therapeutic interventions for the treatment of vascular dementia. Additionally, this model could be employed to exploit the effect of microvascular occlusions on cognitive impairment in the absence and presence of Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Jogender Mehla
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Sean Lacoursiere
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Emily Stuart
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
12
|
Delafontaine-Martel P, Lefebvre J, Tardif PL, Lévy BI, Pouliot P, Lesage F. Whole brain vascular imaging in a mouse model of Alzheimer's disease with two-photon microscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 29998647 DOI: 10.1117/1.jbo.23.7.076501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Given known correlations between vascular health and cognitive impairment, the development of tools to image microvasculature in the whole brain could help investigate these correlations. We explore the feasibility of using an automated serial two-photon microscope to image fluorescent gelatin-filled whole rodent brains in three-dimensions (3-D) with the goal of carrying group studies. Vascular density (VD) was computed using automatic segmentation combined with coregistration techniques to build a group-level vascular metric in the whole brain. Focusing on the medial prefrontal cortex, cerebral cortex, the olfactory bulb, and the hippocampal formation, we compared the VD of three age groups (2-, 4.5-, and 8-months-old), for both wild type mice and a transgenic model (APP/PS1) with pathology resembling Alzheimer's disease (AD). We report a general loss of VD caused by the aging process with a small VD increase in the diseased animals in the somatomotor and somatosensory cortical regions and the olfactory bulb, partly supported by MRI perfusion data. This study supports previous observations that AD transgenic mice show a higher VD in specific regions compared with WT mice during the early and late stages of the disease (4.5 to 8 months), extending results to whole brain mapping.
Collapse
Affiliation(s)
| | - Joel Lefebvre
- Ecole Polytechnique Montréal, Department of Electrical Engineering, Quebec, Canada
| | - Pier-Luc Tardif
- Ecole Polytechnique Montréal, Department of Electrical Engineering, Quebec, Canada
| | - Bernard I Lévy
- Vessels and Blood Institute, Inserm U970 and Hôpital Lariboisière, Paris, France
| | - Philippe Pouliot
- Ecole Polytechnique Montréal, Department of Electrical Engineering, Quebec, Canada
- Montreal Heart Institute, Research Centre, Montreal, Quebec, Canada
| | - Frédéric Lesage
- Ecole Polytechnique Montréal, Department of Electrical Engineering, Quebec, Canada
- Montreal Heart Institute, Research Centre, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Venturelli M, Pedrinolla A, Boscolo Galazzo I, Fonte C, Smania N, Tamburin S, Muti E, Crispoltoni L, Stabile A, Pistilli A, Rende M, Pizzini FB, Schena F. Impact of Nitric Oxide Bioavailability on the Progressive Cerebral and Peripheral Circulatory Impairments During Aging and Alzheimer's Disease. Front Physiol 2018; 9:169. [PMID: 29593548 PMCID: PMC5861210 DOI: 10.3389/fphys.2018.00169] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
Advanced aging, vascular dysfunction, and nitric oxide (NO) bioavailability are recognized risk factors for Alzheimer's disease (AD). However, the contribution of AD, per se, to this putative pathophysiological mechanism is still unclear. To better answer this point, we quantified cortical perfusion with arterial spin labeling (PVC-CBF), measured ultrasound internal carotid (ICA), and femoral (FA) artery blood flow in a group of patients with similar age (~78 years) but different cognitive impairment (i.e., mild cognitive impairment MCI, mild AD-AD1, moderate AD-AD2, and severe AD-AD3) and compared them to young and healthy old (aged-matched) controls. NO-metabolites and passive leg-movement (PLM) induced hyperemia were used to assess systemic vascular function. Ninety-eight individuals were recruited for this study. PVC-CBF, ICA, and FA blood flow were markedly (range of 9–17%) and significantly (all p < 0.05) reduced across the spectrum from YG to OLD, MCI, AD1, AD2, AD3 subjects. Similarly, plasma level of nitrates and the values of PLM were significantly reduced (range of 8–26%; p < 0.05) among the six groups. Significant correlations were retrieved between plasma nitrates, PLM and PVC-CBF, CA, and FA blood flow. This integrative and comprehensive approach to vascular changes in aging and AD showed progressive changes in NO bioavailability and cortical, extracranial, and peripheral circulation in patients with AD and suggested that they are directly associated with AD and not to aging. Moreover, these results suggest that AD-related impairments of circulation are progressive and not confined to the brain. The link between cardiovascular and the central nervous systems degenerative processes in patients at different severity of AD is likely related to the depletion of NO.
Collapse
Affiliation(s)
- Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | | | - Cristina Fonte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neuromotor and Cognitive Rehabilitation Research Centre, University of Verona, Verona, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Neuromotor and Cognitive Rehabilitation Research Centre, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Lucia Crispoltoni
- Department of Surgical and Biomedical Sciences, Section of Human Anatomy, School of Medicine, University of Perugia, Perugia, Italy
| | - Annamaria Stabile
- Department of Surgical and Biomedical Sciences, Section of Human Anatomy, School of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Pistilli
- Department of Surgical and Biomedical Sciences, Section of Human Anatomy, School of Medicine, University of Perugia, Perugia, Italy
| | - Mario Rende
- Department of Surgical and Biomedical Sciences, Section of Human Anatomy, School of Medicine, University of Perugia, Perugia, Italy
| | - Francesca B Pizzini
- Neuroradiology, Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Zhan X, Stamova B, Sharp FR. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer's Disease Brain: A Review. Front Aging Neurosci 2018. [PMID: 29520228 PMCID: PMC5827158 DOI: 10.3389/fnagi.2018.00042] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review proposes that lipopolysaccharide (LPS, found in the wall of all Gram-negative bacteria) could play a role in causing sporadic Alzheimer’s disease (AD). This is based in part upon recent studies showing that: Gram-negative E. coli bacteria can form extracellular amyloid; bacterial-encoded 16S rRNA is present in all human brains with over 70% being Gram-negative bacteria; ultrastructural analyses have shown microbes in erythrocytes of AD patients; blood LPS levels in AD patients are 3-fold the levels in control; LPS combined with focal cerebral ischemia and hypoxia produced amyloid-like plaques and myelin injury in adult rat cortex. Moreover, Gram-negative bacterial LPS was found in aging control and AD brains, though LPS levels were much higher in AD brains. In addition, LPS co-localized with amyloid plaques, peri-vascular amyloid, neurons, and oligodendrocytes in AD brains. Based upon the postulate LPS caused oligodendrocyte injury, degraded Myelin Basic Protein (dMBP) levels were found to be much higher in AD compared to control brains. Immunofluorescence showed that the dMBP co-localized with β amyloid (Aβ) and LPS in amyloid plaques in AD brain, and dMBP and other myelin molecules were found in the walls of vesicles in periventricular White Matter (WM). These data led to the hypothesis that LPS acts on leukocyte and microglial TLR4-CD14/TLR2 receptors to produce NFkB mediated increases of cytokines which increase Aβ levels, damage oligodendrocytes and produce myelin injury found in AD brain. Since Aβ1–42 is also an agonist for TLR4 receptors, this could produce a vicious cycle that accounts for the relentless progression of AD. Thus, LPS, the TLR4 receptor complex, and Gram-negative bacteria might be treatment or prevention targets for sporadic AD.
Collapse
Affiliation(s)
- Xinhua Zhan
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| | - Boryana Stamova
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| | - Frank R Sharp
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Hong YJ, Kim CM, Jang EH, Hwang J, Roh JH, Lee JH. White Matter Changes May Precede Gray Matter Loss in Elderly with Subjective Memory Impairment. Dement Geriatr Cogn Disord 2018; 42:227-235. [PMID: 27701163 DOI: 10.1159/000450749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS A limited number of studies addressed MRI-based neurodegenerative changes in subjective memory impairment (SMI). We investigated changes in white matter (WM) microstructures as well as gray matter (GM) macrostructures in subjects with SMI of high and low risk for progression. METHODS A modeling scale (score range, 0-6) developed for prediction of SMI progression was used to divide SMI subjects (n = 46) into two groups: a high risk of progression (score ≥3; n = 19) and a low risk of progression (score ≤2; n = 27). Cross-sectional comparisons were performed using a region-of-interest-based diffusion tensor imaging (DTI) analysis, cortical thickness analysis, and hippocampal volumetry. RESULTS The high-risk group had more microstructural disruption shown by lower fractional anisotropy in the hippocampus, parahippocampal gyrus, supramarginal gyrus, and parts of frontotemporal lobes. On the other hand, GM macrostructural changes did not differ between the groups and were not associated with modeling scale scores. CONCLUSION SMI subjects with a high risk of progression had more WM microstructural disruption than those with a low risk, and the changes were not explained by GM atrophy. Our findings suggest that the degree of microstructural alterations in SMI may be distinctive according to the risk factors and may precede GM atrophy.
Collapse
Affiliation(s)
- Yun Jeong Hong
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
16
|
Wei N, Zheng K, Xue R, Ma SL, Ren HY, Huang HF, Wang WW, Xu JJ, Chen KS. Suppression of microRNA-9-5p rescues learning and memory in chronic cerebral hypoperfusion rats model. Oncotarget 2017; 8:107920-107931. [PMID: 29296213 PMCID: PMC5746115 DOI: 10.18632/oncotarget.22415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic cerebral hypoperfusion has been associated with cognitive impairment in dementias, such as Alzheimer's disease (AD) and vascular disease (VaD), the two most common neurodegenerative diseases in aged people. However, the effective therapeutic approaches for both AD and VaD are still missing. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in the epigenetic regulation in many neurological disorders; the critical roles of miRNAderegulation had been implicated in both AD and VaD. In the current study, we reported that miR-9-5p is elevated in the serum and cerebrospinalfluid of patientswith VaD. The miR-9-5p wasalso increased in both the hippocampus and cortex of rats with 2-vessel occlusionsurgery. Furthermore, application ofmiR-9-5p antagomirs attenuated the memory impairments in rats with 2-vessel occlusion surgery both in the Morris water maze and inhibitory avoidance step-down tasks. Furthermore, miR-9-5p antagomirs reducedthe inhibition oflong-term potentiation and loss of dendritic spines in chronic cerebral hypoperfusionrats. Additionally, the cholinergic neuronal function was rescued by miR-9-5p antagomirs, as well as the neuronal loss and the oxidative stress. We concluded that miR-9-5p inhibition may be a potential therapeutic target for the memory impairments caused by chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People's Republic of China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People's Republic of China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Kai Zheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Sheng-Li Ma
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Hua-Yan Ren
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People's Republic of China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People's Republic of China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Hui-Fen Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People's Republic of China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People's Republic of China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Wei-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People's Republic of China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People's Republic of China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Jing-Jing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People's Republic of China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People's Republic of China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Kui-Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, People's Republic of China.,Henan Key Laboratory of Tumor Pathology, Zhengzhou 450002, People's Republic of China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
17
|
Geerts H, Hofmann-Apitius M, Anastasio TJ. Knowledge-driven computational modeling in Alzheimer's disease research: Current state and future trends. Alzheimers Dement 2017; 13:1292-1302. [PMID: 28917669 DOI: 10.1016/j.jalz.2017.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/05/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) follow a slowly progressing dysfunctional trajectory, with a large presymptomatic component and many comorbidities. Using preclinical models and large-scale omics studies ranging from genetics to imaging, a large number of processes that might be involved in AD pathology at different stages and levels have been identified. The sheer number of putative hypotheses makes it almost impossible to estimate their contribution to the clinical outcome and to develop a comprehensive view on the pathological processes driving the clinical phenotype. Traditionally, bioinformatics approaches have provided correlations and associations between processes and phenotypes. Focusing on causality, a new breed of advanced and more quantitative modeling approaches that use formalized domain expertise offer new opportunities to integrate these different modalities and outline possible paths toward new therapeutic interventions. This article reviews three different computational approaches and their possible complementarities. Process algebras, implemented using declarative programming languages such as Maude, facilitate simulation and analysis of complicated biological processes on a comprehensive but coarse-grained level. A model-driven Integration of Data and Knowledge, based on the OpenBEL platform and using reverse causative reasoning and network jump analysis, can generate mechanistic knowledge and a new, mechanism-based taxonomy of disease. Finally, Quantitative Systems Pharmacology is based on formalized implementation of domain expertise in a more fine-grained, mechanism-driven, quantitative, and predictive humanized computer model. We propose a strategy to combine the strengths of these individual approaches for developing powerful modeling methodologies that can provide actionable knowledge for rational development of preventive and therapeutic interventions. Development of these computational approaches is likely to be required for further progress in understanding and treating AD.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Berwyn, PA, USA; Perelman School of Medicine, Univ. of Pennsylvania.
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Thomas J Anastasio
- Department of Molecular and Integrative Physiology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
18
|
Daouk J, Bouzerar R, Baledent O. Heart rate and respiration influence on macroscopic blood and CSF flows. Acta Radiol 2017; 58:977-982. [PMID: 28273732 DOI: 10.1177/0284185116676655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Changes in blood volume in the intracranial arteries and the resulting oscillations of brain parenchyma have been presumed as main initiating factors of cerebrospinal fluid (CSF) pulsations. However, respiration has been recently supposed to influence CSF dynamics via thoracic pressure changes. Purpose To measure blood and CSF cervical flow and quantify the contribution of cardiac and respiratory cycles on the subsequent signal evolution. Material and Methods Sixteen volunteers were enrolled. All participant underwent two-dimensional fast field echo echo planar imaging (FFE-EPI). Regions of interest were placed on internal carotids, jugular veins, and rachidian canal to extract temporal profiles. Spectral analysis was performed to extract respiratory and cardiac frequencies. The contribution of respiration and cardiac activity was assessed to signal evolution by applying a multiple linear model. Results Mean respiratory frequency was 14.6 ± 3.9 cycles per min and mean heart rate was 66.8 ± 9 cycles per min. Cardiac contribution was higher than breathing for internal carotids, explaining 74.68% and 10.27% of the signal variance, respectively. For the jugular veins, respiratory component was higher than the cardiac one contributing 44.28% and 6.53% of the signal variance, respectively. For CSF, breathing and cardiac component contributed less than half of signal variance (12.61% and 23.23%, respectively). Conclusion Respiration and cardiac activity both influence fluid flow at the cervical level. Arterial inflow is driven by the cardiac pool whereas venous blood aspiration seems more due to thoracic pressure changes. CSF dynamics acts as a buffer between these two blood compartments.
Collapse
Affiliation(s)
- Joël Daouk
- Bioflow Image Unit, Jules Verne University of Picardie, Amiens, France
| | - Roger Bouzerar
- Bioflow Image Unit, Jules Verne University of Picardie, Amiens, France
- Medical Image Processing Unit, Amiens University Medical Center, Amiens, France
| | - Olivier Baledent
- Bioflow Image Unit, Jules Verne University of Picardie, Amiens, France
- Medical Image Processing Unit, Amiens University Medical Center, Amiens, France
| |
Collapse
|
19
|
The Clinical Efficacy of Yindanxinnaotong Soft Capsule in the Treatment of Stroke and Angina Pectoris: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2060549. [PMID: 28539962 PMCID: PMC5429936 DOI: 10.1155/2017/2060549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/02/2017] [Accepted: 03/20/2017] [Indexed: 11/17/2022]
Abstract
Objective. To systematically evaluate the clinical efficacy of Yindanxinnaotong (YD) soft capsule in adult patients with cardiovascular diseases (stroke and angina pectoris). Methods. We electronically searched databases including Medline, PubMed, Chinese National Knowledge Infrastructure (CNKI), Cqvip Database (VIP), and Wanfang Database for published articles of randomized controlled trials (RCTs) of YD capsule in treating stroke and angina pectoris. The meta-analysis was performed using RevMan 5.3 software. Results. 49 RCTs involving 6195 subjects with cardiovascular diseases (angina pectoris and stroke) were included. Compared with western conventional medicine (WCM) and/or other Chinese medicines, YD plus WCM therapeutic regimen could significantly improve the efficacy rate (RR = 1.21, 95% CI (1.17, 1.25), P < 0.00001 for angina pectoris, RR = 1.24, 95% CI (1.18, 1.31), P < 0.00001 for stroke), showing the clinical value. In addition, the therapeutic efficiency of WCM plus YD capsule regimen is better than that of WCM alone in improving CRP (MD = −2.07, 95% CI (−3.97, −0.17), P = 0.03 <0.05) and TG (MD = −0.37, 95% CI (−0.52, −0.23), P < 0.0001). Conclusion. YD is effective in the treatment of cardiovascular diseases (angina pectoris and stroke) in adults, and WCM plus YD therapeutic regimen can significantly improve the effective rate in the clinic.
Collapse
|
20
|
Beydoun MA, Beydoun HA, Gamaldo AA, Rostant OS, Dore GA, Zonderman AB, Eid SM. Nationwide Inpatient Prevalence, Predictors, and Outcomes of Alzheimer's Disease among Older Adults in the United States, 2002-2012. J Alzheimers Dis 2016; 48:361-75. [PMID: 26402000 DOI: 10.3233/jad-150228] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the inpatient setting, prevalence, predictors, and outcomes [mortality risk (MR), length of stay (LOS), and total charges (TC)] of Alzheimer's disease (AD) are largely unknown. We used data on older adults (60+ y) from the Nationwide Inpatient Sample (NIS) 2002-2012. AD prevalence was ∼3.12% in 2012 (total weighted discharges with AD ± standard error: 474, 410 ± 6,276). Co-morbidities prevailing more in AD inpatient admissions included depression (OR = 1.67, 95% CI: 1.63-1.71, p < 0.001), fluid/electrolyte disorders (OR = 1.25, 95% CI: 1.22-1.27, p < 0.001), weight loss (OR = 1.26, 95% CI: 1.22-1.30, p < 0.001), and psychosis (OR = 2.59, 95% CI: 2.47-2.71, p < 0.001), with mean total co-morbidities increasing over time. AD was linked to higher MR and longer LOS, but lower TC. TC rose in AD, while MR and LOS dropped markedly over time. In AD, co-morbidities predicting simultaneously higher MR, TC, and LOS (2012) included congestive heart failure, chronic pulmonary disease, coagulopathy, fluid/electrolyte disorders, metastatic cancer, paralysis, pulmonary circulatory disorders, and weight loss. In sum, co-morbidities and TC increased over time in AD, while MR and LOS dropped. Few co-morbidities predicted occurrence of AD or adverse outcomes in AD.
Collapse
Affiliation(s)
- May A Beydoun
- National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Hind A Beydoun
- Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | - Ola S Rostant
- National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Greg A Dore
- National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | | | - Shaker M Eid
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Bhat NR. Vasculoprotection as a Convergent, Multi-Targeted Mechanism of Anti-AD Therapeutics and Interventions. J Alzheimers Dis 2016; 46:581-91. [PMID: 26402511 DOI: 10.3233/jad-150098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using a variety of animal models of Alzheimer's disease (AD), there have been a number of recent studies reporting varying degrees of success with anti-AD therapeutics. The efficacies are often discussed in terms of the modulatory effects of the compounds tested on identified or assumed targets among the known (or proposed) pathogenic and neuroprotective mechanisms, largely within the context of the dominant amyloid cascade hypothesis. However, it is clear that several of the relatively more efficacious treatments tend to be multifunctional and target multiple pathological processes associated with AD including most commonly, oxidative and metabolic stress and neuroinflammation. Increasing evidence suggests that vascular and neurodegenerative pathologies often co-exist and that neurovascular dysfunction plays a critical role in the development or progression of AD. In this review, we will discuss the significance of vasculoprotection or neurovascular unit integrity as a common, multi-targeted mechanism underlying the reported efficacy of a majority of anti-AD therapeutics--amyloid-targeted or otherwise--while providing a strong support for future neurovascular-based treatment strategies and interventions.
Collapse
|
22
|
Molshatzki N, Weinstein G, Streifler JY, Goldbourt U, Tanne D. Serum uric acid and subsequent cognitive performance in patients with pre-existing cardiovascular disease. PLoS One 2015; 10:e0120862. [PMID: 25794156 PMCID: PMC4368665 DOI: 10.1371/journal.pone.0120862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/27/2015] [Indexed: 11/22/2022] Open
Abstract
High serum uric acid (UA) levels are associated with numerous vascular risk factors, and vascular disease, that predispose patients to cognitive impairment, yet UA is also a major natural antioxidant and higher levels have been linked to slower progression of several neurodegenerative disease. In-order to test the association between UA and subsequent cognitive performance among patients that carry a high vascular burden, UA levels were determined by calorimetric enzymatic tests in a sub-cohort of patients with chronic cardiovascular disease who previously participating in a secondary prevention trial. After an average of 9.8±1.7 years, we assessed cognitive performance (Neurotrax Computerized Cognitive Battery) as well as cerebrovascular reactivity (CVR) and common carotid intima-media thickness (IMT). Among 446 men (mean age 62.3±6.4 yrs) mean UA levels were 5.8±1.1 mg/dL. Adjusted linear regression models revealed that low UA levels (bottom quintile) were associated with poorer cognitive performance. Adjusted differences between the bottom quintile and grouped top UA quintiles were (B coefficient±SE) −4.23±1.28 for global cognitive scores (p = 0.001), −4.69±1.81 for memory scores (p = 0.010), −3.32±1.43 for executive scores (p = 0.020) and −3.43±1.97 for visual spatial scores (p = 0.082). Significant difference was also found for attention scores (p = 0.015). Additional adjustment for impaired CVR and high common carotid IMT slightly attenuated the relationship. Stronger UA effect on cognitive performance was found for older (age>65) patients with significant age interaction for global cognitive score (p = 0.016) and for executive (p = 0.018) and attention domains (p<0.001). In conclusion, we demonstrate that low UA levels in patients with preexisting cardiovascular disease are associated with poorer cognitive function a decade later. These findings lend support to the hypothesis that oxidative stress may be involved in the pathogenesis of age-associated cognitive impairment.
Collapse
Affiliation(s)
- Noa Molshatzki
- Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Galit Weinstein
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Uri Goldbourt
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - David Tanne
- Sagol Neuroscience Center, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
23
|
Bhat NR, Thirumangalakudi L. Increased tau phosphorylation and impaired brain insulin/IGF signaling in mice fed a high fat/high cholesterol diet. J Alzheimers Dis 2014; 36:781-9. [PMID: 23703152 DOI: 10.3233/jad-2012-121030] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies demonstrated that a high fat/high cholesterol (HFC) diet results in a loss of working memory in mice correlated with neuroinflammatory changes and increased AβPP processing (Thirumangalakudi et al. (2008) J Neurochem 106, 475-485). To further explore the nature of the molecular correlates of cognitive impairment, in this study, we examined changes in tau phosphorylation, insulin/IGF-1 signaling (IIS) including GSK3, and levels of specific synaptic proteins. Immunoblot analysis of hippocampal tissue from C57BL/6 mice fed HFC for 2 months with anti-phospho-tau (i.e., PHF1 and phospho-Thr-231 tau) antibodies demonstrated the presence of hyperphosphorylated tau. The tau phosphorylation correlated with activated GSK3, a prominent tau kinase normally kept inactive under the control of IIS. That IIS itself was impaired due to the hyperlipidemic diet was confirmed by a down-regulation of insulin receptor substrate-1 and phospho-Akt levels. Although no significant changes in the levels of the pre-synaptic protein (i.e., synaptophysin) in response to HFC were apparent in immunoblot analysis, there was a clear down-regulation of the post-synaptic protein, PSD95, and drebrin, a dendritic spine-specific protein, indicative of altered synaptic plasticity. The results, in concert with previous findings with the same model, suggest that high dietary fat/cholesterol elicits brain insulin resistance and altered IIS leading to Alzheimer's disease-like cognitive impairment in 'normal' mice.
Collapse
Affiliation(s)
- Narayan R Bhat
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
24
|
Laukka EJ, Starr JM, Deary IJ. Lower ankle-brachial index is related to worse cognitive performance in old age. Neuropsychology 2013; 28:281-9. [PMID: 24295206 PMCID: PMC3942013 DOI: 10.1037/neu0000028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: We aimed to study the associations between peripheral artery disease (PAD) and ankle-brachial index (ABI) and performance in a range of cognitive domains in nondemented elderly persons. Methods: Data were collected within the Lothian Birth Cohort 1921 and 1936 studies. These are two narrow-age cohorts at age 87 (n = 170) and 73 (n = 748) years. ABI was analyzed as a dichotomous (PAD vs. no PAD) and a continuous measure. PAD was defined as having an ABI less than 0.90. Measures of nonverbal reasoning, verbal declarative memory, verbal fluency, working memory, and processing speed were administered. Both samples were screened for dementia. Results: We observed no significant differences in cognitive performance between persons with or without PAD. However, higher ABI was associated with better general cognition (β = .23, p = .02, R2 change = .05) and processing speed (β = .29, p < .01, R2 change = .08) in the older cohort and better processing speed (β = .12, p < .01, R2 change = .01) in the younger cohort. This was after controlling for age, sex, and childhood mental ability and excluding persons with abnormally high ABI (>1.40) and a history of cardiovascular or cerebrovascular disease. Conclusion: Lower ABI is associated with worse cognitive performance in old age, especially in the oldest old (>85 years), possibly because of long-term exposure to atherosclerotic disease. Interventions targeting PAD in persons free of manifest cardiovascular and cerebrovascular disease may reduce the incidence of cognitive impairment and dementia.
Collapse
Affiliation(s)
- Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh
| |
Collapse
|
25
|
Won JS, Kim J, Annamalai B, Shunmugavel A, Singh I, Singh AK. Protective role of S-nitrosoglutathione (GSNO) against cognitive impairment in rat model of chronic cerebral hypoperfusion. J Alzheimers Dis 2013; 34:621-35. [PMID: 23254638 DOI: 10.3233/jad-121786] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chronic cerebral hypoperfusion (CCH), featuring in most of the Alzheimer's disease spectrum, plays a detrimental role in brain amyloid-β (Aβ) homeostasis, cerebrovascular morbidity, and cognitive decline; therefore, early management of cerebrovascular pathology is considered to be important for intervention in the impending cognitive decline. S-nitrosoglutathione (GSNO) is an endogenous nitric oxide carrier modulating endothelial function, inflammation, and neurotransmission. Therefore, the effect of GSNO treatment on CCH-associated neurocognitive pathologies was determined in vivo by using rats with permanent bilateral common carotid artery occlusion (BCCAO), a rat model of chronic cerebral hypoperfusion. We observed that rats subjected to permanent BCCAO showed a significant decrease in learning/memory performance and increases in brain levels of Aβ and vascular inflammatory markers. GSNO treatment (50 μg/kg/day for 2 months) significantly improved learning and memory performance of BCCAO rats and reduced the Aβ levels and ICAM-1/VCAM-1 expression in the brain. Further, in in vitro cell culture studies, GSNO treatment also decreased the cytokine-induced proinflammatory responses, such as activations of NFκB and STAT3 and expression of ICAM-1 and VCAM-1 in endothelial cells. In addition, GSNO treatment increased the endothelial and microglial Aβ uptake. Additionally, GSNO treatment inhibited the β-secretase activity in primary rat neuron cell culture, thus reducing secretion of Aβ, suggesting GSNO mediated mechanisms in anti-inflammatory and anti-amyloidogenic activities. Taken together, these data document that systemic GSNO treatment is beneficial for improvement of cognitive decline under the conditions of chronic cerebral hypoperfusion and suggests a potential therapeutic use of GSNO for cerebral hypoperfusion associated mild cognitive impairment in Alzheimer's disease.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29245, USA
| | | | | | | | | | | |
Collapse
|
26
|
Tamashiro-Duran JH, Squarzoni P, de Souza Duran FL, Curiati PK, Vallada HP, Buchpiguel CA, Lotufo PA, Wajngarten M, Menezes PR, Scazufca M, de Toledo Ferraz Alves TC, Busatto GF. Cardiovascular risk in cognitively preserved elderlies is associated with glucose hypometabolism in the posterior cingulate cortex and precuneus regardless of brain atrophy and apolipoprotein gene variations. AGE (DORDRECHT, NETHERLANDS) 2013; 35:777-792. [PMID: 22544617 PMCID: PMC3636408 DOI: 10.1007/s11357-012-9413-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/17/2012] [Indexed: 05/31/2023]
Abstract
Cardiovascular risk factors (CVRF) possibly contribute to the emergence of Alzheimer's disease (AD). Fluorodeoxyglucose-positron emission tomography (FDG-PET) has been widely used to demonstrate specific patterns of reduced cerebral metabolic rates of glucose (CMRgl) in subjects with AD and in non-demented carriers of the apolipoprotein ε4 (APOE ε4) allele, the major genetic risk factor for AD. However, functional neuroimaging studies investigating the impact of CVRF on cerebral metabolism have been scarce to date. The present FDG-PET study investigated 59 cognitively preserved elderlies divided into three groups according to their cardiovascular risk based on the Framingham 10-year risk Coronary Heart Disease Risk Profile (low-, medium-, and high-risk) to examine whether different levels of CVRF would be associated with reduced CMRgl, involving the same brain regions affected in early stages of AD. Functional imaging data were corrected for partial volume effects to avoid confounding effects due to regional brain atrophy, and all analyses included the presence of the APOE ε4 allele as a confounding covariate. Significant cerebral metabolism reductions were detected in the high-risk group when compared to the low-risk group in the left precuneus and posterior cingulate gyrus. This suggests that findings of brain hypometabolism similar to those seen in subjects with AD can be detected in association with the severity of cardiovascular risk in cognitively preserved individuals. Thus, a greater knowledge about how such factors influence brain functioning in healthy subjects over time may provide important insigths for the future development of strategies aimed at delaying or preventing the vascular-related triggering of pathologic brain changes in the AD.
Collapse
Affiliation(s)
- Jaqueline Hatsuko Tamashiro-Duran
- Laboratory of Neuroimaging in Psychiatry (LIM-21), Department of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang R, Li JJ, Diao S, Kwak YD, Liu L, Zhi L, Büeler H, Bhat NR, Williams RW, Park EA, Liao FF. Metabolic stress modulates Alzheimer's β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. Cell Metab 2013; 17:685-94. [PMID: 23663737 PMCID: PMC5396538 DOI: 10.1016/j.cmet.2013.03.016] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/22/2013] [Accepted: 03/28/2013] [Indexed: 01/08/2023]
Abstract
Classic cardio-metabolic risk factors such as hypertension, stroke, diabetes, and hypercholesterolemia all increase the risk of Alzheimer's disease. We found increased transcription of β-secretase/BACE1, the rate-limiting enzyme for Aβ generation, in eNOS-deficient mouse brains and after feeding mice a high-fat, high-cholesterol diet. Up- or downregulation of PGC-1α reciprocally regulated BACE1 in vitro and in vivo. Modest fasting in mice reduced BACE1 transcription in the brains, which was accompanied by elevated PGC-1 expression and activity. Moreover, the suppressive effect of PGC-1 was dependent on activated PPARγ, likely via SIRT1-mediated deacetylation in a ligand-independent manner. The BACE1 promoter contains multiple PPAR-RXR sites, and direct interactions among SIRT1-PPARγ-PGC-1 at these sites were enhanced with fasting. The interference on the BACE1 gene identified here represents a unique noncanonical mechanism of PPARγ-PGC-1 in transcriptional repression in neurons in response to metabolic signals that may involve recruitment of corepressor NCoR.
Collapse
Affiliation(s)
- Ruishan Wang
- Department of Pharmacology, University of Tennessee Health Science Center, College of Medicine, 874 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Selnes P, Fjell AM, Gjerstad L, Bjørnerud A, Wallin A, Due-Tønnessen P, Grambaite R, Stenset V, Fladby T. White matter imaging changes in subjective and mild cognitive impairment. Alzheimers Dement 2013; 8:S112-21. [PMID: 23021621 DOI: 10.1016/j.jalz.2011.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 06/21/2011] [Accepted: 07/25/2011] [Indexed: 10/27/2022]
Abstract
BACKGROUND To determine whether white matter (WM) memory network changes accompany early cognitive impairment and whether these changes represent early, pathologically independent axonal affection, we combined WM diffusion tensor imaging and cortical morphometric measurements of normal control subjects, patients with only subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). METHODS We included 66 patients with SCI or MCI and 21 control subjects from a university-hospital-based memory clinic in a cross-sectional study. Morphometric analysis was performed in FreeSurfer, and Tract-Based Spatial Statistics was used for analysis of diffusion tensor imaging-derived WM fractional anisotropy, radial diffusivity (DR), and mean diffusivity (MD). Relationships between WM measures and stage were assessed with whole-brain voxelwise statistics and on a region-of-interest basis, with subsequent correction for cortical atrophy. RESULTS In SCI patients, as compared with control subjects, there were widespread changes in DR and MD. No significant differences in thickness could be demonstrated. In MCI patients, as compared with control subjects, there were widespread changes in DR, MD, and fractional anisotropy; the precuneal and inferior parietal cortices were thinner; and the hippocampus was smaller. Multiple logistic regression analysis eliminated morphometry as an explanatory variable in favor of DR/MD for all regions of interest, except in the precuneus, where both thickness and DR/MD were significant explanatory variables. CONCLUSIONS WM tract degeneration is prominent in SCI and MCI patients, and is at least in part independent of overlying gray matter atrophy.
Collapse
Affiliation(s)
- Per Selnes
- Department of Neurology, Faculty Division, Akershus University Hospital, University of Oslo, Lørenskog, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Anastasio TJ. Exploring the contribution of estrogen to amyloid-Beta regulation: a novel multifactorial computational modeling approach. Front Pharmacol 2013; 4:16. [PMID: 23459573 PMCID: PMC3585711 DOI: 10.3389/fphar.2013.00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/31/2013] [Indexed: 11/23/2022] Open
Abstract
According to the amyloid hypothesis, Alzheimer Disease results from the accumulation beyond normative levels of the peptide amyloid-β (Aβ). Perhaps because of its pathological potential, Aβ and the enzymes that produce it are heavily regulated by the molecular interactions occurring within cells, including neurons. This regulation involves a highly complex system of intertwined normative and pathological processes, and the sex hormone estrogen contributes to it by influencing the Aβ-regulation system at many different points. Owing to its high complexity, Aβ regulation and the contribution of estrogen are very difficult to reason about. This report describes a computational model of the contribution of estrogen to Aβ regulation that provides new insights and generates experimentally testable and therapeutically relevant predictions. The computational model is written in the declarative programming language known as Maude, which allows not only simulation but also analysis of the system using temporal-logic. The model illustrates how the various effects of estrogen could work together to reduce Aβ levels, or prevent them from rising, in the presence of pathological triggers. The model predicts that estrogen itself should be more effective in reducing Aβ than agonists of estrogen receptor α (ERα), and that agonists of ERβ should be ineffective. The model shows how estrogen itself could dramatically reduce Aβ, and predicts that non-steroidal anti-inflammatory drugs should provide a small additional benefit. It also predicts that certain compounds, but not others, could augment the reduction in Aβ due to estrogen. The model is intended as a starting point for a computational/experimental interaction in which model predictions are tested experimentally, the results are used to confirm, correct, and expand the model, new predictions are generated, and the process continues, producing a model of ever increasing explanatory power and predictive value.
Collapse
Affiliation(s)
- Thomas J Anastasio
- Computational Neurobiology Laboratory, Beckman Institute, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
30
|
Effects of prolonged agmatine treatment in aged male Sprague-Dawley rats. Neuroscience 2013; 234:116-24. [PMID: 23318245 DOI: 10.1016/j.neuroscience.2013.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/29/2012] [Accepted: 01/05/2013] [Indexed: 11/22/2022]
Abstract
Increasing evidence suggests that altered arginine metabolism contributes to cognitive decline during ageing. Agmatine, decarboxylated arginine, has a variety of pharmacological effects, including the modulation of behavioural function. A recent study demonstrated the beneficial effects of short-term agmatine treatment in aged rats. The present study investigated how intraperitoneal administration of agmatine (40mg/kg, once daily) over 4-6weeks affected behavioural function and neurochemistry in aged Sprague-Dawley rats. Aged rats treated with saline displayed significantly reduced exploratory activity in the open field, impaired spatial learning and memory in the water maze and object recognition memory relative to young rats. Prolonged agmatine treatment improved animals' performance in the reversal test of the water maze and object recognition memory test, and significantly suppressed age-related elevation in nitric oxide synthase activity in the dentate gyrus of the hippocampus and prefrontal cortex. However, this prolonged supplementation was unable to improve exploratory activity and spatial reference learning and memory in aged rats. These findings further demonstrate that exogenous agmatine selectively improves behavioural function in aged rats.
Collapse
|
31
|
Alosco ML, Brickman AM, Spitznagel MB, van Dulmen M, Raz N, Cohen R, Sweet LH, Colbert LH, Josephson R, Hughes J, Rosneck J, Gunstad J. The independent association of hypertension with cognitive function among older adults with heart failure. J Neurol Sci 2012; 323:216-20. [PMID: 23026535 PMCID: PMC3483380 DOI: 10.1016/j.jns.2012.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Hypertension is the most common comorbidity among heart failure (HF) patients and has been independently linked with cognitive impairment. Cognitive impairment is prevalent among HF patients, though the extent to which hypertension contributes to cognitive function in this population is unclear. METHODS 116 HF patients (31.0% women, 67.68 ± 11.16 years) completed neuropsychological testing and impedance cardiography. History of physician diagnosed hypertension, along with other medical characteristics, was ascertained through a review of participants' medical charts. RESULTS 69.8% of the HF patients had a diagnostic history of hypertension. After adjustment for demographic and medical characteristics (i.e., cardiac index, medication status, and resting blood pressure), hypertension was independently associated with attention/executive function/psychomotor speed (ΔF(1,103)=10.85, ΔR(2)=.07, p<.01) and motor functioning (ΔF(1,103)=4.46, ΔR(2)=.04, p<.05). HF patients with a diagnosed history of hypertension performed worse in these domains than those without such history. CONCLUSION The current findings indicate that diagnostic history of hypertension is an important contributor to cognitive impairment in HF. Hypertension frequently precedes HF and future studies should examine whether sustained hypertension compromises cerebral autoregulatory mechanisms to produce brain damage and exacerbate cognitive impairment in this population.
Collapse
|
32
|
Roher AE, Debbins JP, Malek-Ahmadi M, Chen K, Pipe JG, Maze S, Belden C, Maarouf CL, Thiyyagura P, Mo H, Hunter JM, Kokjohn TA, Walker DG, Kruchowsky JC, Belohlavek M, Sabbagh MN, Beach TG. Cerebral blood flow in Alzheimer's disease. Vasc Health Risk Manag 2012; 8:599-611. [PMID: 23109807 PMCID: PMC3481957 DOI: 10.2147/vhrm.s34874] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer’s disease (AD) dementia is a consequence of heterogeneous and complex interactions of age-related neurodegeneration and vascular-associated pathologies. Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that this may be additive or synergistic with respect to the generation of hypoxia/ischemia and cognitive dysfunction. The effectiveness of pharmacologic therapies and lifestyle modification in reducing cardiovascular disease has prompted a reconsideration of the roles that cardiovascular disease and cerebrovascular function play in the pathogenesis of dementia. Methods Using two-dimensional phase-contrast magnetic resonance imaging, we quantified cerebral blood flow within the internal carotid, basilar, and middle cerebral arteries in a group of individuals with mild to moderate AD (n = 8) and compared the results with those from a group of age-matched nondemented control (NDC) subjects (n = 9). Clinical and psychometric testing was performed on all individuals, as well as obtaining their magnetic resonance imaging-based hippocampal volumes. Results Our experiments reveal that total cerebral blood flow was 20% lower in the AD group than in the NDC group, and that these values were directly correlated with pulse pressure and cognitive measures. The AD group had a significantly lower pulse pressure (mean AD 48, mean NDC 71; P = 0.0004). A significant group difference was also observed in their hippocampal volumes. Composite z-scores for clinical, psychometric, hippocampal volume, and hemodynamic data differed between the AD and NDC subjects, with values in the former being significantly lower (t = 12.00, df = 1, P = 0.001) than in the latter. Conclusion These results indicate an association between brain hypoperfusion and the dementia of AD. Cardiovascular disease combined with brain hypoperfusion may participate in the pathogenesis/pathophysiology of neurodegenerative diseases. Future longitudinal and larger-scale confirmatory investigations measuring multidomain parameters are warranted.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Porte Y, Morel JL. Learning on Jupiter, learning on the Moon: the dark side of the G-force. Effects of gravity changes on neurovascular unit and modulation of learning and memory. Front Behav Neurosci 2012; 6:64. [PMID: 23015785 PMCID: PMC3449275 DOI: 10.3389/fnbeh.2012.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/06/2012] [Indexed: 12/14/2022] Open
Abstract
On earth, gravity vector conditions the development of all living beings by physically imposing an axis along which to build their organism. Thus, during their whole life, they have to fight against this force not only to maintain their architectural organization but also to coordinate the communication between organs and keep their physiology in a balanced steady-state. In space, astronauts show physiological, psychological, and cognitive deregulations, ranging from bone decalcification or decrease of musculature, to depressive-like disorders, and spatial disorientation. Nonetheless, they are confronted to a great amount of physical changes in their environment such as solar radiations, loss of light-dark cycle, lack of spatial landmarks, confinement, and obviously a dramatic decrease of gravity force. It is thus very hard to selectively discriminate the strict role of gravity level alterations on physiological, and particularly cerebral, dysfunction. To this purpose, it is important to design autonomous models and apparatuses for behavioral phenotyping utilizable under modified gravity environments. Our team actually aims at working on this area of research.
Collapse
Affiliation(s)
- Yves Porte
- Université de Bordeaux Bordeaux, France ; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives Talence, France
| | | |
Collapse
|
34
|
Rushaidhi M, Collie N, Zhang H, Liu P. Agmatine selectively improves behavioural function in aged male Sprague–Dawley rats. Neuroscience 2012; 218:206-15. [DOI: 10.1016/j.neuroscience.2012.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/11/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
35
|
Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 2012; 31:377-406. [PMID: 22580107 DOI: 10.1016/j.preteyeres.2012.04.004] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/17/2012] [Accepted: 04/22/2012] [Indexed: 02/06/2023]
Abstract
We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimer's disease. We close by discussing issues that remain to be explored.
Collapse
Affiliation(s)
- Joanna Kur
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
36
|
Willette AA, Bendlin BB, Colman RJ, Kastman EK, Field AS, Alexander AL, Sridharan A, Allison DB, Anderson R, Voytko ML, Kemnitz JW, Weindruch RH, Johnson SC. Calorie restriction reduces the influence of glucoregulatory dysfunction on regional brain volume in aged rhesus monkeys. Diabetes 2012; 61:1036-42. [PMID: 22415875 PMCID: PMC3331743 DOI: 10.2337/db11-1187] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Insulin signaling dysregulation is related to neural atrophy in hippocampus and other areas affected by neurovascular and neurodegenerative disorders. It is not known if long-term calorie restriction (CR) can ameliorate this relationship through improved insulin signaling or if such an effect might influence task learning and performance. To model this hypothesis, magnetic resonance imaging was conducted on 27 CR and 17 control rhesus monkeys aged 19-31 years from a longitudinal study. Voxel-based regression analyses were used to associate insulin sensitivity with brain volume and microstructure cross-sectionally. Monkey motor assessment panel (mMAP) performance was used as a measure of task performance. CR improved glucoregulation parameters and related indices. Higher insulin sensitivity predicted more gray matter in parietal and frontal cortices across groups. An insulin sensitivity × dietary condition interaction indicated that CR animals had more gray matter in hippocampus and other areas per unit increase relative to controls, suggesting a beneficial effect. Finally, bilateral hippocampal volume adjusted by insulin sensitivity, but not volume itself, was significantly associated with mMAP learning and performance. These results suggest that CR improves glucose regulation and may positively influence specific brain regions and at least motor task performance. Additional studies are warranted to validate these relationships.
Collapse
Affiliation(s)
- Auriel A. Willette
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Barbara B. Bendlin
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, Madison, Wisconsin
| | - Erik K. Kastman
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aaron S. Field
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aadhavi Sridharan
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - David B. Allison
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rozalyn Anderson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin National Primate Research Center, Madison, Wisconsin
| | - Mary-Lou Voytko
- Department of Neurobiology and Anatomy Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Joseph W. Kemnitz
- Wisconsin National Primate Research Center, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard H. Weindruch
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Sterling C. Johnson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Wisconsin National Primate Research Center, Madison, Wisconsin
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
- Corresponding author: Sterling C. Johnson,
| |
Collapse
|
37
|
Risk and Determinants of Dementia in Patients with Mild Cognitive Impairment and Brain Subcortical Vascular Changes: A Study of Clinical, Neuroimaging, and Biological Markers-The VMCI-Tuscany Study: Rationale, Design, and Methodology. Int J Alzheimers Dis 2012; 2012:608013. [PMID: 22550606 PMCID: PMC3328954 DOI: 10.1155/2012/608013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/16/2012] [Accepted: 01/16/2012] [Indexed: 11/30/2022] Open
Abstract
Dementia is one of the most disabling conditions. Alzheimer's disease and vascular dementia (VaD) are the most frequent causes. Subcortical VaD is consequent to deep-brain small vessel disease (SVD) and is the most frequent form of VaD. Its pathological hallmarks are ischemic white matter changes and lacunar infarcts. Degenerative and vascular changes often coexist, but mechanisms of interaction are incompletely understood. The term mild cognitive impairment defines a transitional state between normal ageing and dementia. Pre-dementia stages of VaD are also acknowledged (vascular mild cognitive impairment, VMCI). Progression relates mostly to the subcortical VaD type, but determinants of such transition are unknown. Variability of phenotypic expression is not fully explained by severity grade of lesions, as depicted by conventional MRI that is not sensitive to microstructural and metabolic alterations. Advanced neuroimaging techniques seem able to achieve this. Beside hypoperfusion, blood-brain-barrier dysfunction has been also demonstrated in subcortical VaD. The aim of the Vascular Mild Cognitive Impairment Tuscany Study is to expand knowledge about determinants of transition from mild cognitive impairment to dementia in patients with cerebral SVD. This paper summarizes the main aims and methodological aspects of this multicenter, ongoing, observational study enrolling patients affected by VMCI with SVD.
Collapse
|
38
|
Abstract
The incidence of dementia increases steeply with age in older people, although from the tenth decade the slope may be smoother, perhaps reflecting different pathological processes in the oldest old. The prevalence depends upon interaction of age with other factors (e.g., comorbidities, genetic or environmental factors) that in turn are subject to change. If onset of dementia could be postponed by modulating its risk factors, this could significantly affect its incidence. Analysis of risk and protection factors should take into account the critical period during which these factors play a role. For example, the impact of education and diabetes mellitus occurs in early- and midlife, respectively, while maintaining optimal physical and mental activity and controlling vascular factors later in life may slow the rate of cognitive decline. Modifying factors need to be evaluated for different clinical groups, taking into account genetic background, age, and duration at exposure. The aim of the present article is to try to take stock of epidemiological data concerning factors affecting the prevalence of dementia and predict future developments, as well as to look for possible interventions that could affect outcome.
Collapse
Affiliation(s)
- T A Treves
- Memory Disorders Clinic, Rabin Medical Center, Petach Tikva, Israel
| | | |
Collapse
|
39
|
Knox LT, Jing Y, Fleete MS, Collie ND, Zhang H, Liu P. Scopolamine impairs behavioural function and arginine metabolism in the rat dentate gyrus. Neuropharmacology 2011; 61:1452-62. [DOI: 10.1016/j.neuropharm.2011.08.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 01/06/2023]
|
40
|
Anastasio TJ. Data-driven modeling of Alzheimer Disease pathogenesis. J Theor Biol 2011; 290:60-72. [DOI: 10.1016/j.jtbi.2011.08.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/27/2011] [Accepted: 08/29/2011] [Indexed: 01/28/2023]
|
41
|
Liu P, Jing Y, Collie ND, Campbell SA, Zhang H. Pre-aggregated Aβ25–35 alters arginine metabolism in the rat hippocampus and prefrontal cortex. Neuroscience 2011; 193:269-82. [DOI: 10.1016/j.neuroscience.2011.07.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
|
42
|
Abstract
Neurovascular coupling, or functional hyperaemia, refers to complex mechanisms of communication between neurons, astrocytes and cerebral vessels which form the neurovascular unit that spatially and temporally adjusts blood supply to the needs in energy and oxygen of activated neurons. Neurovascular coupling is so precise that it underlies neuroimaging techniques to map changes in neuronal activity. Therefore, understanding its basis is indispensable for the proper interpretation of imaging signals from functional magnetic resonance imaging and positron emission tomography, routinely used in humans. Although neurovascular coupling mechanisms are not yet fully understood, considerable progress has been made over the last decade. In this review, we present recent knowledge from in vivo studies on the cortical cellular network involved in neurovascular coupling responses and the mediators implicated in these haemodynamic changes. Recent findings have emphasized the intricate interplay between both excitatory and inhibitory neurons in neurovascular coupling, together with an intermediary role of astrocytes, which are ideally positioned between neurons and microvessels. Finally, we describe latest findings on the alterations of neurovascular function encountered in neurodegenerative conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- C Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
43
|
Roesli C, Fugmann T, Borgia B, Schliemann C, Neri D, Jucker M. The accessible cerebral vascular proteome in a mouse model of cerebral β-amyloidosis. J Proteomics 2011; 74:539-46. [DOI: 10.1016/j.jprot.2011.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 12/14/2022]
|
44
|
Steinert JR, Chernova T, Forsythe ID. Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 2011; 16:435-52. [PMID: 20817920 DOI: 10.1177/1073858410366481] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule that is widely used in the nervous system. With recognition of its roles in synaptic plasticity (long-term potentiation, LTP; long-term depression, LTD) and elucidation of calcium-dependent, NMDAR-mediated activation of neuronal nitric oxide synthase (nNOS), numerous molecular and pharmacological tools have been used to explore the physiology and pathological consequences for nitrergic signaling. In this review, the authors summarize the current understanding of this subtle signaling pathway, discuss the evidence for nitrergic modulation of ion channels and homeostatic modulation of intrinsic excitability, and speculate about the pathological consequences of spillover between different nitrergic compartments in contributing to aberrant signaling in neurodegenerative disorders. Accumulating evidence points to various ion channels and particularly voltage-gated potassium channels as signaling targets, whereby NO mediates activity-dependent control of intrinsic neuronal excitability; such changes could underlie broader mechanisms of synaptic plasticity across neuronal networks. In addition, the inability to constrain NO diffusion suggests that spillover from endothelium (eNOS) and/or immune compartments (iNOS) into the nervous system provides potential pathological sources of NO and where control failure in these other systems could have broader neurological implications. Abnormal NO signaling could therefore contribute to a variety of neurodegenerative pathologies such as stroke/excitotoxicity, Alzheimer's disease, multiple sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Joern R Steinert
- Neurotoxicity at the Synaptic Interface, MRC Toxicology Unit, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
45
|
Austin BP, Nair VA, Meier TB, Xu G, Rowley HA, Carlsson CM, Johnson SC, Prabhakaran V. Effects of hypoperfusion in Alzheimer's disease. J Alzheimers Dis 2011; 26 Suppl 3:123-33. [PMID: 21971457 PMCID: PMC3303148 DOI: 10.3233/jad-2011-0010] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of hypoperfusion in Alzheimer's disease (AD) is a vital component to understanding the pathogenesis of this disease. Disrupted perfusion is not only evident throughout disease manifestation, it is also demonstrated during the pre-clinical phase of AD (i.e., mild cognitive impairment) as well as in cognitively healthy persons at high-risk for developing AD due to family history or genetic factors. Studies have used a variety of imaging modalities (e.g., SPECT, MRI, PET) to investigate AD, but with its recent technological advancements and non-invasive use of blood water as an endogenous tracer, arterial spin labeling (ASL) MRI has become an imaging technique of growing popularity. Through numerous ASL studies, it is now known that AD is associated with both global and regional cerebral hypoperfusion and that there is considerable overlap between the regions implicated in the disease state (consistently reported in precuneus/posterior cingulate and lateral parietal cortex) and those implicated in disease risk. Debate exists as to whether decreased blood flow in AD is a cause or consequence of the disease. Nonetheless, hypoperfusion in AD is associated with both structural and functional changes in the brain and offers a promising putative biomarker that could potentially identify AD in its pre-clinical state and be used to explore treatments to prevent, or at least slow, the progression of the disease. Finally, given that perfusion is a vascular phenomenon, we provide insights from a vascular lesion model (i.e., stroke) and illustrate the influence of disrupted perfusion on brain structure and function and, ultimately, cognition in AD.
Collapse
Affiliation(s)
- Benjamin P. Austin
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Veterans Affairs (VA) Geriatric Research, Education and Clinical Center (GRECC), Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Veena A. Nair
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Timothy. B. Meier
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Guofan Xu
- Department of Veterans Affairs (VA) Geriatric Research, Education and Clinical Center (GRECC), Madison, WI, USA
| | - Howard A. Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Cynthia M. Carlsson
- Department of Veterans Affairs (VA) Geriatric Research, Education and Clinical Center (GRECC), Madison, WI, USA
- Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sterling C. Johnson
- Department of Veterans Affairs (VA) Geriatric Research, Education and Clinical Center (GRECC), Madison, WI, USA
- Department of Medicine, Division of Geriatrics and Gerontology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
46
|
Chen W, Song X, Beyea S, D'Arcy R, Zhang Y, Rockwood K. Advances in perfusion magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement 2010; 7:185-96. [DOI: 10.1016/j.jalz.2010.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/31/2010] [Accepted: 04/21/2010] [Indexed: 01/01/2023]
Affiliation(s)
- Wei Chen
- National Research Council CanadaInstitute for Biodiagnostics (Atlantic)HalifaxCanada
- Department of RadiologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Xiaowei Song
- National Research Council CanadaInstitute for Biodiagnostics (Atlantic)HalifaxCanada
- Division of Geriatric MedicineDepartment of Medicine, Dalhousie UniversityHalifaxCanada
| | - Steven Beyea
- National Research Council CanadaInstitute for Biodiagnostics (Atlantic)HalifaxCanada
- Department of PhysicsDalhousie UniversityHalifaxCanada
| | - Ryan D'Arcy
- National Research Council CanadaInstitute for Biodiagnostics (Atlantic)HalifaxCanada
- Department of PsychologyDalhousie UniversityHalifaxCanada
- Neuroscience Institute, Dalhousie UniversityHalifaxCanada
| | - Yunting Zhang
- Department of RadiologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Kenneth Rockwood
- Division of Geriatric MedicineDepartment of Medicine, Dalhousie UniversityHalifaxCanada
- Centre for Health Care of the Elderly, Queen Elizabeth II Health Sciences CentreHalifaxCanada
| |
Collapse
|
47
|
Stellos K, Panagiota V, Kögel A, Leyhe T, Gawaz M, Laske C. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer's disease patients. J Cereb Blood Flow Metab 2010; 30:1817-20. [PMID: 20717123 PMCID: PMC3023934 DOI: 10.1038/jcbfm.2010.140] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular risk factors contribute to the progression of dementia in Alzheimer's disease (AD) and influence platelet activation. However, the degree of platelet activation as a possible underlying mechanism of this progression has not been studied till now. Significantly higher baseline expression of both platelet activation biomarkers, activated glycoprotein IIb-IIIa complex and P-selectin, was observed in patients with AD with fast cognitive decline compared with AD patients with slow cognitive decline during a 1-year follow-up period. These results suggest that platelet activation could be a putative prognostic biomarker for the rate of cognitive decline and a potential new treatment target in AD patients.
Collapse
Affiliation(s)
- Konstantinos Stellos
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls Universität Tübingen, Otfried-Mueller-Straße 10, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Bhat NR. Linking cardiometabolic disorders to sporadic Alzheimer's disease: a perspective on potential mechanisms and mediators. J Neurochem 2010; 115:551-62. [PMID: 20807313 DOI: 10.1111/j.1471-4159.2010.06978.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is increasing evidence that the incidence of Alzheimer's disease (AD) is significantly influenced by cardiovascular risk factors in association with a cluster of metabolic diseases including diabetes and atherosclerosis. The shared risk is also reflected in the dietary and lifestyle links to both metabolic disorders and AD-type cognitive dysfunction. Recent studies with genetic and diet-induced animal models have begun to illuminate convergent mechanisms and mediators between these two categories of disease conditions with distinct tissue-specific pathologies. Although it is clear that peripheral inflammation and insulin resistance are central to the pathogenesis of the disorders of metabolic syndrome, it seems that the same mechanisms are also in play across the blood-brain barrier that lead to AD-like molecular and cognitive changes. This review highlights these convergent mechanisms and discusses the role of cerebrovascular dysfunction as a conduit to brain emergence of these pathogenic processes that might also represent future therapeutic targets in AD in common with metabolic disorders.
Collapse
Affiliation(s)
- Narayan R Bhat
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| |
Collapse
|
49
|
Roesli C, Neri D. Methods for the identification of vascular markers in health and disease: from the bench to the clinic. J Proteomics 2010; 73:2219-29. [PMID: 20541635 DOI: 10.1016/j.jprot.2010.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/25/2010] [Accepted: 05/30/2010] [Indexed: 02/07/2023]
Abstract
Several diseases are characterized by changes in the molecular composition of vascular structures, thus offering the opportunity to use specific ligands (e.g., monoclonal antibodies) for imaging and therapy application. This novel pharmaceutical strategy, often referred to as "vascular targeting", promises to facilitate the discovery and development of selective biopharmaceuticals for the management of angiogenesis-related diseases. This article reviews novel biomedical applications based on vascular targeting strategies, as well as methodologies which have been used for the discovery of vascular markers of pathology.
Collapse
Affiliation(s)
- Christoph Roesli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | | |
Collapse
|
50
|
Kumari U, Heese K. Cardiovascular dementia - a different perspective. Open Biochem J 2010; 4:29-52. [PMID: 20448820 PMCID: PMC2864432 DOI: 10.2174/1874091x01004010029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/12/2010] [Accepted: 01/22/2010] [Indexed: 02/08/2023] Open
Abstract
The number of dementia patients has been growing in recent years and dementia represents a significant threat to aging people all over the world. Recent research has shown that the number of people affected by Alzheimer's disease (AD) and dementia is growing at an epidemic pace. The rapidly increasing financial and personal costs will affect the world's economies, health care systems, and many families. Researchers are now exploring a possible connection among AD, vascular dementia (VD), diabetes mellitus (type 2, T2DM) and cardiovascular diseases (CD). This correlation may be due to a strong association of cardiovascular risk factors with AD and VD, suggesting that these diseases share some biologic pathways. Since heart failure is associated with an increased risk of AD and VD, keeping the heart healthy may prove to keep the brain healthy as well. The risk for dementia is especially high when diabetes mellitus is comorbid with severe systolic hypertension or heart disease. In addition, the degree of coronary artery disease (CAD) is independently associated with cardinal neuropathological lesions of AD. Thus, the contribution of T2DM and CD to AD and VD implies that cardiovascular therapies may prove useful in preventing AD and dementia.
Collapse
Affiliation(s)
- Udhaya Kumari
- Division of Cell and Molecular Biology, School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | |
Collapse
|