1
|
Ebner K, Fontebasso V, Ferro F, Singewald N, Hannibal J. PACAP regulates neuroendocrine and behavioral stress responses via CRF-containing neurons of the rat hypothalamic paraventricular nucleus. Neuropsychopharmacology 2025; 50:519-530. [PMID: 39472527 PMCID: PMC11735793 DOI: 10.1038/s41386-024-02016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 01/18/2025]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide widely distributed in the brain including the hypothalamic paraventricular nucleus (PVN) implying a regulatory role in stress function. Recent evidence indicates that one of the main targets of PACAP within the PVN are corticotropin-releasing factor (CRF) neurons, which are key regulators of the hypothalamic-pituitary-adrenal (HPA) axis. However, the neural correlates that mediate PACAP effects on stress function are not fully understood. In the present study, we characterized the neuronal mechanism by which PACAP regulates neuroendocrine and behavioral stress responses in rats. We found that intracerebroventricular administration of PACAP increased the swim stress-induced c-Fos expression in distinct brain areas of the stress and anxiety circuitry including the parvocellular part of the PVN and changed behavioral stress coping during forced swimming to a more passive coping style (i.e., indicated by increased floating and reduced struggling behavior). Subsequently, PACAP administration directly into the PVN mimicked these behavioral effects and potentiated the plasma ACTH response to forced swim stress suggesting an excitatory role of PACAP on HPA stress axis reactivity. In addition, immunohistochemical analysis revealed a considerable portion of stress-activated CRF neurons in the medial parvocellular part of the PVN that co-localized PAC1 receptors suggesting that PACAP-induced effects on stress function are likely mediated directly by activation of CRF neurons in the PVN. Thus, these findings suggest that the PVN may represent one of the key areas where PACAP regulates the neuroendocrine and behavioral stress response.
Collapse
Affiliation(s)
- Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Veronica Fontebasso
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Federico Ferro
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Florido A, Curtis VR, Pégard NC, Rodriguez-Romaguera J. Disentangling the Neural Circuits of Arousal and Anxiety-Like Behavior. Curr Top Behav Neurosci 2024. [PMID: 39579325 DOI: 10.1007/7854_2024_539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Anxiety disorders are prevalent and debilitating conditions characterized by excessive concern and fear, affecting thoughts, behaviors, and sensations. A critical component of anxiety is arousal, a complex process involving alertness regulation and stimulus salience modulation. While arousal is adaptive in normal circumstances, dysregulation can lead to hypoarousal or hyperarousal, affecting response selection and threat perception. This chapter reviews challenges in studying arousal in preclinical anxiety models, emphasizing the need for multicomponent measurement and analysis. Novel methodologies integrating physiological measurement with activity tracking of neurons with single-cell resolution in awake animals are discussed, with emphasis in current challenges. Understanding these mechanisms is crucial for developing effective treatments for anxiety disorders.
Collapse
Affiliation(s)
- Antonio Florido
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vincent R Curtis
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Nicolas C Pégard
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Stress Initiative, University of North Carolina, Chapel Hill, NC, USA.
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Stress Initiative, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Institute for Developmental Disorders, University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Usami N, Maegawa H, Hayashi M, Kudo C, Niwa H. Changes in the analgesic mechanism of oxytocin can contribute to hyperalgesia in Parkinson's disease model rats. PLoS One 2024; 19:e0300081. [PMID: 39163355 PMCID: PMC11335116 DOI: 10.1371/journal.pone.0300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/19/2024] [Indexed: 08/22/2024] Open
Abstract
Pain is a major non-motor symptom of Parkinson's disease (PD). Alterations in the descending pain inhibitory system (DPIS) have been reported to trigger hyperalgesia in PD patients. However, the underlying mechanisms remain unclear. In the current study, dopaminergic nigrostriatal lesions were induced in rats by injecting 6-hydroxydopamine (6-OHDA) into their medial forebrain bundle. The neural mechanisms underlying changes in nociception in the orofacial region of 6-OHDA-lesioned rats was examined by injecting formalin into the vibrissa pad. The 6-OHDA-lesioned rats were seen to exhibit increased frequency of face-rubbing and more c-Fos immunoreactive (c-Fos-IR) cells in the trigeminal spinal subnucleus caudalis (Vc), confirming hyperalgesia. Examination of the number of c-Fos-IR cells in the DPIS nuclei [including the midbrain ventrolateral periaqueductal gray, the locus coeruleus, the nucleus raphe magnus, and paraventricular nucleus (PVN)] showed that 6-OHDA-lesioned rats exhibited a significantly lower number of c-Fos-IR cells in the magnocellular division of the PVN (mPVN) after formalin injection compared to sham-operated rats. Moreover, the 6-OHDA-lesioned rats also exhibited significantly lower plasma oxytocin (OT) concentration and percentage of oxytocin-immunoreactive (OT-IR) neurons expressing c-Fos protein in the mPVN and dorsal parvocellular division of the PVN (dpPVN), which secrete the analgesic hormone OT upon activation by nociceptive stimuli, when compared to the sham-operated rats. The effect of OT on hyperalgesia in 6-OHDA-lesioned rats was examined by injecting formalin into the vibrissa pad after intracisternal administration of OT, and the findings showed a decrease in the frequency of face rubbing and the number of c-Fos-IR cells in the Vc. In conclusion, these findings confirm presence of hyperalgesia in PD rats, potentially due to suppression of the analgesic effects of OT originating from the PVN.
Collapse
Affiliation(s)
- Nayuka Usami
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hiroharu Maegawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masayoshi Hayashi
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiho Kudo
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
4
|
Niizato T, Nishiyama Y, Oka Y, Aung PT, Nomura S. Toward stressor-free stress estimation: The integrated information theory explains the information dynamics of stress. iScience 2024; 27:110583. [PMID: 39211542 PMCID: PMC11357877 DOI: 10.1016/j.isci.2024.110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Recent neurological studies have revealed several detailed stress mechanisms. However, the latent variables behind stress study still interpret stress responses as difficult. Therefore, we propose a stressor-free method of stress evaluation using Integrated Information Theory (IIT) to address these issues. We conducted experiments inducing acute stress responses against tasks with three levels of difficulty, easy, moderate, and difficult, to verify the IIT in stress study. The moderate condition was related to active coping with stress. By contrast, the easy and difficult conditions are related to passive stress coping. Especially, the easy condition seemed to cause boredom. Our results revealed that the degree of entangled system fluctuation was associated with the subjective ratings for the tasks. Interestingly, our method could also evaluate stress as a state of boredom that had not received much research attention. Our method can be an alternative stress estimation method to overcome the latent variable problem.
Collapse
Affiliation(s)
- Takayuki Niizato
- Department of Intelligent Interaction Technologies, Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuta Nishiyama
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yuta Oka
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Poe Thinzar Aung
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shusaku Nomura
- Department of Information and Management Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
5
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Lin K, Sunko D, Wang J, Yang J, Parsey RV, DeLorenzo C. Investigating the relationship between hippocampus/dentate gyrus volume and hypothalamus metabolism in participants with major depressive disorder. Sci Rep 2024; 14:10622. [PMID: 38724691 PMCID: PMC11082185 DOI: 10.1038/s41598-024-61519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Reduced hippocampal volume occurs in major depressive disorder (MDD), potentially due to elevated glucocorticoids from an overactivated hypothalamus-pituitary-adrenal (HPA) axis. To examine this in humans, hippocampal volume and hypothalamus (HPA axis) metabolism was quantified in participants with MDD before and after antidepressant treatment. 65 participants (n = 24 males, n = 41 females) with MDD were treated in a double-blind, randomized clinical trial of escitalopram. Participants received simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) before and after treatment. Linear mixed models examined the relationship between hippocampus/dentate gyrus volume and hypothalamus metabolism. Chi-squared tests and multivariable logistic regression examined the association between hippocampus/dentate gyrus volume change direction and hypothalamus activity change direction with treatment. Multiple linear regression compared these changes between remitter and non-remitter groups. Covariates included age, sex, and treatment type. No significant linear association was found between hippocampus/dentate gyrus volume and hypothalamus metabolism. 62% (38 of 61) of participants experienced a decrease in hypothalamus metabolism, 43% (27 of 63) of participants demonstrated an increase in hippocampus size (51% [32 of 63] for the dentate gyrus) following treatment. No significant association was found between change in hypothalamus activity and change in hippocampus/dentate gyrus volume, and this association did not vary by sex, medication, or remission status. As this multimodal study, in a cohort of participants on standardized treatment, did not find an association between hypothalamus metabolism and hippocampal volume, it supports a more complex pathway between hippocampus neurogenesis and hypothalamus metabolism changes in response to treatment.
Collapse
Affiliation(s)
| | | | - Junying Wang
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, NY, USA
| | - Jie Yang
- Department of Family, Population & Preventive Medicine, Stony Brook University, New York, NY, USA
| | - Ramin V Parsey
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Jensen DEA, Ebmeier KP, Suri S, Rushworth MFS, Klein-Flügge MC. Nuclei-specific hypothalamus networks predict a dimensional marker of stress in humans. Nat Commun 2024; 15:2426. [PMID: 38499548 PMCID: PMC10948785 DOI: 10.1038/s41467-024-46275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
The hypothalamus is part of the hypothalamic-pituitary-adrenal axis which activates stress responses through release of cortisol. It is a small but heterogeneous structure comprising multiple nuclei. In vivo human neuroimaging has rarely succeeded in recording signals from individual hypothalamus nuclei. Here we use human resting-state fMRI (n = 498) with high spatial resolution to examine relationships between the functional connectivity of specific hypothalamic nuclei and a dimensional marker of prolonged stress. First, we demonstrate that we can parcellate the human hypothalamus into seven nuclei in vivo. Using the functional connectivity between these nuclei and other subcortical structures including the amygdala, we significantly predict stress scores out-of-sample. Predictions use 0.0015% of all possible brain edges, are specific to stress, and improve when using nucleus-specific compared to whole-hypothalamus connectivity. Thus, stress relates to connectivity changes in precise and functionally meaningful subcortical networks, which may be exploited in future studies using interventions in stress disorders.
Collapse
Affiliation(s)
- Daria E A Jensen
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK.
- Clinic of Cognitive Neurology, University Medical Center Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103, Leipzig, Germany.
| | - Klaus P Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB, University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK.
| |
Collapse
|
8
|
Kwon J, Kim DY, Cho KJ, Hashimoto M, Matsuoka K, Kamijo T, Wang Z, Karnup S, Robertson AM, Tyagi P, Yoshimura N. Pathophysiology of Overactive Bladder and Pharmacologic Treatments Including β3-Adrenoceptor Agonists -Basic Research Perspectives. Int Neurourol J 2024; 28:12-33. [PMID: 38461853 DOI: 10.5213/inj.2448002.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or without urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, aging, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myogenic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic contraction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine (ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals in the afferent nerve transmission process. β3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhibition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a β3-agonist, prevents ACh release in the BOO-induced detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via urothelial β3-AR.
Collapse
Affiliation(s)
- Joonbeom Kwon
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Leaders Urology Clinic, Daegu, Korea
| | - Duk Yoon Kim
- Department of Urology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Kang Jun Cho
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mamoru Hashimoto
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tadanobu Kamijo
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Bioengineering, Pittsburgh, PA, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Kim CY, Ko K, Choi SH, Jo M, Kim J, Yoon S, Yi IJ, Morán-Valero MI, Kwon MY, Sohn J, Yi SS. Effects of Saffron Extract (Affron ®) with 100 mg/kg and 200 mg/kg on Hypothalamic-Pituitary-Adrenal Axis and Stress Resilience in Chronic Mild Stress-Induced Depression in Wistar Rats. Nutrients 2023; 15:4855. [PMID: 38068714 PMCID: PMC10707924 DOI: 10.3390/nu15234855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Stress-related symptoms are a global concern, impacting millions of individuals, yet effective and safe treatments remain scarce. Although multiple studies have highlighted the stress- alleviating properties of saffron extract, the underlying mechanisms remain unclear. This study employs the unpredictable chronic mild stress (CMS) animal model to investigate the impact of a standardized saffron extract, Affron® (AFN), on hypothalamic-pituitary-adrenal (HPA) axis regulation and neuroplasticity in Wistar rats following repeated oral administration. The research evaluates AFN's effects on various stress-related parameters, including hypothalamic gene expression, stress hormone levels, and the sucrose preference test. In animals subjected to continuous unpredictable CMS, repetitive administration of AFN at doses of 100 mg/kg and 200 mg/kg effectively normalized HPA axis dysregulation and enhanced neuroplasticity. Increased concentrations of AFN demonstrated greater efficacy. Following AFN oral administration, adrenocorticotropic and corticosterone hormone levels exhibited significant or nearly significant reductions in comparison to subjects exposed to stress only. These changes align with the alleviation of stress and the normalization of the HPA axis. These findings elucidate AFN's role in stress mitigation, affirm its health benefits, validate its potential as a treatment for stress-related symptoms, confirm its physiological effectiveness, and emphasize its therapeutic promise.
Collapse
Affiliation(s)
- Chae-Young Kim
- BK21 Four Program, Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Kayoung Ko
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea; (K.K.); (S.-H.C.); (M.J.)
| | - Seo-Hee Choi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea; (K.K.); (S.-H.C.); (M.J.)
| | - Miri Jo
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea; (K.K.); (S.-H.C.); (M.J.)
| | - Jinhye Kim
- Central Lab., iCONNECTOME Co., Ltd., Cheonan 31168, Republic of Korea; (J.K.); (S.Y.)
| | - Sunmi Yoon
- Central Lab., iCONNECTOME Co., Ltd., Cheonan 31168, Republic of Korea; (J.K.); (S.Y.)
| | - Isaac Jinwon Yi
- Department of Cognitive Science, University of California, San Diego, CA 92093, USA;
| | | | - Min-Young Kwon
- Hyundai Bioland Co., Ltd., Ansan 15407, Republic of Korea; (M.-Y.K.); (J.S.)
| | - Johann Sohn
- Hyundai Bioland Co., Ltd., Ansan 15407, Republic of Korea; (M.-Y.K.); (J.S.)
| | - Sun-Shin Yi
- BK21 Four Program, Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea;
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea; (K.K.); (S.-H.C.); (M.J.)
- Central Lab., iCONNECTOME Co., Ltd., Cheonan 31168, Republic of Korea; (J.K.); (S.Y.)
| |
Collapse
|
10
|
Buckhaults K, Swack BD, Sachs BD. Estrogen administration and withdrawal in a model of hormone-simulated pregnancy lead to alterations in behavior and gene expression but do not induce depression-like phenotypes in mice. Physiol Behav 2023; 269:114288. [PMID: 37414236 DOI: 10.1016/j.physbeh.2023.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Pregnancy and the post-partum period are associated with substantial fluctuations in hormone levels and are frequently associated with significant stress. Many individuals also experience affective disturbances during the peri‑partum period, including anxiety, the 'baby blues,' and post-partum depression. However, the extent to which these affective changes result from rapidly altering hormone levels, increased stress, or the combination of both remains largely unknown. The current study sought to evaluate the consequences of pregnancy-like hormonal changes on behavior and gene expression in c57BL/6 mice in the absence of stress using a hormone-simulated pregnancy model. Our results reveal that animals receiving hormone injections to simulate the high levels of estrogen observed in late pregnancy and animals withdrawn from estrogen to mimic the rapid decline in this hormone following parturition both exhibit increased anxiety-like behavior compared to ovariectomized controls in the novel open field test. However, no other significant anxiety- or depression-like alterations were observed in either hormone-treated group compared to ovariectomized controls. Both hormone administration and estrogen withdrawal were shown to induce several significant alterations in gene expression in the bed nucleus of the stria terminalis and the paraventricular nucleus of the hypothalamus. In contrast to the estrogen withdrawal hypothesis of post-partum depression, our results suggest that this method estrogen withdrawal following hormone-simulated pregnancy in the absence of stress does not induce phenotypes consistent with post-partum depression in c57BL/6 mice. However, given that estrogen withdrawal does lead to significant gene expression changes in two stress-sensitive brain regions, it remains possible that estrogen withdrawal could still contribute to affective dysregulation in the peri-partum period by influencing susceptibility to stress. Future research is required to evaluate this possibility.
Collapse
Affiliation(s)
- Kerry Buckhaults
- Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, 19085, USA
| | - Benjamin D Swack
- Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, 19085, USA
| | - Benjamin D Sachs
- Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
11
|
Spindler M, Palombo M, Zhang H, Thiel CM. Dysfunction of the hypothalamic-pituitary adrenal axis and its influence on aging: the role of the hypothalamus. Sci Rep 2023; 13:6866. [PMID: 37105986 PMCID: PMC10140145 DOI: 10.1038/s41598-023-33922-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
As part of the hypothalamic-pituitary adrenal (HPA) axis, the hypothalamus exerts pivotal influence on metabolic and endocrine homeostasis. With age, these processes are subject to considerable change, resulting in increased prevalence of physical disability and cardiac disorders. Yet, research on the aging human hypothalamus is lacking. To assess detailed hypothalamic microstructure in middle adulthood, 39 healthy participants (35-65 years) underwent comprehensive structural magnetic resonance imaging. In addition, we studied HPA axis dysfunction proxied by hair cortisol and waist circumference as potential risk factors for hypothalamic alterations. We provide first evidence of regionally different hypothalamic microstructure, with age effects in its anterior-superior subunit, a critical area for HPA axis regulation. Further, we report that waist circumference was related to increased free water and decreased iron content in this region. In age, hair cortisol was additionally associated with free water content, such that older participants with higher cortisol levels were more vulnerable to free water content increase than younger participants. Overall, our results suggest no general age-related decline in hypothalamic microstructure. Instead, older individuals could be more susceptible to risk factors of hypothalamic decline especially in the anterior-superior subregion, including HPA axis dysfunction, indicating the importance of endocrine and stress management in age.
Collapse
Affiliation(s)
- Melanie Spindler
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany.
- Cluster of Excellence "Hearing4all", Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany.
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology & School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing (CMIC), University College London (UCL), London, UK
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
12
|
Hou W, Huang S, Li L, Guo X, He Z, Shang S, Jia Z, Zhang L, Qu Y, Huang C, Li Y, Li Y, Lv Z, Tai F. Oxytocin treatments or activation of the paraventricular nucleus-the shell of nucleus accumbens pathway reduce adverse effects of chronic social defeat stress on emotional and social behaviors in Mandarin voles. Neuropharmacology 2023; 230:109482. [PMID: 36893984 DOI: 10.1016/j.neuropharm.2023.109482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Chronic social stress can cause psychological disease. Although oxytocin (OT) has been showed to modulate effects of chronic social defeat stress (CSDS) on emotional and social behaviors, however, how OT circuits mediate effects of CSDS on emotional and social abnormalities remains unclear. Here, we found that repeated intraperitoneal OT administration in the process of CSDS buffered adverse effects of CSDS on emotional and social behaviors in mandarin voles (Microtus mandarinus) of both sexes except no effect on depression-like behavior of males. Repeated OT treatments during CSDS prevented decrease of oxytocin receptors in nucleus accumbens (NAc) in females, but produced no effects on males. Furthermore, using designer receptors exclusively activated by designer drugs (DREADDs)-based chemogenetic tools, we determined that the activation of the paraventricular nucleus (PVN)-the shell of NAc (NAcs) projections before social defeat during CSDS process significantly prevented the increase of the anxiety-like behaviors and social avoidance induced by CSDS in both sexes, and reversed the depressive-like behaviors induced by CSDS only in females. Besides, optogenetic activation of PVN-NAcs projections after CSDS reduced anxiety-like behaviors and increased levels of sociality. Collectively, we suggest that PVN-NAcs projections modulate emotional and social behaviors during or after the process of CSDS sex-specifically, although AAV viruses did not specifically infect OT neurons. These findings offer potential targets for preventing or treating emotional and social disorders induced by chronic stress.
Collapse
Affiliation(s)
- Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shuying Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xing Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shufeng Shang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; College of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Ziyan Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yishan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Caihong Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yin Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
13
|
Jammoul M, Naddour J, Madi A, Reslan MA, Hatoum F, Zeineddine J, Abou-Kheir W, Lawand N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton Neurosci 2023; 245:103071. [PMID: 36580747 PMCID: PMC9789535 DOI: 10.1016/j.autneu.2022.103071] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Patients with long COVID suffer from many neurological manifestations that persist for 3 months following infection by SARS-CoV-2. Autonomic dysfunction (AD) or dysautonomia is one complication of long COVID that causes patients to experience fatigue, dizziness, syncope, dyspnea, orthostatic intolerance, nausea, vomiting, and heart palpitations. The pathophysiology behind AD onset post-COVID is largely unknown. As such, this review aims to highlight the potential mechanisms by which AD occurs in patients with long COVID. The first proposed mechanism includes the direct invasion of the hypothalamus or the medulla by SARS-CoV-2. Entry to these autonomic centers may occur through the neuronal or hematogenous routes. However, evidence so far indicates that neurological manifestations such as AD are caused indirectly. Another mechanism is autoimmunity whereby autoantibodies against different receptors and glycoproteins expressed on cellular membranes are produced. Additionally, persistent inflammation and hypoxia can work separately or together to promote sympathetic overactivation in a bidirectional interaction. Renin-angiotensin system imbalance can also drive AD in long COVID through the downregulation of relevant receptors and formation of autoantibodies. Understanding the pathophysiology of AD post-COVID-19 may help provide early diagnosis and better therapy for patients.
Collapse
Affiliation(s)
- Maya Jammoul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Judith Naddour
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Amir Madi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Hatoum
- Faculty of Medicine, American University of Beirut, Lebanon
| | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; Department of Neurology, Faculty of Medicine, American University of Beirut, Lebanon.
| |
Collapse
|
14
|
Sánchez-Lafuente CL, Romay-Tallon R, Allen J, Johnston JN, Kalynchuk LE, Caruncho HJ. Sex differences in basal reelin levels in the paraventricular hypothalamus and in response to chronic stress induced by repeated corticosterone in rats. Horm Behav 2022; 146:105267. [PMID: 36274499 DOI: 10.1016/j.yhbeh.2022.105267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/04/2022]
Abstract
Repeated exposure to the stress hormone corticosterone results in depressive-like behaviours paralleled by the downregulation of hippocampal reelin expression. Reelin is expressed in key neural populations involved in the stress response, but whether its hypothalamic expression is sex-specific or involved in sex-specific vulnerability to stress is unknown. Female and male rats were treated with either daily vehicle or corticosterone injections (40 mg/kg) for 21 days. Thereafter, they were subjected to several behavioural tasks before being sacrificed to allow the analysis of reelin expression in hypothalamic nuclei. The basal density of reelin-positive cells in males was significantly higher in the paraventricular nucleus (19 %) and in the medial preoptic area (51 %) compared to females. Chronic corticosterone injections increased the immobility time in the forced swim test in males (107 %) and females (108 %) and decreased the exploration of the elevated plus maze in males (34 %). Corticosterone also caused a significant decrease in the density of reelin-positive cells in males, in both ventrodorsal (37 %) and ventrolateral (32 %) subdivisions of the paraventricular nucleus, while not affecting females. Moreover, in the paraventricular nucleus of males, 30 % of the basal reelin-positive cells co-expressed oxytocin while only 17.5 % did in females, showing a positive correlation between reelin and oxytocin levels. Chronic corticosterone did not significantly affect co-localization levels. For the first time, this study shows that there is a sexually dimorphic subpopulation of reelin-positive neurons in the paraventricular nucleus that can be differentially affected by chronic stress.
Collapse
Affiliation(s)
| | | | - Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Jenessa N Johnston
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
15
|
Das S, Komnenov D, Newhouse L, Rishi AK, Rossi NF. Paraventricular Nucleus V 1a Receptor Knockdown Blunts Neurocardiovascular Responses to Acute Stress in Male Rats after Chronic Mild Unpredictable Stress. Physiol Behav 2022; 253:113867. [PMID: 35661787 DOI: 10.1016/j.physbeh.2022.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Chronic stress and depression impart increased risk for adverse cardiovascular events. Autonomic dysregulation, particularly sympathoexcitation, has long been associated with poor cardiovascular outcomes. Vasopressin (AVP) receptors with the paraventricular nucleus (PVN), known as an integrating locus for hemodynamic and autonomic function, have been implicated in behavior and stress. The present studies were designed to test the hypothesis that knockdown of vasopressin V1aR within the PVN in male Sprague Dawley rats subjected to chronic mild unpredictable stress (CMS) would result in lower resting hemodynamics and renal sympathetic nerve activity (RSNA) and mitigate the responses to acute stressors. Male rats underwent CMS for 4 weeks; controls were housed in standard caging. Twenty days into the paradigm, the PVN was injected with either small interfering RNA (siRNA) directed against V1aR or scrambled RNA (scrRNA). Arterial pressure, heart rate and RSNA were ascertained by telemetry with the animals in their home cages. Pretreatment with siRNA to V1aR prevented the increase in arterial pressure to PVN microinjection with exogenous AVP. Basal mean arterial pressure (MAP) was significantly higher in scrRNA-treated but not in siRNA-treated CMS rats vs control rats. Paradoxically, basal RSNA was approximately two-fold higher in siRNA-treated CMS rats. Acute emotional stress delivered as 15-sec air-jet resulted in greater peak and duration of the MAP and RSNA responses in scrRNA-treated CMS rats vs control; siRNA treatment inhibited the responses. The 15-sec exposure to ammonia to test the nasopharyngeal reflex, whose circuitry does not include the PVN, produced similar increases in arterial pressure, heart rate, and RSNA in controls and both groups of CMS rats. Thus, CMS increases arterial pressure and predisposes to greater hemodynamic and RSNA responses to acute emotional stress. The higher basal RSNA in siRNA-treated rats may be due to functional and/or anatomical neuroplasticity occurring during more protracted inhibition of V1aR PVN signaling. Vasopressinergic signaling via V1aR in PVN modulates the cardiovascular and sympathetic responses to both the chronic and acute stress.
Collapse
Affiliation(s)
- Shibandri Das
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI, US
| | - Dragana Komnenov
- Departments of Internal Medicine and Physiology, Wayne State University, Detroit, MI, US
| | - Lauren Newhouse
- Department of Internal Medicine, University of Illinois, Chicago, IL, US
| | - Arun K Rishi
- Department of Oncology, Wayne State University, US; John D. Dingell VA Medical Center, Detroit, MI, US
| | - Noreen F Rossi
- Departments of Internal Medicine and Physiology, Wayne State University, Detroit, MI, US; John D. Dingell VA Medical Center, Detroit, MI, US.
| |
Collapse
|
16
|
Riser M, Norrholm SD. Pituitary Adenylate Cyclase Activating Peptide and Post-traumatic Stress Disorder: From Bench to Bedside. Front Psychiatry 2022; 13:861606. [PMID: 35865299 PMCID: PMC9295898 DOI: 10.3389/fpsyt.2022.861606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with isoforms consisting of either 27 or 38 amino acids. PACAP is encoded by the adenylate cyclase activating peptide gene, ADCYAP1, in humans and the highly conserved corresponding rodent gene, Adcyap1. PACAP is known to regulate cellular stress responses in mammals. PACAP is robustly expressed in both central nervous system (CNS) and peripheral tissues. The activity of PACAP and its selective receptor, PAC1-R, has been characterized within the hypothalamic-pituitary-adrenal (HPA) axis and autonomic division of the peripheral nervous system, two critical neurobiological systems mediating responses to stressors and threats. Findings from previous translational, empirical studies imply PACAP regulation in autonomic functions and high expressions of PACAP and PAC1 receptor in hypothalamic and limbic structures, underlying its critical role in learning and memory, as well as emotion and fear processing. The current review summarizes recent findings supporting a role of PACAP/PAC1-R regulation in key brain areas that mediate adaptive behavioral and neurobiological responses to environmental stressors and maladaptive reactions to stress including the development of fear and anxiety disorders.
Collapse
Affiliation(s)
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Neurosciences, Neuroscience Center for Anxiety, Stress, and Trauma, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
17
|
Gao Y, Rodríguez LV. The Effect of Chronic Psychological Stress on Lower Urinary Tract Function: An Animal Model Perspective. Front Physiol 2022; 13:818993. [PMID: 35388285 PMCID: PMC8978557 DOI: 10.3389/fphys.2022.818993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic psychological stress can affect urinary function and exacerbate lower urinary tract (LUT) dysfunction (LUTD), particularly in patients with overactive bladder (OAB) or interstitial cystitis–bladder pain syndrome (IC/BPS). An increasing amount of evidence has highlighted the close relationship between chronic stress and LUTD, while the exact mechanisms underlying it remain unknown. The application of stress-related animal models has provided powerful tools to explore the effect of chronic stress on LUT function. We systematically reviewed recent findings and identified stress-related animal models. Among them, the most widely used was water avoidance stress (WAS), followed by social stress, early life stress (ELS), repeated variable stress (RVS), chronic variable stress (CVS), intermittent restraint stress (IRS), and others. Different types of chronic stress condition the induction of relatively distinguished changes at multiple levels of the micturition pathway. The voiding phenotypes, underlying mechanisms, and possible treatments of stress-induced LUTD were discussed together. The advantages and disadvantages of each stress-related animal model were also summarized to determine the better choice. Through the present review, we hope to expand the current knowledge of the pathophysiological basis of stress-induced LUTD and inspire robust therapies with better outcomes.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Larissa V. Rodríguez
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Larissa V. Rodríguez,
| |
Collapse
|
18
|
Sánchez-Lafuente CL, Kalynchuk LE, Caruncho HJ, Ausió J. The Role of MeCP2 in Regulating Synaptic Plasticity in the Context of Stress and Depression. Cells 2022; 11:cells11040748. [PMID: 35203405 PMCID: PMC8870391 DOI: 10.3390/cells11040748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a transcriptional regulator that is highly abundant in the brain. It binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. MeCP2 has mainly been studied for its role in neurodevelopmental disorders, but alterations in MeCP2 are also present in stress-related disorders such as major depression. Impairments in both stress regulation and synaptic plasticity are associated with depression, but the specific mechanisms underlying these changes have not been identified. Here, we review the interplay between stress, synaptic plasticity, and MeCP2. We focus our attention on the transcriptional regulation of important neuronal plasticity genes such as BDNF and reelin (RELN). Moreover, we provide evidence from recent studies showing a link between chronic stress-induced depressive symptoms and dysregulation of MeCP2 expression, underscoring the role of this protein in stress-related pathology. We conclude that MeCP2 is a promising target for the development of novel, more efficacious therapeutics for the treatment of stress-related disorders such as depression.
Collapse
Affiliation(s)
- Carla L. Sánchez-Lafuente
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (C.L.S.-L.); (L.E.K.); (H.J.C.)
| | - Lisa E. Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (C.L.S.-L.); (L.E.K.); (H.J.C.)
| | - Hector J. Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (C.L.S.-L.); (L.E.K.); (H.J.C.)
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
- Correspondence:
| |
Collapse
|
19
|
Li C, Sun H, Shi Y, Yu Y, Ji X, Li E, Zhou X, Liu X, Xue X, Sun H. Effects of Exogenous Hydrogen Sulfide in the Hypothalamic Paraventricular Nucleus on Gastric Function in Rats. Front Pharmacol 2022; 12:806012. [PMID: 35095514 PMCID: PMC8793780 DOI: 10.3389/fphar.2021.806012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Hydrogen sulfide (H2S) is a new type of gas neurotransmitter discovered in recent years. It plays an important role in various physiological activities. The hypothalamus paraventricular nucleus (PVN) is an important nucleus that regulates gastric function. This study aimed to clarify the role of H2S in the paraventricular nucleus of the hypothalamus on the gastric function of rats. Methods: An immunofluorescence histochemistry double-labelling technique was used to determine whether cystathionine-beta-synthase (CBS) and c-Fos neurons are involved in PVN stress. Through microinjection of different concentrations of NaHS, physiological saline (PS), D-2-Amino-5-phosphonovaleric acid (D-AP5), and pyrrolidine dithiocarbamate (PDTC), we observed gastric motility and gastric acid secretion. Results: c-Fos and CBS co-expressed the most positive neurons after 1 h of restraint and immersion, followed by 3 h, and the least was at 0 h. After injection of different concentrations of NaHS into the PVN, gastric motility and gastric acid secretion in rats were significantly inhibited and promoted, respectively (p < 0.01); however, injection of normal saline, D-AP5, and PDTC did not cause any significant change (p > 0.05). The suppressive effect of NaHS on gastrointestinal motility and the promotional effect of NaHS on gastric acid secretion could be prevented by D-AP5, a specific N-methyl-D-aspartic acid (NMDA) receptor antagonist, and PDTC, an NF-κB inhibitor. Conclusion: There are neurons co-expressing CBS and c-Fos in the PVN, and the injection of NaHS into the PVN can inhibit gastric motility and promote gastric acid secretion in rats. This effect may be mediated by NMDA receptors and the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Chenyu Li
- School of Life Science, Qilu Normal University, Jinan, China.,Key Laboratory of Animal Resistance, School of Life Science, Shandong Normal University, Jinan, China
| | - Hongzhao Sun
- School of Life Science, Qilu Normal University, Jinan, China
| | - Yuan Shi
- School of Life Science, Qilu Normal University, Jinan, China
| | - Yan Yu
- School of Life Science, Qilu Normal University, Jinan, China
| | - Xiaofeng Ji
- School of Life Science, Qilu Normal University, Jinan, China
| | - Enguang Li
- School of Life Science, Qilu Normal University, Jinan, China
| | - Xiaofan Zhou
- School of Life Science, Qilu Normal University, Jinan, China
| | - Xiaomeng Liu
- School of Life Science, Qilu Normal University, Jinan, China
| | - Xikang Xue
- School of Life Science, Qilu Normal University, Jinan, China
| | - Haiji Sun
- Key Laboratory of Animal Resistance, School of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Forstenpointner J, Elman I, Freeman R, Borsook D. The Omnipresence of Autonomic Modulation in Health and Disease. Prog Neurobiol 2022; 210:102218. [PMID: 35033599 DOI: 10.1016/j.pneurobio.2022.102218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
The Autonomic Nervous System (ANS) is a critical part of the homeostatic machinery with both central and peripheral components. However, little is known about the integration of these components and their joint role in the maintenance of health and in allostatic derailments leading to somatic and/or neuropsychiatric (co)morbidity. Based on a comprehensive literature search on the ANS neuroanatomy we dissect the complex integration of the ANS: (1) First we summarize Stress and Homeostatic Equilibrium - elucidating the responsivity of the ANS to stressors; (2) Second we describe the overall process of how the ANS is involved in Adaptation and Maladaptation to Stress; (3) In the third section the ANS is hierarchically partitioned into the peripheral/spinal, brainstem, subcortical and cortical components of the nervous system. We utilize this anatomical basis to define a model of autonomic integration. (4) Finally, we deploy the model to describe human ANS involvement in (a) Hypofunctional and (b) Hyperfunctional states providing examples in the healthy state and in clinical conditions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, SH, Germany.
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Ha GE, Cheong E. Chronic Restraint Stress Decreases the Excitability of Hypothalamic POMC Neuron and Increases Food Intake. Exp Neurobiol 2021; 30:375-386. [PMID: 34983879 PMCID: PMC8752322 DOI: 10.5607/en21037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 11/19/2022] Open
Abstract
Stress activates the hypothalamic-pituitary-adrenal system, and induces the release of glucocorticoids, stress hormones, into circulation. Many studies have shown that stress affects feeding behavior, however, the underlying circuitry and molecular mechanisms are not fully understood. The balance between orexigenic (simulating appetite) and anorexigenic (loss of appetite) signals reciprocally modulate feeding behavior. It is suggested that proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons in the arcuate nucleus (ARC) of the hypothalamus are the first-order neurons that respond to the circulating signals of hunger and satiety. Here, we examined a chronic restraint stress model and observed an increase in food intake, which was not correlated with anhedonia. We investigated whether stress affects the properties of POMC and NPY neurons and found that chronic restraint stress reduced the excitatory inputs onto POMC neurons and increased the action potential threshold. Therefore, our study suggests that chronic stress modulates the intrinsic excitability and excitatory inputs in POMC neurons, leading to changes in feeding behavior.
Collapse
Affiliation(s)
- Go Eun Ha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
22
|
Nasri A, Unniappan S. Nucleobindin-derived nesfatin-1 and nesfatin-1-like peptide stimulate pro-opiomelanocortin synthesis in murine AtT-20 corticotrophs through the cAMP/PKA/CREB signaling pathway. Mol Cell Endocrinol 2021; 536:111401. [PMID: 34302909 DOI: 10.1016/j.mce.2021.111401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Nucleobindin (NUCB)-derived peptides, nesfatin-1 (NES-1) and nesfatin-1-like peptide (NLP) have several physiological roles in vertebrates. While NES-1 is implicated in stress, whether NUCB1/NLP and NUCB2/NES-1 have any effect on proopiomelanocortin (POMC) remains unknown. The main aim of this study was to determine if NES-1 and/or NLP affect POMC synthesis in mouse corticotrophs. Immunocytochemistry was employed to target NUCB colocalization with POMC in immortalized mouse tumoral corticotrophs (AtT-20 cells). The ability of NES-1 and NLP to modulate POMC mRNA and protein in AtT-20 cells was assessed by qPCR and Western blot, respectively. Moreover, cell-signaling molecules mediating the effect of NES-1 and NLP on POMC synthesis in mouse tumoral corticotrophs were studied using pharmacological blockers. Mouse tumoral corticotrophs showed immunoreactivity for both NUCB1/NLP and NUCB2/NES-1. Both NES-1 and NLP exerted a stimulatory effect on POMC transcript abundance and protein expression in a dose- and time-dependent manner. This effect was comparable to corticotropin-releasing factor (CRF, positive control) stimulation of POMC. Incubation of mouse tumoral corticotrophs with NES-1 or NLP upregulated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). The stimulatory effect of these peptides on POMC transcript abundance and protein expression was blocked by the PKA inhibitor, H89, and an adenylate cyclase inhibitor, 2',3'-dideoxyadenosine (DDA). These pharmacological studies indicate that NES-1 and NLP act through the cAMP/PKA/CREB cellular pathway to stimulate POMC synthesis. Our results provide molecular evidence to support a stimulatory role for nucleobindin-derived peptides on POMC synthesis from corticotrophs. Collectively, this research indicates that corticotrophs produce NUCBs, and the encoded peptides NES-1 and NLP could elicit a direct action to stimulate the pituitary stress hormone. This stimulatory effect is mediated by an uncharacterized G protein-coupled receptor (GPCR) that utilizes the cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Atefeh Nasri
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7V 1H2, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7V 1H2, Canada.
| |
Collapse
|
23
|
Olson B, Diba P, Korzun T, Marks DL. Neural Mechanisms of Cancer Cachexia. Cancers (Basel) 2021; 13:cancers13163990. [PMID: 34439145 PMCID: PMC8391721 DOI: 10.3390/cancers13163990] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancer cachexia is a devastating wasting syndrome that occurs in many illnesses, with signs and symptoms including anorexia, weight loss, cognitive impairment and fatigue. The brain is capable of exerting overarching homeostatic control of whole-body metabolism and is increasingly being recognized as an important mediator of cancer cachexia. Given the increased recognition and discovery of neural mechanisms of cancer cachexia, we sought to provide an in-depth review and update of mechanisms by which the brain initiates and propagates cancer cachexia programs. Furthermore, recent work has identified new molecular mediators of cachexia that exert their effects through their direct interaction with the brain. Therefore, this review will summarize neural mechanisms of cachexia and discuss recently identified neural mediators of cancer cachexia. Abstract Nearly half of cancer patients suffer from cachexia, a metabolic syndrome characterized by progressive atrophy of fat and lean body mass. This state of excess catabolism decreases quality of life, ability to tolerate treatment and eventual survival, yet no effective therapies exist. Although the central nervous system (CNS) orchestrates several manifestations of cachexia, the precise mechanisms of neural dysfunction during cachexia are still being unveiled. Herein, we summarize the cellular and molecular mechanisms of CNS dysfunction during cancer cachexia with a focus on inflammatory, autonomic and neuroendocrine processes and end with a discussion of recently identified CNS mediators of cachexia, including GDF15, LCN2 and INSL3.
Collapse
Affiliation(s)
- Brennan Olson
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Tetiana Korzun
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; (B.O.); (P.D.); (T.K.)
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
24
|
Bülbül M, Sinen O. Sexual dimorphism in maternally separated rats: effects of repeated homotypic stress on gastrointestinal motor functions. Exp Brain Res 2021; 239:2551-2560. [PMID: 34160630 DOI: 10.1007/s00221-021-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Experiencing stressful events during early life has been considered as a risk factor for development of functional gastrointestinal disorders in adulthood. This study aimed to investigate the sex-related differences in stress-induced gastrointestinal (GI) dysmotility in rats exposed to neonatal maternal separation (MS). Newborn pups were removed from mothers for 180 min from postnatal day-1 to day-14. Experiments were performed in male and female offsprings at adulthood. Elevated plus maze (EPM) test was used to assess MS-induced anxiety-like behaviors. Ninety minute of restraint stress was applied for once or 5 consecutive days for acute stress (AS) or repeated homotypic stress (RHS), respectively. Measurement of fecal output (FO) and gastric emptying (GE), and hypothalamic microdialysis were performed. Both in males and females, MS produced anxiety-like behaviors. AS delayed GE and increased FO in all groups. In RHS-loaded MS females, AS-induced alterations in GE and FO were restored, however, no adaptation was observed in male counterparts. Regardless of sex and neonatal stress experience, AS significantly increased corticotropin-releasing factor (CRF) release from paraventricular nucleus of hypothalamus, whereas females were found more susceptible than males. Following RHS, AS-induced elevations in CRF release were attenuated only in MS females, but not in males. Both females and males seem to be prone to AS-induced alterations in hypothalamic CRF system and in GI motor functions. Neonatal MS disturbs chronic stress coping mechanisms in males. Conversely, females are likely to circumvent the deleterious effects of neonatal MS on GI functions through developing a habituation to prolonged stressed conditions.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey.
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
25
|
Priyanka HP, Nair RS, Kumaraguru S, Saravanaraj K, Ramasamy V. Insights on neuroendocrine regulation of immune mediators in female reproductive aging and cancer. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Zangeneh FZ, Bagheri M, Shoushtari MS, Naghizadeh MM. Expression of ADR-α1, 2 and ADR-β2 in cumulus cell culture of infertile women with polycystic ovary syndrome and poor responder who are a candidate for IVF: the novel strategic role of clonidine in this expression. J Recept Signal Transduct Res 2020; 41:263-272. [PMID: 32878560 DOI: 10.1080/10799893.2020.1806320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Alpha and beta-adrenoceptors (ADR-α1, 2, and β2) play a regulatory role in the folliculogenesis and steroidogenesis in the ovarian follicles. This study aimed to measure these adrenoceptors mRNA and its protein levels in cumulus cells (CCs) culture of poor ovarian reserve (POR) and polycystic ovarian syndrome (PCOS) infertile women (IVF candidate) and the effect of clonidine treatment at CCs culture. METHODS This case/control study was conducted in 2017 includes a control (donation oocytes) and two studies (PCO and POR) groups. The ovulation induction drugs were prescribed in all groups. After the oocyte puncture, the follicular fluid was collected and CCs were isolated were cultured. RNA was extracted and cDNA was synthesized and designed the primer for the ADR-α1, 2 and ADR-β2 gene expression. The protein levels were investigated by Western Blot. RESULTS The results showed a high level of three adrenergic expressions in PCO women compared to the control group (p-value <.001), which can be reduced by clonidine. POR group showed a significant decrease in the gene expression of ADR-α1 (p-value = .004) and ADR-α2 (p-value = .003) compared to the control group and clonidine treatment had no effect. CONCLUSION The significant increase of three adrenoceptors gene expression and protein levels in CCs culture indicate to the hyperactivity of the ovarian sympathetic nervous system at the receptor levels in women with PCOS, and clonidine confirmed it by reducing this expression. In POR women, the reduction of ADR-α1, 2 expressions maybe lead to the aging process in the ovary.
Collapse
Affiliation(s)
| | - Maryam Bagheri
- Department of Reproductive Health, Faculty of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
27
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
28
|
Heck AL, Sheng JA, Miller AM, Stover SA, Bales NJ, Tan SML, Daniels RM, Fleury TK, Handa RJ. Social isolation alters hypothalamic pituitary adrenal axis activity after chronic variable stress in male C57BL/6 mice. Stress 2020; 23:457-465. [PMID: 32093522 PMCID: PMC7376957 DOI: 10.1080/10253890.2020.1733962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The chronic variable stress (CVS) paradigm is frequently used to model the changes in hypothalamic pituitary adrenal (HPA) axis function characteristic of many stress-related diseases. However, male C57BL/6 mice are typically resistant to CVS's effects, making it difficult to determine how chronic stress exposure may alter acute HPA function and regulation in these mice. As social support in rodents can profoundly influence physiological and behavioral processes, including the HPA axis, we sought to characterize the effects of CVS exposure on basal and acute stress-induced HPA axis function in pair- and single-housed adult male mice. Despite all subjects exhibiting decreased body weight gain after six weeks of CVS, the corticosterone response to a novel, acute restraint stressor was enhanced by CVS exclusively in single-housed males. CVS also significantly increased arginine vasopressin (AVP) mRNA in the hypothalamic paraventricular nucleus (PVN) in single-housed males only. Moreover, in single-, but not pair-housed mice, CVS attenuated decreases in circulating OT found following acute restraint. Only the effect of CVS to elevate PVN corticotropin releasing hormone (CRH) mRNA levels after an acute stressor was restricted to pair-housed mice. Collectively, our findings suggest that social isolation reveals effects of CVS on the HPA axis in male C57BL/6 mice.
Collapse
Affiliation(s)
- Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alex M Miller
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sally A Stover
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Natalie J Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Renata M Daniels
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Theodore K Fleury
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
29
|
Géranton SM. Does epigenetic 'memory' of early-life stress predispose to chronic pain in later life? A potential role for the stress regulator FKBP5. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190283. [PMID: 31544613 DOI: 10.1098/rstb.2019.0283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal behaviours are affected not only by inherited genes but also by environmental experiences. For example, in both rats and humans, stressful early-life events such as being reared by an inattentive mother can leave a lasting trace and affect later stress response in adult life. This is owing to a chemical trace left on the chromatin attributed to so-called epigenetic mechanisms. Such an epigenetic trace often has consequences, sometimes long-lasting, on the functioning of our genes, thereby allowing individuals to rapidly adapt to a new environment. One gene under such epigenetic control is FKBP5, the gene that encodes the protein FKPB51, a crucial regulator of the stress axis and a significant driver of chronic pain states. In this article, we will discuss the possibility that exposure to stress could drive the susceptibly to chronic pain via epigenetic modifications of genes within the stress axis such as FKBP5. The possibility that such modifications, and therefore, the susceptibility to chronic pain, could be transmitted across generations in mammals and whether such mechanisms may be evolutionarily conserved across phyla will also be debated. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- S M Géranton
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
30
|
Active behaviour during early development shapes glucocorticoid reactivity. Sci Rep 2019; 9:12796. [PMID: 31488853 PMCID: PMC6728389 DOI: 10.1038/s41598-019-49388-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
Glucocorticoids are the final effectors of the stress axis, with numerous targets in the central nervous system and the periphery. They are essential for adaptation, yet currently it is unclear how early life events program the glucocorticoid response to stress. Here we provide evidence that involuntary swimming at early developmental stages can reconfigure the cortisol response to homotypic and heterotypic stress in larval zebrafish (Danio rerio), also reducing startle reactivity and increasing spontaneous activity as well as energy efficiency during active behaviour. Collectively, these data identify a role of the genetically malleable zebrafish for linking early life stress with glucocorticoid function in later life.
Collapse
|
31
|
Peli A, Grandis A, Tassinari M, Famigli Bergamini P, Tagliavia C, Roccaro M, Bombardi C. Environment and Behavior: Neurochemical Effects of Different Diets in the Calf Brain. Animals (Basel) 2019; 9:E358. [PMID: 31207977 PMCID: PMC6617313 DOI: 10.3390/ani9060358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
Calves reared for the production of white veal are subjected to stressful events due to the type of liquid diet they receive. Stress responses are mediated by three main stress-responsive cerebral regions: the prefrontal cortex, the paraventricular nucleus of the hypothalamus, and the nucleus of the solitary tract of the brainstem. In the present study, we have investigated the effects of different diets on these brain regions of ruminants using immunohistochemical methods. In this study, 15 calves were used and kept in group housing systems of five calves each. They were fed with three different diets: a control diet, a milk diet, and a weaned diet. Brain sections were immunostained to evaluate the distribution of neuronal nitric oxide synthase and myelin oligodendrocyte glycoprotein immunoreactivity in the prefrontal cortex; the expression of oxytocin in the paraventricular nucleus; and the presence of c-Fos in the A2 group of the nucleus of the solitary tract. The main results obtained indicate that in weaned diet group the oxytocin activity is lower than in control diet and milk diet groups. In addition, weaning appears to stimulate myelination in the prefrontal cortex. In summary, this study supports the importance of maintaining a nutritional lifestyle similar to that occurring in natural conditions.
Collapse
Affiliation(s)
- Angelo Peli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Marco Tassinari
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Paolo Famigli Bergamini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Mariana Roccaro
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064, Ozzano dell'Emilia (BO), Italy.
| |
Collapse
|
32
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Aoki S, Ishihara T. Juvenile stress induces behavioral change and affects perineuronal net formation in juvenile mice. BMC Neurosci 2018; 19:41. [PMID: 30012101 PMCID: PMC6048828 DOI: 10.1186/s12868-018-0442-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Background Many neuropsychiatric disorders develop in early life. Although the mechanisms involved have not been elucidated, it is possible that functional abnormalities of parvalbumin-positive interneurons (PV neurons) are present. Several previous studies have shown that juvenile stress is implicated in the development of neuropsychiatric disorders. We aimed to clarify the effects of juvenile stress on behavior and on the central nervous system. We investigated behavioral abnormalities of chronically-stressed mice during juvenilehood and the effect of juvenile stress on PV neurons and WFA-positive perineuronal nets (PNNs), which are associated with vulnerability and plasticity in the mouse brain. Results Due to juvenile stress, mice showed neurodevelopmental disorder-like behavior. Juvenile stressed mice did not show depressive-like behaviors, but on the contrary, they showed increased activity and decreased anxiety-like behavior. In the central nervous system of juvenile stressed mice, the fluorescence intensity of WFA-positive PNNs decreased, which may signify increased vulnerability. Conclusion This study suggested that juvenile stressed mice showed behavioral abnormalities, resembling those seen in neuropsychiatric disorders, and increased brain vulnerability.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan. .,Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Shozo Aoki
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
33
|
Hussain Y, Krishnamurthy S. Piracetam attenuates binge eating disorder related symptoms in rats. Pharmacol Biochem Behav 2018; 169:35-47. [DOI: 10.1016/j.pbb.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/19/2023]
|
34
|
c-Fos expression in the hypothalamic paraventricular nucleus after a single treatment with a typical haloperidol and nine atypical antipsychotics: a pilot study. Endocr Regul 2018; 52:93-100. [DOI: 10.2478/enr-2018-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
Objective. The aim of the present study was to find out whether acute effect of different doses of selected antipsychotics including aripiprazole (ARI), amisulpride (AMI), asenapine (ASE), haloperidol (HAL), clozapine (CLO), risperidone (RIS), quetiapine (QUE), olanzapine (OLA), ziprasidone (ZIP), and paliperidone (PAL) may have a stimulatory impact on the c-Fos expression in the hypothalamic paraventricular nucleus (PVN) neurons.
Methods. Adult male Wistar rats weighing 280–300 g were used. They were injected intraperitoneally with vehicle or antipsychotics in the following doses (mg/kg of b.w.): ARI (1, 10, 30), AMI (10, 30), ASE (0.3), HAL (1.0, 2.0), CLO (10, 20), RIS (0.5, 2.0), QUE (10, 20), OLA (5, 10), ZIP (10, 30), and PAL (1.0). Ninety min later, the animals were anesthetized with Zoletil and Xylariem and sacrificed by a transcardial perfusion with 60 ml of saline containing 450 μl of heparin (5000 IU/l) followed by 250 ml of fixative containing 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4). The brains were postfixed in a fresh fixative overnight, washed two times in 0.1 M PB, infiltrated with 30% sucrose for 2 days at 4 °C, frozen at −80 °C for 120 min, and cut into 30 μm thick serial coronal sections at −16 °C. c-Fos profiles were visualized by nickel intensified DAB immunohistochemistry and examined under Axio-Imager A1 (Zeiss) light microscope.
Results. From ten sorts of antipsychotics tested, only six (ARI-10, CLO-10 and CLO-20, HAL-2, AMI-30, OLA-10, RIS-2 mg/kg b.w.) induced distinct c-Fos expression in the PVN. The antipsychotics predominantly targeted the medial parvocellular subdivision of the PVN.
Conclusions. The present pilot study revealed c-Fos expression increase predominantly in the PVN medial parvocellular subdivision neurons by action of only several sorts of antipsychotics tested indicating that this structure of the brain does not represent a common extra-striatal target area for all antipsychotics.
Collapse
|
35
|
Horii-Hayashi N, Nishi M. A Newly Defined Area of the Mouse Anterior Hypothalamus Involved in Septohypothalamic Circuit: Perifornical Area of the Anterior Hypothalamus, PeFAH. Acta Histochem Cytochem 2018; 51:1-8. [PMID: 29622845 PMCID: PMC5880799 DOI: 10.1267/ahc.17030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 02/04/2023] Open
Abstract
Although the hypothalamus is classified into more than 10 compartments, it still contains uncharacterized areas. In this study, we identified a new triangular-shaped area between the paraventricular hypothalamic nucleus (PVN) and the fornix area in the mouse anterior hypothalamus, which is enriched in chondroitin sulfate proteoglycans (CSPGs). We designated this region as the perifornical area of the anterior hypothalamus (PeFAH) based on its anatomical location. As evidenced by Nissl staining, the PeFAH was distinguishable as an area of relatively low density. Immunohistochemical and DNA microarray analyses indicated that PeFAH contains sparsely distributed calretinin-positive neurons and densely clustered enkephalin-positive neurons. Furthermore, the PeFAH was shown to have bidirectional neural connections with the lateral septum. Indeed, we confirmed enkephalinergic projections from PeFAH neurons to the lateral septum, and inversely, calbindin-positive lateral septum neurons as afferents to the PeFAH. Finally, c-Fos expression analysis revealed that the activity of certain PeFAH neuronal populations tended to be increased by psychological stressors, but not that of enkephalinergic neurons. We proposed PeFAH as a new region in the AH.
Collapse
Affiliation(s)
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University
| |
Collapse
|
36
|
Zubcevic J, Santisteban MM, Perez PD, Arocha R, Hiller H, Malphurs WL, Colon-Perez LM, Sharma RK, de Kloet A, Krause EG, Febo M, Raizada MK. A Single Angiotensin II Hypertensive Stimulus Is Associated with Prolonged Neuronal and Immune System Activation in Wistar-Kyoto Rats. Front Physiol 2017; 8:592. [PMID: 28912720 PMCID: PMC5583219 DOI: 10.3389/fphys.2017.00592] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
Activation of autonomic neural pathways by chronic hypertensive stimuli plays a significant role in pathogenesis of hypertension. Here, we proposed that even a single acute hypertensive stimulus will activate neural and immune pathways that may be important in initiation of memory imprinting seen in chronic hypertension. We investigated the effects of acute angiotensin II (Ang II) administration on blood pressure, neural activation in cardioregulatory brain regions, and central and systemic immune responses, at 1 and 24 h post-injection. Administration of a single bolus intra-peritoneal (I.P.) injection of Ang II (36 μg/kg) resulted in a transient increase in the mean arterial pressure (MAP) (by 22 ± 4 mmHg vs saline), which returned to baseline within 1 h. However, in contrast to MAP, neuronal activity, as measured by manganese-enhanced magnetic resonance (MEMRI), remained elevated in several cardioregulatory brain regions over 24 h. The increase was predominant in autonomic regions, such as the subfornical organ (SFO; ~20%), paraventricular nucleus of the hypothalamus (PVN; ~20%) and rostral ventrolateral medulla (RVLM; ~900%), among others. Similarly, systemic and central immune responses, as evidenced by circulating levels of CD4+/IL17+ T cells, and increased IL17 levels and activation of microglia in the PVN, respectively, remained elevated at 24 h following Ang II challenge. Elevated Fos expression in the PVN was also present at 24 h (by 73 ± 11%) following Ang II compared to control saline injections, confirming persistent activation of PVN. Thus, even a single Ang II hypertensive stimulus will initiate changes in neuronal and immune cells that play a role in the developing hypertensive phenotype.
Collapse
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Monica M Santisteban
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Pablo D Perez
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Rebeca Arocha
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Wendi L Malphurs
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Luis M Colon-Perez
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Ravindra K Sharma
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Annette de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Eric G Krause
- Department of Pharmacodynamics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| |
Collapse
|
37
|
Zhang C, Baimoukhametova DV, Smith CM, Bains JS, Gundlach AL. Relaxin-3/RXFP3 signalling in mouse hypothalamus: no effect of RXFP3 activation on corticosterone, despite reduced presynaptic excitatory input onto paraventricular CRH neurons in vitro. Psychopharmacology (Berl) 2017; 234:1725-1739. [PMID: 28314951 DOI: 10.1007/s00213-017-4575-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
Relaxin-3/RXFP3 signalling is proposed to be involved in the neuromodulatory control of arousal- and stress-related neural circuits. Furthermore, previous studies in rats have led to the proposal that relaxin-3/RXFP3 signalling is associated with activation of the hypothalamic-pituitary-adrenal axis, but direct evidence for RXFP3-related actions on the activity of hypothalamic corticotropin-releasing hormone (CRH) neurons is lacking. In this study, we investigated characteristics of the relaxin-3/RXFP3 system in mouse hypothalamus. Administration of an RXFP3 agonist (RXFP3-A2) intra-cerebroventricularly or directly into the paraventricular nucleus of hypothalamus (PVN) of C57BL/6J mice did not alter corticosterone levels. Similarly, there were no differences between serum corticosterone levels in Rxfp3 knockout (C57BL/6JRXFP3TM1) and wild-type mice at baseline and after stress, despite detection of the predicted stress-induced increases in serum corticosterone. We examined the nature of the relaxin-3 innervation of PVN in wild-type mice and in Crh-IRES-Cre;Ai14 mice that co-express the tdTomato fluorophore in CRH neurons, identifying abundant relaxin-3 fibres in the peri-PVN region, but only sparse fibres associated with densely packed CRH neurons. In whole-cell voltage-clamp recordings of tdTomato-positive CRH neurons in these mice, we observed a reduction in sEPSC frequency following local application of RXFP3-A2, consistent with an activation of RXFP3 on presynaptic glutamatergic afferents in the PVN region. These studies clarify the relationship between relaxin-3/RXFP3 inputs and CRH neurons in mouse PVN, with implications for the interpretation of current and previous in vivo studies and future investigations of this stress-related signalling network in normal and transgenic mice, under normal and pathological conditions.
Collapse
Affiliation(s)
- C Zhang
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - D V Baimoukhametova
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - C M Smith
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - J S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
38
|
Brownlow ML, Jung SH, Moore RJ, Bechmann N, Jankord R. Nutritional Ketosis Affects Metabolism and Behavior in Sprague-Dawley Rats in Both Control and Chronic Stress Environments. Front Mol Neurosci 2017; 10:129. [PMID: 28555095 PMCID: PMC5430035 DOI: 10.3389/fnmol.2017.00129] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a) augment cognitive outcomes in healthy subjects; and (b) prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD), ketone supplemented (KS), or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA) axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of β-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the control diet group. Our results highlight the complex relationship between peripheral metabolism, behavioral performance and biochemical changes in the hippocampus. Endogenous ketosis improved behavioral and metabolic parameters associated with energy metabolism and cognition while ketone supplementation replicated the biochemical effects within the hippocampus but only showed modest effects on behavioral improvements.
Collapse
Affiliation(s)
- Milene L Brownlow
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA.,Research Associateship Program, National Research Council, National Academies of ScienceWashington DC, USA
| | - Seung H Jung
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA.,Research Associateship Program, National Research Council, National Academies of ScienceWashington DC, USA
| | - Raquel J Moore
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA.,Infoscitex, Inc.Dayton, OH, USA
| | - Naomi Bechmann
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA.,Infoscitex, Inc.Dayton, OH, USA
| | - Ryan Jankord
- Applied Neuroscience Branch, Warfighter Interface Division, Air Force Research Laboratory, Wright-Patterson Air Force BaseDayton, OH, USA
| |
Collapse
|
39
|
Wang B, Wang Y, Wu Q, Huang HP, Li S. Effects of α2A Adrenoceptors on Norepinephrine Secretion from the Locus Coeruleus during Chronic Stress-Induced Depression. Front Neurosci 2017; 11:243. [PMID: 28507504 PMCID: PMC5410613 DOI: 10.3389/fnins.2017.00243] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic stressors can often lead to the development of psychological disorders, such as depression and anxiety. The locus coeruleus (LC) is a stress sensitive brain region located in the pons, with noradrenergic neurons that project to the hypothalamus, especially the paraventricular nucleus (PVN) of the hypothalamus. The purpose of this paper is to better understand how alpha 2A-adrenoceptors (α2A-ARs) and LC-hypothalamus noradrenergic system participate in the pathophysiological mechanism of depression. In vivo norepinephrine (NE) release in the PVN triggered by electrical stimulation in the LC was detected with carbon fiber electrodes in depression model of rats induced by chronic unpredictable mild stress (CUMS). Also, the extracellular level of NE in the PVN was measured by microdialysis in vivo without any stimulation in the LC. The alpha 2-adrenoceptor (α2-AR) antagonist yohimbine and α2A-ARs antagonist BRL-44408 maleate were systemically administered to rats to determine the effects of α2A-ARs on NE release in the PVN. The peak value of elicited NE release signals in the PVN induced by electrical stimulation in the LC in the CUMS rats were lower than that in the control rats. The extracellular levels of NE in the PVN of the CUMS rats were significantly less than that of the control rats. Intraperitoneal injection of yohimbine or BRL-44408 maleate significantly potentiated NE release in the PVN of the CUMS rats. The CUMS significantly increased protein expression levels of α2A-AR in the hypothalamus, and BRL-44408 maleate significantly reversed the increase of α2A-AR protein expression levels in the CUMS rats. Our results suggest that the CUMS could significantly facilitate the effect of α2-adrenoceptor-mediated presynaptic inhibition and decrease the release of NE in the PVN from LC. Blockade of the inhibitory action of excessive α2A-adrenergic receptors in the CUMS rats could increase the level of NE in the PVN, which is effective in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical UniversityDalian, China.,Department of Physiology and Neurobiology, Wannan Medical CollegeWuhu, China
| | - Ying Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical UniversityDalian, China.,Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, The Second Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical UniversityDalian, China
| | - Hong-Ping Huang
- Department of Physiology and Neurobiology, Wannan Medical CollegeWuhu, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical UniversityDalian, China
| |
Collapse
|
40
|
Scheich B, Csekő K, Borbély É, Ábrahám I, Csernus V, Gaszner B, Helyes Z. Higher susceptibility of somatostatin 4 receptor gene-deleted mice to chronic stress-induced behavioral and neuroendocrine alterations. Neuroscience 2017; 346:320-336. [DOI: 10.1016/j.neuroscience.2017.01.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 01/20/2023]
|
41
|
Yan X, Chen X, Guo Y, He D, Chen Y, Xia C, Wang J. Arginine Vasopressin Alters Both Spontaneous and Phase-Locked Synaptic Inputs to Airway Vagal Preganglionic Neuron via Activation of V 1a Receptor: Insights into Stress-Related Airway Vagal Excitation. Front Cell Neurosci 2017; 11:12. [PMID: 28210214 PMCID: PMC5288349 DOI: 10.3389/fncel.2017.00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/16/2017] [Indexed: 11/27/2022] Open
Abstract
The airway vagal preganglionic neurons (AVPNs) in the external formation of the nucleus ambiguus (eNA) play a major role in the vagal control of tracheobronchial smooth muscle tone and maintenance of airway resistance. The eNA receives vasopressinergic projection from the hypothalamic paraventricular nucleus (PVN), the key node for the genesis of psychological stress. Since airway vagal excitation is reportedly to be associated with the psychological stress-induced/exacerbated airway hyperresponsiveness in asthmatics, arginine vasopressin (AVP) might be involved in stress-related airway vagal excitation. However, this possibility has not been validated. This study aimed to test whether and how AVP regulates AVPNs. In rhythmically active medullary slices of newborn rats, retrogradely labeled AVPNs were identified as inspiratory-activated and inspiratory-inhibited AVPNs (IA- and II-AVPNs) using patch-clamp techniques according to their inspiratory-related firing behavior and synaptic activities. The results show that under current clamp, AVP depolarized both IA- and II-AVPNs, and significantly increased their spontaneous firing rate. Under voltage clamp, AVP elicited a slow inward current, and significantly increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in both types of AVPNs. In addition, AVP significantly enhanced the phase-locked excitatory inspiratory inward current in inspiratory-activated airway vagal preganglionic neurons (IA-AVPNs), but significantly suppressed the phase-locked inhibitory inspiratory outward current in II-AVPNs. In both types AVPNs, AVP significantly increased the frequency and amplitude of pharmacologically isolated spontaneous GABAergic and glycinergic inhibitory postsynaptic currents (IPSCs). All of the AVP-induced effects were prevented by SR49059, an antagonist of V1a receptors, but unaffected by SSR149415, an antagonist of V1b receptors. AVP did not cause significant changes in the miniature excitatory postsynaptic currents (mEPSCs), miniature inhibitory postsynaptic currents (mIPSCs) and membrane input resistance of either type of AVPNs. These results demonstrate that AVP, via activation of V1a receptors, enhanced the spontaneous excitatory and inhibitory inputs similarly in the two types of AVPNs, but differentially altered their phase-locked inspiratory excitatory and inhibitory inputs. The overall effects of AVP are excitatory in both types AVPNs. These results suggest that increased central AVP release may be involved in the stress-induced augmentation of airway vagal activity, and, consequently, the induction or exacerbation of some airway diseases.
Collapse
Affiliation(s)
- Xianxia Yan
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University Shanghai, China
| | - Xingxin Chen
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University Shanghai, China
| | - Yuhong Guo
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University Shanghai, China
| | - Ding He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai, China
| | - Yonghua Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai, China
| | - Jijiang Wang
- Department of Neurobiology, School of Basic Medical Sciences, Fudan UniversityShanghai, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
42
|
Kiss A, Majercikova Z. Repeated asenapine treatment does not participate in the mild stress induced FosB/ΔFosB expression in the rat hypothalamic paraventricular nucleus neurons. Neuropeptides 2017; 61:57-65. [PMID: 27756486 DOI: 10.1016/j.npep.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 01/15/2023]
Abstract
Effect of repeated asenapine (ASE) treatment on FosB/ΔFosB expression was studied in the hypothalamic paraventricular nucleus (PVN) of male rats exposed to chronic mild stress (CMS) for 21days. Our intention was to find out whether repeated ASE treatment for 14days may: 1) induce FosB/ΔFosB expression in the PVN; 2) activate selected PVN neuronal phenotypes, synthesizing oxytocin (OXY), vasopressin (AVP), corticoliberin (CRH) or tyrosine hydroxylase (TH); and 3) interfere with the impact of CMS. Control, ASE, CMS, and CMS+ASE treated groups were used. CMS included restraint, social isolation, crowding, swimming, and cold. From the 7th day of CMS, rats received ASE (0.3mg/kg) or saline (300μl/rat) subcutaneously, twice a day for 14days. They were sacrificed on the day 22nd (16-18h after last treatments). FosB/ΔFosB was visualized with avidin biotin peroxidase complex and OXY, AVP, CRH or TH antibodies by fluorescent dyes. Saline and ASE did not promote FosB/ΔFosB expression in the PVN. CMS and CMS+ASE elicited FosB/ΔFosB-expression in the PVN, whereas, ASE did not augment or attenuate FosB/ΔFosB induction elicited by CMS. FosB/ΔFosB-CRH occurred after CMS and CMS+ASE treatments in the PVN middle sector, while FosB/ΔFosB-AVP and FosB/ΔFosB-OXY after CMS and CMS+ASE treatments in the PVN posterior sector. FosB/ΔFosB-TH colocalization was rare. Larger FosB/ΔFosB profiles, running above the PVN, did not show any colocalizations. The study provides an anatomical/functional knowledge about an unaccented nature of prolonged ASE treatment at the level of PVN and excludes its positive or negative interplay with CMS effect. Data indicate that long-lasting ASE treatment might not act as a stressor acting at the PVN level.
Collapse
Affiliation(s)
- Alexander Kiss
- Institute of Experimental Endocrinology, Biomedial Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Zuzana Majercikova
- Institute of Experimental Endocrinology, Biomedial Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
43
|
Matricon J, Seillier A, Giuffrida A. Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597. Neurosci Res 2016; 110:49-58. [PMID: 27091613 PMCID: PMC5007165 DOI: 10.1016/j.neures.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597.
Collapse
Affiliation(s)
- Julien Matricon
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Alexandre Seillier
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Andrea Giuffrida
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
44
|
Zhang L, Qin S, Yao Z, Zhang K, Wu J. Long-term academic stress enhances early processing of facial expressions. Int J Psychophysiol 2016; 109:138-146. [PMID: 27567996 DOI: 10.1016/j.ijpsycho.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 08/11/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Exposure to long-term stress can lead to a variety of emotional and behavioral problems. Although widely investigated, the neural basis of how long-term stress impacts emotional processing in humans remains largely elusive. Using event-related brain potentials (ERPs), we investigated the effects of long-term stress on the neural dynamics of emotionally facial expression processing. Thirty-nine male college students undergoing preparation for a major examination and twenty-one matched controls performed a gender discrimination task for faces displaying angry, happy, and neutral expressions. The results of the Perceived Stress Scale showed that participants in the stress group perceived higher levels of long-term stress relative to the control group. ERP analyses revealed differential effects of long-term stress on two early stages of facial expression processing: 1) long-term stress generally augmented posterior P1 amplitudes to facial stimuli irrespective of expression valence, suggesting that stress can increase sensitization to visual inputs in general, and 2) long-term stress selectively augmented fronto-central P2 amplitudes for angry but not for neutral or positive facial expressions, suggesting that stress may lead to increased attentional prioritization to processing negative emotional stimuli. Together, our findings suggest that long-term stress has profound impacts on the early stages of facial expression processing, with an increase at the very early stage of general information inputs and a subsequent attentional bias toward processing emotionally negative stimuli.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhuxi Yao
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Kan Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jianhui Wu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Abstract
A large body of research has been dedicated to the effects of gastrointestinal peptides on vagal afferent fibres, yet multiple lines of evidence indicate that gastrointestinal peptides also modulate brainstem vagal neurocircuitry, and that this modulation has a fundamental role in the physiology and pathophysiology of the upper gastrointestinal tract. In fact, brainstem vagovagal neurocircuits comprise highly plastic neurons and synapses connecting afferent vagal fibres, second order neurons of the nucleus tractus solitarius (NTS), and efferent fibres originating in the dorsal motor nucleus of the vagus (DMV). Neuronal communication between the NTS and DMV is regulated by the presence of a variety of inputs, both from within the brainstem itself as well as from higher centres, which utilize an array of neurotransmitters and neuromodulators. Because of the circumventricular nature of these brainstem areas, circulating hormones can also modulate the vagal output to the upper gastrointestinal tract. This Review summarizes the organization and function of vagovagal reflex control of the upper gastrointestinal tract, presents data on the plasticity within these neurocircuits after stress, and discusses the gastrointestinal dysfunctions observed in Parkinson disease as examples of physiological adjustment and maladaptation of these reflexes.
Collapse
|
46
|
Sivukhina EV, Jirikowski GF. Magnocellular hypothalamic system and its interaction with the hypothalamo-pituitary-adrenal axis. Steroids 2016; 111:21-28. [PMID: 26827626 DOI: 10.1016/j.steroids.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/18/2016] [Indexed: 01/07/2023]
Abstract
The hypothalamo-neurohypophyseal system plays a key role in maintaining homeostasis and in regulation of numerous adaptive reactions, e.g., endocrine stress response. Nonapeptides vasopressin and oxytocin are the major hormones of this system. They are synthesized by magnocellular neurons of the paraventricular and supraoptic hypothalamic nuclei. Magnocellular vasopressin is known to be one of the main physiological regulators of water-electrolyte balance. Its importance for control of the hypothalamo-pituitary-adrenal axis has been widely described. Magnocellular oxytocin is secreted predominantly during lactation and parturition. The complex actions of oxytocin within the brain include control of reproductive behavior and its involvement in central stress response to different stimuli. It's neuroendocrine basis is activation of the hypothalamo-pituitary-adrenal axis: corticotropin-releasing hormone is synthesized in parvocellular neurons of the paraventricular hypothalamic nuclei. The transitory coexpression of vasopressin in these cells upon stress has been described. Glucocorticoids, the end products of the hypothalamo-pituitary-adrenal axis have both central and peripheral actions. Their availability to target tissues is mainly dependent on systemic levels of corticosteroid-binding globulin. Intrinsic expression of this protein in different brain regions in neurons and glial cells has been recently demonstrated. Regulation of the hypothalamo-pituitary-adrenal axis and hypothalamo-neurohypophyseal system is highly complex. The role of both systems in the pathogenesis of various chronic ailments in humans has extensively been studied. Their disturbed functioning seems to be linked to various psychiatric, autoimmune and cardiovascular pathologies.
Collapse
|
47
|
Franco AJ, Chen C, Scullen T, Zsombok A, Salahudeen AA, Di S, Herman JP, Tasker JG. Sensitization of the Hypothalamic-Pituitary-Adrenal Axis in a Male Rat Chronic Stress Model. Endocrinology 2016; 157:2346-55. [PMID: 27054552 PMCID: PMC4891782 DOI: 10.1210/en.2015-1641] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress activation of the hypothalamic-pituitary-adrenal (HPA) axis is regulated by rapid glucocorticoid negative feedback. Chronic unpredictable stress animal models recapitulate certain aspects of major depression in humans, which have been attributed to impaired glucocorticoid negative feedback. We tested for an attenuated HPA sensitivity to fast glucocorticoid feedback inhibition in male rats exposed to a chronic variable stress (CVS) paradigm. In vitro, parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus recorded in slices from CVS rats showed an increase in basal excitatory synaptic inputs and a decrease in basal inhibitory synaptic inputs compared with neurons from control rats. There was no difference between control and CVS-treated rats in the rapid glucocorticoid suppression of excitatory synaptic inputs, a fast feedback mechanism. In vivo, CVS-treated rats showed an increase in ACTH secretion at baseline and after both iv CRH and acute stress and no impairment of the corticosterone suppression of the ACTH response, compared with controls. In an in vitro pituitary preparation, an increase in basal ACTH release, a small increase in CRH-induced ACTH release, and no decrement in the glucocorticoid suppression of ACTH release were seen in pituitaries from CVS rats. Thus, CVS does not suppress rapid glucocorticoid negative feedback at the hypothalamus or pituitary, but increases the synaptic excitability of paraventricular nucleus CRH neurons and the CRH sensitivity of the pituitary. Therefore, increased HPA activity in chronically stressed male rats is due to sensitization of the HPA axis, rather than to desensitization to rapid glucocorticoid feedback.
Collapse
Affiliation(s)
- Alier J Franco
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Chun Chen
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Tyler Scullen
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Andrea Zsombok
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Ahmed A Salahudeen
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Shi Di
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - James P Herman
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|
48
|
Rao C, Shi H, Zhou C, Zhu D, Zhao M, Wang Z, Yang Y, Chen J, Liao L, Tang J, Wu Y, Zhou J, Cheng K, Xie P. Hypothalamic Proteomic Analysis Reveals Dysregulation of Glutamate Balance and Energy Metabolism in a Mouse Model of Chronic Mild Stress-Induced Depression. Neurochem Res 2016; 41:2443-56. [DOI: 10.1007/s11064-016-1957-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 01/21/2023]
|
49
|
Myers B, Scheimann JR, Franco-Villanueva A, Herman JP. Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses. Neurosci Biobehav Rev 2016; 74:366-375. [PMID: 27208411 DOI: 10.1016/j.neubiorev.2016.05.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
In response to stress, defined as a real or perceived threat to homeostasis or well-being, brain systems initiate divergent physiological and behavioral processes that mobilize energy and promote adaptation. The brainstem contains multiple nuclei that engage in autonomic control and reflexive responses to systemic stressors. However, brainstem nuclei also play an important role in neuroendocrine responses to psychogenic stressors mediated by the hypothalamic-pituitary-adrenocortical axis. Further, these nuclei integrate neuroendocrine responses with stress-related behaviors, significantly impacting mood and anxiety. The current review focuses on the prominent brainstem monosynaptic inputs to the endocrine paraventricular hypothalamic nucleus (PVN), including the periaqueductal gray, raphe nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract (NTS). The NTS is a particularly intriguing area, as the region contains multiple cell groups that provide neurochemically-distinct inputs to the PVN. Furthermore, the NTS, under regulatory control by glucocorticoid-mediated feedback, integrates affective processes with physiological status to regulate stress responding. Collectively, these brainstem circuits represent an important avenue for delineating interactions between stress and health.
Collapse
Affiliation(s)
- Brent Myers
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA.
| | - Jessie R Scheimann
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA
| | - Ana Franco-Villanueva
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati OH, USA
| |
Collapse
|
50
|
Wisłowska-Stanek A, Lehner M, Skórzewska A, Krząścik P, Płaźnik A. Behavioral effects and CRF expression in brain structures of high- and low-anxiety rats after chronic restraint stress. Behav Brain Res 2016; 310:26-35. [PMID: 27150225 DOI: 10.1016/j.bbr.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023]
Abstract
The aim of our study was to investigate the influence of chronic restraint stress (5 weeks, 3h/day) on behavior and central corticotropin-releasing factor (CRF) expression in rats selected for high (HR) and low anxiety (LR). The conditioned freezing response was used as a discriminating variable. Moreover, we assessed the influence of acute restraint on CRF expression in the brain in HR and LR rats. We found that chronic restraint induced symptoms of anhedonia (decreased consumption of 1% sucrose solution) in HR rats. In addition, HR restraint rats showed an increased learned helplessness behavior (immobility time in the Porsolt test) as well as neophobia in the open field test vs. LR restraint and HR control rats. These behavioral changes were accompanied by a decreased expression of CRF in the paraventricular nucleus of the hypothalamus (pPVN) and the dentate gyrus of the hippocampus (DG) compared to the HR control and LR restraint rat groups, respectively. The acute restraint condition increased the expression of CRF in the pPVN of HR rats compared to the HR control group, and enhanced the expression of CRF in the CA1 area and DG of LR restraint animals compared to the HR restraint and LR control rats, respectively. The present results indicate that chronic restraint stress in high anxiety rats attenuated CRF expression in the pPVN and DG, which was probably due to detrimental actions on the hippocampus-hypothalamus-pituitary-adrenal gland feedback mechanism, thus modulating the stress response and inducing anhedonia and depressive-like symptoms.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, 1B Banacha Street, 02-097 Warsaw, Poland.
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, 1B Banacha Street, 02-097 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|