1
|
Lyu F, Hakariya H, Hiraoka H, Li Z, Matsubara N, Soo Y, Hashiya F, Abe N, Shu Z, Nakamoto K, Kimura Y, Abe H. Intracellular Delivery of Antisense Oligonucleotides by Tri-Branched Cyclic Disulfide Units. ChemMedChem 2024; 19:e202400472. [PMID: 38957922 DOI: 10.1002/cmdc.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Therapeutic oligonucleotides, such as antisense DNA, show promise in treating previously untreatable diseases. However, their applications are still hindered by the poor membrane permeability of naked oligonucleotides. Therefore, it is necessary to develop efficient methods for intracellular oligonucleotide delivery. Previously, our group successfully developed disulfide-based Membrane Permeable Oligonucleotides (MPON), which achieved enhanced cellular uptake and gene silencing effects through an endocytosis-free uptake mechanism. Herein, we report a new molecular design for the next generation of MPON, called trimer MPON. The trimer MPON consists of a tri-branched backbone, three α-lipoic acid units, and a spacer linker between the oligonucleotides and tri-branched cyclic disulfide unit. We describe the design, synthesis, and functional evaluation of the trimer MPON, offering new insights into the molecular design for efficient oligonucleotide delivery.
Collapse
Affiliation(s)
- Fangjie Lyu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hayase Hakariya
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Zhenmin Li
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Noriaki Matsubara
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yonghao Soo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Zhaoma Shu
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Kosuke Nakamoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
2
|
Tan X, Huang Z, Pei H, Jia Z, Zheng J. Molecular glue-mediated targeted protein degradation: A novel strategy in small-molecule drug development. iScience 2024; 27:110712. [PMID: 39297173 PMCID: PMC11409024 DOI: 10.1016/j.isci.2024.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Small-molecule drugs are effective and thus most widely used. However, their applications are limited by their reliance on active high-affinity binding sites, restricting their target options. A breakthrough approach involves molecular glues, a novel class of small-molecule compounds capable of inducing protein-protein interactions (PPIs). This opens avenues to target conventionally undruggable proteins, overcoming limitations seen in conventional small-molecule drugs. Molecular glues play a key role in targeted protein degradation (TPD) techniques, including ubiquitin-proteasome system-based approaches such as proteolysis targeting chimeras (PROTACs) and molecular glue degraders and recently emergent lysosome system-based techniques like molecular degraders of extracellular proteins through the asialoglycoprotein receptors (MoDE-As) and macroautophagy degradation targeting chimeras (MADTACs). These techniques enable an innovative targeted degradation strategy for prolonged inhibition of pathology-associated proteins. This review provides an overview of them, emphasizing the clinical potential of molecular glues and guiding the development of molecular-glue-mediated TPD techniques.
Collapse
Affiliation(s)
- Xueqiang Tan
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zuyi Huang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hairun Pei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jimin Zheng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Yu X, Tao J, Wu Y, Chen Y, Li P, Yang F, Tang M, Sammad A, Tao Y, Xu Y, Li YX. Deficiency of ASGR1 Alleviates Diet-Induced Systemic Insulin Resistance via Improved Hepatic Insulin Sensitivity. Diabetes Metab J 2024; 48:802-815. [PMID: 38310881 PMCID: PMC11307118 DOI: 10.4093/dmj.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/06/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGRUOUND Insulin resistance (IR) is the key pathological basis of many metabolic disorders. Lack of asialoglycoprotein receptor 1 (ASGR1) decreased the serum lipid levels and reduced the risk of coronary artery disease. However, whether ASGR1 also participates in the regulatory network of insulin sensitivity and glucose metabolism remains unknown. METHODS The constructed ASGR1 knockout mice and ASGR1-/- HepG2 cell lines were used to establish the animal model of metabolic syndrome and the IR cell model by high-fat diet (HFD) or drug induction, respectively. Then we evaluated the glucose metabolism and insulin signaling in vivo and in vitro. RESULTS ASGR1 deficiency ameliorated systemic IR in mice fed with HFD, evidenced by improved insulin intolerance, serum insulin, and homeostasis model assessment of IR index, mainly contributed from increased insulin signaling in the liver, but not in muscle or adipose tissues. Meanwhile, the insulin signal transduction was significantly enhanced in ASGR1-/- HepG2 cells. By transcriptome analyses and comparison, those differentially expressed genes between ASGR1 null and wild type were enriched in the insulin signal pathway, particularly in phosphoinositide 3-kinase-AKT signaling. Notably, ASGR1 deficiency significantly reduced hepatic gluconeogenesis and glycogenolysis. CONCLUSION The ASGR1 deficiency was consequentially linked with improved hepatic insulin sensitivity under metabolic stress, hepatic IR was the core factor of systemic IR, and overcoming hepatic IR significantly relieved the systemic IR. It suggests that ASGR1 is a potential intervention target for improving systemic IR in metabolic disorders.
Collapse
Affiliation(s)
- Xiaorui Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawang Tao
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuhang Wu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Chen
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Penghui Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Miaoxiu Tang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Abdul Sammad
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine Center for Nanomedicine, The Third Affiliated Hospital, Guangzhou, China
| | - Yingying Xu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yin-Xiong Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
4
|
Sun Y, Tong H, Chu X, Li Y, Zhang J, Ding Y, Zhang S, Gui X, Chen C, Xu M, Li Z, Gardiner EE, Andrews RK, Zeng L, Xu K, Qiao J. Notch1 regulates hepatic thrombopoietin production. Blood 2024; 143:2778-2790. [PMID: 38603632 DOI: 10.1182/blood.2023023559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
ABSTRACT Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.
Collapse
Affiliation(s)
- Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yingying Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jie Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Chong Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert K Andrews
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| |
Collapse
|
5
|
Falet H, Hoffmeister KM. Elevating TPO production up a Notch. Blood 2024; 143:2684-2686. [PMID: 38935361 PMCID: PMC11251204 DOI: 10.1182/blood.2024024907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Affiliation(s)
- Hervé Falet
- Versiti Blood Research Institute and Translational Glycomics Center
| | | |
Collapse
|
6
|
Xu WJ, Wang S, Zhao QH, Xu JY, Hu XY, Gong SG, He J, Qiu HL, Luo CJ, Xu J, Li HT, Li ZP, Wang L, Shi Y, Zhao YL, Jiang R. Serum ASGR2 level: an efficacy biomarker for balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Front Immunol 2024; 15:1402250. [PMID: 38855107 PMCID: PMC11157431 DOI: 10.3389/fimmu.2024.1402250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Background This study aimed to employ plasma proteomics to investigate the molecular changes, pathway alterations, and potential novel biochemical markers associated with balloon pulmonary angioplasty (BPA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Methods Pre- and post-BPA plasma samples from five CTEPH patients in the PRACTICE study were analyzed to identify differentially expressed proteins. Proteomic and bioinformatics analyses were conducted, and the identified proteins were further validated using ELISA assays in a separate cohort of the same study. Correlation and multivariate regression analyses were performed to investigate the associations between these differentially expressed proteins and clinical parameters. Results Significantly higher serum levels of asialoglycoprotein receptor 2 (ASGR2) were detected in 5 CTEPH patients compared to those in healthy individuals but decreased significantly after successful BPA procedures. The decrease in serum levels of ASGR2 after the completion of BPA procedures was further validated in a separate cohort of 48 patients with CTEPH [0.70 (0.51, 1.11) ng/mL vs. 0.38 (0.27, 0.59) ng/mL, P < 0.001]. Significant associations were found between the pre-BPA ASGR2 level and clinical parameters, including neutrophil percentage (R = 0.285, P < 0.05), platelet (PLT) count (R = 0.386, P < 0.05), and high-density lipoprotein cholesterol (HDL-C) before BPA (R = -0.285, P < 0.05). Significant associations were detected between post-BPA serum ASGR2 levels and lymphocyte percentage (LYM%) (R = 0.306, P < 0.05), neutrophil-to-lymphocyte ratio (R = -0.294, P < 0.05), and pulmonary vascular resistance after BPA (R = -0.35, P < 0.05). Multivariate stepwise regression analysis revealed that pre-BPA ASGR2 levels were associated with HDL-C and PLT count (both P < 0.001), while post-BPA ASGR2 levels were associated with LYM% (P < 0.05). Conclusion Serum levels of ASGR2 may be a biomarker for the effectiveness of BPA treatment in CTEPH patients. The pre-BPA serum level of ASGR2 in CTEPH patients was associated with HDL-C and the PLT count. The post-BPA serum level of ASGR2 was correlated with the LYM%, which may reflect aspects of immune and inflammatory status.
Collapse
Affiliation(s)
- Wei-Jie Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shang Wang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian-Hao Zhao
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Yi Xu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xiao-Yi Hu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Su-Gang Gong
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ling Qiu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Xu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui-Ting Li
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ze-Pu Li
- Department of Cardiology, Affiliated Renhe Hospital of Shanghai University, Shanghai, China
| | - Lan Wang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Shi
- Department of Cardiology, Yantai Yu-Huangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Ya-Lin Zhao
- Department of Respiratory Critical Care Medicine, The First Hospital of Kunming, Kunming, China
| | - Rong Jiang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Hua Y, Yu C. Research progress on asialoglycoprotein receptor-targeted radiotracers designed for hepatic nuclear medicine imaging. Eur J Med Chem 2024; 269:116278. [PMID: 38479165 DOI: 10.1016/j.ejmech.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/27/2024] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Asialoglycoprotein receptor (ASGPR) specifically recognizes glycans terminated with β-d-galactose or N-acetylgalactosamine. Its exclusive expression in mammalian hepatocytes renders it an ideal hepatic-targeted biomarker. To date, ASGPR-targeted ligands have been actively developed for drug delivery and hepatic imaging. This review provides a comprehensive summary of the progress achieved to-date in the field of developing ASGPR-targeted nuclear medicine imaging (NMI) radiotracers, highlighting the recent advancements over the last decade in terms of structure, radionuclides and labeling strategies. The biodistribution patterns, imaging characteristics, challenges and future prospective are discussed.
Collapse
Affiliation(s)
- Yuqi Hua
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, China; Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214000, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214000, China; Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214000, China.
| |
Collapse
|
8
|
Rasizadeh R, Ebrahimi F, Zamani Kermanshahi A, Daei Sorkhabi A, Sarkesh A, Sadri Nahand J, Bannazadeh Baghi H. Viruses and thrombocytopenia. Heliyon 2024; 10:e27844. [PMID: 38524607 PMCID: PMC10957440 DOI: 10.1016/j.heliyon.2024.e27844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Thrombocytopenia, characterized by a decrease in platelet count, is a multifaceted clinical manifestation that can arise from various underlying causes. This review delves into the intriguing nexus between viruses and thrombocytopenia, shedding light on intricate pathophysiological mechanisms and highlighting the pivotal role of platelets in viral infections. The review further navigates the landscape of thrombocytopenia in relation to specific viruses, and sheds light on the diverse mechanisms through which hepatitis C virus (HCV), measles virus, parvovirus B19, and other viral agents contribute to platelet depletion. As we gain deeper insights into these interactions, we move closer to elucidating potential therapeutic avenues and preventive strategies for managing thrombocytopenia in the context of viral infections.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fatemeh Ebrahimi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Daei Sorkhabi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Wang Q, Yang X, Yuan R, Shen A, Wang P, Li H, Zhang J, Tian C, Jiang Z, Li W, Dong S. A co-assembly platform engaging macrophage scavenger receptor A for lysosome-targeting protein degradation. Nat Commun 2024; 15:1663. [PMID: 38396109 PMCID: PMC10891067 DOI: 10.1038/s41467-024-46130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Targeted degradation of proteins has emerged as a powerful method for modulating protein homeostasis. Identification of suitable degraders is essential for achieving effective protein degradation. Here, we present a non-covalent degrader construction strategy, based on a modular supramolecular co-assembly system consisting of two self-assembling peptide ligands that bind cell membrane receptors and the protein of interest simultaneously, resulting in targeted protein degradation. The developed lysosome-targeting co-assemblies (LYTACAs) can induce lysosomal degradation of extracellular protein IL-17A and membrane protein PD-L1 in several scavenger receptor A-expressing cell lines. The IL-17A-degrading co-assembly has been applied in an imiquimod-induced psoriasis mouse model, where it decreases IL-17A levels in the skin lesion and alleviates psoriasis-like inflammation. Extending to asialoglycoprotein receptor-related protein degradation, LYTACAs have demonstrated the versatility and potential in streamlining degraders for extracellular and membrane proteins.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xingyue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ruixin Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ao Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pushu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chao Tian
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhujun Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
- Chemical Biology Center, Peking University, Beijing, China.
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Moulinet T, Moussu A, Pierson L, Pagliuca S. The many facets of immune-mediated thrombocytopenia: Principles of immunobiology and immunotherapy. Blood Rev 2024; 63:101141. [PMID: 37980261 DOI: 10.1016/j.blre.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune condition, due to peripheral platelet destruction through antibody-dependent cellular phagocytosis, complement-dependent cytotoxicity, cytotoxic T lymphocyte-mediated cytotoxicity, and megakaryopoiesis alteration. This condition may be idiopathic or triggered by drugs, vaccines, infections, cancers, autoimmune disorders and systemic diseases. Recent advances in our understanding of ITP immunobiology support the idea that other forms of thrombocytopenia, for instance, occurring after immunotherapy or cellular therapies, may share a common pathophysiology with possible therapeutic implications. If a decent pipeline of old and new agents is currently deployed for classical ITP, in other more complex immune-mediated thrombocytopenic disorders, clinical management is less harmonized and would deserve further prospective investigations. Here, we seek to provide a fresh overview of pathophysiology and current therapeutical algorithms for adult patients affected by this disorder with specific insights into poorly codified scenarios, including refractory ITP and post-immunotherapy/cellular therapy immune-mediated thrombocytopenia.
Collapse
Affiliation(s)
- Thomas Moulinet
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France; UMR 7365, IMoPA, Lorraine University, CNRS, Nancy, France
| | - Anthony Moussu
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Ludovic Pierson
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Simona Pagliuca
- UMR 7365, IMoPA, Lorraine University, CNRS, Nancy, France; Department of Hematology, Regional Competence Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
11
|
Hale RC, Morais D, Chou J, Stowell SR. The role of glycosylation in clinical allergy and immunology. J Allergy Clin Immunol 2024; 153:55-66. [PMID: 37717626 PMCID: PMC10872775 DOI: 10.1016/j.jaci.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
While glycans are among the most abundant macromolecules on the cell with widespread functions, their role in immunity has historically been challenging to study. This is in part due to difficulties assimilating glycan analysis into routine approaches used to interrogate immune cell function. Despite this, recent developments have illuminated fundamental roles for glycans in host immunity. The growing field of glycoimmunology continues to leverage new tools and approaches to uncover the function of glycans and glycan-binding proteins in immunity. Here we utilize clinical vignettes to examine key roles of glycosylation in allergy, inborn errors of immunity, and autoimmunity. We will discuss the diverse functions of glycans as epitopes, as modulators of antibody function, and as regulators of immune cell function. Finally, we will highlight immune modulatory therapies that harness the critical role of glycans in the immune system.
Collapse
Affiliation(s)
- Rebecca C Hale
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Dominique Morais
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| | - Sean R Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Harvard Glycomics Center, Harvard Medical School, Boston, Mass.
| |
Collapse
|
12
|
Li F, Rong Z, Chen T, Wang P, Di X, Ni L, Liu C. Glycosylation-Engineered Platelet Membrane-Coated Interleukin 10 Nanoparticles for Targeted Inhibition of Vascular Restenosis. Int J Nanomedicine 2023; 18:5011-5030. [PMID: 37693888 PMCID: PMC10492561 DOI: 10.2147/ijn.s423186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose The purpose of this study was to improve the immune compatibility and targeting abilities of IL10 nanoparticles coated with platelet membrane (IL10-PNPs) by glycosylation engineering in order to effectively reduce restenosis after vascular injury. Materials and Methods In this study, we removed sialic acids and added α (1,2)-fucose and α (1,3)-fucose to platelet membrane glycoprotein, thus engineering the glycosylation of IL10-PNPs (IL10-GE-PNPs). In vitro and in vivo experiments were conducted to evaluate the targeting and regulatory effects of IL10-GE-PNPs on macrophage polarization, as well as the influence of IL10-GE-PNPs on the phenotypic transformation, proliferation, and migration of smooth muscle cells, and its potential in promoting the repair function of endothelial cells within an inflammatory environment. In order to assess the distribution of IL10-GE-PNP in different organs, in vivo imaging experiments were conducted. Results IL10-GE-PNPs were successfully constructed and demonstrated to effectively target and regulate macrophage polarization in both in vitro and in vivo settings. This regulation resulted in reduced proliferation and migration of smooth muscle cells and promoted the repair of endothelial cells in an inflammatory environment. Consequently, restenosis after vascular injury was reduced. Furthermore, the deposition of IL10-GE-PNPs in the liver and spleen was significantly reduced compared to IL10-PNPs. Conclusion IL10-GE-PNPs emerged as a promising candidate for targeting vascular injury and exhibited potential as an innovative drug delivery system for suppressing vascular restenosis. The engineered glycosylation of IL10-PNPs improved their immune compatibility and targeting abilities, making them an excellent therapeutic option.
Collapse
Affiliation(s)
- Fengshi Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Zhihua Rong
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Tianqi Chen
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Peng Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
13
|
Barrios AA, Mouhape C, Schreiber L, Zhang L, Nell J, Suárez-Martins M, Schlapp G, Meikle MN, Mulet AP, Hsu TL, Hsieh SL, Mourglia-Ettlin G, González C, Crispo M, Barth TFE, Casaravilla C, Jenkins SJ, Díaz Á. Mucins Shed from the Laminated Layer in Cystic Echinococcosis Are Captured by Kupffer Cells via the Lectin Receptor Clec4F. Infect Immun 2023; 91:e0003123. [PMID: 37162364 PMCID: PMC10269144 DOI: 10.1128/iai.00031-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Cystic echinococcosis is caused by the larval stages (hydatids) of cestode parasites belonging to the species cluster Echinococcus granulosus sensu lato, with E. granulosus sensu stricto being the main infecting species. Hydatids are bladderlike structures that attain large sizes within various internal organs of livestock ungulates and humans. Hydatids are protected by the massive acellular laminated layer (LL), composed mainly of mucins. Parasite growth requires LL turnover, and abundant LL-derived particles are found at infection sites in infected humans, raising the question of how LL materials are dealt with by the hosts. In this article, we show that E. granulosus sensu stricto LL mucins injected into mice are taken up by Kupffer cells, the liver macrophages exposed to the vascular space. This uptake is largely dependent on the intact mucin glycans and on Clec4F, a C-type lectin receptor which, in rodents, is selectively expressed in Kupffer cells. This uptake mechanism operates on mucins injected both in soluble form intravenously (i.v.) and in particulate form intraperitoneally (i.p.). In mice harboring intraperitoneal infections by the same species, LL mucins were found essentially only at the infection site and in the liver, where they were taken up by Kupffer cells via Clec4F. Therefore, shed LL materials circulate in the host, and Kupffer cells can act as a sink for these materials, even when the parasite grows in sites other than the liver.
Collapse
Affiliation(s)
- Anabella A. Barrios
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Camila Mouhape
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | | | - Linyun Zhang
- Institute of Pathology, University Ulm, Ulm, Germany
| | - Juliane Nell
- Institute of Pathology, University Ulm, Ulm, Germany
| | - Mariana Suárez-Martins
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Geraldine Schlapp
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Noel Meikle
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ana Paula Mulet
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | | | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Cecilia Casaravilla
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Stephen J. Jenkins
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Álvaro Díaz
- Área Inmunología, Departamento de Biociencias (Facultad de Química) and Cátedra de Inmunología, Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
14
|
Sarafanov AG. Plasma Clearance of Coagulation Factor VIII and Extension of Its Half-Life for the Therapy of Hemophilia A: A Critical Review of the Current State of Research and Practice. Int J Mol Sci 2023; 24:ijms24108584. [PMID: 37239930 DOI: 10.3390/ijms24108584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Factor VIII (FVIII) is an important component of blood coagulation as its congenital deficiency results in life-threatening bleeding. Current prophylactic therapy of the disease (hemophilia A) is based on 3-4 intravenous infusions of therapeutic FVIII per week. This poses a burden on patients, demanding reduction of infusion frequency by using FVIII with extended plasma half-life (EHL). Development of these products requires understanding FVIII plasma clearance mechanisms. This paper overviews (i) an up-to-date state of the research in this field and (ii) current EHL FVIII products, including recently approved efanesoctocog alfa, for which the plasma half-life exceeds a biochemical barrier posed by von Willebrand factor, complexed with FVIII in plasma, which results in ~1 per week infusion frequency. We focus on the EHL FVIII products' structure and function, in particular related to the known discrepancy in results of one-stage clotting (OC) and chromogenic substrate (CS) assays used to assign the products' potency, dosing, and for clinical monitoring in plasma. We suggest a possible root cause of these assays' discrepancy that is also pertinent to EHL factor IX variants used to treat hemophilia B. Finally, we discuss approaches in designing future EHL FVIII variants, including those to be used for hemophilia A gene therapy.
Collapse
Affiliation(s)
- Andrey G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
15
|
Ebenezer O, Comoglio P, Wong GKS, Tuszynski JA. Development of Novel siRNA Therapeutics: A Review with a Focus on Inclisiran for the Treatment of Hypercholesterolemia. Int J Mol Sci 2023; 24:4019. [PMID: 36835426 PMCID: PMC9966809 DOI: 10.3390/ijms24044019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Over the past two decades, it was discovered that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm facilitates effective gene-targeted silencing. This compromises gene expression and regulation by repressing transcription or stimulating sequence-specific RNA degradation. Substantial investments in developing RNA therapeutics for disease prevention and treatment have been made. We discuss the application to proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to and degrades the low-density lipoprotein cholesterol (LDL-C) receptor, interrupting the process of LDL-C uptake into hepatocytes. PCSK9 loss-of-function modifications show significant clinical importance by causing dominant hypocholesterolemia and lessening the risk of cardiovascular disease (CVD). Monoclonal antibodies and small interfering RNA (siRNA) drugs targeting PCSK9 are a significant new option for managing lipid disorders and improving CVD outcomes. In general, monoclonal antibodies are restricted to binding with cell surface receptors or circulating proteins. Similarly, overcoming the intracellular and extracellular defenses that prevent exogenous RNA from entering cells must be achieved for the clinical application of siRNAs. N-acetylgalactosamine (GalNAc) conjugates are a simple solution to the siRNA delivery problem that is especially suitable for treating a broad spectrum of diseases involving liver-expressed genes. Inclisiran is a GalNAc-conjugated siRNA molecule that inhibits the translation of PCSK9. The administration is only required every 3 to 6 months, which is a significant improvement over monoclonal antibodies for PCSK9. This review provides an overview of siRNA therapeutics with a focus on detailed profiles of inclisiran, mainly its delivery strategies. We discuss the mechanisms of action, its status in clinical trials, and its prospects.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa
| | - Pietro Comoglio
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jack A. Tuszynski
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
16
|
Ju X, Dong L, Ding Q. Hepatitis E Virus Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:141-157. [PMID: 37223864 DOI: 10.1007/978-981-99-1304-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Swystun LL, Lillicrap D. Current Understanding of Inherited Modifiers of FVIII Pharmacokinetic Variation. Pharmgenomics Pers Med 2023; 16:239-252. [PMID: 36998673 PMCID: PMC10046206 DOI: 10.2147/pgpm.s383221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
The inherited bleeding disorder hemophilia A involves the quantitative deficiency of the coagulation cofactor factor VIII (FVIII). Prophylactic treatment of severe hemophilia A patients with FVIII concentrates aims to reduce the frequency of spontaneous joint bleeding and requires personalized tailoring of dosing regimens to account for the substantial inter-individual variability of FVIII pharmacokinetics. The strong reproducibility of FVIII pharmacokinetic (PK) metrics between repeat analyses in the same individual suggests this trait is genetically regulated. While the influence of plasma von Willebrand factor antigen (VWF:Ag) levels, ABO blood group, and patient age on FVIII PK is well established, estimates suggest these factors account for less than 35% of the overall variability in FVIII PK. More recent studies have identified genetic determinants that modify FVIII clearance or half-life including VWF gene variants that impair VWF-FVIII binding resulting in the accelerated clearance of VWF-free FVIII. Additionally, variants in receptors that regulate the clearance of FVIII or the VWF-FVIII complex have been associated with FVIII PK. The characterization of genetic modifiers of FVIII PK will provide mechanistic insight into a subject of clinical significance and support the development of personalized treatment plans for patients with hemophilia A.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
- Correspondence: David Lillicrap, Richardson Laboratory, Queen’s University, 88 Stuart Street, Kingston, Ontario, K7L 3N6, Canada, Tel +1 613 548-1304, Fax +1 613 548-1356, Email
| |
Collapse
|
18
|
Zhai BT, Sun J, Shi YJ, Zhang XF, Zou JB, Cheng JX, Fan Y, Guo DY, Tian H. Review targeted drug delivery systems for norcantharidin in cancer therapy. J Nanobiotechnology 2022; 20:509. [DOI: 10.1186/s12951-022-01703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractNorcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Administration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomaterials and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its efficacy, as well as increasing drug targeting ability and reducing its adverse effects.
Graphical Abstract
Collapse
|
19
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
20
|
Rose RH, Sepp A, Stader F, Gill KL, Liu C, Gardner I. Application of physiologically-based pharmacokinetic models for therapeutic proteins and other novel modalities. Xenobiotica 2022; 52:840-854. [PMID: 36214113 DOI: 10.1080/00498254.2022.2133649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The past two decades have seen diversification of drug development pipelines and approvals from traditional small molecule therapies to alternative modalities including monoclonal antibodies, engineered proteins, antibody drug conjugates (ADCs), oligonucleotides and gene therapies. At the same time, physiologically-based pharmacokinetic (PBPK) models for small molecules have seen increased industry and regulatory acceptance.This review focusses on the current status of the application of PBPK models to these newer modalities and give a perspective on the successes, challenges and future directions of this field.There is greatest experience in the development of PBPK models for therapeutic proteins, and PBPK models for ADCs benefit from prior experience for both therapeutic proteins and small molecules. For other modalities, the application of PBPK models is in its infancy.Challenges are discussed and a common theme is lack of availability of physiological and experimental data to characterise systems and drug parameters to enable a priori prediction of pharmacokinetics. Furthermore, sufficient clinical data are required to build confidence in developed models.The PBPK modelling approach provides a quantitative framework for integrating knowledge and data from multiple sources and can be built on as more data becomes available.
Collapse
Affiliation(s)
- Rachel H Rose
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Armin Sepp
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Felix Stader
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Katherine L Gill
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Cong Liu
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Iain Gardner
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
21
|
Sialic acids on B cells are crucial for their survival and provide protection against apoptosis. Proc Natl Acad Sci U S A 2022; 119:e2201129119. [PMID: 35696562 PMCID: PMC9231502 DOI: 10.1073/pnas.2201129119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sialic acids (Sias) on the B cell membrane are involved in cell migration, in the control of the complement system and, as sialic acid-binding immunoglobulin-like lectin (Siglec) ligands, in the regulation of cellular signaling. We studied the role of sialoglycans on B cells in a mouse model with B cell-specific deletion of cytidine monophosphate sialic acid synthase (CMAS), the enzyme essential for the synthesis of sialoglycans. Surprisingly, these mice showed a severe B cell deficiency in secondary lymphoid organs. Additional depletion of the complement factor C3 rescued the phenotype only marginally, demonstrating a complement-independent mechanism. The B cell survival receptor BAFF receptor was not up-regulated, and levels of activated caspase 3 and processed caspase 8 were high in B cells of Cmas-deficient mice, indicating ongoing apoptosis. Overexpressed Bcl-2 could not rescue this phenotype, pointing to extrinsic apoptosis. These results show that sialoglycans on the B cell surface are crucial for B cell survival by counteracting several death-inducing pathways.
Collapse
|
22
|
O'Connor JH, McNamara HA, Cai Y, Coupland LA, Gardiner EE, Parish CR, McMorran BJ, Ganusov VV, Cockburn IA. Interactions with Asialo-Glycoprotein Receptors and Platelets Are Dispensable for CD8 + T Cell Localization in the Murine Liver. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2738-2748. [PMID: 35649630 PMCID: PMC9308657 DOI: 10.4049/jimmunol.2101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Liver-resident CD8+ T cells can play critical roles in the control of pathogens, including Plasmodium and hepatitis B virus. Paradoxically, it has also been proposed that the liver may act as the main place for the elimination of CD8+ T cells at the resolution of immune responses. We hypothesized that different adhesion processes may drive residence versus elimination of T cells in the liver. Specifically, we investigated whether the expression of asialo-glycoproteins (ASGPs) drives the localization and elimination of effector CD8+ T cells in the liver, while interactions with platelets facilitate liver residence and protective function. Using murine CD8+ T cells activated in vitro, or in vivo by immunization with Plasmodium berghei sporozoites, we found that, unexpectedly, inhibition of ASGP receptors did not inhibit the accumulation of effector cells in the liver, but instead prevented these cells from accumulating in the spleen. In addition, enforced expression of ASGP on effector CD8+ T cells using St3GalI-deficient cells lead to their loss from the spleen. We also found, using different mouse models of thrombocytopenia, that severe reduction in platelet concentration in circulation did not strongly influence the residence and protective function of CD8+ T cells in the liver. These data suggest that platelets play a marginal role in CD8+ T cell function in the liver. Furthermore, ASGP-expressing effector CD8+ T cells accumulate in the spleen, not the liver, prior to their destruction.
Collapse
Affiliation(s)
- James H O'Connor
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Australian National University Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hayley A McNamara
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yeping Cai
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lucy A Coupland
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia; and
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia; and
| | - Christopher R Parish
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia; and
| | - Brendan J McMorran
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN
| | - Ian A Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia;
| |
Collapse
|
23
|
Clinical impact of glycans in platelet and megakaryocyte biology. Blood 2022; 139:3255-3263. [PMID: 35015813 PMCID: PMC9164739 DOI: 10.1182/blood.2020009303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Humans produce and remove 1011 platelets daily to maintain a steady-state platelet count. The tight regulation of platelet production and removal from the blood circulation prevents anomalies in both processes from resulting in reduced or increased platelet count, often associated with the risk of bleeding or overt thrombus formation, respectively. This review focuses on the role of glycans, also known as carbohydrates or oligosaccharides, including N- and O-glycans, proteoglycans, and glycosaminoglycans, in human and mouse platelet and megakaryocyte physiology. Based on recent clinical observations and mouse models, we focused on the pathologic aspects of glycan biosynthesis and degradation and their effects on platelet numbers and megakaryocyte function.
Collapse
|
24
|
Colunga-Pedraza PR, Peña-Lozano SP, Sánchez-Rendón E, De la Garza-Salazar F, Colunga-Pedraza JE, Gómez-De León A, Santana-Hernández P, Cantú-Rodríguez OG, Gómez-Almaguer D. Oseltamivir as rescue therapy for persistent, chronic, or refractory immune thrombocytopenia: a case series and review of the literature. J Thromb Thrombolysis 2022; 54:360-366. [PMID: 35471623 DOI: 10.1007/s11239-022-02651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease that results from antibody-mediated platelet destruction and impaired platelet production. Novel therapies have emerged in the last decade, but 15-20% of patients will relapse or fail and require further therapy. We performed a prospective, single-arm intervention study on seven patients with chronic, persistent, or refractory ITP from the Hospital Universitario "Dr. José E González", in Monterrey, Mexico between 2015 and 2019. Eligible patients received oral oseltamivir 75 mg twice daily for 5 days and were followed up for six months. Most patients received a median of three distinct therapies (range 2-6). Four patients (57.1%) received combined therapy. The median time for any response was 55.5 days (range = 14-150). All patients responded at some point in time (ORR = 100%, six had a proportion of loss of response [PR], and one achieved [CR]). Six months after oseltamivir administration, three patients (42.9%) maintained a response, and one patient had a CR (14.3%). Oseltamivir was well tolerated with a good overall response rate and was useful for treating chronic ITP. We observed an initial increase in the number of platelets; however, this response was not maintained.
Collapse
Affiliation(s)
- Perla R Colunga-Pedraza
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Samantha P Peña-Lozano
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Ernesto Sánchez-Rendón
- Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Fernando De la Garza-Salazar
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Julia E Colunga-Pedraza
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Andrés Gómez-De León
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Paola Santana-Hernández
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - Olga G Cantú-Rodríguez
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico
| | - David Gómez-Almaguer
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autonoma de Nuevo León, Francisco I. Madero and Avenida Gonzalitos, Mitras Centro, Z.P. 64460, Monterrey, NL, Mexico.
| |
Collapse
|
25
|
Heithoff DM, Pimienta G, Mahan SP, Yang WH, Le DT, House JK, Marth JD, Smith JW, Mahan MJ. Coagulation factor protein abundance in the pre-septic state predicts coagulopathic activities that arise during late-stage murine sepsis. EBioMedicine 2022; 78:103965. [PMID: 35349828 PMCID: PMC8965145 DOI: 10.1016/j.ebiom.2022.103965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although sepsis accounts for 1 in 5 deaths globally, few molecular therapies exist for this condition. The development of effective biomarkers and treatments for sepsis requires a more complete understanding of host responses and pathogenic mechanisms at early stages of disease to minimize host-driven pathology. METHODS An alternative to the current symptom-based approach used to diagnose sepsis is a precise assessment of blood proteomic changes during the onset and progression of Salmonella Typhimurium (ST) murine sepsis. FINDINGS A distinct pattern of coagulation factor protein abundance was identified in the pre-septic state- prior to overt disease symptoms or bacteremia- that was predictive of the dysregulation of fibrinolytic and anti-coagulant activities and resultant consumptive coagulopathy during ST murine sepsis. Moreover, the changes in protein abundance observed generally have the same directionality (increased or decreased abundance) reported for human sepsis. Significant overlap of ST coagulopathic activities was observed in Gram-negative Escherichia coli- but not in Gram-positive staphylococcal or pneumococcal murine sepsis models. Treatment with matrix metalloprotease inhibitors prevented aberrant inflammatory and coagulopathic activities post-ST infection and increased survival. Antibiotic treatment regimens initiated after specific changes arise in the plasma proteome post-ST infection were predictive of an increase in disease relapse and death after cessation of antibiotic treatment. INTERPRETATION Altered blood proteomics provides a platform to develop rapid and easy-to-perform tests to predict sepsis for early intervention via biomarker incorporation into existing blood tests prompted by patient presentation with general malaise, and to stratify Gram-negative and Gram-positive infections for appropriate treatment. Antibiotics are less effective in microbial clearance when initiated after the onset of altered blood proteomics as evidenced by increased disease relapse and death after termination of antibiotic therapy. Treatment failure is potentially due to altered bacterial / host-responses and associated increased host-driven pathology, providing insight into why delays in antibiotic administration in human sepsis are associated with increased risk for death. Delayed treatment may thus require prolonged therapy for microbial clearance despite the prevailing notion of antibiotic de-escalation and shortened courses of antibiotics to improve drug stewardship. FUNDING National Institutes of Health, U.S. Army.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| | - Genaro Pimienta
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis CA 95616, USA
| | - Won Ho Yang
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dzung T Le
- Department of Pathology, University of California, La Jolla, San Diego, CA 92093, USA
| | - John K House
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales 2570, Australia
| | - Jamey D Marth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
26
|
Mandel J, Casari M, Stepanyan M, Martyanov A, Deppermann C. Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. Int J Mol Sci 2022; 23:ijms23073868. [PMID: 35409226 PMCID: PMC8998935 DOI: 10.3390/ijms23073868] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbβ3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet-neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet-monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.
Collapse
Affiliation(s)
- Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Maria Stepanyan
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Physics Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Alexey Martyanov
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS (IBCP RAS), 119334 Moscow, Russia
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Correspondence:
| |
Collapse
|
27
|
Fisher J, Kahn F, Wiebe E, Gustafsson P, Kander T, Mellhammar L, Bentzer P, Linder A. The Dynamics of Circulating Heparin-Binding Protein: Implications for Its Use as a Biomarker. J Innate Immun 2021; 14:447-460. [PMID: 34965528 PMCID: PMC9485916 DOI: 10.1159/000521064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Heparin-binding protein (HBP) is a promising biomarker for the development and severity of sepsis. To guide its use, it is important to understand the factors that could lead to false-positive or negative results, such as inappropriate release and inadequate clearance of HBP. HBP is presumably released only by neutrophils, and the organs responsible for its elimination are unknown. In this study, we aimed to determine whether non-neutrophil cells can be a source of circulating HBP and which organs are responsible for its removal. We found that in two cohorts of neutropenic patients, 12% and 19% of patients in each cohort, respectively, had detectable plasma HBP levels. In vitro, three leukemia-derived monocytic cell lines and healthy CD14+ monocytes constitutively released detectable levels of HBP. When HBP was injected intravenously in rats, we found that plasma levels of HBP decreased rapidly, with a distribution half-life below 10 min and an elimination half-life of 1-2 h. We measured HBP levels in the liver, spleen, kidneys, lungs, and urine using both ELISA and immunofluorescence quantitation, and found that the majority of HBP was present in the liver, and a small amount was present in the spleen. Immunofluorescence imaging indicated that HBP is associated mainly with hepatocytes in the liver and monocytes/macrophages in the spleen. The impact of hematologic malignancies and liver diseases on plasma HBP levels should be explored further in clinical studies.
Collapse
Affiliation(s)
- Jane Fisher
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Kahn
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Elena Wiebe
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Infection Biochemistry & Institute for Biochemistry, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Pontus Gustafsson
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Thomas Kander
- Department of Intensive and Perioperative Care, Skåne University Hospital, Lund, Sweden.,Division of Anesthesiology and Intensive Care, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lisa Mellhammar
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Peter Bentzer
- Division of Anesthesiology and Intensive Care, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Department of Anesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
| | - Adam Linder
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Jiang Y, Tang Y, Hoover C, Kondo Y, Huang D, Restagno D, Shao B, Gao L, Michael McDaniel J, Zhou M, Silasi-Mansat R, McGee S, Jiang M, Bai X, Lupu F, Ruan C, Marth JD, Wu D, Han Y, Xia L. Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ 2021; 28:3009-3021. [PMID: 33993195 PMCID: PMC8564511 DOI: 10.1038/s41418-021-00797-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f-/-) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f-/- mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collectively, these findings identify CLEC4F as a Kupffer cell receptor important for the destruction of desialylated platelets induced by bacteria-derived neuraminidases, which provide new insights into the pathogenesis of thrombocytopenia in disease conditions such as sepsis.
Collapse
Affiliation(s)
- Yizhi Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yaqiong Tang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Christopher Hoover
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Yuji Kondo
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Dongping Huang
- grid.452929.10000 0004 8513 0241Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 China
| | - Damien Restagno
- grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Bojing Shao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Liang Gao
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - J. Michael McDaniel
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Meixiang Zhou
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Robert Silasi-Mansat
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Samuel McGee
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Miao Jiang
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Xia Bai
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Florea Lupu
- grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Changgeng Ruan
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Jamey D. Marth
- grid.133342.40000 0004 1936 9676Center for Nanomedicine, SBP Medical Discovery Institute, and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106 USA
| | - Depei Wu
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Yue Han
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| | - Lijun Xia
- grid.429222.d0000 0004 1798 0228Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China ,grid.274264.10000 0000 8527 6890Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA ,grid.263761.70000 0001 0198 0694Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006 China
| |
Collapse
|
29
|
Kuter DJ. Novel therapies for immune thrombocytopenia. Br J Haematol 2021; 196:1311-1328. [PMID: 34611885 DOI: 10.1111/bjh.17872] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
Current therapies for immune thrombocytopenia (ITP) are successful in providing a haemostatic platelet count in over two-thirds of patients. Still, some patients have an inadequate response and there is a need for other therapies. A number of novel therapies for ITP are currently being developed based upon the current pathophysiology of ITP. Many therapies are targetted at reducing platelet destruction by decreasing anti-platelet antibody production by immunosuppression with monoclonal antibodies targetted against CD40, CD38 and the immunoproteasome or physically reducing the anti-platelet antibody concentration by inhibition of the neonatal Fc receptor. Others target the phagocytic system by inhibiting FcγR function with staphylococcal protein A, hypersialylated IgG, polymeric Fc fragments, or Bruton kinase. With a recognition that platelet destruction is also mediated by complement, inhibitors of C1s are also being tested. Inhibition of platelet desialylation may also play a role. Other novel therapies promote platelet production with new oral thrombopoietin receptor agonists or the use of low-level laser light to improve mitochondrial activity and prevent megakaryocyte apoptosis. This review will focus on these novel mechanisms for treating ITP and assess the status of treatments currently under development. Successful new treatments for ITP might also provide a pathway to treat other autoimmune disorders.
Collapse
Affiliation(s)
- David J Kuter
- Hematology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Avdonin PP, Tsvetaeva NV, Goncharov NV, Rybakova EY, Trufanov SK, Tsitrina AA, Avdonin PV. Von Willebrand Factor in Health and Disease. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2021. [DOI: 10.1134/s1990747821040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract—
Von Willebrand factor (vWF), the key component of hemostasis, is synthesized in endothelial cells and megakaryocytes and released into the blood as high molecular weight multimeric glycoproteins weighing up to 20 million Daltons. Blood plasma metalloprotease ADAMTS13 cleaves ultra-large vWF multimers to smaller multimeric and oligomeric molecules. The vWF molecules attach to the sites of damage at the surface of arterioles and capillaries and unfold under conditions of shear stress. On the unfolded vWF molecule, the regions interacting with receptors on the platelet membrane are exposed. After binding to the vWF filaments, platelets are activated; platelets circulating in the vessels are additionally attached to them, leading to thrombus formation, blocking of microvessels, and cessation of bleeding. This review describes the history of the discovery of vWF, presents data on the mechanisms of vWF secretion and its structure, and characterizes the processes of vWF metabolism in the body under normal and pathological conditions.
Collapse
|
31
|
Immune Thrombocytopenia: Recent Advances in Pathogenesis and Treatments. Hemasphere 2021; 5:e574. [PMID: 34095758 PMCID: PMC8171374 DOI: 10.1097/hs9.0000000000000574] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to both a peripheral destruction of platelets and an inappropriate bone marrow production. Although the primary triggering factors of ITP remain unknown, a loss of immune tolerance-mostly represented by a regulatory T-cell defect-allows T follicular helper cells to stimulate autoreactive splenic B cells that differentiate into antiplatelet antibody-producing plasma cells. Glycoprotein IIb/IIIa is the main target of antiplatelet antibodies leading to platelet phagocytosis by splenic macrophages, through interactions with Fc gamma receptors (FcγRs) and complement receptors. This allows macrophages to activate autoreactive T cells by their antigen-presenting functions. Moreover, the activation of the classical complement pathway participates to platelet opsonization and also to their destruction by complement-dependent cytotoxicity. Platelet destruction is also mediated by a FcγR-independent pathway, involving platelet desialylation that favors their binding to the Ashwell-Morell receptor and their clearance in the liver. Cytotoxic T cells also contribute to ITP pathogenesis by mediating cytotoxicity against megakaryocytes and peripheral platelets. The deficient megakaryopoiesis resulting from both the humoral and the cytotoxic immune responses is sustained by inappropriate levels of thrombopoietin, the major growth factor of megakaryocytes. The better understanding of ITP pathogenesis has provided important therapeutic advances. B cell-targeting therapies and thrombopoietin-receptor agonists (TPO-RAs) have been used for years. New emerging therapeutic strategies that inhibit FcγR signaling, the neonatal Fc receptor or the classical complement pathway, will deeply modify the management of ITP in the near future.
Collapse
|
32
|
Richardson N, Wraith DC. Advancement of antigen-specific immunotherapy: knowledge transfer between allergy and autoimmunity. IMMUNOTHERAPY ADVANCES 2021; 1:ltab009. [PMID: 35919740 PMCID: PMC9327121 DOI: 10.1093/immadv/ltab009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Targeted restoration of immunological tolerance to self-antigens or innocuous environmental allergens represents the ultimate aim of treatment options in autoimmune and allergic disease. Antigen-specific immunotherapy (ASI) is the only intervention that has proven disease-modifying efficacy as evidenced by induction of long-term remission in a number of allergic conditions. Mounting evidence is now indicating that specific targeting of pathogenic T cells in autoinflammatory and autoimmune settings enables effective restoration of immune homeostasis between effector and regulatory cells and alters the immunological course of disease. Here, we discuss the key lessons learned during the development of antigen-specific immunotherapies and how these can be applied to inform future interventions. Armed with this knowledge and current high-throughput technology to track immune cell phenotype and function, it may no longer be a matter of ‘if’ but ‘when’ this ultimate aim of targeted tolerance restoration is realised.
Collapse
Affiliation(s)
- Naomi Richardson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David Cameron Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
33
|
Hofmeister A, Jahn-Hofmann K, Brunner B, Helms MW, Metz-Weidmann C, Krack A, Kurz M, Li Z, Weitzenberg MM, Pflimlin E, Plettenburg O, Scheidler S. Syntheses of Morpholine-Based Nucleotide Analogs for Hepatic siRNA Targeting and Stabilization. J Med Chem 2021; 64:6838-6855. [PMID: 33950677 DOI: 10.1021/acs.jmedchem.1c00144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A morpholine-based nucleotide analog was developed as a building block for hepatic siRNA targeting and stabilization. Attachment of an asialoglycoprotein-binding GalNAc ligand at the morpholine nitrogen was realized with different linkers. The obtained morpholino GalNAc scaffolds were coupled to the sense strand of a transthyretin-targeting siRNA and tested for their knockdown potency in vitro and in vivo. A clear structure-activity relationship was developed with regard to the linker type and length as well as the attachment site of the morpholino GalNAc moieties at the siRNA sense strand. Further, simple alkylation of the morpholine nitrogen led to a nucleotide analog, which increased siRNA stability, when used as a double 3'-overhang at the sense strand sequence. Combination of the best morpholino GalNAc building blocks as targeting nucleotides with an optimized stabilizing alkyl-substituted morpholine as 3'-overhangs resulted in siRNAs without any phosphorothioate stabilization in the sense strand and clearly improved the duration of action in vivo.
Collapse
Affiliation(s)
- Armin Hofmeister
- Sanofi R&D, Industrial Park Hoechst, G838, Frankfurt am Main 65926, Germany
| | | | - Bodo Brunner
- Sanofi R&D, Industrial Park Hoechst, G838, Frankfurt am Main 65926, Germany
| | - Mike W Helms
- Sanofi R&D, Industrial Park Hoechst, G838, Frankfurt am Main 65926, Germany
| | | | - Arne Krack
- Sanofi R&D, Industrial Park Hoechst, G838, Frankfurt am Main 65926, Germany
| | - Michael Kurz
- Sanofi R&D, Industrial Park Hoechst, G838, Frankfurt am Main 65926, Germany
| | - Ziyu Li
- Sanofi R&D, Industrial Park Hoechst, G838, Frankfurt am Main 65926, Germany
| | - Merle M Weitzenberg
- Institute of Organic Chemistry, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Hannover 30167, Germany.,Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Medicinal Chemistry (IMC), Neuherberg 85764, Germany
| | | | - Oliver Plettenburg
- Institute of Organic Chemistry, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Hannover 30167, Germany.,Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Medicinal Chemistry (IMC), Neuherberg 85764, Germany
| | - Sabine Scheidler
- Sanofi R&D, Industrial Park Hoechst, G838, Frankfurt am Main 65926, Germany
| |
Collapse
|
34
|
Agarwal S, Allard R, Darcy J, Chigas S, Gu Y, Nguyen T, Bond S, Chong S, Wu JT, Janas MM. Impact of Serum Proteins on the Uptake and RNAi Activity of GalNAc-Conjugated siRNAs. Nucleic Acid Ther 2021; 31:309-315. [PMID: 33861634 PMCID: PMC8377513 DOI: 10.1089/nat.2020.0919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Serum protein interactions are evaluated during the drug development process since they determine the free drug concentration in blood and thereby can influence the drug's pharmacokinetic and pharmacodynamic properties. While the impact of serum proteins on the disposition of small molecules is well understood, it is not yet well characterized for a new modality, RNA interference therapeutics. When administered systemically, small interfering RNAs (siRNAs) conjugated to the N-acetylgalactosamine (GalNAc) ligand bind to proteins present in circulation. However, it is not known if these protein interactions may impact the GalNAc-conjugated siRNA uptake into hepatocytes mediated through the asialoglycoprotein receptor (ASGPR) and thereby influence the activity of GalNAc-conjugated siRNAs. In this study, we assess the impact of serum proteins on the uptake and activity of GalNAc-conjugated siRNAs in primary human hepatocytes. We found that a significant portion of the GalNAc-conjugated siRNAs is bound to serum proteins. However, ASGPR-mediated uptake and activity of GalNAc-conjugated siRNAs were minimally impacted by the presence of serum relative to their uptake and activity in the absence of serum. Therefore, in contrast to small molecules, serum proteins are expected to have minimal impact on pharmacokinetic and pharmacodynamic properties of GalNAc-conjugated siRNAs.
Collapse
Affiliation(s)
- Saket Agarwal
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Ruth Allard
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Justin Darcy
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Samantha Chigas
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Yongli Gu
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Tuyen Nguyen
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Sarah Bond
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Saeho Chong
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Jing-Tao Wu
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Maja M Janas
- Early Development, Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Chen Y, Hu J, Chen Y. Platelet desialylation and TFH cells-the novel pathway of immune thrombocytopenia. Exp Hematol Oncol 2021; 10:21. [PMID: 33722280 PMCID: PMC7958461 DOI: 10.1186/s40164-021-00214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by immune-mediated destruction of one's own platelets. The progression of thrombocytopenia involves an imbalance of platelet production and clearance. B cells can induce autoantibodies, and T cells contribute to the pathological progression as well. Some patients with ITP have a poor response to common first-line therapies. Recent studies have shown that a novel Fc-independent platelet clearance pathway is associated with poor prognosis in these patients. By this pathway, desialylated platelets can be cleared by Ashwell-Morell receptor (AMR) on hepatocytes. Research has demonstrated that patients with refractory ITP usually have a high level of desialylation, indicating the important role of sialylation on platelet membrane glycoprotein (GP) in patients with primary immune thrombocytopenia, and neuraminidase 1(NEU1) translocation might be involved in this process. Patients with ITP who are positive for anti-GPIbα antibodies have a poor prognosis, which indicates that anti-GPIbα antibodies are associated with this Fc-independent platelet clearance pathway. Experiments have proven that these antibodies could lead to the desialylation of GPs on platelets. The T follicular helper (TFH) cell level is related to the expression of the anti-GPIbα antibody, which indicates its role in the progression of desialylation. This review will discuss platelet clearance and production, especially the role of the anti-GPIbα antibody and desialylation in the pathophysiology of ITP and therapy for this disease.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
36
|
Apoceruloplasmin: Abundance, Detection, Formation, and Metabolism. Biomedicines 2021; 9:biomedicines9030233. [PMID: 33669134 PMCID: PMC7996503 DOI: 10.3390/biomedicines9030233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Ceruloplasmin, the main copper-binding protein in blood and some other fluids, is well known for its copper-dependent enzymatic functions and as a source of copper for cells. What is generally unknown or ignored is that, at least in the case of blood plasma and serum, about half of ceruloplasmin is in the apo (copper-free) form. This has led to some misconceptions about the amounts and variations of other copper-binding proteins and so-called “free copper” in the blood that might be indicators of disease states. What is known about the levels, sources, and metabolism of apo versus holo ceruloplasmin and the problems associated with measurements of the two forms is reviewed here.
Collapse
|
37
|
Wang Y, Chen W, Zhang W, Lee-Sundlov MM, Casari C, Berndt MC, Lanza F, Bergmeier W, Hoffmeister KM, Zhang XF, Li R. Desialylation of O-glycans on glycoprotein Ibα drives receptor signaling and platelet clearance. Haematologica 2021; 106:220-229. [PMID: 31974202 PMCID: PMC7776245 DOI: 10.3324/haematol.2019.240440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
During infection neuraminidase desialylates platelets and induces their rapid clearance from circulation. The underlying molecular basis, particularly the role of platelet glycoprotein (GP)Ibα therein, is not clear. Utilizing genetically altered mice, we report that the extracellular domain of GPIbα, but neither von Willebrand factor nor ADAM17 (a disintegrin and metalloprotease 17), is required for platelet clearance induced by intravenous injection of neuraminidase. Lectin binding to platelet following neuraminidase injection over time revealed that the extent of desialylation of O-glycans correlates with the decrease of platelet count in mice. Injection of α2,3-neuraminidase reduces platelet counts in wild-type but not in transgenic mice expressing only a chimeric GPIbα that misses most of its extracellular domain. Neuraminidase treatment induces unfolding of the O-glycosylated mechanosensory domain in GPIbα as monitored by single-molecule force spectroscopy, increases the exposure of the ADAM17 shedding cleavage site in the mechanosensory domain on the platelet surface, and induces ligand-independent GPIb-IX signaling in human and murine platelets. These results suggest that desialylation of O-glycans of GPIbα induces unfolding of the mechanosensory domain, subsequent GPIb-IX signaling including amplified desialylation of N-glycans, and eventually rapid platelet clearance. This new molecular mechanism of GPIbα-facilitated clearance could potentially resolve many puzzling and seemingly contradicting observations associated with clearance of desialylated or hyposialylated platelet.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Wenchun Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Wei Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA
| | | | - Caterina Casari
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, NC
| | | | - Francois Lanza
- Université de Strasbourg, EFS-Alsace, Strasbourg, France
| | | | | | - X Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA
| | - Renhao Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
38
|
Falck D, Thomann M, Lechmann M, Koeleman CAM, Malik S, Jany C, Wuhrer M, Reusch D. Glycoform-resolved pharmacokinetic studies in a rat model employing glycoengineered variants of a therapeutic monoclonal antibody. MAbs 2021; 13:1865596. [PMID: 33382957 PMCID: PMC7781607 DOI: 10.1080/19420862.2020.1865596] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Good pharmacokinetic (PK) behavior is a key prerequisite for sufficient efficacy of therapeutic monoclonal antibodies (mAbs). Fc glycosylation is a critical quality attribute (CQA) of mAbs, due to its impact on stability and effector functions. However, the effects of various IgG Fc glycoforms on antibody PK remain unclear. We used a combination of glycoengineering and glycoform-resolved PK measurements by mass spectrometry (MS) to assess glycoform effects on PK. Four differently glycoengineered mAbs, each still containing multiple glycoforms, were separately injected into rats. Rat models have been shown to be predictive of human PK. At different time points, blood was taken, from which the mAbs were purified and analyzed with a liquid chromatography-MS-based bottom-up glycoproteomics approach. This allowed us to follow changes in the glycosylation profiles of each glycoengineered mAb over time. Enzyme-linked immunosorbent assay measurements provided an absolute concentration in the form of a sum value for all glycoforms. Information from both readouts was then combined to calculate PK parameters per glycoform. Thereby, multiple glycoform kinetics were resolved within one mAb preparation. We confirmed increased clearance of high-mannose (Man5) and hybrid-type (Man5G0) glycoforms. Specifically, Man5 showed a 1.8 to 2.6-fold higher clearance than agalactosylated, complex glycans (G0F). Unexpectedly, clearance was even higher (4.7-fold) for the hybrid-type glycan Man5G0. In contrast, clearance of agalactosylated, monoantennary glycoforms (G0F-N) was only slightly increased over G0F (1.2 to 1.4-fold). Thus, monoantennary, hybrid-type and high-mannose glycoforms should be distinguished in CQA assessments. Strikingly, α2,3-linked sialylation did not affect clearance, contradicting the involvement of the asialoglycoprotein receptor in mAb clearance.
Collapse
Affiliation(s)
- David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco Thomann
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Martin Lechmann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Carolien A. M. Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastian Malik
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Cordula Jany
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
39
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
40
|
Deppermann C, Kratofil RM, Peiseler M, David BA, Zindel J, Castanheira FVES, van der Wal F, Carestia A, Jenne CN, Marth JD, Kubes P. Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets. J Exp Med 2020; 217:133651. [PMID: 31978220 PMCID: PMC7144524 DOI: 10.1084/jem.20190723] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/01/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Every day, megakaryocytes produce billions of platelets that circulate for several days and eventually are cleared by the liver. The exact removal mechanism, however, remains unclear. Loss of sialic acid residues is thought to feature in the aging and clearance of platelets. Using state-of-the-art spinning disk intravital microscopy to delineate the different compartments and cells of the mouse liver, we observed rapid accumulation of desialylated platelets predominantly on Kupffer cells, with only a few on endothelial cells and none on hepatocytes. Kupffer cell depletion prevented the removal of aged platelets from circulation. Ashwell-Morell receptor (AMR) deficiency alone had little effect on platelet uptake. Macrophage galactose lectin (MGL) together with AMR mediated clearance of desialylated or cold-stored platelets by Kupffer cells. Effective clearance is critical, as mice with an aged platelet population displayed a bleeding phenotype. Our data provide evidence that the MGL of Kupffer cells plays a significant role in the removal of desialylated platelets through a collaboration with the AMR, thereby maintaining a healthy and functional platelet compartment.
Collapse
Affiliation(s)
- Carsten Deppermann
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rachel M Kratofil
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Moritz Peiseler
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Bruna A David
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Joel Zindel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Fernanda Vargas E Silva Castanheira
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Fardau van der Wal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Agostina Carestia
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Craig N Jenne
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jamey D Marth
- Center for Nanomedicine, SBP Medical Discovery Institute, and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Ito K, Angata K, Kuno A, Okumura A, Sakamoto K, Inoue R, Morita N, Watashi K, Wakita T, Tanaka Y, Sugiyama M, Mizokami M, Yoneda M, Narimatsu H. Screening siRNAs against host glycosylation pathways to develop novel antiviral agents against hepatitis B virus. Hepatol Res 2020; 50:1128-1140. [PMID: 32738016 DOI: 10.1111/hepr.13552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
AIM Hepatitis B virus (HBV) relies on glycosylation for crucial functions, such as entry into host cells, proteolytic processing and protein trafficking. The aim of this study was to identify candidate molecules for the development of novel antiviral agents against HBV using an siRNA screening system targeting the host glycosylation pathway. METHODS HepG2.2.15.7 cells that consistently produce HBV were employed for our in vitro study. We investigated the effects of siRNAs that target 88 different host glycogenes on hepatitis B surface antigen (HBsAg) and HBV DNA secretion using the siRNA screening system. RESULTS We identified four glycogenes that reduced HBsAg and/or HBV DNA secretion; however, the observed results for two of them may be due to siRNA off-target effects. Knocking down ST8SIA3, a member of the sialyltransferase family, significantly reduced both HBsAg and HBV DNA secretion. Knocking down GALNT7, which transfers N-acetylgalactosamine to initiate O-linked glycosylation in the Golgi apparatus, also significantly reduced both HBsAg and HBV DNA levels. CONCLUSIONS These results showed that knocking down the ST8SIA3 and GALNT7 glycogenes inhibited HBsAg and HBV DNA secretion in HepG2.2.15.7 cells, indicating that the host glycosylation pathway is important for the HBV life cycle and could be a potential target for the development of novel anti-HBV agents.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kiyohiko Angata
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Akinori Okumura
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazumasa Sakamoto
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Rieko Inoue
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Naoko Morita
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Yoneda
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hisashi Narimatsu
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
42
|
Audia S, Mahevas M, Bonnotte B. [Immune thrombocytopenia: From pathogenesis to treatment]. Rev Med Interne 2020; 42:16-24. [PMID: 32741715 DOI: 10.1016/j.revmed.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to an immune peripheral destruction of platelets and an inappropriate platelet production. The pathogenesis of ITP is now better understood: it involves a humoral immune response which dependents on the stimulation of B cells by specific T cells called T follicular helper cells, leading to their differentiation into plasma cells that produce antiplatelet antibodies thus promoting the phagocytosis of platelets mainly by splenic macrophages. The deciphering of ITP pathogenesis has led to a better understanding of the inefficiency of treatments such as rituximab, although it has not provided yet the determination of biological predictive factor of response to treatments. Moreover, new therapeutic perspectives have been opened in the last few years with the development of molecules targeting Fcγ receptor signalling such as Syk inhibitor, or molecules increasing the clearance of pathogenic autoantibodies such as inhibitors of the neonatal Fc receptor (FcRn).
Collapse
Affiliation(s)
- S Audia
- Service de Médecine Interne et Immunologie Clinique, Médecine 1-SOC 1, Hôpital François Mitterrand, Centre de référence des cytopénies auto-immunes de l'adulte, CHU Dijon-Bourgogne, 14 rue Paul Gaffarel, 21079 Dijon, France; Unité RIGHT, INSERM UMR 1098, Équipe "Immunorégulation et immunopathologie", Bâtiment B3, 15 rue Maréchal de Lattre de Tassigny, 21000 Dijon, France.
| | - M Mahevas
- 1 Service de Médecine Interne, Centre National de Référence des Cytopénies Auto-Immunes de l'Adulte, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil, France; IMRB - U955 - Equipe n°2 "Transfusion et maladies du globule rouge" EFS Île-de-France, Hôpital Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, France
| | - B Bonnotte
- Service de Médecine Interne et Immunologie Clinique, Médecine 1-SOC 1, Hôpital François Mitterrand, Centre de référence des cytopénies auto-immunes de l'adulte, CHU Dijon-Bourgogne, 14 rue Paul Gaffarel, 21079 Dijon, France; Unité RIGHT, INSERM UMR 1098, Équipe "Immunorégulation et immunopathologie", Bâtiment B3, 15 rue Maréchal de Lattre de Tassigny, 21000 Dijon, France
| |
Collapse
|
43
|
Lee-Sundlov MM, Stowell SR, Hoffmeister KM. Multifaceted role of glycosylation in transfusion medicine, platelets, and red blood cells. J Thromb Haemost 2020; 18:1535-1547. [PMID: 32350996 PMCID: PMC7336546 DOI: 10.1111/jth.14874] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Glycosylation is highly prevalent, and also one of the most complex and varied posttranslational modifications. This large glycan diversity results in a wide range of biological functions. Functional diversity includes protein degradation, protein clearance, cell trafficking, cell signaling, host-pathogen interactions, and immune defense, including both innate and acquired immunity. Glycan-based ABO(H) antigens are critical in providing compatible products in the setting of transfusion and organ transplantation. However, evidence also suggests that ABO expression may influence cardiovascular disease, thrombosis, and hemostasis disorders, including alterations in platelet function and von Willebrand factor blood levels. Glycans also regulate immune and hemostasis function beyond ABO(H) antigens. Mutations in glycogenes (PIGA, COSMC) lead to serious blood disorders, including Tn syndrome associated with hyperagglutination, hemolysis, and thrombocytopenia. Alterations in genes responsible for sialic acids (Sia) synthesis (GNE) and UDP-galactose (GALE) and lactosamine (LacNAc) (B4GALT1) profoundly affect circulating platelet counts. Desialylation (removal of Sia) is affected by human and pathogenic neuraminidases. This review addresses the role of glycans in transfusion medicine, hemostasis and thrombosis, and red blood cell and platelet survival.
Collapse
Affiliation(s)
- Melissa M. Lee-Sundlov
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Karin M. Hoffmeister
- Translational Glycomics Center, Blood Research Institute Versiti, Milwaukee, WI, United States
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee WI, United States
| |
Collapse
|
44
|
Humphreys SC, Thayer MB, Campbell J, Chen WLK, Adams D, Lade JM, Rock BM. Emerging siRNA Design Principles and Consequences for Biotransformation and Disposition in Drug Development. J Med Chem 2020; 63:6407-6422. [PMID: 32352779 DOI: 10.1021/acs.jmedchem.9b01839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
After two decades teetering at the intersection of laboratory tool and therapeutic reality, with two siRNA drugs now clinically approved, this modality has finally come into fruition. Consistent with other emerging modalities, initial proof-of-concept efforts concentrated on coupling pharmacologic efficacy with desirable safety profiles. Consequently, thorough investigations of siRNA absorption, distribution, metabolism, and excretion (ADME) properties are lacking. Advancing ADME knowledge will aid establishment of in vitro-in vivo correlations and pharmacokinetic-pharmacodynamic relationships to optimize candidate selection through discovery and translation. Here, we outline the emerging siRNA design principles and discuss the consequences for siRNA disposition and biotransformation. We propose a conceptual framework for siRNA ADME evaluation, contextualizing the site of biotransformation product formation with PK-PD modulation, and end with a discussion around safety and regulatory considerations and future directions for this modality.
Collapse
Affiliation(s)
- Sara C Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Mai B Thayer
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Jabbar Campbell
- Neuroscience Department, Amgen Research, 360 Binney Street, Cambridge, Massachusetts 02141, United States
| | - Wen Li Kelly Chen
- Comparative Biology and Safety Sciences Department, Amgen Research, 360 Binney Street, Cambridge, Massachusetts 02141, United States
| | - Dan Adams
- Comparative Biology and Safety Sciences Department, Amgen Research, 360 Binney Street, Cambridge, Massachusetts 02141, United States
| | - Julie M Lade
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Brooke M Rock
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| |
Collapse
|
45
|
Cheal SM, Patel M, Yang G, Veach D, Xu H, Guo HF, Zanzonico PB, Axworthy DB, Cheung NKV, Ouerfelli O, Larson SM. An N-Acetylgalactosamino Dendron-Clearing Agent for High-Therapeutic-Index DOTA-Hapten Pretargeted Radioimmunotherapy. Bioconjug Chem 2020; 31:501-506. [PMID: 31891487 DOI: 10.1021/acs.bioconjchem.9b00736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clearing agents (CAs) can rapidly remove nonlocalized targeting biomolecules from circulation for hepatic catabolism, thereby enhancing the therapeutic index (TI), especially for blood (marrow), of the subsequently administered radioisotope in any multistep pretargeting strategy. Herein we describe the synthesis and in vivo evaluation of a fully synthetic glycodendrimer-based CA for DOTA-based pretargeted radioimmunotherapy (DOTA-PRIT). The novel dendron-CA consists of a nonradioactive yttrium-DOTA-Bn molecule attached via a linker to a glycodendron displaying 16 terminal α-thio-N-acetylgalactosamine (α-SGalNAc) units (CCA α-16-DOTA-Y3+; molecular weight: 9059 Da). Pretargeting [177Lu]LuDOTA-Bn with CCA α-16-DOTA-Y3+ to GPA33-expressing SW1222 human colorectal xenografts was highly effective, leading to absorbed doses of [177Lu]LuDOTA-Bn for blood, tumor, liver, spleen, and kidneys of 11.7, 468, 9.97, 5.49, and 13.3 cGy/MBq, respectively. Tumor-to-normal tissues absorbed-dose ratios (i.e., TIs) ranged from 40 (e.g., for blood and kidney) to about 550 for stomach.
Collapse
Affiliation(s)
- Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Mitesh Patel
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Guangbin Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Hong-Fen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | | | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| |
Collapse
|
46
|
|
47
|
Cutler CE, Jones MB, Cutler AA, Mener A, Arthur CM, Stowell SR, Cummings RD. Cosmc is required for T cell persistence in the periphery. Glycobiology 2019; 29:776-788. [PMID: 31317176 DOI: 10.1093/glycob/cwz054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 01/14/2023] Open
Abstract
T lymphocytes, a key arm of adaptive immunity, are known to dynamically regulate O-glycosylation during T cell maturation and when responding to stimuli; however, the direct role of O-glycans in T cell maturation remains largely unknown. Using a conditional knockout of the gene (C1GalT1C1 or Cosmc) encoding the specific chaperone Cosmc, we generated mice whose T cells lack extended O-glycans (T cell conditional Cosmc knock out or TCKO mice) and homogeneously express the truncated Tn antigen. Loss of Cosmc is highly deleterious to T cell persistence, with near-complete elimination of Cosmc-null T cells from spleen and lymph nodes. Total T cell counts are 20% of wild type (WT), among which only 5% express the truncated glycans, with the remaining 95% consisting of escapers from Cre-mediated recombination. TCKO thymocytes were able to complete thymic maturation but failed to populate the secondary lymphoid organs both natively and upon adoptive transfer to WT recipients. Our results demonstrate that extended O-glycosylation is required for the establishment and maintenance of the peripheral T cell population.
Collapse
Affiliation(s)
- Christopher E Cutler
- Department of Surgery, Beth Israel Deaconess Medical Center, CLS 11087, 3 Blackfan Circle, Boston, MA, USA.,Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, USA
| | - Mark B Jones
- Department of Surgery, Beth Israel Deaconess Medical Center, CLS 11087, 3 Blackfan Circle, Boston, MA, USA.,Harvard Medical School Center for Glycoscience, Harvard Medical School, 3 Blackfan Circle, Boston, MA, USA
| | - Alicia A Cutler
- University of Colorado, Willard Loop Drive, Boulder, CO, USA
| | - Amanda Mener
- Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, USA
| | - Connie M Arthur
- Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, USA
| | - Sean R Stowell
- Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, CLS 11087, 3 Blackfan Circle, Boston, MA, USA.,Harvard Medical School Center for Glycoscience, Harvard Medical School, 3 Blackfan Circle, Boston, MA, USA
| |
Collapse
|
48
|
|
49
|
Riswari SF, Tunjungputri RN, Kullaya V, Garishah FM, Utari GSR, Farhanah N, Overheul GJ, Alisjahbana B, Gasem MH, Urbanus RT, de Groot PG, Lefeber DJ, van Rij RP, van der Ven A, de Mast Q. Desialylation of platelets induced by Von Willebrand Factor is a novel mechanism of platelet clearance in dengue. PLoS Pathog 2019; 15:e1007500. [PMID: 30849118 PMCID: PMC6426266 DOI: 10.1371/journal.ppat.1007500] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/20/2019] [Accepted: 12/03/2018] [Indexed: 11/19/2022] Open
Abstract
Thrombocytopenia and platelet dysfunction are commonly observed in patients with dengue virus (DENV) infection and may contribute to complications such as bleeding and plasma leakage. The etiology of dengue-associated thrombocytopenia is multifactorial and includes increased platelet clearance. The binding of the coagulation protein von Willebrand factor (VWF) to the platelet membrane and removal of sialic acid (desialylation) are two well-known mechanisms of platelet clearance, but whether these conditions also contribute to thrombocytopenia in dengue infection is unknown. In two observational cohort studies in Bandung and Jepara, Indonesia, we show that adult patients with dengue not only had higher plasma concentrations of plasma VWF antigen and active VWF, but that circulating platelets had also bound more VWF to their membrane. The amount of platelet-VWF binding correlated well with platelet count. Furthermore, sialic acid levels in dengue patients were significantly reduced as assessed by the binding of Sambucus nigra lectin (SNA) and Maackia amurensis lectin II (MAL-II) to platelets. Sialic acid on the platelet membrane is neuraminidase-labile, but dengue virus has no known neuraminidase activity. Indeed, no detectable activity of neuraminidase was present in plasma of dengue patients and no desialylation was found of plasma transferrin. Platelet sialylation was also not altered by in vitro exposure of platelets to DENV nonstructural protein 1 or cultured DENV. In contrast, induction of binding of VWF to glycoprotein 1b on platelets using the VWF-activating protein ristocetin resulted in the removal of platelet sialic acid by translocation of platelet neuraminidase to the platelet surface. The neuraminidase inhibitor oseltamivir reduced VWF-induced platelet desialylation. Our data demonstrate that excessive binding of VWF to platelets in dengue results in neuraminidase-mediated platelet desialylation and platelet clearance. Oseltamivir might be a novel treatment option for severe thrombocytopenia in dengue infection. Dengue is the most common arbovirus infection in the world. A decrease in the number of blood platelets is an almost universal finding in severe dengue. Binding of the coagulation protein von Willebrand factor (VWF) and loss of sialic acid residues from the platelet membrane are two main mechanisms of clearance of senescent platelets under non-pathological conditions. Here, we show that platelets from patients with acute dengue have bound more VWF and have lost sialic acid from their membrane. Sialic acid can be cleaved by the enzyme neuraminidase. We show that neuraminidase activity in the plasma is not increased and that neither dengue virus itself nor nonstructural protein 1, a protein secreted by dengue virus, cleave sialic acid from the platelet membrane. In contrast, binding of VWF to platelets results in translocation of neuraminidase to the platelet membrane and subsequent cleavage of sialic acid. This process could be inhibited by the neuraminidase inhibitor oseltamivir, a commonly used anti-influenza drug. Altogether, our results indicate that VWF binding to platelets is increased in dengue infection, leading to the removal of sialic acid and platelet clearance. Oseltamivir may prevent this process and thus represent a novel treatment option for low platelet numbers in dengue infection.
Collapse
Affiliation(s)
- Silvita Fitri Riswari
- Clinical Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rahajeng N. Tunjungputri
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Vesla Kullaya
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Kilimanjaro Christian Medical Center, Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Fadel M. Garishah
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Gloria S. R. Utari
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Nur Farhanah
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Gijs J. Overheul
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bachti Alisjahbana
- Clinical Infectious Disease Research Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - M. Hussein Gasem
- Center for Tropical and Infectious Disease (CENTRID), Faculty of Medicine Diponegoro University, Dr Kariadi Hospital, Semarang, Indonesia
| | - Rolf T. Urbanus
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philip. G. de Groot
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J. Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P. van Rij
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre van der Ven
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Yang Q, Wang P, Wang S, Wang Y, Feng S, Zhang S, Li H. The hepatic lectin of zebrafish binds a wide range of bacteria and participates in immune defense. FISH & SHELLFISH IMMUNOLOGY 2018; 82:267-278. [PMID: 30120977 DOI: 10.1016/j.fsi.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
C-type lectins (CTLs) have a diverse range of functions including cell-cell adhesion, immune response to pathogens and apoptosis. Asialoglycoprotein receptor (ASGPR), also known as hepatic lectin, a member of CTLs, was the first animal lectin identified, yet information regarding it remains rather limited in teleost. In this study, we identified a putative protein in zebrafish, named as the zebrafish hepatic lectin (Zhl). The zhl encoded a typical Ca2+-dependent carbohydrate-binding protein, and was mainly expressed in the liver in a tissue specific fashion. Challenge with LPS and LTA resulted in significant up-regulation of zhl expression, suggesting involvement in immune response. Actually, recombinant C-type lectin domain (rCTLD) of Zhl was found to be capable of agglutinating and binding to both Gram-negative and Gram-positive bacteria and enhancing the phagocytosis of the bacteria by macrophages. Moreover, rCTLD specifically bound to insoluble lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN), which were inhibited by galactose. Interestingly, Zhl was located in the membrane, and its overexpression could inhibit the production of pre-inflammatory cytokines. Taken together, these results indicate that Zhl has immune activity capable of defending invading pathogens, enriching our understanding of the function of ASGPR/hepatic lectin.
Collapse
Affiliation(s)
- Qingyun Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Su Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yashuo Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shuoqi Feng
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|