1
|
Zhu W, Pan L, Cui X, Russo AC, Ray R, Pederson B, Wei X, Lin LL, Hafner H, Gregg B, Shrestha N, Liu C, Naji A, Arvan P, Sandoval DA, Lindberg I, Qi L, Reinert RB. SEL1L-HRD1 ER-Associated Degradation Facilitates Prohormone Convertase 2 Maturation and Glucagon Production in Islet α Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644437. [PMID: 40166183 PMCID: PMC11957139 DOI: 10.1101/2025.03.20.644437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Proteolytic cleavage of proglucagon by prohormone convertase 2 (PC2) is required for islet α cells to generate glucagon. However, the regulatory mechanisms underlying this process remain largely unclear. Here, we report that SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation (ERAD), a highly conserved protein quality control system responsible for clearing misfolded proteins from the ER, plays a key role in glucagon production by regulating turnover of the nascent proform of the PC2 enzyme (proPC2). Using a mouse model with SEL1L deletion in proglucagon-expressing cells, we observed a progressive decline in stimulated glucagon secretion and a reduction in pancreatic glucagon content. Mechanistically, we found that endogenous proPC2 is a substrate of SEL1L-HRD1 ERAD, and that degradation of misfolded proPC2 ensures the maturation of activation-competent proPC2 protein. These findings identify ERAD as a novel regulator of PC2 biology and an essential mechanism for maintaining α cell function.
Collapse
|
2
|
Zhang W, Wang R, Yi Z, Guo R, Li Y, Xu Y, Li X, Song J. Investigation of the Expression and Regulation of SCG5 in the Context of the Chromogranin-Secretogranin Family in Malignant Tumors. Protein Pept Lett 2024; 31:657-666. [PMID: 39219421 DOI: 10.2174/0109298665325956240819064853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
The SCG5 gene has been demonstrated to play an essential role in the development and progression of a range of malignant neoplasms. The regulation of SCG5 expression involves multiple biological pathways. According to relevant studies, SCG5 is differentially expressed in different cancers, and its up- or down-regulation may even affect tumour growth, invasion, and migration, which caught our attention. Therefore, we summarise the regulatory roles played by the SCG5 gene in a variety of cancers and the biological regulatory mechanisms associated with its possible promotion or inhibition of tumour biological behavior, to further explore the potential of SCG5 as a new tumour marker and hopefully provide theoretical guidance for subsequent disease research and treatment.
Collapse
Affiliation(s)
- Weisong Zhang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China
- Medical School of Nantong University, Nantong, 226007, P.R. China
| | - Rui Wang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China
- Medical School of Nantong University, Nantong, 226007, P.R. China
| | - Zhongquan Yi
- Central laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China
| | - Rongqi Guo
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China
- Medical School of Nantong University, Nantong, 226007, P.R. China
| | - Yangyang Li
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China
- Medical School of Nantong University, Nantong, 226007, P.R. China
| | - Yanhan Xu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China
- Medical School of Nantong University, Nantong, 226007, P.R. China
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China
| | - Jianxiang Song
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224000, P.R. China
| |
Collapse
|
3
|
Glendinning S, Fitzgibbon QP, Smith GG, Ventura T. Unravelling the neuropeptidome of the ornate spiny lobster Panulirus ornatus: A focus on peptide hormones and their processing enzymes expressed in the reproductive tissues. Gen Comp Endocrinol 2023; 332:114183. [PMID: 36471526 DOI: 10.1016/j.ygcen.2022.114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Neuropeptides are commonly produced in the neural tissues yet can have effects on far-reaching targets, with varied biological responses. We describe here the neuropeptidome of the ornate spiny lobster, Panulirus ornatus, a species of emerging importance to closed-system aquaculture, with a focus on peptide hormones produced by the reproductive tissues. Transcripts for a precursor to one neuropeptide, adipokinetic hormone/corazonin-related peptide (ACP) were identified in high numbers in the sperm duct of adult spiny lobsters suggesting a role for ACP in the reproduction of this species. Neuropeptide production in the sperm duct may be linked with physiological control of spermatophore production in the male, or alternatively may function in signalling to the female. The enzymes which process nascent neuropeptide precursors into their mature, active forms have seldom been studied in decapods, and never before at the multi-tissue level. We have identified transcripts for multiple members of the proprotein convertase subtisilin/kexin family in the ornate spiny lobster, with some enzymes showing specificity to certain tissues. In addition, other enzyme transcripts involved with neuropeptide processing are identified along with their tissue and life stage expression patterns.
Collapse
Affiliation(s)
- Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
4
|
Nishiyama M, Iwasaki Y, Makino S. Animal Models of Cushing's Syndrome. Endocrinology 2022; 163:6761324. [PMID: 36240318 DOI: 10.1210/endocr/bqac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/19/2022]
Abstract
Endogenous Cushing's syndrome is characterized by unique clinical features and comorbidities, and progress in the analysis of its genetic pathogenesis has been achieved. Moreover, prescribed glucocorticoids are also associated with exogenous Cushing's syndrome. Several animal models have been established to explore the pathophysiology and develop treatments for Cushing's syndrome. Here, we review recent studies reporting animal models of Cushing's syndrome with different features and complications induced by glucocorticoid excess. Exogenous corticosterone (CORT) administration in drinking water is widely utilized, and we found that CORT pellet implantation in mice successfully leads to a Cushing's phenotype. Corticotropin-releasing hormone overexpression mice and adrenal-specific Prkar1a-deficient mice have been developed, and AtT20 transplantation methods have been designed to examine the medical treatments for adrenocorticotropic hormone-producing pituitary neuroendocrine tumors. We also review recent advances in the molecular pathogenesis of glucocorticoid-induced complications using animal models.
Collapse
Affiliation(s)
- Mitsuru Nishiyama
- Health Care Center, Kochi University, Kochi city, Kochi 780-8520, Japan
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
| | - Yasumasa Iwasaki
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka city, Mie 510-0293Japan
| | - Shinya Makino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
- Department of Internal Medicine, Osaka Gyomeikan Hospital, Osaka city, Osaka 554-0012Japan
| |
Collapse
|
5
|
Ishii J, Sato-Yazawa H, Kashiwagi K, Nakadate K, Iwamoto M, Kohno K, Miyata-Hiramatsu C, Masawa M, Onozaki M, Noda S, Miyazawa T, Takagi M, Yazawa T. Endocrine secretory granule production is caused by a lack of REST and intragranular secretory content and accelerated by PROX1. J Mol Histol 2022; 53:437-448. [PMID: 35094211 PMCID: PMC9117388 DOI: 10.1007/s10735-021-10055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
Abstract
Endocrine secretory granules (ESGs) are morphological characteristics of endocrine/neuroendocrine cells and store peptide hormones/neurotransmitters. ESGs contain prohormones and ESG-related molecules, mainly chromogranin/secretogranin family proteins. However, the precise mechanism of ESG formation has not been elucidated. In this study, we experimentally induced ESGs in the non-neuroendocrine lung cancer cell line H1299. Since repressive element 1 silencing transcription factor (REST) and prospero homeobox 1 (PROX1) are closely associated with the expression of ESG-related molecules, we edited the REST gene and/or transfected PROX1 and then performed molecular biology, immunocytochemistry, and electron and immunoelectron microscopy assays to determine whether ESG-related molecules and ESGs were induced in H1299 cells. Although chromogranin/secretogranin family proteins were induced in H1299 cells by knockout of REST and the induction was accelerated by the PROX1 transgene, the ESGs could not be defined by electron microscopy. However, a small number of ESGs were detected in the H1299 cells lacking REST and expressing pro-opiomelanocortin (POMC) by electron microscopy. Furthermore, many ESGs were produced in the REST-lacking and PROX1- and POMC-expressing H1299 cells. These findings suggest that a lack of REST and the expression of genes related to ESG content are indispensable for ESG production and that PROX1 accelerates ESG production. Trial registration: Not applicable.
Collapse
Affiliation(s)
- Jun Ishii
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Hanako Sato-Yazawa
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Korehito Kashiwagi
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Kazuhiko Nakadate
- Education Research Center, Meiji Pharmaceutical University, Kiyose-shi, Tokyo, Japan
| | - Masami Iwamoto
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
- Department of Pathology, The Jikei University, Minato-ku, Tokyo, Japan
| | - Kakeru Kohno
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
- Institute of Life Innovation Studies, Toyo University, Itakura-machi, Gunma, Japan
| | - Chie Miyata-Hiramatsu
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Meitetsu Masawa
- Department of Respiratory Medicine, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Masato Onozaki
- Department of Diagnostic Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Shuhei Noda
- Department of Diagnostic Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Tadasuke Miyazawa
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Megumi Takagi
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan
| | - Takuya Yazawa
- Department of Pathology, Dokkyo Medical University School of Medicine and Graduate School of Medicine, Mibu-machi, Tochigi, Japan.
| |
Collapse
|
6
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Rehfeld JF, Goetze JP. Processing-independent analysis (PIA): a method for quantitation of the total peptide-gene expression. Peptides 2021; 135:170427. [PMID: 33069691 DOI: 10.1016/j.peptides.2020.170427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022]
Abstract
The translational product of protein-coding genes undergoes extensive posttranslational modifications. The modifications ensure an increased molecular and functional diversity at protein- and peptide-level. Prohormones are small pro-proteins that are expressed in many cell types, for instance endocrine cells, immune cells, myocytes and neurons. Here they mature to bioactive peptides (cytokines, hormones, growth factors, and neurotransmitters) that are released from the cells in an often regulated manner. The posttranslational processing of prohormones is cell-specific, however, and may vary during evolution and disease. Therefore, it is often inadequate to measure just a single peptide fragment as marker of endocrine, immune, and neuronal functions. In order to meet this challenge, we developed years back a simple "processing-independent analysis" (PIA) for accurate quantification of the total pro-protein product - irrespective of the degree and nature of the posttranslational processing. This review provides an overview of the PIA principle and describes examples of PIA results in different peptide systems.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark.
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Capillary electrophoresis electrospray ionization-mass spectrometry for peptidomics-based processing site determination. Biochem Biophys Res Commun 2020; 533:872-878. [PMID: 33008600 DOI: 10.1016/j.bbrc.2020.09.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Proteolytic cleavage at specific sites is a key event that modulates protein functions in biological processes. These cleavage sites are identified through mass spectrometry-based peptidomics of overlapping peptide sequences. Here, we assessed to what extent a recent capillary electrophoresis (CE) system interfaced with electrospray ionization-mass spectrometry (ESI-MS) contributes to identifying endogenous peptides present in a biological sample. Peptides released by a human endocrine cell line stimulated for secretion was analyzed for uncovering potential processing sites created by proprotein convertases (PCs) that cleave precursors in the secretory pathway. CE-ESI-MS was conducted, in comparison to a standard liquid chromatography (LC)-ESI-MS platform. LC and CE complemented each other in elucidating processing sites that match PC consensus sequences from known substrates. We suggest that the precursors BIGH3, STC1, LFNG, QSOX1 and CYTC are potential substrates for PCs, and that a CE-ESI system would come in handy and garner greater recognition as a robust tool in peptidomics.
Collapse
|
10
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
11
|
Busceti CL, Ferese R, Bucci D, Ryskalin L, Gambardella S, Madonna M, Nicoletti F, Fornai F. Corticosterone Upregulates Gene and Protein Expression of Catecholamine Markers in Organotypic Brainstem Cultures. Int J Mol Sci 2019; 20:ijms20122901. [PMID: 31197099 PMCID: PMC6627138 DOI: 10.3390/ijms20122901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are produced by the adrenal cortex and regulate cell metabolism in a variety of organs. This occurs either directly, by acting on specific receptors in a variety of cells, or by stimulating catecholamine expression within neighbor cells of the adrenal medulla. In this way, the whole adrenal gland may support specific metabolic requirements to cope with stressful conditions from external environment or internal organs. In addition, glucocorticoid levels may increase significantly in the presence of inappropriate secretion from adrenal cortex or may be administered at high doses to treat inflammatory disorders. In these conditions, metabolic alterations and increased blood pressure may occur, although altered sleep-waking cycle, anxiety, and mood disorders are frequent. These latter symptoms remain unexplained at the molecular level, although they overlap remarkably with disorders affecting catecholamine nuclei of the brainstem reticular formation. In fact, the present study indicates that various doses of glucocorticoids alter the expression of genes and proteins, which are specific for reticular catecholamine neurons. In detail, corticosterone administration to organotypic mouse brainstem cultures significantly increases Tyrosine hydroxylase (TH) and Dopamine transporter (DAT), while Phenylethanolamine N-methyltransferase (PNMT) is not affected. On the other hand, Dopamine Beta-Hydroxylase (DBH) increases only after very high doses of corticosterone.
Collapse
Affiliation(s)
| | | | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| | | | | | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
- Department of Physiology and Pharmacology, University Sapienza, 00185 Roma, Italy.
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
12
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
13
|
Cassarino MF, Ambrogio AG, Cassarino A, Terreni MR, Gentilini D, Sesta A, Cavagnini F, Losa M, Pecori Giraldi F. Gene expression profiling in human corticotroph tumours reveals distinct, neuroendocrine profiles. J Neuroendocrinol 2018; 30:e12628. [PMID: 29920815 PMCID: PMC6175113 DOI: 10.1111/jne.12628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
Abstract
Adrenocorticotrophic hormone (ACTH)-secreting pituitary adenomas give rise to a severe endocrinological disorder, comprising Cushing's disease, with multifaceted clinical presentation and treatment outcomes. Experimental studies suggest that the disease variability is inherent to the pituitary tumour, thus indicating the need for further studies into tumour biology. The present study evaluated transcriptome expression pattern in a large series of ACTH-secreting pituitary adenoma specimens in order to identify molecular signatures of these tumours. Gene expression profiling of formalin-fixed, paraffin-embedded specimens from 40 human ACTH-secreting pituitary adenomas revealed the significant expression of genes involved in protein biosynthesis and ribosomal function, in keeping with the neuroendocrine cell profile. Unsupervised cluster analysis identified 3 distinct gene profile clusters and several genes were uniquely overexpressed in a given cluster, accounting for different molecular signatures. Of note, gene expression profiles were associated with clinical features, such as the age and size of the tumour. Altogether, the findings of the present study show that corticotroph tumours are characterised by a neuroendocrine gene expression profile and present subgroup-specific molecular features.
Collapse
Affiliation(s)
| | - Alberto G. Ambrogio
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
- Department of Clinical Sciences & Community HealthUniversity of MilanMilanItaly
| | - Andrea Cassarino
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | | | - Davide Gentilini
- Molecular Biology LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Antonella Sesta
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Francesco Cavagnini
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
| | - Marco Losa
- Department of NeurosurgeryOspedale San RaffaeleMilanItaly
| | - Francesca Pecori Giraldi
- Neuroendocrinology Research LaboratoryIstituto Auxologico Italiano IRCCSCusano MilaninoItaly
- Department of Clinical Sciences & Community HealthUniversity of MilanMilanItaly
| |
Collapse
|
14
|
Jarvela TS, Womack T, Georgiou P, Gould TD, Eriksen JL, Lindberg I. 7B2 chaperone knockout in APP model mice results in reduced plaque burden. Sci Rep 2018; 8:9813. [PMID: 29955078 PMCID: PMC6023903 DOI: 10.1038/s41598-018-28031-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023] Open
Abstract
Impairment of neuronal proteostasis is a hallmark of Alzheimer's and other neurodegenerative diseases. However, the underlying molecular mechanisms leading to pathogenic protein aggregation, and the role of secretory chaperone proteins in this process, are poorly understood. We have previously shown that the neural-and endocrine-specific secretory chaperone 7B2 potently blocks in vitro fibrillation of Aβ42. To determine whether 7B2 can function as a chaperone in vivo, we measured plaque formation and performed behavioral assays in 7B2-deficient mice in an hAPPswe/PS1dE9 Alzheimer's model mouse background. Surprisingly, immunocytochemical analysis of cortical levels of thioflavin S- and Aβ-reactive plaques showed that APP mice with a partial or complete lack of 7B2 expression exhibited a significantly lower number and burden of thioflavin S-reactive, as well as Aβ-immunoreactive, plaques. However, 7B2 knockout did not affect total brain levels of either soluble or insoluble Aβ. While hAPP model mice performed poorly in the Morris water maze, their brain 7B2 levels did not impact performance. Since 7B2 loss reduced amyloid plaque burden, we conclude that brain 7B2 can impact Aβ disposition in a manner that facilitates plaque formation. These results are reminiscent of prior findings in hAPP model mice lacking the ubiquitous secretory chaperone clusterin.
Collapse
Affiliation(s)
- Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tasha Womack
- Department of Pharmacology, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jason L Eriksen
- Department of Pharmacology, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Monroe EB, Annangudi SP, Wadhams AA, Richmond TA, Yang N, Southey BR, Romanova EV, Schoofs L, Baggerman G, Sweedler JV. Exploring the Sea Urchin Neuropeptide Landscape by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:923-934. [PMID: 29667164 PMCID: PMC5943159 DOI: 10.1007/s13361-018-1898-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 05/08/2023]
Abstract
Neuropeptides are essential cell-to-cell signaling messengers and serve important regulatory roles in animals. Although remarkable progress has been made in peptide identification across the Metazoa, for some phyla such as Echinodermata, limited neuropeptides are known and even fewer have been verified on the protein level. We employed peptidomic approaches using bioinformatics and mass spectrometry (MS) to experimentally confirm 23 prohormones and to characterize a new prohormone in nervous system tissue from Strongylocentrotus purpuratus, the purple sea urchin. Ninety-three distinct peptides from known and novel prohormones were detected with MS from extracts of the radial nerves, many of which are reported or experimentally confirmed here for the first time, representing a large-scale study of neuropeptides from the phylum Echinodermata. Many of the identified peptides and their precursor proteins have low homology to known prohormones from other species/phyla and are unique to the sea urchin. By pairing bioinformatics with MS, the capacity to characterize novel peptides and annotate prohormone genes is enhanced. Graphical Abstract.
Collapse
Affiliation(s)
- Eric B Monroe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Suresh P Annangudi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andinet A Wadhams
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Timothy A Richmond
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ning Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Liliane Schoofs
- Functional Genomics and Proteomics Unit, KU Leuven, 3000, Leuven, Belgium
| | - Geert Baggerman
- ProMeta Interfacultary Center for Proteomics and Metabolomics, KU Leuven, 3000, Leuven, Belgium
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Shi G, Somlo DRM, Kim GH, Prescianotto-Baschong C, Sun S, Beuret N, Long Q, Rutishauser J, Arvan P, Spiess M, Qi L. ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J Clin Invest 2017; 127:3897-3912. [PMID: 28920920 DOI: 10.1172/jci94771] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Peptide hormones are crucial regulators of many aspects of human physiology. Mutations that alter these signaling peptides are associated with physiological imbalances that underlie diseases. However, the conformational maturation of peptide hormone precursors (prohormones) in the ER remains largely unexplored. Here, we report that conformational maturation of proAVP, the precursor for the antidiuretic hormone arginine-vasopressin, within the ER requires the ER-associated degradation (ERAD) activity of the Sel1L-Hrd1 protein complex. Serum hyperosmolality induces expression of both ERAD components and proAVP in AVP-producing neurons. Mice with global or AVP neuron-specific ablation of Se1L-Hrd1 ERAD progressively developed polyuria and polydipsia, characteristics of diabetes insipidus. Mechanistically, we found that ERAD deficiency causes marked ER retention and aggregation of a large proportion of all proAVP protein. Further, we show that proAVP is an endogenous substrate of Sel1L-Hrd1 ERAD. The inability to clear misfolded proAVP with highly reactive cysteine thiols in the absence of Sel1L-Hrd1 ERAD causes proAVP to accumulate and participate in inappropriate intermolecular disulfide-bonded aggregates, promoted by the enzymatic activity of protein disulfide isomerase (PDI). This study highlights a pathway linking ERAD to prohormone conformational maturation in neuroendocrine cells, expanding the role of ERAD in providing a conducive ER environment for nascent proteins to reach proper conformation.
Collapse
Affiliation(s)
- Guojun Shi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane RM Somlo
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Geun Hyang Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Shengyi Sun
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | | - Qiaoming Long
- Cam-Su Mouse Genomic Resources Center, Suzhou University, Suzhou, Jiangsu, China
| | | | - Peter Arvan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Stanescu DE, Yu R, Won KJ, Stoffers DA. Single cell transcriptomic profiling of mouse pancreatic progenitors. Physiol Genomics 2016; 49:105-114. [PMID: 28011883 DOI: 10.1152/physiolgenomics.00114.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity of the developing pancreatic epithelium and low abundance of endocrine progenitors limit the information derived from traditional expression studies. To identify genes that characterize early developmental tissues composed of multiple progenitor lineages, we applied single-cell RNA-Seq to embryonic day (e)13.5 mouse pancreata and performed integrative analysis with single cell data from mature pancreas. We identified subpopulations expressing macrophage or endothelial markers and new pancreatic progenitor markers. We also identified potential α-cell precursors expressing glucagon (Gcg) among the e13.5 pancreatic cells. Despite their high Gcg expression levels, these cells shared greater transcriptomic similarity with other e13.5 cells than with adult α-cells, indicating their immaturity. Comparative analysis identified the sodium-dependent neutral amino acid transporter, Slc38a5, as a characteristic gene expressed in α-cell precursors but not mature cells. By immunofluorescence analysis, we observed SLC38A5 expression in pancreatic progenitors, including in a subset of NEUROG3+ endocrine progenitors and MAFB+ cells and in all GCG+ cells. Expression declined in α-cells during late gestation and was absent in the adult islet. Our results suggest SLC38A5 as an early marker of α-cell lineage commitment.
Collapse
Affiliation(s)
- Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Reynold Yu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Doris A Stoffers
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; .,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Nillni EA. The metabolic sensor Sirt1 and the hypothalamus: Interplay between peptide hormones and pro-hormone convertases. Mol Cell Endocrinol 2016; 438:77-88. [PMID: 27614022 DOI: 10.1016/j.mce.2016.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 01/11/2023]
Abstract
The last decade had witnessed a tremendous progress in our understanding of the causes of metabolic diseases including obesity. Among the contributing factors regulating energy balance are nutrient sensors such as sirtuins. Sirtuin1 (Sirt1), a NAD + - dependent deacetylase is affected by diet, environmental stress, and also plays a critical role in metabolic health by deacetylating proteins in many tissues, including liver, muscle, adipose tissue, heart, endothelium, and in the complexity of the hypothalamus. Because of its dependence on NAD+, Sirt1 also functions as a nutrient/redox sensor, and new novel data show a function of this enzyme in the maturation of hypothalamic peptide hormones controlling energy balance either through regulation of specific nuclear transcription factors or by regulating specific pro-hormone convertases (PCs) involved in the post-translational processing of pro-hormones. The post-translational processing mechanism of pro-hormones is critical in the pathogenesis of obesity as recently shown that metabolic and physiological triggers affect the biosynthesis and processing of many peptides hormones. Specific regulation of pro-hormone processing is likely another key step where final amounts of bioactive peptides can be tightly regulated. Different factors stimulate or inhibit pro-hormones biosynthesis in concert with an increase in the PCs involved in the maturation of bioactive hormones. Adding more complexity to the system, the new studies describe here suggest that Sirt1 could also regulate the fate of peptide hormone biosynthesis. The present review summarizes the recent progress in hypothalamic SIRT1 research with a particular emphasis on the tissue-specific control of neuropeptide hormone maturation. The series of studies done in mouse and rat models strongly advocate for the first time that a deacetylating enzyme could be a regulator in the maturation of peptide hormones and their processing enzymes. These discoveries are the culmination of the first in-depth understanding of the metabolic role of Sirt1 in the brain. It suggests that Sirt1 behaves differently in the brain than in organs such as the liver and pancreas, where the enzyme has been more commonly studied.
Collapse
Affiliation(s)
- Eduardo A Nillni
- The Warren Alpert Medical School, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
19
|
Husson SJ, Reumer A, Temmerman L, De Haes W, Schoofs L, Mertens I, Baggerman G. Worm peptidomics. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Geibel M, Badurek S, Horn JM, Vatanashevanopakorn C, Koudelka J, Wunderlich CM, Brönneke HS, Wunderlich FT, Minichiello L. Ablation of TrkB signalling in CCK neurons results in hypercortisolism and obesity. Nat Commun 2014; 5:3427. [DOI: 10.1038/ncomms4427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/10/2014] [Indexed: 11/09/2022] Open
|
21
|
Tamaki T, Betsuyaku S, Fujiwara M, Fukao Y, Fukuda H, Sawa S. SUPPRESSOR OF LLP1 1-mediated C-terminal processing is critical for CLE19 peptide activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:970-81. [PMID: 24118638 DOI: 10.1111/tpj.12349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 05/05/2023]
Abstract
Cell-to-cell communication is essential for the coordinated development of multicellular organisms. Members of the CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED (CLE) family, a group of small secretory peptides, are involved in these processes in plants. Although post-translational modifications are considered to be indispensable for their activity, the detailed mechanisms governing these modifications are not well understood. Here, we report that SUPPRESSOR OF LLP1 1 (SOL1), a putative Zn²⁺ carboxypeptidase previously isolated as a suppressor of the CLE19 over-expression phenotype, functions in C-terminal processing of the CLE19 proprotein to produce the functional CLE19 peptide. Newly isolated sol1 mutants are resistant to CLE19 over-expression, consistent with the previous report (Casamitjana-Martinez, E., Hofhuis, H.F., Xu, J., Liu, C.M., Heidstra, R. and Scheres, B. (2003) Curr. Biol. 13, 1435-1441). As expected, our experiment using synthetic CLE19 peptide revealed that the sol1 mutation does not compromise CLE signal transduction pathways per se. SOL1 possesses enzymatic activity to remove the C-terminal arginine residue of CLE19 proprotein in vitro, and SOL1-dependent cleavage of the C-terminal arginine residue is necessary for CLE19 activity in vivo. Additionally, the endosomal localization of SOL1 suggests that this processing occurs in endosomes in the secretory pathway. Thus, our data indicate the importance of C-terminal processing of CLE proproteins to ensure CLE activities.
Collapse
Affiliation(s)
- Takayuki Tamaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Seidah NG, Sadr MS, Chrétien M, Mbikay M. The multifaceted proprotein convertases: their unique, redundant, complementary, and opposite functions. J Biol Chem 2013; 288:21473-81. [PMID: 23775089 DOI: 10.1074/jbc.r113.481549] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The secretory proprotein convertase (PC) family comprises nine members: PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9. The first seven PCs cleave their substrates at single or paired basic residues, and SKI-1/S1P cleaves its substrates at non-basic residues in the Golgi. PCSK9 cleaves itself once, and the secreted inactive protease escorts specific receptors for lysosomal degradation. It regulates the levels of circulating LDL cholesterol and is considered a major therapeutic target in phase III clinical trials. In vivo, PCs exhibit unique and often essential functions during development and/or in adulthood, but certain convertases also exhibit complementary, redundant, or opposite functions.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (IRCM, affiliated with the University of Montreal), Montreal, Quebec H2W 1R7, Canada.
| | | | | | | |
Collapse
|
23
|
Venetikou MS, Meleagros L, Ghatei MA, Bloom SR. Pituitary protein 7B2 plasma levels in patients with liver disease: Comparisons with other hormones and neuropeptides. Oncol Lett 2013; 6:499-506. [PMID: 24137355 PMCID: PMC3789099 DOI: 10.3892/ol.2013.1384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/30/2013] [Indexed: 11/29/2022] Open
Abstract
7B2, a protein initially isolated from the porcine pituitary gland, has been identified in numerous animal and human tissues, with the highest concentrations in the pituitary and hypothalamus. The 7B2 molecule is highly evolutionarily conserved and is considered to be indispensable in the function and regulation of proprotein convertase 2 (PC2). In the present study, the plasma 7B2 immunoreactivity (7B2-IR) of 18 patients with liver disease was studied. Of these patients, seven (three male and four female), aged 37–67 [54.6±13.5 (SD)] years, suffered from liver cirrhosis of cryptogenic (n=2) or alcoholic (n=5) aetiology. The remaining 11 patients (four male and seven female), aged 22–76 [56.1±17.6 (SD)] years, suffered from miscellaneous liver abnormalities. The clinical diagnosis was confirmed in the majority of patients by the histological examination of a percutaneous liver biopsy or by appropriate radiological investigations. Plasma bilirubin, alkaline phosphatase, aspartate aminotransferase, albumin, prothrombin time, electrolytes, urea and creatinine were measured. The plasma 7B2-IR levels were estimated using a sensitive radioimmunoassay (RIA), and the elution position of 7B2-IR was verified by gel chromatography. The mean plasma 7B2-IR concentration in patients with liver disease was 99.44±15.9 pmol/l. In the patients with hepatocellular damage due to metastatic tumours [Ca bronchus, carcinoid (n=6)], the 7B2-IR concentrations were significantly higher [185±36.9 pmol/l, (P<0.05)] compared with the overall subjects with liver damage. The results of the present study demonstrate that 7B2-IR is increased in liver disease, with the highest levels detected in patients with tumourous liver conditions.
Collapse
Affiliation(s)
- Maria S Venetikou
- Department of Medical Sciences, Faculty of Health and Caring Professions, Technological Educational Institute (TEI), Athens, Greece
| | | | | | | |
Collapse
|
24
|
Yuan B, Feng JQ, Bowman S, Liu Y, Blank RD, Lindberg I, Drezner MK. Hexa-D-arginine treatment increases 7B2•PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype. J Bone Miner Res 2013; 28:56-72. [PMID: 22886699 PMCID: PMC3523095 DOI: 10.1002/jbmr.1738] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/24/2022]
Abstract
Inactivating mutations of the "phosphate regulating gene with homologies to endopeptidases on the X chromosome" (PHEX/Phex) underlie disease in patients with X-linked hypophosphatemia (XLH) and the hyp-mouse, a murine homologue of the human disorder. Although increased serum fibroblast growth factor 23 (FGF-23) underlies the HYP phenotype, the mechanism(s) by which PHEX mutations inhibit FGF-23 degradation and/or enhance production remains unknown. Here we show that treatment of wild-type mice with the proprotein convertase (PC) inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (Dec), increases serum FGF-23 and produces the HYP phenotype. Because PC2 is uniquely colocalized with PHEX in osteoblasts/bone, we examined if PC2 regulates PHEX-dependent FGF-23 cleavage and production. Transfection of murine osteoblasts with PC2 and its chaperone protein 7B2 cleaved FGF-23, whereas Signe1 (7B2) RNA interference (RNAi) transfection, which limited 7B2 protein production, decreased FGF-23 degradation and increased Fgf-23 mRNA and protein. The mechanism by which decreased 7B2•PC2 activity influences Fgf-23 mRNA was linked to reduced conversion of the precursor to bone morphogenetic protein 1 (proBMP1) to active BMP1, which resulted in limited cleavage of dentin matrix acidic phosphoprotein 1 (DMP1), and consequent increased Fgf-23 mRNA. The significance of decreased 7B2•PC2 activity in XLH was confirmed by studies of hyp-mouse bone, which revealed significantly decreased Sgne1 (7B2) mRNA and 7B2 protein, and limited cleavage of proPC2 to active PC2. The expected downstream effects of these changes included decreased FGF-23 cleavage and increased FGF-23 synthesis, secondary to decreased BMP1-mediated degradation of DMP1. Subsequent Hexa-D-Arginine treatment of hyp-mice enhanced bone 7B2•PC2 activity, normalized FGF-23 degradation and production, and rescued the HYP phenotype. These data suggest that decreased PHEX-dependent 7B2•PC2 activity is central to the pathogenesis of XLH.
Collapse
Affiliation(s)
- Baozhi Yuan
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792
| | - Jian Q. Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246
| | - Stephen Bowman
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792
| | - Ying Liu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246
| | - Robert D. Blank
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792
| | - Iris Lindberg
- Dept. of Anatomy and Neurobiology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Marc K. Drezner
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792
| |
Collapse
|
25
|
Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 2012; 11:367-83. [PMID: 22679642 DOI: 10.1038/nrd3699] [Citation(s) in RCA: 599] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian proprotein convertases constitute a family of nine secretory serine proteases that are related to bacterial subtilisin and yeast kexin. Seven of these (proprotein convertase 1 (PC1), PC2, furin, PC4, PC5, paired basic amino acid cleaving enzyme 4 (PACE4) and PC7) activate cellular and pathogenic precursor proteins by cleavage at single or paired basic residues, whereas subtilisin kexin isozyme 1 (SKI-1) and proprotein convertase subtilisin kexin 9 (PCSK9) regulate cholesterol and/or lipid homeostasis via cleavage at non-basic residues or through induced degradation of receptors. Proprotein convertases are now considered to be attractive targets for the development of powerful novel therapeutics. In this Review, we summarize the physiological functions and pathological implications of the proprotein convertases, and discuss proposed strategies to control some of their activities, including their therapeutic application and validation in selected disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (affiliated to University of Montreal), 110 Pine Ave West, Montreal, Quebec H2W 1R7, Canada.
| | | |
Collapse
|
26
|
Abstract
The proprotein convertases (PCs) are secretory mammalian serine proteinases related to bacterial subtilisin-like enzymes. The family of PCs comprises nine members, PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9 (Fig. 3.1). While the first seven PCs cleave after single or paired basic residues, the last two cleave at non-basic residues and the last one PCSK9 only cleaves one substrate, itself, for its activation. The targets and substrates of these convertases are very varied covering many aspects of cellular biology and communication. While it took more than 22 years to begin to identify the first member in 1989-1990, in less than 14 years they were all characterized. So where are we 20 years later in 2011? We have now reached a level of maturity needed to begin to unravel the mechanisms behind the complex physiological functions of these PCs both in health and disease states. We are still far away from comprehensively understanding the various ramifications of their roles and to identify their physiological substrates unequivocally. How do these enzymes function in vivo? Are there other partners to be identified that would modulate their activity and/or cellular localization? Would non-toxic inhibitors/silencers of some PCs provide alternative therapies to control some pathologies and improve human health? Are there human SNPs or mutations in these PCs that correlate with disease, and can these help define the finesses of their functions and/or cellular sorting? The more we know about a given field, the more questions will arise, until we are convinced that we have cornered the important angles. And yet the future may well reserve for us many surprises that may allow new leaps in our understanding of the fascinating biology of these phylogenetically ancient eukaryotic proteases (Fig. 3.2) implicated in health and disease, which traffic through the cells via multiple sorting pathways (Fig. 3.3).
Collapse
Affiliation(s)
- Nabil G Seidah
- Biochemical Neuroendocrinology Laboratory, Clinical Research Institute of Montreal, Montreal, QC, Canada H2W 1R7.
| |
Collapse
|
27
|
|
28
|
Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SRJ. The extended granin family: structure, function, and biomedical implications. Endocr Rev 2011; 32:755-97. [PMID: 21862681 PMCID: PMC3591675 DOI: 10.1210/er.2010-0027] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
29
|
Helwig M, Lee SN, Hwang JR, Ozawa A, Medrano JF, Lindberg I. Dynamic modulation of prohormone convertase 2 (PC2)-mediated precursor processing by 7B2 protein: preferential effect on glucagon synthesis. J Biol Chem 2011; 286:42504-42513. [PMID: 22013069 DOI: 10.1074/jbc.m111.281980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small neuroendocrine protein 7B2 is required for the production of active prohormone convertase 2 (PC2), an enzyme involved in the synthesis of peptide hormones, such as glucagon and proopiomelanocortin-derived α-melanocyte-stimulating hormone. However, whether 7B2 can dynamically modulate peptide production through regulation of PC2 activity remains unclear. Infection of the pancreatic alpha cell line α-TC6 with 7B2-encoding adenovirus efficiently increased production of glucagon, whereas siRNA-mediated knockdown of 7B2 significantly decreased stored glucagon. Furthermore, rescue of 7B2 expression in primary pituitary cultures prepared from 7B2 null mice restored melanocyte-stimulating hormone production, substantiating the role of 7B2 as a regulatory factor in peptide biosynthesis. In anterior pituitary and pancreatic beta cell lines, however, overexpression of 7B2 affected neither production nor secretion of peptides despite increased release of active PC2. In direct contrast, 7B2 overexpression decreased the secretion and increased the activity of PC2 within α-TC6 cells; the increased intracellular concentration of active PC2 within these cells may therefore account for the enhanced production of glucagon. In line with these findings, we found elevated circulating glucagon levels in 7B2-overexpressing cast/cast mice in vivo. Surprisingly, when proopiomelanocortin and proglucagon were co-expressed in either pituitary or pancreatic alpha cell lines, proglucagon processing was preferentially decreased when 7B2 was knocked down. Taken together, these results suggest that proglucagon cleavage has a greater dependence on PC2 activity than other precursors and moreover that 7B2-dependent routing of PC2 to secretory granules is cell line-specific. The manipulation of 7B2 could therefore represent an effective way to selectively regulate synthesis of certain PC2-dependent peptides.
Collapse
Affiliation(s)
- Michael Helwig
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Sang-Nam Lee
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jae Ryoung Hwang
- Molecular Therapy Research Center, Sungkyunkwan University, Seoul 135-710, Korea
| | - Akihiko Ozawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, California 95616-8521
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
30
|
Waha A, Felsberg J, Hartmann W, Hammes J, von dem Knesebeck A, Endl E, Pietsch T, Waha A. Frequent epigenetic inactivation of the chaperone SGNE1/7B2 in human gliomas. Int J Cancer 2011; 131:612-22. [PMID: 21901745 DOI: 10.1002/ijc.26416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/16/2011] [Indexed: 11/08/2022]
Abstract
In a genome-wide screen using DMH (differential methylation hybridization) we have identified a CpG island within the 5' region and untranslated first exon of the secretory granule neuroendocrine protein 1 gene (SGNE1/7B2) that showed hypermethylation in low- and high-grade astrocytomas compared to normal brain tissue. Pyrosequencing was performed to confirm the methylation status of this CpG island in 89 astrocytic gliomas of different malignancy grades and six glioma cell lines. Hypermethylation of SGNE1/7B2 was significantly more frequent in diffuse low-grade astrocytomas as well as secondary glioblastomas and anaplastic astrocytomas as compared to primary glioblastomas. mRNA expression analysis by real-time RT-PCR indicates that SGNE1/7B2 expression is downregulated in astrocytic gliomas compared to white matter samples. Treatment of glioma cells with the demethylating agent 5-aza-2'-deoxycytidine restores the transcription of SGNE1/7B2. Overexpression of SGNE1/7B2 in T98G, A172 and U373MG glioblastoma cells significantly suppressed focus formation and led to a significant increase in apoptotic cells as determined by flow cytometric analysis in T98G cells. In summary, we have identified SGNE1/7B2 as a novel target silenced by DNA methylation in astrocytic gliomas. The high incidence of this alteration and the significant effects of SGNE1/7B2 on the growth and apoptosis of glioblastoma cells provide a first proof for a functional implication of SGNE1/7B2 inactivation in the molecular pathology of gliomas.
Collapse
Affiliation(s)
- Anke Waha
- Department of Neuropathology, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gosmain Y, Cheyssac C, Heddad Masson M, Dibner C, Philippe J. Glucagon gene expression in the endocrine pancreas: the role of the transcription factor Pax6 in α-cell differentiation, glucagon biosynthesis and secretion. Diabetes Obes Metab 2011; 13 Suppl 1:31-8. [PMID: 21824254 DOI: 10.1111/j.1463-1326.2011.01445.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glucagon gene is expressed in α-cells of the pancreas, L cells of the intestine and the hypothalamus. The determinants of the α-cell-specific expression of the glucagon gene are not fully characterized, although Arx, Pax6 and Foxa2 are critical for α-cell differentiation and glucagon gene expression; in addition, the absence of the β-cell-specific transcription factors Pdx1, Pax4 and Nkx6.1 may allow for the glucagon gene to be expressed. Pax6, along with cMaf and MafB, binds to the DNA control element G(1) which confers α-cell specificity to the promoter and to G(3) and potently activates glucagon gene transcription. In addition, to its direct role on the transcription of the glucagon gene, Pax6 controls several transcription factors involved in the activation of the glucagon gene such as cMaf, MafB and NeuroD1/Beta2 as well as different steps of glucagon biosynthesis and secretion. We conclude that Pax6 independently of Arx and Foxa2 is critical for α-cell function by coordinating glucagon gene expression as well as glucagon biosynthesis and secretion.
Collapse
Affiliation(s)
- Y Gosmain
- Division of Endocrinology, Diabetes and Nutrition, University Hospital Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Sneeringer R, Penzias AS, Barrett B, Usheva A. High levels of mineralocorticoids in preovulatory follicular fluid could contribute to oocyte development. Fertil Steril 2011; 95:182-7. [DOI: 10.1016/j.fertnstert.2010.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 05/18/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
|
33
|
|
34
|
Tadros H, Schmidt G, Sirois F, Mbikay M. Regulation of 7B2 mRNA translation: dissecting the role of its 5'-untranslated region. Methods Mol Biol 2011; 768:217-30. [PMID: 21805245 DOI: 10.1007/978-1-61779-204-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
7B2 is a chaperone for the prohormone/proneuropeptide convertase PC2. Its mRNA is readily detectable in most neuronal and endocrine cells; the protein, in contrast, is often found at relatively low levels, suggesting that translation of the corresponding mRNA may be repressed. Because the 5' untranslated region (5'-UTR) of this mRNA is relatively long and burdened with multiple AUGs, it has been speculated that it contributes to this repression. In this report, the influence of this region was assessed using in vitro and ex vivo approaches. The results showed that, in a cell-free system, full-length 7B2 mRNA was a poor template for translation. Its translatability dramatically improved when its 5'-UTR was truncated or when it was replaced with the 5'-UTR of carboxypeptidase E mRNA. These observations were confirmed in transfected mouse insulinoma MIN6 cells and human embryonic kidney HEK293 cells. Acute exposure of MIN6 cells to high glucose increased endogenous 7B2 biosynthesis without affecting the levels of its mRNA, suggesting that translation repression of this mRNA can be relieved by physiological stimuli.
Collapse
Affiliation(s)
- Haidy Tadros
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | | | | | | |
Collapse
|
35
|
Elson AE, Dotson CD, Egan JM, Munger SD. Glucagon signaling modulates sweet taste responsiveness. FASEB J 2010; 24:3960-9. [PMID: 20547661 PMCID: PMC2996909 DOI: 10.1096/fj.10-158105] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/27/2010] [Indexed: 11/11/2022]
Abstract
The gustatory system provides critical information about the quality and nutritional value of food before it is ingested. Thus, physiological mechanisms that modulate taste function in the context of nutritional needs or metabolic status could optimize ingestive decisions. We report that glucagon, which plays important roles in the maintenance of glucose homeostasis, enhances sweet taste responsiveness through local actions in the mouse gustatory epithelium. Using immunohistochemistry and confocal microscopy, we found that glucagon and its receptor (GlucR) are coexpressed in a subset of mouse taste receptor cells. Most of these cells also express the T1R3 taste receptor implicated in sweet and/or umami taste. Genetic or pharmacological disruption of glucagon signaling in behaving mice indicated a critical role for glucagon in the modulation of taste responsiveness. Scg5(-/-) mice, which lack mature glucagon, had significantly reduced responsiveness to sucrose as compared to wild-type littermates in brief-access taste tests. No significant differences were seen in responses to prototypical salty, sour, or bitter stimuli. Taste responsiveness to sucrose was similarly reduced upon acute and local disruption of glucagon signaling by the GlucR antagonist L-168,049. Together, these data indicate a role for local glucagon signaling in the peripheral modulation of sweet taste responsiveness.
Collapse
Affiliation(s)
- Amanda E.T. Elson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Cedrick D. Dotson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| | - Josephine M. Egan
- National Institute on Aging/National Institutes of Health, Baltimore, Maryland, USA
| | - Steven D. Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; and
| |
Collapse
|
36
|
Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol 2010; 31:134-56. [PMID: 20074584 PMCID: PMC2849853 DOI: 10.1016/j.yfrne.2010.01.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/29/2009] [Accepted: 01/06/2010] [Indexed: 12/29/2022]
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis plays a critical role in mediating changes in metabolism and thermogenesis. Thus, the central regulation of the thyroid axis by Thyrotropin Releasing Hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) is of key importance for the normal function of the axis under different physiological conditions including cold stress and changes in nutritional status. Before the TRH peptide becomes biologically active, a series of tightly regulated processes occur including the proper folding of the prohormone for targeting to the secretory pathway, its post-translational processing, and targeting of the processed peptides to the secretory granules near the plasma membrane of the cell ready for secretion. Multiple inputs coming from the periphery or from neurons present in different areas of the brain including the hypothalamus are responsible for the activation or inhibition of the TRH neuron and in turn affect the output of TRH and the set point of the axis.
Collapse
|
37
|
Morgan DJ, Wei S, Gomes I, Czyzyk T, Mzhavia N, Pan H, Devi LA, Fricker LD, Pintar JE. The propeptide precursor proSAAS is involved in fetal neuropeptide processing and body weight regulation. J Neurochem 2010; 113:1275-84. [PMID: 20367757 DOI: 10.1111/j.1471-4159.2010.06706.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mice with a targeted mutation in proSAAS have been generated to investigate whether peptides derived from this precursor could function as an inhibitor of prohormone convertase 1/3 (PC1/3) in vivo as well as to determine any alternate roles for proSAAS in nervous and endocrine tissues. Fetal mice lacking proSAAS exhibit complete, adult-like processing of prodynorphin in the prenatal brain instead of the incomplete processing seen in the brains of wild-type fetal mice where inhibitory proSAAS intermediates are transiently accumulated. This study provides evidence that proSAAS is directly involved in the prenatal regulation of neuropeptide processing in vivo. However, adult mice lacking proSAAS have normal levels of all peptides detected using a peptidomics approach, suggesting that PC1/3 activity is not affected by the absence of proSAAS in adult mice. ProSAAS knockout mice exhibit decreased locomotion and a male-specific 10-15% decrease in body weight, but maintain normal fasting blood glucose levels and are able to efficiently clear glucose from the blood in response to a glucose challenge. This work suggests that proSAAS-derived peptides can inhibit PC1/3 in embryonic brain, but in the adult brain proSAAS peptides may function as neuropeptides that regulate body weight and potentially other behaviors.
Collapse
Affiliation(s)
- Daniel J Morgan
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
ACTH receptor (MC2R) promoter variants associated with infantile spasms modulate MC2R expression and responsiveness to ACTH. Pharmacogenet Genomics 2010; 20:71-6. [PMID: 20042918 DOI: 10.1097/fpc.0b013e328333a172] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Adrenocorticotropin hormone (ACTH) has been the standard treatment to infantile spasms (IS). However, the mechanism of ACTH therapy is still unclear. ACTH exerts the function via melanocortin 2 receptor (MC2R). Our previous study showed a common 4-single nucleotide polymorphism (SNP) haplotype TCCT at the MC2R promoter was strongly associated with responsiveness to ACTH therapy, where these 4 SNPs [rs1893219, rs1893220, rs2186944, and a novel SNP (T>C)] were mapped at position -853, -759, -7, and -2 bp based on the transcription start site of the MC2R gene. In this study, we further elucidated functional significances of the TCCT haplotype. METHODS To evaluate whether the TCCT haplotype influences MC2R transcription levels, the luciferase reporter vector was used by a transient transfection. Expression of rat MC2R cDNA driven by the TCCT-carrying or TCCC-carrying promoter was detected by the real-time quantitative reverse transcription-PCR. These assays were performed on cell lines cultured in absence or presence of ACTH. RESULTS In the baseline, the light intensity of the luciferase reporter assay driven by the TCCT promoter was four times higher than that by the TCCC promoter. The intensity was dramatically increased in the pGL3-TCCT after ACTH stimulation, compared to that in the pGL3-TCCC. MC2R expression assay showed a 5-fold increase in the TCCT promoter in presence of ACTH, compared with that in absence of ACTH. CONCLUSION The results showed that the haplotype TCCT in MC2R promoter significantly led to increased MC2R expression and strong responses to ACTH, providing evidence of the molecular mechanism of ACTH therapy in IS.
Collapse
|
39
|
Obermüller S, Calegari F, King A, Lindqvist A, Lundquist I, Salehi A, Francolini M, Rosa P, Rorsman P, Huttner WB, Barg S. Defective secretion of islet hormones in chromogranin-B deficient mice. PLoS One 2010; 5:e8936. [PMID: 20126668 PMCID: PMC2812483 DOI: 10.1371/journal.pone.0008936] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/11/2010] [Indexed: 12/21/2022] Open
Abstract
Granins are major constituents of dense-core secretory granules in neuroendocrine cells, but their function is still a matter of debate. Work in cell lines has suggested that the most abundant and ubiquitously expressed granins, chromogranin A and B (CgA and CgB), are involved in granulogenesis and protein sorting. Here we report the generation and characterization of mice lacking chromogranin B (CgB-ko), which were viable and fertile. Unlike neuroendocrine tissues, pancreatic islets of these animals lacked compensatory changes in other granins and were therefore analyzed in detail. Stimulated secretion of insulin, glucagon and somatostatin was reduced in CgB-ko islets, in parallel with somewhat impaired glucose clearance and reduced insulin release, but normal insulin sensitivity in vivo. CgB-ko islets lacked specifically the rapid initial phase of stimulated secretion, had elevated basal insulin release, and stored and released twice as much proinsulin as wildtype (wt) islets. Stimulated release of glucagon and somatostatin was reduced as well. Surprisingly, biogenesis, morphology and function of insulin granules were normal, and no differences were found with regard to beta-cell stimulus-secretion coupling. We conclude that CgB is not required for normal insulin granule biogenesis or maintenance in vivo, but is essential for adequate secretion of islet hormones. Consequentially CgB-ko animals display some, but not all, hallmarks of human type-2 diabetes. However, the molecular mechanisms underlying this defect remain to be determined.
Collapse
Affiliation(s)
| | - Federico Calegari
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- CNR Institute of Neuroscience, Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Angus King
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Anders Lindqvist
- Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
| | - Ingmar Lundquist
- Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
| | - Maura Francolini
- CNR Institute of Neuroscience, Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Patrizia Rosa
- CNR Institute of Neuroscience, Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (WBH); (SB)
| | - Sebastian Barg
- Department of Clinical Sciences-Malmö, Lund University, Malmö, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- * E-mail: (WBH); (SB)
| |
Collapse
|
40
|
Gallelli MF, Cabrera Blatter MF, Castillo V. A comparative study by age and gender of the pituitary adenoma and ACTH and alpha-MSH secretion in dogs with pituitary-dependent hyperadrenocorticism. Res Vet Sci 2009; 88:33-40. [PMID: 19683322 DOI: 10.1016/j.rvsc.2009.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 06/04/2009] [Accepted: 06/28/2009] [Indexed: 11/25/2022]
Abstract
Pituitary-dependent hyperadrenocorticism (PDH) is frequent in dogs. Little is known about its presentation in different age groups and its characteristics. Dividing the population under study (n=107) into three age groups we observed that 11.2% were young, 51.4% adults and 37.4% aged. Using magnetic resonance, pituitary tumours were intra-sellar (IS) in 30.8% and extra-sellar (ES) in 62.6% and the pars intermedia (PI) was affected in 6.5%. ES are predominant in females and IS in males (p<0.0001). In the adult-aged population, the ES and PI are predominant, while in the young, the IS predominate (p<0.0001). ACTH concentration was greater in the ES vs. IS (p<0.05). alpha-MSH did not present significant differences according to tumour size, showing a negative correlation (r=-0.47; p<0.01) vs. ACTH. Differences in adenoma size according to gender and their age-related frequency of apparition could be because of different origins of the corticotrophinoma.
Collapse
Affiliation(s)
- M F Gallelli
- U. Endocrinología, Htal. Escuela de Medicina Veterinaria, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, 1427 Ciudad, Autónoma de Buenos Aires, Argentina
| | | | | |
Collapse
|
41
|
Abstract
Insulin, the major secreted product of the beta-cells of the islets of Langerhans, is initially synthesized as a precursor (preproinsulin), from which the mature hormone is excised by a series of proteolytic cleavages. This review provides a personal narrative of some of the key research projects leading to the identification of the central processing enzymes as proprotein convertase 1, proprotein convertase 2, and carboxypeptidase E. It also discusses the central roles of the intragranular environment and chaperone-like proteins in modulating processing activity.
Collapse
Affiliation(s)
- Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO, USA.
| |
Collapse
|
42
|
Zhan S, Zhao H, J White A, Minami M, Pignataro G, Yang T, Zhu X, Lan J, Xiong Z, Steiner DF, Simon RP, Zhou A. Defective neuropeptide processing and ischemic brain injury: a study on proprotein convertase 2 and its substrate neuropeptide in ischemic brains. J Cereb Blood Flow Metab 2009; 29:698-706. [PMID: 19142196 PMCID: PMC3878611 DOI: 10.1038/jcbfm.2008.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using a focal cerebral ischemia model in rats, brain ischemia-induced changes in expression levels of mRNA and protein, and activities of proprotein convertase 2 (PC2) in the cortex were examined. In situ hybridization analyses revealed a transient upregulation of the mRNA level for PC2 at an early reperfusion hour, at which the level of PC2 protein was also high as determined by immunocytochemistry and western blotting. When enzymatic activities of PC2 were analyzed using a synthetic substrate, a significant decrease was observed at early reperfusion hours at which levels of PC2 protein were still high. Also decreased at these reperfusion hours were tissue levels of dynorphin-A(1-8) (DYN-A(1-8)), a PC2 substrate, as determined by radioimmunoassay. Further examination of PC2 protein biosynthesis by metabolic labeling in cultured neuronal cells showed that in ischemic cells, the proteolytic processing of PC2 was greatly attenuated. Finally, in mice, an intracerebroventricular administration of synthetic DYN-A(1-8) significantly reduced the extent of ischemic brain injury. In mice those lack an active PC2, exacerbated brain injury was observed after an otherwise non-lethal focal ischemia. We conclude that brain ischemia attenuates PC2 and PC2-mediated neuropeptide processing. This attenuation may play a role in the pathology of ischemic brain injury.
Collapse
Affiliation(s)
- Shuqin Zhan
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Pax6 is important in the development of the pancreas and was previously shown to regulate pancreatic endocrine differentiation, as well as the insulin, glucagon, and somatostatin genes. Prohormone convertase 2 (PC2) is the main processing enzyme in pancreatic alpha cells, where it processes proglucagon to produce glucagon under the spatial and temporal control of 7B2, which functions as a molecular chaperone. To investigate the role of Pax6 in glucagon biosynthesis, we studied potential target genes in InR1G9 alpha cells transfected with Pax6 small interfering RNA and in InR1G9 clones expressing a dominant-negative form of Pax6. We now report that Pax6 controls the expression of the PC2 and 7B2 genes. By binding and transactivation studies, we found that Pax6 indirectly regulates PC2 gene transcription through cMaf and Beta2/NeuroD1 while it activates the 7B2 gene both directly and indirectly through the same transcription factors, cMaf and Beta2/NeuroD1. We conclude that Pax6 is critical for glucagon biosynthesis and processing by directly and indirectly activating the glucagon gene through cMaf and Beta2/NeuroD1, as well as the PC2 and 7B2 genes.
Collapse
|
44
|
Oláh M, Fehér P, Ihm Z, Bácskay I, Kiss T, Freeman ME, Nagy GM, Vecsernyés M. Dopamine-regulated adrenocorticotropic hormone secretion in lactating rats: functional plasticity of melanotropes. Neuroendocrinology 2009; 90:391-401. [PMID: 19641299 PMCID: PMC2826432 DOI: 10.1159/000232313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 02/27/2009] [Indexed: 01/25/2023]
Abstract
Pro-opiomelanocortin (POMC) is processed to adrenocorticotropic hormone (ACTH) and beta-lipotropin in corticotropes of the anterior lobe, and to alpha-melanocyte-stimulating hormone (alpha-MSH) and beta-endorphin in melanotropes of the intermediate lobe (IL) of the pituitary gland. While ACTH secretion is predominantly under the stimulatory influence of the hypothalamic factors, hormone secretion of the IL is tonically inhibited by neuroendocrine dopamine (NEDA) neurons. Lobe-specific POMC processing is not absolute. For example, D(2) type DA receptor (D2R)-deficient mice have elevated plasma ACTH levels, although it is known that corticotropes do not express D2R(s). Moreover, observations that suckling does not influence alpha-MSH release, while it induces an increase in plasma ACTH is unexplained. The aim of the present study was to investigate the involvement of the NEDA system in the regulation of ACTH secretion and the participation of the IL in ACTH production in lactating rats. Untreated and estradiol (E(2))-substituted ovariectomized (OVX) females were also studied. The concentration of ACTH in the IL was higher in lactating rats than in OVX rats, while the opposite change in alpha-MSH level of the IL was observed. DA levels in the IL and the neural lobe were lower in lactating rats than in OVX rats. Suckling-induced ACTH response was eliminated by pretreatment with the DA receptor agonist, bromocriptine (BRC). Inhibition of DA biosynthesis by alpha-methyl-p-tyrosine (alphaMpT) and blockade of D2R by domperidone (DOM) elevated plasma ACTH levels, but did not influence plasma alpha-MSH levels in lactating rats. The same drugs had opposite effects in OVX and OVX + E(2) animals. In lactating mothers, BRC was able to block ACTH responses induced by both alphaMpT and DOM. Surgical denervation of the IL elevated basal plasma levels of ACTH. Taken together, these data indicate that melanotropes synthesize ACTH during lactation and its release from these cells is regulated by NEDA neurons.
Collapse
Affiliation(s)
- Márk Oláh
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Pálma Fehér
- Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Zsófia Ihm
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ildikó Bácskay
- Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Timea Kiss
- Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Marc E. Freeman
- Department of Biological Science, Program in Neuroscience, The Florida State University, Tallahassee, Fla., USA
| | - György M. Nagy
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- *György M. Nagy, Neuromorphological and Neuroendocrine Laboratory, Department of Human Morphology and Developmental Biology, Hungarian Academy of Sciences and Semmelweis University, Tüzoltó u. 58, HU–1094 Budapest (Hungary), Tel. +36 1 215 6920, Fax +36 1 215 3064, E-Mail
| | - Miklós Vecsernyés
- Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
45
|
Morvan J, Tooze SA. Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem Cell Biol 2008; 129:243-52. [PMID: 18197413 PMCID: PMC2248607 DOI: 10.1007/s00418-008-0377-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2008] [Indexed: 01/24/2023]
Abstract
In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo.
Collapse
Affiliation(s)
- Joëlle Morvan
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
46
|
Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR. Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 2008; 48:393-423. [PMID: 18184105 PMCID: PMC2731677 DOI: 10.1146/annurev.pharmtox.48.113006.094812] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide neurotransmitters and peptide hormones, collectively known as neuropeptides, are required for cell-cell communication in neurotransmission and for regulation of endocrine functions. Neuropeptides are synthesized from protein precursors (termed proneuropeptides or prohormones) that require proteolytic processing primarily within secretory vesicles that store and secrete the mature neuropeptides to control target cellular and organ systems. This review describes interdisciplinary strategies that have elucidated two primary protease pathways for prohormone processing consisting of the cysteine protease pathway mediated by secretory vesicle cathepsin L and the well-known subtilisin-like proprotein convertase pathway that together support neuropeptide biosynthesis. Importantly, this review discusses important areas of current and future biomedical neuropeptide research with respect to biological regulation, inhibitors, structural features of proneuropeptide and protease interactions, and peptidomics combined with proteomics for systems biological approaches. Future studies that gain in-depth understanding of protease mechanisms for generating active neuropeptides will be instrumental for translational research to develop pharmacological strategies for regulation of neuropeptide functions. Pharmacological applications for neuropeptide research may provide valuable therapeutics in health and disease.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Department of Neuroscience, Pharmacology, and Medicine, School of Medicine, University of California-San Diego, La Jolla, CA 92093-0744, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L, Bakalkin G. Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 2007; 28:1700-8. [PMID: 16914231 DOI: 10.1016/j.neurobiolaging.2006.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 11/17/2022]
Abstract
The opioid peptides dynorphins may be involved in pathogenesis of Alzheimer disease (AD) by inducing neurodegeneration or cognitive impairment. To test this hypothesis, the dynorphin system was analyzed in postmortem samples from AD and control subjects, and subjects with Parkinson or cerebro-vascular diseases for comparison. Dynorphin A, dynorphin B and related neuropeptide nociceptin were determined in the Brodmann area 7 by radioimmunoassay. The precursor protein prodynorphin, processing convertase PC2 and the neuroendocrine pro7B2 and 7B2 proteins required for PC2 maturation were analyzed by Western blot. AD subjects displayed robustly elevated levels of dynorphin A and no differences in dynorphin B and nociceptin compared to controls. Subjects with Parkinson or cerebro-vascular diseases did not differ from controls with respect to any of the three peptides. PC2 levels were also increased, whereas, those of prodynorphin and pro7B2/7B2 were not changed in AD. Dynorphin A levels correlated with the neuritic plaque density. These results along with the known non-opioid ability of dynorphin A to induce neurodegeneration suggest a role for this neuropeptide in AD neuropathology.
Collapse
Affiliation(s)
- T Yakovleva
- Department of Clinical Neuroscience, CMM L8:01, Karolinska Institute and Hospital, SE-17176 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Castillo VA, Gómez NV, Lalia JC, Cabrera Blatter MF, García JD. Cushing's disease in dogs: cabergoline treatment. Res Vet Sci 2007; 85:26-34. [PMID: 17910968 DOI: 10.1016/j.rvsc.2007.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 08/09/2007] [Accepted: 08/11/2007] [Indexed: 10/22/2022]
Abstract
The treatment of pituitary-dependent hyperadrenocorticism (PDH) in dogs has for a long time been focused on inhibiting the adrenal gland using drugs such as o-p'-DDD, Ketoconazole and Trilostane, without attacking the primary cause: the corticotrophinoma. Corticotroph cells can express the D2 dopaminergic receptor; therefore cabergoline (Cbg) could be effective as a treatment. Follow-up over 4 years was carried out in 40 dogs with PDH that were treated with Cbg (0.07 mg/kg/week. Out of the 40 dogs, 17 responded to Cbg (42.5%). A year after the treatment, there was a significant decrease in ACTH (p<0.0001), alpha-MSH (p<0.01), urinary cortisol/creatinine ratio (p<0.001), and of the tumor size (p<0.0001) evaluated by nuclear magnetic resonance. Dogs responding to Cbg lived significantly longer (p<0.001) than those in the control group. To conclude, Cbg is useful in 42.5% of dogs with PDH, justifying its use as a treatment.
Collapse
Affiliation(s)
- V A Castillo
- Hospital Escuela-Unidad de Endocrinología, A. Clínica Médica de Pequeños Animales, Fac. de Ciencias Veterinarias-UBA, Av. Chorroarin 280, 1427 C. Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
49
|
Nillni EA. Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. Endocrinology 2007; 148:4191-200. [PMID: 17584972 DOI: 10.1210/en.2007-0173] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence demonstrated that posttranslational processing of neuropeptides is critical in the pathogenesis of obesity. Leptin or other physiological changes affects the biosynthesis and processing of many peptides hormones as well as the regulation of the family of prohormone convertases responsible for the maturation of these hormones. Regulation of energy balance by leptin involves regulation of several proneuropeptides such as proTRH and proopiomelanocortin. These proneuropeptide precursors require for their maturation proteolytic cleavage by the prohormone convertases 1 and 2 (PC1/3 and PC2). Because biosynthesis of mature peptides in response to leptin requires prohormone processing, it is hypothesized that leptin might regulate hypothalamic PC1/3 and PC2 expression, ultimately leading to coordinated processing of prohormones into mature peptides. Leptin has been shown to increase PC1/3 and PC2 promoter activities, and starvation of rats, leading to low serum leptin levels, resulted in a decrease in PC1/3 and PC2 gene and protein expression in the paraventricular and arcuate nucleus of the hypothalamus. Changes in nutritional status also changes proopiomelanocortin processing in the nucleus of the solitary tract, but this is not reversed by leptin. The PCs are also physiologically regulated by states of hyperthyroidism, hyperglycemia, inflammation, and suckling, and a recently discovered nescient helix-loop-helix-2 transcription factor is the first one to show an ability to regulate the transcription of PC1/3 and PC2. Therefore, the coupled regulation of proneuropeptide/processing enzymes may be a common process, by which cells generate more effective processing of prohormones into mature peptides.
Collapse
Affiliation(s)
- Eduardo A Nillni
- Division of Endocrinology, Department of Medicine, Brown Medical School/Rhode Island Hospital, 55 Claverick Street, Third floor, Room 320, Providence, Rhode Island 02903, USA.
| |
Collapse
|
50
|
Husson SJ, Schoofs L. Altered neuropeptide profile of Caenorhabditis elegans lacking the chaperone protein 7B2 as analyzed by mass spectrometry. FEBS Lett 2007; 581:4288-92. [PMID: 17707816 DOI: 10.1016/j.febslet.2007.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 07/18/2007] [Accepted: 08/06/2007] [Indexed: 10/23/2022]
Abstract
Cellular synthesis of naturally occurring, bioactive peptides requires the proprotein convertase PC2/EGL-3 for cleavage from the larger peptide precursors. A neuroendocrine chaperone 7B2 is needed for the proteolytical activation of proPC2, as extensively studied in mouse models. To determine the role of its orthologue in Caenorhabditis elegans, we analyzed wild-type and 7B2-null strains by HPLC and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, which allowed the identification of a novel neuropeptide gene, flp-33. The presence and/or absence of some neuropeptides in 7B2-null animals strongly differs form the peptide profile in wild-type, suggesting a specific and determined action of 7B2 in C. elegans.
Collapse
Affiliation(s)
- Steven J Husson
- Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | |
Collapse
|