1
|
Werle I, Bertoglio LJ. Psychedelics: A review of their effects on recalled aversive memories and fear/anxiety expression in rodents. Neurosci Biobehav Rev 2024; 167:105899. [PMID: 39305969 DOI: 10.1016/j.neubiorev.2024.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Threatening events and stressful experiences can lead to maladaptive memories and related behaviors. Existing treatments often fail to address these issues linked to anxiety/stress-related disorders effectively. This review identifies dose ranges associated with specific actions across various psychedelics. We examined psilocybin/psilocin, lysergic acid diethylamide (LSD), N,N-dimethyltryptamine (DMT), mescaline, 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), serotonin 2 A/2 C agonists (e.g., DOI) and 3,4-methylenedioxymethamphetamine (MDMA) on aversive memory extinction and reconsolidation, learned fear, anxiety, and locomotion in rodents. Nearly 400 studies published since 1957 were reviewed. Psychedelics often show biphasic effects on locomotion at doses that enhance extinction learning/retention, impair memory reconsolidation, or reduce learned fear and anxiety. Emerging evidence suggests a dissociation between their prospective benefits and locomotor effects. Under-explored aspects include sex differences, susceptibility to interference as memories age and generalize, repeated treatments, and immediate vs. delayed changes. Validating findings in traumatic-like memory and maladaptive fear/anxiety models is essential. Understanding how psychedelics modulate threat responses and post-retrieval memory processes in rodents may inform drug development and human studies, improving therapeutic approaches for related psychiatric conditions.
Collapse
Affiliation(s)
- Isabel Werle
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Leandro J Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
2
|
Pędzich BD, Medrano M, Buckinx A, Smolders I, De Bundel D. Psychedelic-Induced Serotonin 2A Receptor Downregulation Does Not Predict Swim Stress Coping in Mice. Int J Mol Sci 2022; 23:ijms232315284. [PMID: 36499610 PMCID: PMC9736085 DOI: 10.3390/ijms232315284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Serotoninergic psychedelics such as psilocybin have been reported to elicit a long-lasting reduction in depressive symptoms. Although the main target for serotoninergic psychedelics, serotonin type 2A receptor (5-HT2A), has been established, the possible mechanism of the antidepressant action of psychedelics remains unknown. Using the mouse forced swim test model, we examined whether the administration of the synthetic serotoninergic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI) would modulate 5-HT2A receptor levels in the medial prefrontal cortex (mPFC) and revert stress-induced changes in behavior. Mice subjected to swim stress developed a passive stress-coping strategy when tested in the forced swim test 6 days later. This change in behavior was not associated with the hypothesized increase in 5-HT2A receptor-dependent head twitch behaviors or consistent changes in 5-HT2A receptor levels in the mPFC. When DOI was administered 1 day before the forced swim test, a low dose (0.2 mg/kg i.p.) unexpectedly increased immobility while a high dose (2 mg/kg i.p.) had no significant effect on immobility. Nevertheless, DOI evoked a dose-dependent decrease in 5-HT2A levels in the mPFC of mice previously exposed to swim stress. Our findings do not support the hypothesis that the downregulation of 5-HT2A receptors in the mPFC contributes to the antidepressant-like properties of serotoninergic psychedelics.
Collapse
|
3
|
do Carmo Silva RX, do Nascimento BG, Gomes GCV, da Silva NAH, Pinheiro JS, da Silva Chaves SN, Pimentel AFN, Costa BPD, Herculano AM, Lima-Maximino M, Maximino C. 5-HT2C agonists and antagonists block different components of behavioral responses to potential, distal, and proximal threat in zebrafish. Pharmacol Biochem Behav 2021; 210:173276. [PMID: 34555392 DOI: 10.1016/j.pbb.2021.173276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Serotonin (5-HT) receptors have been implicated in responses to aversive stimuli in mammals and fish, but its precise role is still unknown. Moreover, since at least seven families of 5-HT receptors exist in vertebrates, the role of specific receptors is still debated. Aversive stimuli can be classified as indicators of proximal, distal, or potential threat, initiating responses that are appropriate for each of these threat levels. Responses to potential threat usually involve cautious exploration and increased alertness, while responses to distal and proximal threat involve a fight-flight-freeze reaction. We exposed adult zebrafish to a conspecific alarm substance (CAS) and observed behavior during (distal threat) and after (potential threat) exposure, and treated with the 5-HT2C receptor agonists MK-212 or WAY-161503 or with the antagonist RS-102221. The agonists blocked CAS-elicited defensive behavior (distal threat), but not post-exposure increases in defensive behavior (potential threat), suggesting inhibition of responses to distal threat. MK-212 blocked changes in freezing elicited by acute restraint stress, a model of proximal threat, while RS-102221 blocked changes in geotaxis elicited this stressor. We also found that RS-102221, a 5-HT2C receptor antagonist, produced small effect on behavior during and after exposure to CAS. Preprint: https://www.biorxiv.org/content/10.1101/2020.10.04.324202; Data and scripts: https://github.com/lanec-unifesspa/5-HT-CAS/tree/master/data/5HT2C.
Collapse
Affiliation(s)
- Rhayra Xavier do Carmo Silva
- Laboratório de Neurofarmacologia Experimental - LNE, Universidade Federal do Pará, Belém/PA, Brazil; Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Bianca Gomes do Nascimento
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Gabriela Cristini Vidal Gomes
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | | | - Jéssica Souza Pinheiro
- Laboratório de Neurofarmacologia Experimental - LNE, Universidade Federal do Pará, Belém/PA, Brazil
| | - Suianny Nayara da Silva Chaves
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Ana Flávia Nogueira Pimentel
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Bruna Patrícia Dutra Costa
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | | | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica - LaNeF, Universidade do Estado do Pará, Marabá/PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil.
| |
Collapse
|
4
|
De Santis M, Huang XF, Deng C. Early antipsychotic treatment in juvenile rats elicits long-term alterations to the adult serotonin receptors. Neuropsychiatr Dis Treat 2018; 14:1569-1583. [PMID: 29950841 PMCID: PMC6011877 DOI: 10.2147/ndt.s158545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Antipsychotic drug (APD) prescription/use in children has increased significantly worldwide, despite limited insight into potential long-term effects of treatment on adult brain functioning. While initial long-term studies have uncovered alterations to behaviors following early APD treatment, further investigations into potential changes to receptor density levels of related neurotransmitter (NT) systems are required. METHODS The current investigation utilized an animal model for early APD treatment with aripiprazole, olanzapine, and risperidone in male and female juvenile rats to investigate potential long-term changes to the adult serotonin (5-HT) NT system. Levels of 5-HT1A, 5-HT2A, and 5-HT2C receptors were measured in the prefrontal cortex (PFC), caudate putamen (CPu), nucleus accumbens (NAc), and hippocampus via Western Blot and receptor autoradiography. RESULTS In the male cohort, long-term changes to 5-HT2A and 5-HT2C receptors were found mostly across hippocampal and cortical brain regions following early aripiprazole and olanzapine treatment, while early risperidone treatment changed 5-HT1A receptor levels in the NAc and PFC. Lesser effects were uncovered in the female cohort with aripiprazole, olanzapine and risperidone to alter 5-HT1A and 5-HT2A receptors in NAc and hippocampal brain regions, respectively. CONCLUSION The results of this study suggest that early treatment of various APDs in juvenile rats may cause gender and brain regional specific changes in 5-HT2A and 5-HT2C receptors in the adult brain.
Collapse
Affiliation(s)
- Michael De Santis
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
5
|
Kimani ST, Patel NB, Kioy PG. Memory deficits associated with khat (Catha edulis) use in rodents. Metab Brain Dis 2016; 31:45-52. [PMID: 26423676 DOI: 10.1007/s11011-015-9738-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/21/2015] [Indexed: 11/25/2022]
Abstract
Khat products and chewing practices are common in East Africa, Middle East for centuries with concomitant socio-economic and public health repercussions. We assessed memory deficits associated with khat use in rodents. Young male CBA mice, 5-7 weeks old (n = 20), weighing 25-35 g were used. Mice were treated with either 40, 120 or 360 mg/kg body weight (bw) methanolic khat extract, or 0.5 ml saline for 10 days. Spatial acquisition, reversal and reference memory were assessed using modified Morris Water maze (MMWM). Mice treated with 40 mg/kg khat extract had longer (t4 = 4.12 p = 0.015) and t4 = 2.28 p = 0.065) escape latency on first and second day during reversal relative to the baseline. Under 120 mg/kg khat dose, the escape latency was shorter (t4 = -2.49 p = 0.05) vs (t3 = -2.5 p = 0.05) on third and fourth day. Further, treatment with 360 mg/kg khat extract resulted in significantly longer time (49.13, 33.5, 40.2 and 35.75) vs. (23.5 s), compared to baseline. Mice treated with khat or control preferred the target quadrant post acquisition while differential pattern was seen during reversal phase. Mice treated with 40 or 120 mg/kg khat showed significant preference for target quadrant. Substantial time (19.9) was spent in the old target compared to the new (16.9 s) by animals treated with highest dose however, the difference was not significant. There is a biological plausibility that chronic khat use may induce memory deficits and impair cognitive flexibility. The differential patterns of memory deficits may reflect the differences in dose effect as well as time dependent impairment.
Collapse
Affiliation(s)
- S T Kimani
- School of Nursing Sciences, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya.
| | - N B Patel
- Department of Medical Physiology, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya
| | - P G Kioy
- Department of Medical Physiology, University of Nairobi, P.O Box 30197, 00100, Nairobi, Kenya
| |
Collapse
|
6
|
De Santis M, Lian J, Huang XF, Deng C. Early antipsychotic treatment in childhood/adolescent period has long-term effects on depressive-like, anxiety-like and locomotor behaviours in adult rats. J Psychopharmacol 2016; 30:204-14. [PMID: 26577063 DOI: 10.1177/0269881115616383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Childhood/adolescent antipsychotic drug (APD) use is exponentially increasing worldwide, despite limited knowledge of the long-term effects of early APD treatment. Whilst investigations have found that early treatment has resulted in some alterations to dopamine and serotonin neurotransmission systems (essential to APD efficacy), there have only been limited studies into potential long-term behavioural changes. This study, using an animal model for childhood/adolescent APD treatment, investigated the long-term effects of aripiprazole, olanzapine and risperidone on adult behaviours of male and female rats. Open-field/holeboard, elevated plus maze (EPM), social interaction and forced swim (FS) tests were then conducted in adult rats. Our results indicated that in the male cohort, early risperidone and olanzapine treatment elicited long-term hyper-locomotor effects (open-field/holeboard and FS tests), whilst a decrease in depressive-like behaviour (in FS test) was observed in response to olanzapine treatment. Furthermore, anxiolytic-like behaviours were found following testing in the open-field/holeboard and EPM in response to all three drug treatments. Effects in the female cohort, however, were to a far lesser extent, with behavioural attributes indicative of an increased depressive-like behaviour and hypo-locomotor activity exhibited in the FS test following early risperidone and olanzapine treatment. These results suggest that various APDs have different long-term effects on the behaviours of adult rats.
Collapse
Affiliation(s)
- Michael De Santis
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Di Giovanni G, De Deurwaerdère P. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 2015; 157:125-62. [PMID: 26617215 DOI: 10.1016/j.pharmthera.2015.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293) 33076 Bordeaux Cedex, France.
| |
Collapse
|
8
|
İlkaya F, Yüce M, Ağrı AE, Güzel H, Balcı H, Uçar F, Babadağı Z, Müjdeci M, Mutlu E. The combination of agomelatine and ritanserin exerts a synergistic interaction in passive avoidance task. Hum Exp Toxicol 2015; 34:787-95. [DOI: 10.1177/0960327114559613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Agomelatine is a potent agonist at melatonergic 1 and 2 (MT1 and MT2) receptors and an antagonist at serotonin-2C (5HT-2C) receptors. It was suggested that psychotropic effects of agomelatine is associated with its melatonergic and serotonergic effects. In this study, we aimed to evaluate the effects of agomelatine alone or in combination with ritanserin (5HT-2A/2C antagonist) on memory and learning. Male Balb-C mice (25–30 g) were used, and all drugs and saline were administrated by intraperitoneal (i.p.) route 30 min prior to evaluating retention time. Whilst agomelatine was administered at the doses of 1, 10 and 30 mg/kg, ritanserin was administered at the doses of 0.1, 1 and 10 mg/kg. To evaluate memory function, passive avoidance test was used. On the first day, acquisition time and on the second day (after 24h), retention time of mice were recorded. To evaluate the synergistic activity, only the least doses of agomelatine and ritanserine were used, that is, 1 and 0.1 mg/kg, respectively. Scopolamine (1 mg/kg) was used as a reference drug, so it was combined with drug groups. Our results show that 5HT-2A/2C receptor antagonist ritanserin (1 and 4 mg/kg, i.p.) and agomelatine (10 and 30 mg/kg, i.p.) improve memory deficit induced by scopolamine, whilst a synergistic interaction is observed between ritanserin and agomelatine (0.1 mg/kg and 1 mg/kg, i.p., respectively) when they were administered at their ineffective doses. According to our findings, we concluded that agomelatine improves memory deficit and thus improves the effect of agomelatine arises from its 5HT-2C receptor antagonist activity.
Collapse
Affiliation(s)
- F İlkaya
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - M Yüce
- Department of Medicine Child and Adolescent Psychiatry, Ondokuz Mayıs University, Samsun, Turkey
| | - AE Ağrı
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - H Güzel
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - H Balcı
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - F Uçar
- Department of Medicine Child and Adolescent Psychiatry, Ondokuz Mayıs University, Samsun, Turkey
| | - Z Babadağı
- Department of Medicine Child and Adolescent Psychiatry, Ondokuz Mayıs University, Samsun, Turkey
| | - M Müjdeci
- Department of Medicine Child and Adolescent Psychiatry, Ondokuz Mayıs University, Samsun, Turkey
| | - E Mutlu
- Department of Pharmacology, Faculty of Medicine, Ordu University, Ordu, Turkey
| |
Collapse
|
9
|
Campos KFC, Amaral VCS, Rico JL, Miguel TT, Nunes-de-Souza RL. Ethopharmacological evaluation of the rat exposure test: a prey-predator interaction test. Behav Brain Res 2012. [PMID: 23195112 DOI: 10.1016/j.bbr.2012.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The rat exposure test (RET) is a prey (mouse)-predator (rat) situation that activates brain defensive areas and elicits hormonal and defensive behavior in the mouse. Here, we investigated possible correlations between the spatiotemporal [time spent in protected (home chamber and tunnel) and unprotected (surface) compartments and frequency of entries into the three compartments] and ethological [e.g., duration of protected and unprotected stretched-attend postures (SAP), duration of contact with the rat's compartment] measures (Experiment 1). Secondly, we investigated the effects of systemic treatment with pro- or anti-aversive drugs on the behavior that emerged from the factor analysis (Experiment 2). The effects of chronic (21 days) imipramine and fluoxetine on defensive behavior were also investigated (Experiment 3). Exp. 1 revealed that the time in the protected compartment, protected SAP and rat contacts loaded on factor 1 (defensive behavior), while the total entries and unprotected SAP loaded on factor 2 (locomotor activity). Exp. 2 showed that alprazolam (but not diazepam) selectively changed the defensive factor. Caffeine produced a mild proaversive-like effect, whereas yohimbine only decreased locomotor activity (total entries). Fluoxetine (but not imipramine) produced a weak proaversive-like effect. 5-HT(1A)/5-HT(2) receptor ligands did not change any behavioral measure. In Exp. 3, chronic fluoxetine (but not imipramine) attenuated the defensive behavior factor without changing locomotion. Given that the defensive factor was sensitive to drugs known to attenuate (alprazolam and chronic fluoxetine) and induce (caffeine) panic attack, we suggest the RET as a useful test to assess the effects of panicolytic and panicogenic drugs.
Collapse
Affiliation(s)
- Kelciane Ferreira Caetano Campos
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil
| | | | | | | | | |
Collapse
|
10
|
Quesseveur G, Nguyen HT, Gardier AM, Guiard BP. 5-HT2 ligands in the treatment of anxiety and depression. Expert Opin Investig Drugs 2012; 21:1701-25. [PMID: 22917059 DOI: 10.1517/13543784.2012.719872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION One third of depressed patients do not respond adequately to conventional antidepressants including the selective serotonin reuptake inhibitors (SSRIs). Therefore, multi-target drugs or augmentation strategies have been developed for the management of SSRIs-resistant patients. In this context, the 5-HT(2) receptor subtypes represent promising targets but their precise roles have yet to be determined. AREAS COVERED The aim of this review is to shed some light on the preclinical evidence supporting the use of 5-HT(2A) and/or 5-HT(2C) receptor antagonists such as antipsychotics, as potential effective adjuncts in SSRIs-resistant depression. This review synthesizes the current literature about the behavioral, electrophysiological and neurochemical effects of 5-HT(2) receptors ligands on the monoaminergic systems but also on adult hippocampal neurogenesis. EXPERT OPINION Although studies support the hypothesis that the inactivation of 5-HT(2A) and/or 5-HT(2C) receptors might be of interest to reinforce different facets of the therapeutic activity of SSRIs, this pharmacological strategy remains debatable notably because of the lack of chronic data in relevant animal models. Conversely, emerging evidence suggests that the activation of 5-HT(2B) receptor is required for antidepressant-like activity, opening the way to new therapeutic approaches. However, the potential risks related to the enhancement of monoaminergic neurotransmissions could represent a major concern.
Collapse
Affiliation(s)
- Gaël Quesseveur
- EA3544 University Paris-XI, Laboratoire de Neuropharmacologie, Fac. Pharmacie, F-92296, Châtenay-Malabry cedex, France
| | | | | | | |
Collapse
|
11
|
The role of serotonin-2 (5-HT2) and dopamine receptors in the behavioral actions of the 5-HT2A/2C agonist, DOI, and putative 5-HT2C inverse agonist, SR46349B. Psychopharmacology (Berl) 2011; 213:393-401. [PMID: 20652541 DOI: 10.1007/s00213-010-1928-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Atypical antipsychotic efficacy is often attributed to actions at serotonin-2 (5-HT(2)) and dopamine receptors, indicating a potential benefit of understanding the interplay between these systems. Currently, it is known that 5-HT(2) receptors modulate dopamine release, although the role of specific dopamine receptors in 5-HT(2)-mediated behavior is not well understood. OBJECTIVES We examined the role of 5-HT(2A), 5-HT(2C), and dopamine (D1 and D2) receptors in the behavioral response to a 5-HT(2A/2C) agonist (DOI) and 5-HT(2A/2C) antagonist (SR46349B). MATERIALS AND METHODS Effects were assessed by measuring rabbit head bobs (previously characterized as 5-HT(2A) receptor-mediated) and body shakes (5-HT(2C)-mediated). RESULTS As expected, DOI produced head bobs and body shakes, and these DOI-elicited behaviors were attenuated by the SR46349B pretreatment. Unexpectedly, SR46349B also induced head bobs when administered alone. However, SR46349B-elicited head bobs are distinguishable from those produced by DOI since the 5-HT(2A) antagonist, ketanserin, only attenuated DOI-elicited head bobs. Conversely, 5-HT(2C) ligands (SB242084 and SB206553) inhibited SR46349B but not DOI-induced head bobs. Furthermore, when administered alone, SB206553 (a 5-HT(2C) inverse agonist) produced head bobs, indicating the behavior can be either 5-HT(2A) or 5-HT(2C) mediated. Next, it was revealed that D1 and D2 receptors play a role in DOI-elicited head bobs, but only D1 receptors are required for SR46349B-elicited head bobs. CONCLUSIONS 5-HT(2A) receptor agonism and 5-HT(2C) inverse agonism produce the same behavior, likely due to similar downstream actions at D1 receptors. Consequently, 5-HT(2C) agonism or D1 agonism may be effective therapies for disorders, such as schizophrenia, currently being treated with 5-HT(2A) antagonists.
Collapse
|
12
|
Sela VR, Roncon CM, Zangrossi H, Graeff FG, Audi EA. Pindolol potentiates the panicolytic effect of paroxetine in the elevated T-maze. Life Sci 2010; 87:445-50. [DOI: 10.1016/j.lfs.2010.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 08/11/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
13
|
Jones K, Brennan KA, Colussi-Mas J, Schenk S. Tolerance to 3,4-methylenedioxymethamphetamine is associated with impaired serotonin release. Addict Biol 2010; 15:289-98. [PMID: 20477756 DOI: 10.1111/j.1369-1600.2010.00217.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tolerance to the behavioural effects of 3,4-methylenedioxymethamphetamine (MDMA) following high dose exposure has been attributed to alterations in serotonergic systems. The present study aimed to determine whether decreased 5-HT release and/or 5-HT(2A/C) receptor desensitization might play a role in tolerance by measuring the response to selective ligands following MDMA exposure. To this end, the latency to nose poke and emerge from a hide box to an open field arena following administration of various ligands to MDMA pre-treated and control rats was measured. Acute exposure to MDMA (0.0-3.3 mg/kg), the 5-HT releasing stimulant fenfluramine (0.0-2.0 mg/kg) and the 5-HT(2) receptor agonist m-CPP (0.0-1.25 mg/kg) increased nose poke and emergence latency. Following administration of doses that produce 5-HT(2A) receptor-mediated behaviours, the 5-HT(2) receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane failed to alter nose poke and emergence latency, suggesting a limited role of this receptor subtype in these behaviours. Activation of 5-HT(2C) receptors was implicated in the behavioural response to both MDMA and m-CPP since the increased emergence latency was dose-dependently attenuated by pre-treatment with the selective 5-HT(2C) receptor antagonist RS102221 (0.0-1.0 mg/kg). Tolerance to the behavioural effect of MDMA and fenfluramine but not m-CPP was produced by prior exposure to MDMA (10 mg/kg administered at two-hour intervals, total 40 mg/kg), and tissue levels of 5-HT and 5-HIAA were decreased. These findings suggest that tolerance to the increased nose poke and emergence latency produced by MDMA is due to impaired 5-HT release.
Collapse
Affiliation(s)
- Karen Jones
- School of Psychology, Victoria University of Wellington, New Zealand
| | | | | | | |
Collapse
|
14
|
Bijlsma EY, de Jongh R, Olivier B, Groenink L. Fear-potentiated startle, but not light-enhanced startle, is enhanced by anxiogenic drugs. Pharmacol Biochem Behav 2010; 96:24-31. [PMID: 20394767 DOI: 10.1016/j.pbb.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/16/2010] [Accepted: 04/06/2010] [Indexed: 01/27/2023]
Abstract
RATIONALE AND OBJECTIVES The light-enhanced startle paradigm (LES) is suggested to model anxiety, because of the non-specific cue and the long-term effect. In contrast, the fear-potentiated startle (FPS) is suggested to model conditioned fear. However, the pharmacological profiles of these two paradigms are very similar. The present study investigated the effects of putative anxiogenic drugs on LES and FPS and aimed at determining the sensitivity of LES for anxiogenic drugs and to potentially showing a pharmacological differentiation between these two paradigms. METHODS Male Wistar rats received each dose of the alpha(2)-adrenoceptor antagonist yohimbine (0.25-1.0mg/kg), the 5-HT(2C) receptor agonist m-chlorophenylpiperazine (mCPP, 0.5-2.0mg/kg) or the GABA(A) inverse receptor agonist pentylenetetrazole (PTZ, 3-30mg/kg) and were subsequently tested in either LES or FPS. RESULTS None of the drugs enhanced LES, whereas mCPP increased percentage FPS and yohimbine increased absolute FPS values. Furthermore, yohimbine increased baseline startle amplitude in the LES, while mCPP suppressed baseline startle in both the LES and FPS and PTZ suppressed baseline startle in the FPS. CONCLUSIONS In contrast to findings in the FPS paradigm, none of the drugs were able to exacerbate the LES response. Thus, a clear pharmacological differentiation was found between LES and FPS.
Collapse
Affiliation(s)
- Elisabeth Yvonne Bijlsma
- Section Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Verheij MMM, Veenvliet JV, Groot Kormelink T, Steenhof M, Cools AR. Individual differences in the sensitivity to serotonergic drugs: a pharmacobehavioural approach using rats selected on the basis of their response to novelty. Psychopharmacology (Berl) 2009; 205:441-55. [PMID: 19434397 PMCID: PMC2712066 DOI: 10.1007/s00213-009-1552-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 04/22/2009] [Indexed: 11/30/2022]
Abstract
RATIONALE The mechanisms underlying individual differences in the response to serotonergic drugs are poorly understood. Rat studies may contribute to our knowledge of the neuronal substrates that underlie these individual differences. OBJECTIVES A pharmacobehavioural study was performed to assess individual differences in the sensitivity to serotonergic drugs in rats that were selected based on their response to a novel environment. METHODS Low responders (LR) and high responders (HR) to novelty rats were tested on the elevated T-maze following systemic injections of increasing doses of various serotonergic agents. The duration of avoidance of the open arms was scored for five trials. RESULTS The duration of avoidance behaviour was larger in saline-treated LR rats compared to saline-treated HR rats. The 5-HT1A agonist 8-OH-DPAT and the 5-HT2 agonists mCPP and DOI decreased the duration of avoidance behaviour in LR rats, but increased it in HR rats. The 5-HT3 agonist SR57227A and the 5-HT releaser/reuptake inhibitor d-fenfluramine increased the duration of avoidance behaviour in both types of rat. However, higher doses of SR57227A were required to alter avoidance behaviour in HR than in LR rats. The onset of the effects of SR57227A, d-fenfluramine and WAY100635 was faster in LR than in HR rats. The described effects were receptor specific. A model explaining the data is presented. CONCLUSIONS These data demonstrate that LR and HR rats differ in their sensitivity to serotonergic drugs that act at 5-HT3, 5-HT2 and 5-HT1A receptors. The implications of these individual differences for individual-specific treatment of substance abuse are briefly discussed.
Collapse
Affiliation(s)
- Michel M. M. Verheij
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| | - Jesse V. Veenvliet
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| | - Tom Groot Kormelink
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| | - Maaike Steenhof
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| | - Alexander R. Cools
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University (RU) Nijmegen Medical Centre, 6525 EZ Nijmegen, P.O. Box 9101, The Netherlands
| |
Collapse
|
16
|
Hayes DJ, Clements R, Greenshaw AJ. Effects of systemic and intra-nucleus accumbens 5-HT2C receptor compounds on ventral tegmental area self-stimulation thresholds in rats. Psychopharmacology (Berl) 2009; 203:579-88. [PMID: 19031071 DOI: 10.1007/s00213-008-1404-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/29/2008] [Indexed: 11/29/2022]
Abstract
RATIONALE Serotonin 2C (5-HT(2C)) receptors may play a role in regulating motivation and reward-related behaviours. To date, no studies have investigated the possible role of 5-HT(2C) receptors in ventral tegmental area (VTA) intracranial self-stimulation (ICSS). OBJECTIVES The current study investigated the hypotheses that 5-HT(2C) receptors play an inhibitory role in VTA ICSS, and that 5-HT(2C) receptors within the nucleus accumbens (NAc) shell may be involved. METHODS Male Sprague-Dawley rats were implanted with a VTA electrode and bilateral NAc shell cannulae for the experiment involving microinjections, and trained to respond for electrical self-stimulation. The systemic effects of the selective 5-HT(2C) receptor agonist WAY 161503 (0-1.0 mg/kg), the 5-HT(1A/1B/2C) receptor agonist TFMPP (0.3 mg/kg) and the selective 5-HT(2C) receptor antagonist SB 242084 (1.0 mg/kg) were compared using rate-frequency threshold analysis. Intra-NAc shell microinjections of WAY 161503 (0-1.5 microg/side) were investigated and compared to amphetamine (1.0 microg/side). RESULTS WAY 161503 (1.0 mg/kg) and TFMPP (0.3 mg/kg) significantly increased rate-frequency thresholds (M50 values) without altering maximal response rates (RMAX values). SB 242084 attenuated the effects of TFMPP; SB 242084 had no affect on M50 or RMAX values. Intra-NAc shell WAY 161503 had no effect on M50 or RMAX values; intra-NAc amphetamine decreased M50 values. CONCLUSIONS These results suggest that 5-HT(2C) receptors play an inhibitory role in regulating reward-related behaviour while 5-HT(2C) receptor activation in the NAc shell did not appear to influence VTA ICSS behaviour under the present experimental conditions.
Collapse
Affiliation(s)
- Dave J Hayes
- Centre for Neuroscience, 513 HMRC, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
17
|
Elevated 5-HT 2A receptors in postmortem prefrontal cortex in major depression is associated with reduced activity of protein kinase A. Neuroscience 2008; 158:1406-15. [PMID: 19111907 DOI: 10.1016/j.neuroscience.2008.11.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/14/2008] [Accepted: 11/24/2008] [Indexed: 01/18/2023]
Abstract
Previous human postmortem brain tissue research has implicated abnormalities of 5-HT receptor availability in depression and suicide. Although altered abundance of 5-HT 1A, 5-HT 2A, and 5-HT 2C receptors (5-HT(1A), 5-HT(2A), and 5-HT(2C)) has been reported, the causes remain obscure. This study evaluated the availability of these three receptor subtypes in postmortem brain tissue specimens from persons with a history of major depression (MDD) and normal controls and tested the relationships to protein kinases A and C (PKA, PKC). Samples were obtained from postmortem brain tissue (Brodmann area 10) from 20 persons with a history of MDD and 20 matched controls as determined by a retrospective diagnostic evaluation obtained from family members. Levels of 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptor were quantitated via Western blot analyses. Basal and stimulated PKA and PKC activity were also determined. The depressed samples showed significantly increased 5-HT(2A) receptor abundance relative to controls, but no differences in 5-HT(1A) or 5-HT(2C) receptors. Basal and cyclic AMP-stimulated PKA activity was also reduced in the depressed sample; PKC activity was not different between groups. 5-HT(2A) receptor availability was significantly inversely correlated with PKC activity in controls, but with PKA activity in the depressed sample. Increased 5-HT(2A) receptor abundance and decreased PKA activity in the depressed sample are consistent with prior reports. The correlation of 5-HT(2A) receptor levels with PKA activity in the depressed group suggests that abnormalities of 5-HT(2A) receptor abundance may depend on receptor uncoupling and heterologous regulation by PKA.
Collapse
|
18
|
Effects of age and anxiety on learning and memory. Behav Brain Res 2008; 195:147-52. [DOI: 10.1016/j.bbr.2008.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 11/21/2022]
|
19
|
The neurotensin-1 receptor agonist PD149163 blocks fear-potentiated startle. Pharmacol Biochem Behav 2008; 90:748-52. [PMID: 18577396 DOI: 10.1016/j.pbb.2008.05.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 12/31/2022]
Abstract
Preliminary evidence suggests that the neuropeptide, neurotensin (NT) may regulate fear/anxiety circuits. We investigated the effects of PD149163, a NT1 receptor agonist, on fear-potentiated startle (FPS). Sprague Dawley rats were trained to associate a white light with a mild foot shock. In one experiment, animals were treated with either subcutaneous vehicle or PD149163 (0.01, 0.1 or 1.0 mg/kg) 24 h after training. Twenty minutes later their acoustic startle response in the presence or absence of the white light was tested. In a second experiment, saline and 1.0 mg/kg PD149163 were tested using a separate group of rats. In the first experiment, PD149163 produced a non-significant decrease in baseline acoustic startle at all three doses. As expected, saline-treated rats exhibited significant FPS. An ANOVA of percentage FPS revealed no significant effect of treatment group overall but the high dose group did not display FPS strongly suggesting an FPS effect at this dose. This finding was confirmed in the second experiment where the high dose of PD149163 reduced percent FPS relative to saline (P < 0.05). These data suggest that systemically administered NT1 agonists modulate the neural circuitry that regulates fear and anxiety to produce dose-dependent anxiolytic-like effects on FPS.
Collapse
|
20
|
da Silva AL, Ferreira JG, da Silva Martins B, Oliveira S, Mai N, Nunes DS, Elisabetsky E. Serotonin receptors contribute to the promnesic effects of P. olacoides (Marapuama). Physiol Behav 2008; 95:88-92. [DOI: 10.1016/j.physbeh.2008.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/29/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
|
21
|
Holmes A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev 2008; 32:1293-314. [PMID: 18439676 DOI: 10.1016/j.neubiorev.2008.03.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 02/20/2008] [Indexed: 01/09/2023]
Abstract
The serotonin system is strongly implicated in the pathophysiology and therapeutic alleviation of stress-related disorders such as anxiety and depression. Serotonergic modulation of the acute response to stress and the adaptation to chronic stress is mediated by a myriad of molecules controlling serotonin neuron development (Pet-1), synthesis (tryptophan hydroxylase 1 and 2 isozymes), packaging (vesicular monoamine transporter 2), actions at presynaptic and postsynaptic receptors (5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, 5-HT3A, 5-HT4, 5-HT5A, 5-HT6, 5-HT7), reuptake (serotonin transporter), and degradation (monoamine oxidase A). A growing body of evidence from preclinical rodents models, and especially genetically modified mice and inbred mouse strains, has provided significant insight into how genetic variation in these molecules can affect the development and function of a key neural circuit between the dorsal raphe nucleus, medial prefrontal cortex and amygdala. By extension, such variation is hypothesized to have a major influence on individual differences in the stress response and risk for stress-related disease in humans. The current article provides an update on this rapidly evolving field of research.
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, 5625 Fishers Lane Room 2N09, Rockville, MD 20852-9411, USA.
| |
Collapse
|
22
|
Guimarães FS, Carobrez AP, Graeff FG. Chapter 4.3 Modulation of anxiety behaviors by 5-HT-interacting drugs. HANDBOOK OF ANXIETY AND FEAR 2008. [DOI: 10.1016/s1569-7339(07)00012-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Martinez RCR, Ribeiro de Oliveira A, Brandão ML. Serotonergic mechanisms in the basolateral amygdala differentially regulate the conditioned and unconditioned fear organized in the periaqueductal gray. Eur Neuropsychopharmacol 2007; 17:717-24. [PMID: 17398077 DOI: 10.1016/j.euroneuro.2007.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 01/19/2023]
Abstract
The amygdala is an important filter for unconditioned and conditioned aversive information. The amygdala synthesizes the stimuli input from the environment and then signals the degree of threat that they represent to the dorsal periaqueductal gray (dPAG), which would be in charge of selecting, organizing and executing the appropriate defense reaction. In this study, we examined the influence of fluoxetine microinjections (1.75 and 3.5 nmol/0.2 microL) into the lateral (LaA) and basolateral (BLA) amygdaloid nuclei on the freezing and escape responses induced by electrical stimulation of the dPAG. Freezing behavior was also measured after the interruption of the electrical stimulation of the dPAG. On the following day, these rats were also submitted to a contextual fear paradigm to examine whether these microinjections would affect the conditioned freezing to contextual cues previously associated with foot shocks. Fluoxetine injections into both amygdaloid nuclei did not change the freezing and escape thresholds, but disrupted the dPAG-post-stimulation freezing. Moreover, the conditioned freezing was enhanced by fluoxetine. Whereas 5-HT mechanisms in the amygdala facilitate the acquisition of conditioned fear they inhibit the dPAG-post-stimulation freezing. However, the unconditioned fear triggered by activation of the dPAG is produced downstream of the amygdala. These findings have important implications for the understanding of the neurochemical substrates that underlie panic and generalized anxiety disorders.
Collapse
|
24
|
Zefirova ON, Zefirov NS. Physiologically active compounds interacting with serotonin (5-hydroxytryptamine) receptors. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc2001v070n04abeh000654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Sood S, Liu X, Liu H, Horner RL. Genioglossus muscle activity and serotonergic modulation of hypoglossal motor output in obese Zucker rats. J Appl Physiol (1985) 2007; 102:2240-50. [PMID: 17332267 DOI: 10.1152/japplphysiol.01229.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obese Zucker rats have a narrower and more collapsible upper airway compared with lean controls, similar to obstructive sleep apnea (OSA) patients. Genioglossus (GG) muscle activity is augmented in awake OSA patients to compensate for airway narrowing, but the neural control of GG activity in obese Zucker rats has not been investigated to determine whether such neuromuscular compensation also occurs. This study tests the hypotheses that GG activity is augmented in obese Zucker rats compared with lean controls and that endogenous 5-hydroxytryptamine (5-HT) contributes to GG activation. Seven obese and seven lean Zucker rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and they were implanted with GG and diaphragm wires for respiratory muscle recordings. Microdialysis probes were implanted into the hypoglossal motor nucleus for perfusion of artificial cerebrospinal fluid and the 5-HT receptor antagonist mianserin (100 microM). Compared with lean controls, respiratory rates were increased in obese rats across sleep-wake states (P=0.048) because of reduced expiratory durations (P=0.007); diaphragm activation was similar between lean and obese animals (P=0.632). Respiratory-related, tonic, and peak GG activities were also similar between obese and lean rats (P>0.139). There was no reduction in GG activity with mianserin at the hypoglossal motor nucleus, consistent with recent observations of a minimal contribution of endogenous 5-HT to GG activity. These results suggest that despite the upper airway narrowing in obese Zucker rats, these animals have a sufficiently stable airway such that pharyngeal muscle activity is normal across sleep-wake states.
Collapse
Affiliation(s)
- Sandeep Sood
- Department of Medicine, Rm. 6368, Medical Sciences Bldg., 1 Kings College Circle, University of Toronto, ON, Canada, M5S 1A8
| | | | | | | |
Collapse
|
26
|
Macedo CE, Martinez RCR, Albrechet-Souza L, Molina VA, Brandão ML. 5-HT2- and D1-mechanisms of the basolateral nucleus of the amygdala enhance conditioned fear and impair unconditioned fear. Behav Brain Res 2007; 177:100-8. [PMID: 17126419 DOI: 10.1016/j.bbr.2006.10.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 10/30/2006] [Indexed: 02/04/2023]
Abstract
The inferior colliculus (IC) is involved in processing of auditory information, but also integrates acoustic information of aversive nature. In fact, chemical stimulation of the IC with semicarbazide (SMC) - an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase - has been found to cause defensive behavior in an open-field test and functions as an unconditioned stimulus in the place conditioned aversion test (PCA). A question has arisen regarding whether the basolateral nucleus of the amygdala (BLA) is involved in the acquisition of the aversive information ascending from the IC and whether dopaminergic and serotoninergic mechanisms of the BLA regulate this process. Recent evidence has shown that inactivation of the BLA with muscimol inhibits the PCA and causes an increase in the aversiveness of the chemical stimulation of the IC. Based on this, we examined the effects of ketanserin and SCH-23390, antagonists of the 5HT(2) and D(1) receptors, respectively, on the conditioned and unconditioned fear elicited by IC stimulation with SMC. The results obtained confirm the crucial role of 5-HT(2)- and D(1)-mechanisms of the BLA on conditioned fear in that ketanserin and SCH-23390 injections into the BLA caused a reduction in the PCA. On the other hand, ketanserin and SCH-23390 injections into the BLA enhanced the aversiveness of the IC injections of SMC. These findings suggest that while 5-HT(2) and DA(1) mechanisms in the BLA appear to facilitate the conditioned fear they inhibit the unconditioned fear triggered by IC activation.
Collapse
Affiliation(s)
- Carlos Eduardo Macedo
- Laboratório de Psicobiologia, Faculdade Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
27
|
Hauger RL, Risbrough V, Brauns O, Dautzenberg FM. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2006; 5:453-79. [PMID: 16918397 PMCID: PMC1925123 DOI: 10.2174/187152706777950684] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Corticotropin-releasing factor (CRF) and the related urocortin peptides mediate behavioral, cognitive, autonomic, neuroendocrine and immunologic responses to aversive stimuli by activating CRF(1) or CRF(2) receptors in the central nervous system and anterior pituitary. Markers of hyperactive central CRF systems, including CRF hypersecretion and abnormal hypothalamic-pituitary-adrenal axis functioning, have been identified in subpopulations of patients with anxiety, stress and depressive disorders. Because CRF receptors are rapidly desensitized in the presence of high agonist concentrations, CRF hypersecretion alone may be insufficient to account for the enhanced CRF neurotransmission observed in these patients. Concomitant dysregulation of mechanisms stringently controlling magnitude and duration of CRF receptor signaling also may contribute to this phenomenon. While it is well established that the CRF(1) receptor mediates many anxiety- and depression-like behaviors as well as HPA axis stress responses, CRF(2) receptor functions are not well understood at present. One hypothesis holds that CRF(1) receptor activation initiates fear and anxiety-like responses, while CRF(2) receptor activation re-establishes homeostasis by counteracting the aversive effects of CRF(1) receptor signaling. An alternative hypothesis posits that CRF(1) and CRF(2) receptors contribute to opposite defensive modes, with CRF(1) receptors mediating active defensive responses triggered by escapable stressors, and CRF(2) receptors mediating anxiety- and depression-like responses induced by inescapable, uncontrollable stressors. CRF(1) receptor antagonists are being developed as novel treatments for affective and stress disorders. If it is confirmed that the CRF(2) receptor contributes importantly to anxiety and depression, the development of small molecule CRF(2) receptor antagonists would be therapeutically useful.
Collapse
Affiliation(s)
- Richard L Hauger
- San Diego VA Healthcare System, University of California San Diego, La Jolla, 929093-0603, USA.
| | | | | | | |
Collapse
|
28
|
Weisstaub NV, Zhou M, Lira A, Lambe E, González-Maeso J, Hornung JP, Sibille E, Underwood M, Itohara S, Dauer WT, Ansorge MS, Morelli E, Mann JJ, Toth M, Aghajanian G, Sealfon SC, Hen R, Gingrich JA. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 2006; 313:536-40. [PMID: 16873667 DOI: 10.1126/science.1123432] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] neurotransmission in the central nervous system modulates depression and anxiety-related behaviors in humans and rodents, but the responsible downstream receptors remain poorly understood. We demonstrate that global disruption of 5-HT2A receptor (5HT2AR) signaling in mice reduces inhibition in conflict anxiety paradigms without affecting fear-conditioned and depression-related behaviors. Selective restoration of 5HT2AR signaling to the cortex normalized conflict anxiety behaviors. These findings indicate a specific role for cortical 5HT2AR function in the modulation of conflict anxiety, consistent with models of cortical, "top-down" influences on risk assessment.
Collapse
MESH Headings
- Animals
- Anxiety/physiopathology
- Cerebral Cortex/metabolism
- Conditioning, Psychological
- Conflict, Psychological
- Depression/physiopathology
- Exploratory Behavior
- Fear
- Limbic System/metabolism
- Mice
- Mice, Knockout
- Patch-Clamp Techniques
- Periaqueductal Gray/metabolism
- Prosencephalon/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, Neurotransmitter/metabolism
- Risk-Taking
- Serotonin/physiology
- Signal Transduction
- Synaptic Transmission
Collapse
Affiliation(s)
- Noelia V Weisstaub
- Department of Biology, Columbia University and the New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Salchner P, Singewald N. 5-HT receptor subtypes involved in the anxiogenic-like action and associated Fos response of acute fluoxetine treatment in rats. Psychopharmacology (Berl) 2006; 185:282-8. [PMID: 16521035 DOI: 10.1007/s00213-005-0247-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 10/24/2005] [Indexed: 12/24/2022]
Abstract
RATIONALE We have recently reported that acute treatment with the selective serotonin reuptake inhibitor fluoxetine exacerbates escape responses to airjet and facilitates airjet-induced activation of locus coeruleus (LC) neurons. OBJECTIVE Here we aimed to identify the 5-HT receptor subtype(s) mediating the anxiogenic-like effects of acute fluoxetine in this paradigm and to study whether chronic fluoxetine treatment would alter these responses. METHODS The expression of the immediate early gene c-fos was used as a marker of neuronal activation. RESULTS Acute fluoxetine increased the airjet-induced escape behaviour and Fos expression in the LC of saline-pretreated rats. Pretreatment with the 5-HT(2C/2B) antagonist SB 206553, but not with the 5-HT1A antagonist WAY 100635, the 5-HT1B antagonist SB 224289 or the 5-HT3 antagonist Y-25130 inhibited the fluoxetine-induced increase in escape behaviour and the associated elevated LC Fos response. The selective 5-HT2C agonist MK-212 mimicked the anxiogenic response of fluoxetine. Chronic treatment with fluoxetine abolished the anxiogenic-like effect and led to a normalization of the enhanced fluoxetine-induced Fos response to airjet. CONCLUSIONS Taken together, the results indicate that the anxiogenic-like effect as well as the facilitated neuronal reactivity induced by acute fluoxetine in the airjet model is mediated primarily by activation of 5-HT2C receptors.
Collapse
Affiliation(s)
- Peter Salchner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria
| | | |
Collapse
|
30
|
Walker EA, Kohut SJ, Hass RW, Brown EK, Prabandham A, Lefever T. Selective and nonselective serotonin antagonists block the aversive stimulus properties of MK212 and m-chlorophenylpiperazine (mCPP) in mice. Neuropharmacology 2005; 49:1210-9. [PMID: 16165167 DOI: 10.1016/j.neuropharm.2005.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/20/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
Serotonin(2C) (5-HT(2C)) receptors have been implicated to treat mood disorders such as depression and anxiety. In the present study, the capacities of two 5-HT(2C) agonists, MK212 and mCPP, to produce conditioned taste aversions in mice were evaluated. On two training days, Swiss-Webster male mice (19-34g) were trained to associate the flavor of a novel solution with the injection of various doses of MK212 or mCPP. On two alternate training days, mice were trained to associate a different flavored solution with an injection of saline. For testing, both flavored solutions were presented simultaneously and an avoidance of the MK212 or mCPP-paired solution indicated conditioned taste aversion. Robust conditioned taste aversions were observed to solutions paired with 1.0 or 10mg/kg MK212 or mCPP. Acquisition of conditioned taste aversions was blocked by nonselective serotonin antagonists cyproheptadine, bromo-LSD, metergoline, methysergide and mianserin. Selective 5-HT(2B/2C) antagonist SB206,553 blocked both MK212- and mCPP-induced conditioned taste aversion although selective 5-HT(2B/2C) antagonist SB200,646 only blocked mCPP-induced conditioned taste aversion. In a single-bottle procedure, MK212, bromo-LSD, and mianserin failed to alter acquisition rate of a LiCl-induced conditioned taste aversion. Taken together, these data indicate that the serotonin agonists MK212 and mCPP produce conditioned taste aversion and that these effects are mediated predominantly through 5-HT(2C) receptors.
Collapse
Affiliation(s)
- Ellen A Walker
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|
31
|
de Mello Cruz AP, Pinheiro G, Alves SH, Ferreira G, Mendes M, Faria L, Macedo CE, Motta V, Landeira-Fernandez J. Behavioral effects of systemically administered MK-212 are prevented by ritanserin microinfusion into the basolateral amygdala of rats exposed to the elevated plus-maze. Psychopharmacology (Berl) 2005; 182:345-54. [PMID: 16133141 DOI: 10.1007/s00213-005-0108-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Accepted: 06/18/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Although 5-HT2 receptors seem to play an important role in anxiety, results from numerous studies are still highly variable. Moreover, little is known about the behavioral effects of centrally administered 5-HT2 compounds in animal models of anxiety. OBJECTIVE The current study was performed to: (1) further investigate the effects of 5-HT2 receptor activation in rats exposed to the elevated plus-maze (EPM) and the open-field arena, two widely used animal models for studying anxiety and locomotor activity; and (2) evaluate the involvement of the 5-HT2 receptors within the basolateral nucleus of the amygdala (BLA) in the modulation of such effects. METHODS In the first experiment, male Wistar rats were exposed for 5 min to the EPM 27 min following intraperitoneal (i.p.) (1.0 ml/kg) injections of the preferential 5-HT2C receptor agonist 6-chloro-2[1-piperazinyl]pyrazine (MK-212) at doses of 1.0, 2.0, or 4.0 mg/kg. Control animals were injected with saline. The percentage of open-arm entries and the percentage of time spent in these arms were employed as anxiety indexes, whereas the number of closed-arm entries was calculated as indicative of locomotor activity. In the second experiment, rats were exposed for 10 min in an open-field arena to further assess the interference of the same MK-212 doses upon locomotor activity. In Experiment 3, rats were microinjected (0.2 microl) either with the mixed 5-HT 2A/2C receptor antagonist ritanserin (0.5, 1.25, 2.5, and 5.0 microg) or its vehicle into the BLA 12 min following i.p. injections of saline or the intermediate dose of MK-212 (2.0 mg/kg). Fifteen minutes later, each animal was exposed to the EPM as before. RESULTS Whereas the highest dose of MK-212 (4.0 mg/kg) induced motor-suppressant effects in both EPM and open-field arena, the intermediate dose of the drug (2.0 mg/kg) reduced open-arm exploration without significantly affecting the number of closed-arm entries. This behavioral profile, consistent with selective anxiogenic effect in the EPM, was dose-dependently prevented by ritanserin microinfusion into the BLA. In saline-pretreated animals, however, ritanserin (all doses) was ineffective. CONCLUSIONS MK-212 increases anxiety and decreases locomotor activity. The anxiogenic-like profile of 5-HT2 receptor activation is prevented by the blockade of 5-HT2 receptors within the BLA, which does not have an effect by itself upon basal anxiety levels triggered by the EPM.
Collapse
Affiliation(s)
- Antonio Pedro de Mello Cruz
- Laboratório de Psicobiologia, Departamento de Processos Psicológicos Básicos, Instituto de Psicologia, Universidade de Brasília, Brasília, DF, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tuma J, Strubbe JH, Mocaër E, Koolhaas JM. Anxiolytic-like action of the antidepressant agomelatine (S 20098) after a social defeat requires the integrity of the SCN. Eur Neuropsychopharmacol 2005; 15:545-55. [PMID: 16139172 DOI: 10.1016/j.euroneuro.2005.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 02/01/2005] [Accepted: 02/15/2005] [Indexed: 11/16/2022]
Abstract
In rats, social defeat by an aggressive opponent induces a state of anxiety, shown by a decrease in time spent on active explorative behaviour, an increase in immobility, a clear decrease in frequency of all active behavioural parameters (enhanced passivity). We tested the hypothesis whether acute or sub-chronic agomelatine would antagonize the negative consequences of a social defeat. As many chronobiological actions of melatonin and its receptor agonist agomelatine require the integrity of the suprachiasmatic nuclei (SCN), we examined whether the anxiolytic-like action of agomelatine 1 day after a social defeat is still present in SCN-lesioned rats. Sub-chronic administration of agomelatine caused a clear reduction of the social defeat induced behavioural consequences. A single agomelatine injection prior to the post-defeat test was less effective and a single melatonin injection was hardly effective. SCN lesion did not affect the anxiety reaction after a social defeat. Thus, sub-chronic agomelatine treatment or a single agomelatine injection reduced a state of anxiety and passivity caused by asocial defeat. The defeat-induced behavioural changes do not depend on the SCN but agomelatine showed its anxiolytic action only in sham-lesioned animals, which indicates that the anxiolytic-like action of agomelatine requires the integrity of the SCN. Mechanisms sustaining this activity are discussed.
Collapse
Affiliation(s)
- Jolanda Tuma
- Department of Animal Physiology, University of Groningen, Kerklaan, 30, 9751 NN, Haren, The Netherlands
| | | | | | | |
Collapse
|
33
|
Thompson BL, Rosen JB. Immediate-early gene expression in the central nucleus of the amygdala is not specific for anxiolytic or anxiogenic drugs. Neuropharmacology 2005; 50:57-68. [PMID: 16185722 DOI: 10.1016/j.neuropharm.2005.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 07/28/2005] [Indexed: 11/26/2022]
Abstract
The lateral, basal, and central nuclei of the amygdala are part of a circuitry that instantiates many fear and anxious behaviors. One line of support indicates that immediate-early gene (IEG) expression (e.g., c-fos and egr-1 (zif268)) is increased in these nuclei following fear conditioning. Other research finds that anxiogenic drugs working through various mechanisms induce IEG expression in the central nucleus of the amygdala (CeA) suggesting that expression is a neural marker for fear and anxiety. However, several studies have also found that anxiolytic drugs induce IEG expression in the CeA. Expression of egr-1 in the CeA and lateral nucleus of the amygdala following administration of anxiolytic and anxiogenic benzodiazepine and serotonin agonists and antagonists was investigated. The first experiment determined behaviorally active anxiolytic and anxiogenic doses for two anxiogenic drugs (FG 7142 and mCPP) and two anxiolytic drugs (diazepam and buspirone). The effects of anxiogenic and anxiolytic doses of these drugs on egr-1 expression in the amygdala were then tested in a second experiment. All four drugs increased egr-1 in the CeA indicating that increased egr-1 mRNA expression in the CeA is not specific to anxiolytic or anxiogenic effects of the drugs. We suggest that IEG expression in the CeA may be due to activation of circuits that are associated with systemic physiological homeostasis perturbed by a number of drugs including anxiogenic and anxiolytic compounds.
Collapse
|
34
|
Ripoll N, Hascoët M, Bourin M. Implication of 5-HT2A subtype receptors in DOI activity in the four-plates test-retest paradigm in mice. Behav Brain Res 2005; 166:131-9. [PMID: 16154212 DOI: 10.1016/j.bbr.2005.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/22/2005] [Accepted: 07/22/2005] [Indexed: 11/19/2022]
Abstract
The four-plates test (FPT) is an animal model of anxiety which allows the detection of anxiolytic effect not only of benzodiazepines (BZDs) but also of other non-BZDs anxiolytic compounds such as antidepressants (ADs). Furthermore, DOI, a 5-HT(2A/2C) agonist, has been shown to exert an anxiolytic-like effect in this model. Retesting mice in animal models of anxiety (test-retest paradigm) induces an anxiogenic-like and a loss of anxiolytic-like effects in response to BZDs and ADs. On the contrary, DOI has been reported to oppose the fear potentiation induced by trial 1 in the FPT. Despite DOI is considered as one of the most selective 5-HT(2A) available, it acts as agonist at all three 5-HT(2) receptor subtypes (5-HT(2A), 5-HT(2B) and 5-HT(2C)). The aim of this study was thus to investigate in the FPT test-retest paradigm, which 5-HT(2) receptor subtype(s) was involved in the DOI-induced effect in experienced mice. The effect of DOI (0.25-4 mg/kg) and the agonists, 5-HT(2B), BW 723C86 (1-16 mg/kg) and 5-HT(2C), RO 60-0175 (0.25-4 mg/kg) have also been studied. Then, antagonism studies were conducted combinating the 5-HT(2A) receptor antagonist SR 46349B, the 5-HT(2B/2C) receptor antagonist SB 206553 or the selective 5-HT(2C) receptor antagonist RS 10-2221 (at the doses of 0.1 and 1 mg/kg) with the DOI (1 mg/kg). Our study shows that the BW 723C86 had no effect on retesting mice, whereas it exerted an anxiolytic-like effect in naive mice. By contrast to DOI, the RO 60-0175 had no effect neither in naive nor experienced mice. Furthermore, only the SR 46349B antagonized the DOI-induced anti-punishment effect. Diazepam included as a positive control also increased in each case the number of punished passages in naive mice. Our findings altogether also suggest that DOI exerts its anxiolytic-like effect in the FPT test-retest paradigm through 5-HT(2A) receptors.
Collapse
Affiliation(s)
- Nadège Ripoll
- Research Group, EA 3256, Neurobiologie de l'anxiété et de la dépression, Faculté de Médecine, BP 53508, 1 rue Gaston Veil, F44035 Nantes Cedex 01, France
| | | | | |
Collapse
|
35
|
Jenck F, Bös M, Wichmann J, Stadler H, Martin JR, Moreau JL. The role of 5ht2c receptors in affective disorders. Expert Opin Investig Drugs 2005; 7:1587-99. [PMID: 15991903 DOI: 10.1517/13543784.7.10.1587] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
5-HT(2C) receptors are predominantly localised in the brain and their dysregulation may contribute to particular symptoms of anxiety and depression. The marked affinity of several clinically established psychotropic agents sites (e.g., tricyclic antidepressants, clozapine, fluoxetine) for 5-HT(2C) receptor has generated interest in the therapeutic potential of selective, high affinity 5-HT(2C) receptor ligands. Like the selective serotonin re-uptake inhibitor (SSRI) fluoxetine, high affinity selective agonists such as Ro 60-0175 and Ro 60-0332 have potent in vivo activity in animal models suggestive of therapeutic action against depression, obsessive-compulsive disorder (OCD) and panic disorders. In contrast, 5-HT(2C) receptor antagonists such as SB-200646A or SB-221284 show signs of anxiolytic-like activity in tests for conditioned and phobic-like anxiety in rodents whereas they are inactive in tests indicative of antidepressant, antiOCD and antipanic activity. These results are consistent with an important hypothesis proposing that 5-HT has a complex, dual action on the neural mechanism of anxiety by either facilitating or inhibiting different kinds of anxiety in different brain regions. They also suggest that 5-HT(2C) receptor subtypes play an important role in the therapeutic properties of SSRIs. Certain 5-HT(2C) receptor antagonists may possess negative efficacy at 5-HT(2C) receptors and, as inverse agonists, may control constitutive receptor activity possibly characterising some psychopathological states. Receptor variants exist in the human population and indicate possible associations between somatic mutations in the 5-HT(2C) receptor and psychopathology or response to drug treatment. Selective 5-HT(2C) receptor ligands may offer innovative and improved therapeutic opportunities for the biological treatment of specific aspects of psychiatric syndromes.
Collapse
Affiliation(s)
- F Jenck
- ROCHE Pharma Division, Preclinical CNS Research, CH 4070, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
We have recently suggested that the elevated T-maze (ETM) is not a useful test to study different types of anxiety in mice if a procedure similar to that originally validated for rats is employed. The present study investigated whether procedural (five exposures in the enclosed arm instead of three as originally described for rats) and structural (transparent walls instead of opaque walls) changes to the ETM leads to consistent inhibitory avoidance acquisition (IAA) and low escape latencies in mice. Results showed that five exposures to the ETM provoked consistent IAA, an effect that was independent of the ETM used. However, the ETM with transparent walls (ETMt) seemed to be more suitable for the study of conditioned anxiety (i.e. IAA) and unconditioned fear (escape) in mice, since IAA (low baseline latency with a gradual increase over subsequent exposures) and escape (low latency) profiles rendered it sensitive to the effects of anxiolytic and anxiogenic drugs. In addition to evaluation of drug effects on IAA and escape, the number of line crossings in the apparatus were used to control for locomotor changes. Results showed that whereas diazepam (1.0-2.0 mg/kg) and flumazenil (10-30 mg/kg) impaired IAA, FG 7142 (10-30 mg/kg) did not provoke any behavioral change. Significantly, none of these benzodiazepine (BDZ) receptor ligands modified escape latencies. The 5-HT1A partial receptor agonist buspirone (1.0-2.0 mg/kg) and the 5-HT releaser fenfluramine (0.15-0.30 mg/kg) impaired IAA and facilitated escape, while the full 5-HT1A receptor agonist, 8-OH-DPAT (0.05-0.1 mg/kg) and the 5-HT(2B/2C) receptor antagonist, SER 082 (0.5-2.0 mg/kg) failed to modify either response. mCPP (0.5-2.0 mg/kg), a 5-HT(2B/2C) receptor agonist, facilitated IAA but did not alter escape latency. Neither antidepressant utilized in the current study, imipramine (1.0-5.0 mg/kg) and moclobemide (3.0-10 mg/kg) affected IAA or escape performance in mice. The well-known anxiogenic drugs yohimbine (2.0-8.0 mg/kg) and caffeine (10-30 mg/kg) did not selectively affect IAA, although caffeine did impair escape latencies. Present results suggest the ETMt is useful for the study of conditioned anxiety in mice. However, upon proximal threats (e.g. open arm exposure), mice do not exhibit escape behavior as an immediate defensive strategy, suggesting that latency to leave open arm is not a useful parameter to evaluate unconditioned fear in this species.
Collapse
Affiliation(s)
- E F Carvalho-Netto
- Lab de Farmacologia da Faculdade de Ciências Farmacêuticas-Campus UNESP, Rod Araraquara-Jau, Km 01 Farmacologia, Araraquara, SP 14801-902, Brazil
| | | |
Collapse
|
37
|
Campbell BM, Merchant KM. Serotonin 2C receptors within the basolateral amygdala induce acute fear-like responses in an open-field environment. Brain Res 2004; 993:1-9. [PMID: 14642825 DOI: 10.1016/s0006-8993(03)03384-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies indicate a role for the serotonin 2 subfamily (5-HT(2A), 5-HT(2B), 5-HT(2C)) in mediation of fear and anxiety responses. The current study began to examine the effects of stimulating 5-HT(2C) receptors within the basolateral (BLA) or central nucleus of the amygdala (CeA) on acute fear-like responses in rats. Bilateral intra-BLA infusions of mCPP (3-3000 pmol), a mixed 5-HT(2) agonist, produced ultrasonic vocalization and reduced exploratory behavior while increasing the latency to investigate a novel object. These responses were attenuated by SB-242084, a 5-HT(2C)-specific antagonist. Furthermore, a selective 5-HT(2C) agonist, IL-639, produced a similar repertoire of behavioral effects with the exception of effects on time spent in the center of an open-field arena. Finally, infusions of mCPP into the CeA produced no anxiogenic behaviors suggesting that 5-HT(2C) receptors primarily within the BLA are responsible for many of the acute fear-like responses reported here. To characterize further the neural circuits associated with 5-HT(2C)-mediated fear responses, we assessed c-fos mRNA expression after intra-BLA infusions of mCPP, IL-639 or their vehicles. Whereas the overall regional pattern of c-fos mRNA induction for the two compounds was distinct, c-fos activation was confined primarily to limbic nuclei with the medial prefrontal cortex as a common regional target of each drug. These results suggest that activation of 5-HT(2C) receptors within the BLA influences the activity of limbic circuits involved in the expression of acute innate fear responses.
Collapse
Affiliation(s)
- Brian M Campbell
- Department of Biology II/Neurobiology, Pfizer Inc., MS 7251-209-507, 301 Henrietta St., Kalamazoo, MI 49007, USA.
| | | |
Collapse
|
38
|
Wagner C, Clayton MK, Gallegos J, Bass P, Oaks JA. Intraduodenal serotonin elicits non-propagating spike potentials in the small intestine of the rat. Comp Biochem Physiol A Mol Integr Physiol 2003; 136:591-603. [PMID: 14613787 DOI: 10.1016/s1095-6433(03)00212-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an endogenous signalling molecule capable of altering small intestinal motility. Serotonin is normally present in the intestinal lumen and released by enterochromaffin cells of the mucosal epithelium. We found that intraduodenal infusion of exogenous serotonin causes a dose-dependent myoelectric response in the smooth muscle of the small intestine in the conscious rat. The response consists of repetitive bursts of action potentials (RBAP) that are characterized as short bursts of non-propagative myoelectric spiking. RBAP occur intermittently and only during the first 15 min after intralumenal serotonin infusion. After the initial 15 min period, the frequency of RBAP declines, and the myoelectric pattern shifts to prolonged and continuous spiking, eliminating the interdigestive migrating myoelectric pattern. The effects of intralumenal serotonin are not replicated by parenteral or intraperitoneal infusion nor by intralumenal infusion of 5-hydroxytryptophan or 5-hydroxyindoleacetic acid. The response to intralumenal serotonin was eliminated by several specific 5-HT receptor antagonists. On repeated intralumenal administration of serotonin, the RBAP response decreased demonstrating a decreased sensitivity of the muscle contraction on re-exposure to serotonin. We conclude that intralumenal infusion of serotonin can temporarily initiate specific small intestinal muscle events that are not generated by serotonin from other non-lumenal administration sites. We speculate that an afferent neuro-pathway is necessary for the induction of RBAP, since RBAP are not observed from in vitro muscle preparations.
Collapse
Affiliation(s)
- Cornelia Wagner
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53703-2296, USA
| | | | | | | | | |
Collapse
|
39
|
Gatch MB. Discriminative stimulus effects of m-chlorophenylpiperazine as a model of the role of serotonin receptors in anxiety. Life Sci 2003; 73:1347-67. [PMID: 12850497 DOI: 10.1016/s0024-3205(03)00422-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serotonin is known to play a role in anxiety. The roles of serotonin reuptake and 5-HT1A receptors have been well characterized, but the contribution of other serotonin receptor subtypes is not as clear. 1-(3-Chlorophenyl)-piperazine (mCPP), which binds non-selectively to a wide range of serotonin receptors, has often been used to produce anxiety in humans and in animal models. Because functional assays indicate that mCPP is significantly more potent at 5-HT2C receptors, it may serve as a tool to investigate the contribution of 5-HT2C receptors to anxiety. This paper reviews the results of behavioral tests using mCPP, including the drug discrimination assay, to model anxiety. Although the discriminative stimulus effects of mCPP do not seem to be a useful screen for general anxiolytics, they do seem to be useful for characterization of the contribution of 5-HT1B and 5-HT2C receptors to the mediation of anxiety-like behaviors.
Collapse
Affiliation(s)
- Michael B Gatch
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA.
| |
Collapse
|
40
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
41
|
Nic Dhonnchadha BA, Bourin M, Hascoët M. Anxiolytic-like effects of 5-HT2 ligands on three mouse models of anxiety. Behav Brain Res 2003; 140:203-14. [PMID: 12644293 DOI: 10.1016/s0166-4328(02)00311-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The behavioural effects of 5-HT(2) receptor agonists, 5-HT(2A) and 5-HT(2C) receptor antagonists were investigated in the mouse four plates test (FPT), light/dark paradigm (L/D) and the elevated plus maze (EPM), in order to elucidate the role of the 5-HT(2) receptor subtypes in these models and to address the inconclusive results previously reported using rat psychopharmacological models. All compounds were administered intraperitoneally 30 min before each test. DOI, a preferential 5-HT(2A) agonist (0.5-8 mg/kg) and BW 723C86, a 5-HT(2B) agonist (8 and 16 mg/kg) provoked an anxiolytic-like response in the FPT. In the EPM, an anxiolytic-like effect was observed for DOI (0.5, 1 and 2 mg/kg), BW 723C86 (0.5, 4, 8 and 16 mg/kg), RO 60-0175 a 5-HT(2C) agonist (4 mg/kg) and the non-selective 5-HT(2) receptor agonist mCPP (0.25 mg/kg.). Ketanserin, a 5-HT(2A/2C) non-selective receptor antagonist (0.015 and 0.03 mg/kg), induced an anxiogenic-like effect in the L/D paradigm. The 5-HT(2C) antagonists (RS 10-2221, SDZ SER082 and SB 206553) were without effect in all three tests. These behavioural results are indicative of an anxiolytic-like action of 5-HT(2) receptor agonists, an anxiogenic-like effect of 5-HT(2A) receptor antagonism, whereas the blockade of 5-HT(2C) receptors are without effect in the mouse models studied.
Collapse
Affiliation(s)
- Bríd Aine Nic Dhonnchadha
- EA 3256 Neurobiologie de l'Anxiété et de la Dépression, Laboratoire Pharmacologie et GIS Medicament, Faculté Médecien et GIS Medicament, BP 53508, 1 rue Gaston Veil, F44035 Nantes, Cedex 01, France
| | | | | |
Collapse
|
42
|
Abstract
Exposure to hostile conditions initiates responses organized to enhance the probability of survival. These coordinated responses, known as stress responses, are composed of alterations in behavior, autonomic function and the secretion of multiple hormones. The activation of the renin-angiotensin system and the hypothalamic-pituitary-adrenocortical axis plays a pivotal role in the stress response. Neuroendocrine components activated by stressors include the increased secretion of epinephrine and norepinephrine from the sympathetic nervous system and adrenal medulla, the release of corticotropin-releasing factor (CRF) and vasopressin from parvicellular neurons into the portal circulation, and seconds later, the secretion of pituitary adrenocorticotropin (ACTH), leading to secretion of glucocorticoids by the adrenal gland. Corticotropin-releasing factor coordinates the endocrine, autonomic, behavioral and immune responses to stress and also acts as a neurotransmitter or neuromodulator in the amygdala, dorsal raphe nucleus, hippocampus and locus coeruleus, to integrate brain multi-system responses to stress. This review discussed the role of classical mediators of the stress response, such as corticotropin-releasing factor, vasopressin, serotonin (5-hydroxytryptamine or 5-HT) and catecholamines. Also discussed are the roles of other neuropeptides/neuromodulators involved in the stress response that have previously received little attention, such as substance P, vasoactive intestinal polypeptide, neuropeptide Y and cholecystokinin. Anxiolytic drugs of the benzodiazepine class and other drugs that affect catecholamine, GABA(A), histamine and serotonin receptors have been used to attenuate the neuroendocrine response to stressors. The neuroendocrine information for these drugs is still incomplete; however, they are a new class of potential antidepressant and anxiolytic drugs that offer new therapeutic approaches to treating anxiety disorders. The studies described in this review suggest that multiple brain mechanisms are responsible for the regulation of each hormone and that not all hormones are regulated by the same neural circuits. In particular, the renin-angiotensin system seems to be regulated by different brain mechanisms than the hypothalamic-pituitary-adrenal system. This could be an important survival mechanism to ensure that dysfunction of one neurotransmitter system will not endanger the appropriate secretion of hormones during exposure to adverse conditions. The measurement of several hormones to examine the mechanisms underlying the stress response and the effects of drugs and lesions on these responses can provide insight into the nature and location of brain circuits and neurotransmitter receptors involved in anxiety and stress.
Collapse
Affiliation(s)
- Gonzalo A Carrasco
- Department of Pharmacology, Center for Serotonin Disorders Research, Loyola University of Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
43
|
Millan MJ, Brocco M. The Vogel conflict test: procedural aspects, gamma-aminobutyric acid, glutamate and monoamines. Eur J Pharmacol 2003; 463:67-96. [PMID: 12600703 DOI: 10.1016/s0014-2999(03)01275-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A multitude of mechanisms are involved in the control of emotion and in the response to stress. These incorporate mediators/targets as diverse as gamma-aminobutyric acid (GABA), excitatory amino acids, monoamines, hormones, neurotrophins and various neuropeptides. Behavioural models are indispensable for characterization of the neuronal substrates underlying their implication in the etiology of anxiety, and of their potential therapeutic pertinence to its management. Of considerable significance in this regard are conflict paradigms in which the influence of drugs upon conditioned (trained) behaviours is examined. For example, the Vogel conflict test, which was introduced some 30 years ago, measures the ability of drugs to release the drinking behaviour of water-deprived rats exposed to a mild aversive stimulus ("punishment"). This model, of which numerous procedural variants are discussed herein, has been widely used in the evaluation of potential anxiolytic agents. In particular, it has been exploited in the characterization of drugs interacting with GABAergic, glutamatergic and monoaminergic networks, the actions of which in the Vogel conflict test are summarized in this article. More recently, the effects of drugs acting at neuropeptide receptors have been examined with this model. It is concluded that the Vogel conflict test is of considerable utility for rapid exploration of the actions of anxiolytic (and anxiogenic) drugs. Indeed, in view of its clinical relevance, broader exploitation of the Vogel conflict test in the identification of novel classes of anxiolytic agents, and in the determination of their mechanisms of action, would prove instructive.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| | | |
Collapse
|
44
|
Zangrossi H, Viana MB, Zanoveli J, Bueno C, Nogueira RL, Graeff FG. Serotonergic regulation of inhibitory avoidance and one-way escape in the rat elevated T-maze. Neurosci Biobehav Rev 2001; 25:637-45. [PMID: 11801289 DOI: 10.1016/s0149-7634(01)00047-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been proposed that distinct 5-HT pathways modulate different types of anxiety. Activation of the ascending dorsal raphe (DR)-5-HT pathway, innervating the amygdala and frontal cortex, would facilitate learned defensive behaviors. On the other hand, activation of the DR-periventricular 5-HT pathway, which innervates the dorsal periaqueductal gray matter (DPAG), would inhibit innate flight or fight reactions. Dysfunction of these pathways has been suggested to relate to generalized anxiety disorder (GAD) and panic disorder (PD) in humans, respectively. The elevated T-maze has been developed to separate conditioned (inhibitory avoidance) from unconditioned (escape) defensive responses in the same rat. Pharmacological validation of this model has shown that the GAD-effective serotonergic anxiolytic buspirone or the putative anxiolytic ritanserin selectively impaired inhibitory avoidance while leaving one-way escape unchanged. Chronic injection of the 5-HT/noradrenaline reuptake inhibitor imipramine impaired inhibitory avoidance and prolonged escape, an effect that may be related to the therapeutic action of this drug on both GAD and PD. Like imipramine, intra-DPAG injection of the 5-HT(1A) agonist 8-OH-DPAT impaired both inhibitory avoidance and one-way escape. Intra-DPAG administration of the 5-HT(2A/2C) agonist DOI prolonged escape, without affecting inhibitory avoidance. The reversible inactivation of the DRN by muscimol impaired inhibitory avoidance, while facilitating escape from the open arm. Taken together, these results suggest that 5-HT exerts differential control on inhibitory avoidance and escape response in the elevated T-maze, mobilizing different types of 5-HT receptors in key structures implicated in fear/anxiety.
Collapse
Affiliation(s)
- H Zangrossi
- Department of Pharmacology, School of Medicine, University of São Paulo, 14049-901, SP, Ribeirão Preto, Brazil.
| | | | | | | | | | | |
Collapse
|
45
|
Harro J, Oreland L. Depression as a spreading adjustment disorder of monoaminergic neurons: a case for primary implication of the locus coeruleus. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 38:79-128. [PMID: 11750928 DOI: 10.1016/s0165-0173(01)00082-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A model for the pathophysiology of depression is discussed in the context of other existing theories. The classic monoamine theory of depression suggests that a deficit in monoamine neurotransmitters in the synaptic cleft is the primary cause of depression. More recent elaborations of the classic theory also implicitly include this postulate, other theories of depression frequently prefer to depart from the monoamine-based model altogether. We suggest that the primary defect emerges in the regulation of firing rates in brainstem monoaminergic neurons, which brings about a decrease in the tonic release of neurotransmitters in their projection areas, an increase in postsynaptic sensitivity, and concomitantly, exaggerated responses to acute increases in the presynaptic firing rate and transmitter release. It is proposed that the initial defect involves, in particular, the noradrenergic innervation from the locus coeruleus (LC). Dysregulation of the LC projection activities may lead in turn to dysregulation of serotonergic and dopaminergic neurotransmission. Failure of the LC function could explain the basic impairments in the processing of novel information, intensive processing of irrational beliefs, and anxiety. Concomitant impairments in the serotonergic neurotransmission may contribute to the mood changes and reduction in the mesotelencephalic dopaminergic activity to loss of motivation, and anhedonia. Dysregulation of CRF and other neuropeptides such as neuropeptide Y, galanin and substance P may reinforce the LC dysfunction and thus further weaken the adaptivity to stressful stimuli.
Collapse
Affiliation(s)
- J Harro
- Department of Psychology, University of Tartu, Tiigi 78, EE-50410 Tartu, Estonia.
| | | |
Collapse
|
46
|
Nakano H, Magalang UJ, Lee SD, Krasney JA, Farkas GA. Serotonergic modulation of ventilation and upper airway stability in obese Zucker rats. Am J Respir Crit Care Med 2001; 163:1191-7. [PMID: 11316658 DOI: 10.1164/ajrccm.163.5.2004230] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To elucidate the role of serotonin in the maintenance of normal breathing and upper airway (UA) patency in obesity, we studied the effects of systemic administration of ritanserin, a serotonin (5-HT) 2A and 2C receptor antagonist, on ventilation (V E) during room air breathing and during hypoxic (10% O2) and hypercapnic (4% CO2) ventilatory challenges in awake young (6-8 wk) and older (7-8 mo) obese and lean Zucker (Z) rats. Older obese Z rats adopted a more rapid shallow breathing pattern compared with older lean rats. The administration of ritanserin (1 mg/kg intraperitoneally) to older obese rats resulted in a reduction in V E (439 +/- 35 [SD] to 386 +/- 41 ml/kg/min, p < 0.01), a decrease in respiratory rate, a prolongation of inspiratory time, and an increase in V O2 (16.4 +/- 1.7 to 18.2 +/- 1.9 ml/kg(0.75)/min, p < 0.05) during room air breathing. By comparison, it had little effect on ventilation in young lean and obese Z or older lean Z rats. Ritanserin also had no effect on ventilatory responses to either hypoxia or hypercapnia in young or older lean and obese Z rats. The collapsibility of the isolated UA was examined in older Z rats. The pharyngeal critical pressure (Pcrit) of older obese rats was significantly greater than that of lean rats (p < 0.05), indicating that obese rats have more collapsible UA than lean rats. The administration of ritanserin significantly increased Pcrit in older obese rats (-1.6 +/- 0.3 to -0.8 +/- 0.2 cm H2O, p < 0.01) and in lean rats (-3.1 +/- 1.0 to -2.4 +/- 0.6 cm H2O, p < 0.05). We suggest that the 5-HT(2A/2C) receptor subtype plays an important role in the maintenance of UA stability and normal breathing in obesity, and we speculate that older obese Z rats may have augmented serotonergic control of UA dilator muscles as a mechanism to prevent pharyngeal collapse.
Collapse
Affiliation(s)
- H Nakano
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
This two-day symposium reviewed specific aspects of current drug development for psychiatric disorders. The aim was to identify how existing drugs could he improved and what approaches could he adopted to develop new drugs acting by different mechanisms. The meeting was attended by approximately 50 delegates, mainly from multinational pharmaceutical companies or smaller private biotechnology based companies with a few academic clinicians and preclinical scientists. The topics covered on the first day included the influence of genomics and proteomics on drug discovery with reference to antipsychotics, GABAA receptor subunit specific compounds as a route to improved anxiolytics. AMPA receptor modulators as add-on therapy in schizophrenia and corticotrophin releasing factor receptors as targets in depression. The second day placed a greater emphasis on drugs influencing amine neurotransmission; an aspect already raised on the first day by discussion of 5-HT-moduline. The main areas covered were how serotonergic ligands could he used with greater effect in depression and schizophrenia, the therapeutic value of serotonin noradrenaline uptake inhibitors (SNRIs) and the potential clinical value of new amine re-uptake inhibitors. Finally, the meeting discussed the impact of various technological advances in genetics. neuroimaging and psychometric testing in psychotherapeutic drug discovery.
Collapse
Affiliation(s)
- C A Marsden
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, Nottingham and Department of Pharmacology, University College London, London, UK.
| | | |
Collapse
|
48
|
Melik E, Babar-Melik E, Ozgünen T, Binokay S. Median raphe nucleus mediates forming long-term but not short-term contextual fear conditioning in rats. Behav Brain Res 2000; 112:145-50. [PMID: 10862945 DOI: 10.1016/s0166-4328(00)00175-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The brain serotonin is involved in mediation of emotional behaviour including anxiety and related fear conditioning. It is known that the median raphe nucleus (MRN) is the origin of a serotonergic pathway and mainly innervates septo-hippocampal formation which plays an important role in emotional cognition. However, its regulatory role in different types of fear conditioning is still unclear. In the present study, the animals underwent ibotenic acid or sham lesions of the median raphe nucleus and the effects of MRN lesions on immediate and delayed fear conditioning to multiple contextual cues were studied. Freezing behaviour served as a measure of contextual fear. Sham-lesioned animals showed reliable conditional freezing when observed immediately following foot-shock (1.0 mA) for 3-min test and 48 h after the shock for 12-min test. Rats with MRN lesions displayed robust freezing behaviour immediately after the shock, even though they showed a marked deficit in freezing 48 h following the shock. These findings indicate that the MRN-serotonergic septo-hippocampal pathway is involved in the regulation of anxiety related to fear conditioning triggered by contextual cues, suggesting that short-term contextual fear is independent on the MRN while long-term contextual fear depends on the MRN.
Collapse
Affiliation(s)
- E Melik
- Division of Neurophysiology, Department of Physiology, Medical Faculty, Cukurova University, 01330 Balcali, Adana, Turkey.
| | | | | | | |
Collapse
|
49
|
Abstract
This study investigated the ability of ritanserin, a 5-HT2 antagonist, to modify ethanol withdrawal (EW) symptoms in two animal models of anxiety: the elevated plus-maze (EPM) and the pentylenetetrazol (PTZ) discrimination assay. Long-Evans hooded rats were given a nutritionally balanced liquid diet containing 4.5% ethanol for 10 days. Twelve hours after removal of the ethanol diet, rats were tested in the EPM. A significant reduction in the open-arm activity and the number of total arm entries was observed, which is indicative of EW. Acute ritanserin (0.16-0.64 mg/kg, i.p., 60 min) had no effect on EW-induced anxiety-like behavior on the EPM. Ritanserin (0.08-0.64 mg/kg, i.p., b.i.d. 12 h) administered concurrently with the last 5 days of ethanol diet produced an increase in the time spent on the open arms of the EPM and reversed the EW-induced reduction in total arm entries. Rats trained to discriminate between saline and PTZ (an anxiogenic drug), selected the PTZ lever during EW. Chronic ritanserin (0.32 mg/kg, i.p., b.i.d. ) did not block PTZ lever responding during EW. On the rotorod, ritanserin (0.32 mg/kg, i.p.) increased the motor incoordination induced by ethanol. In conclusion, coadministration of ritanserin with ethanol prevented the development of EW-induced anxiety as measured by the EPM, but not in the PTZ drug discrimination.
Collapse
Affiliation(s)
- M B Gatch
- Department of Pharmacology, University of North Texas Health Science Center, Fort Worth 76107, USA.
| | | | | |
Collapse
|
50
|
Dong J, De Montigny C, Blier P. Assessment of the serotonin reuptake blocking property of YM992: electrophysiological studies in the rat hippocampus and dorsal raphe. Synapse 1999; 34:277-89. [PMID: 10529722 DOI: 10.1002/(sici)1098-2396(19991215)34:4<277::aid-syn4>3.0.co;2-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
YM992 is a selective serotonin (5-HT) reuptake inhibitor and a 5-HT(2A) antagonist with potential antidepressant activity. As expected from a 5-HT reuptake inhibitor, which induces an accumulation of 5-HT in the dorsal raphe, YM992 inhibited the firing activity of these 5-HT neurons (ED50: 2.0+/-0.2 mg/kg, i.v.). This effect was reversed by the 5-HT(1A) antagonist WAY 100635. YM992 also dose-dependently prolonged the time for CA3 neurons to recover 50% of their firing rate following microiontophoretic applications of 5-HT, a reliable index of the function of the 5-HT reuptake carrier. In a second series of experiments, the adaptative properties of 5-HT neurons were examined during sustained administration of YM992 (20 mg/kg/day, s.c., delivered by osmotic minipumps) after 2 days of treatment. YM992 decreased by more than 60% the firing activity of the 5-HT neurons. There was a partial recovery of firing after 7 days and a complete one after 14 days of treatment in the presence of the minipump still delivering the drug. In a third series of experiments, the sensitivity of pre- and postsynaptic 5-HT(1A) receptors in the dorsal raphe and the dorsal hippocampus were assessed. The results showed that YM992 attenuated the inhibitory effect of intravenous administration of LSD and the 5-HT(1A) agonist 8-OH-DPAT on the firing activity of 5-HT neurons. As did the selective 5-HT reuptake inhibitor fluvoxamine, YM992 markedly increased the effectiveness of the electrical stimulation of ascending 5-HT fibres on firing activity of the postsynaptic hippocampus pyramidal neurons. This enhancement of 5-HT neurotransmission by YM992 was attributable to a desensitization of the terminal 5-HT(1B) autoreceptors since the postsynaptic 5-HT(1A) receptors in the hippocampus remained normosensitive.
Collapse
Affiliation(s)
- J Dong
- Neurobiological Psychiatry Unit, McGill University, Montréal, Québec, Canada H3A 1A1
| | | | | |
Collapse
|