1
|
Gong H, Xu X, Talifu Z, Zhang CJ, Sun YZ, Yue ZM, Rao JS, Du LJ, Du XX. Prospects and challenges in NMDAR signaling in spinal cord injury recovery and neural circuit remodeling. Regen Ther 2025; 29:381-389. [PMID: 40265135 PMCID: PMC12013404 DOI: 10.1016/j.reth.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are essential for excitatory synaptic transmission in the central nervous system, contributing to various physiological and pathological functions including learning, memory, neural development, synaptic transmission, and plasticity. NMDAR signaling plays a role in spinal cord injury outcomes, including restoring spinal circuits, modulating synaptic plasticity, reinstating synchronized functions, enhancing motor capabilities, and reducing neuropathic pain. Consequently, targeting NMDARs may serve as a promising approach to enhance axonal regeneration and reorganization of neural circuits following spinal injury.
Collapse
Affiliation(s)
- Han Gong
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
- University of Health and Rehabilitation Sciences, Qingdao City, 266113, China
- School of Rehabilitation, Capital Medical University, Beijing, 100086, China
- China Rehabilitation Research Center, Beijing, 100086, China
| | - Xin Xu
- University of Health and Rehabilitation Sciences, Qingdao City, 266113, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, 250100, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, China
| | - Chun-Jia Zhang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yu-Zhe Sun
- School of Rehabilitation, Capital Medical University, Beijing, 100086, China
- China Rehabilitation Research Center, Beijing, 100086, China
| | - Zhao-Ming Yue
- School of Rehabilitation, Capital Medical University, Beijing, 100086, China
- China Rehabilitation Research Center, Beijing, 100086, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, 100086, China
- China Rehabilitation Research Center, Beijing, 100086, China
| | - Xiao-Xia Du
- University of Health and Rehabilitation Sciences, Qingdao City, 266113, China
- School of Rehabilitation, Capital Medical University, Beijing, 100086, China
- China Rehabilitation Research Center, Beijing, 100086, China
| |
Collapse
|
2
|
Khabou B, Othman H, Guirat M, Chabchoub I, Kmiha S, Mahjoub B, Abdelhadi R, Ben Mahmoud A, Kallel R, Sellami Boudawara T, Kammoun T, Fakhfakh F, Hadj Kacem H, Kammoun H. Report of a missense TJP2 variant associated to PFIC4 with a pronounced phenotypic variability: Focus on the structural effects on the protein level. J Hum Genet 2025:10.1038/s10038-025-01338-w. [PMID: 40251428 DOI: 10.1038/s10038-025-01338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/20/2025]
Abstract
PFIC4 is a chronic liver disease which cannot be diagnosed based on clinical and biochemical findings with an unpredictable evolution. Here, we reported three consanguineous families with 9 children suffering from intrahepatic cholestasis with low GGT-activity. Three probands were chosen to undergo genetic testing. In silico analyses were conducted to assess the functional impact of the identified variant, along with variants occurring at highly conserved positions within the protein. Additionally, close clinical monitoring was carried. Targeted-NGS sequencing ruled out the diagnosis of PFIC1 and PFIC2. Subsequently, WES allowed the establishment of PFIC4 diagnosis for the three families through the identification of a homozygous TJP2 variant p. Gly532Arg classified as likely pathogenic with a structural damage predicted based on biomolecular modeling and simulation analysis. In-depth in silico analysis of 90 nsSNPs occurring in highly conserved residues in PDZ domains showed 14 ones seems to be relevant in the clinical practice. Clinically, a pronounced phenotypic variability is noted. In conclusion, our study described a homozygous missense PFIC4-related variant with a highlight on the pathogenic power of such types of variants. The clinical evaluation provided information about the importance of close monitoring to prevent liver failure and clarified the unexpected course of PFIC4.
Collapse
Affiliation(s)
- Boudour Khabou
- Molecular and Functional Genetics Laboratory, Faculty of Sciences, University of Sfax, Sfax, Tunisia.
| | - Houcemeddine Othman
- Department of Genetics, Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Laboratory of cytogenetics, molecular genetics and reproductive biology (LR03SP02), Farhat Hached University Hospital, Ibn El Jazzar St, Sousse, 4000, Tunisia
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, 9 Jubilee Road, Parktown, Johannesburg, 2193, South Africa
| | - Manel Guirat
- Medical Genetic Department, Hédi Chaker University Hospital, Sfax, Tunisia
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Biotechnology Center of Sfax, Sfax, Tunisia
- Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Chabchoub
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Sana Kmiha
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Bahri Mahjoub
- Pediatric Department, Tahar Sfar Hospital, Mahdia, Tunisia
| | - Rania Abdelhadi
- Centre of Biotechnology of Sfax (Tunisia), Microorganisms and Biomolecule Laboratory, and Molecular and Cellular Screening Process Laboratory, Sfax, Tunisia
- Ksentini Private Laboratory of Cytogenetics of Sfax, Sfax, Tunisia
- Ribosite Biotech Company for Research and Development in Biotechnhology, Sfax, Tunisia
| | - Afif Ben Mahmoud
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Rim Kallel
- Department of Anatomy and Pathological Cytology, Habib Bourguiba Hospital, Sfax, Tunisia
| | | | - Thouraya Kammoun
- Pediatric Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Hassen Hadj Kacem
- Department of Applied Biology, College of sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hassen Kammoun
- Medical Genetic Department, Hédi Chaker University Hospital, Sfax, Tunisia
| |
Collapse
|
3
|
Topolska M, Beltran A, Lehner B. Deep indel mutagenesis reveals the impact of amino acid insertions and deletions on protein stability and function. Nat Commun 2025; 16:2617. [PMID: 40097423 PMCID: PMC11914627 DOI: 10.1038/s41467-025-57510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Amino acid insertions and deletions (indels) are an abundant class of genetic variants. However, compared to substitutions, the effects of indels on protein stability are not well understood. To better understand indels here we analyse new and existing large-scale deep indel mutagenesis (DIM) of structurally diverse proteins. The effects of indels on protein stability vary extensively among and within proteins and are not well predicted by existing computational methods. To address this shortcoming we present INDELi, a series of models that combine experimental or predicted substitution effects and secondary structure information to provide good prediction of the effects of indels on both protein stability and pathogenicity. Moreover, quantifying the effects of indels on protein-protein interactions suggests that insertions can be an important class of gain-of-function variants. Our results provide an overview of the impact of indels on proteins and a method to predict their effects genome-wide.
Collapse
Affiliation(s)
- Magdalena Topolska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Antoni Beltran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- University Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i estudis Avançats (ICREA), Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
4
|
Song X, Wang D, Ji J, Weng J, Wang W. Structural Heterogeneity of Intermediate States Facilitates CRIPT Peptide Binding to the PDZ3 Domain: Insights from Molecular Dynamics and Markov State Model Analysis. J Chem Theory Comput 2025; 21:2668-2682. [PMID: 39984297 DOI: 10.1021/acs.jctc.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Intrinsically disordered proteins (IDPs), characterized by a lack of defined tertiary structure, are ubiquitous and indispensable components of cellular machinery. These proteins participate in a diverse array of biological processes, often undergoing conformational transitions upon binding to their target, a phenomenon termed "folding-upon-binding." The finding raises the question of how to achieve rapid binding kinetics in the presence of intrinsic disorder, and the underlying molecular mechanism remains elusive. This study investigated the interaction between the C-terminal region of CRIPT and the third PDZ domain of PSD-95, a critical complex in neuronal development. Upon binding, the CRIPT peptide adopts a β-strand conformation, a process meticulously characterized through extensive molecular dynamics simulations totaling 67.7 μs. Our findings reveal a funnel-like binding landscape in which IDPs can adopt multiple conformations prior to binding, forming structurally heterogeneous intermediate complexes and leading to diverse binding pathways. The stabilization of these intermediate complexes necessitates a dynamic interplay of native and non-native interactions. Markov state model analysis underscores the important role of structural heterogeneity as it contributes to accelerated binding. These findings enrich the classical fly-casting mechanism and provide novel insights into the functional advantages conferred by intrinsic disorder.
Collapse
Affiliation(s)
- Xingyu Song
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | | | - Jie Ji
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jingwei Weng
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Tahiri E, Corti E, Duarte CB. Regulation of Synaptic NMDA Receptor Activity by Post-Translational Modifications. Neurochem Res 2025; 50:110. [PMID: 40029461 PMCID: PMC11876243 DOI: 10.1007/s11064-025-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
NMDA receptors for the neurotransmitter glutamate are widely distributed in the central nervous system, playing important roles in brain development, function and plasticity. Alterations in their activity are also important mediators in neuropsychiatric and neurodegenerative disorders. The different NMDA receptor subunits (GluN1, GluN2A-D and GluN3A, B) share a similar structure and membrane topology, with an intracellular C-terminus tail responsible for the interaction with proteins important for the trafficking of the receptors, and to control their surface distribution and signalling activity. The latter sequence varies among subunits but consistently contains the majority of post-translational modification sites on NMDA receptors. These modifications, including phosphorylation, ubiquitination, and palmitoylation, regulate interactions with intracellular proteins. Differences in the amino acid sequence between NMDA receptor subunits lead to a differential regulation by post-translational modifications. Since NMDA receptors are formed by oligomerization of different subunits, and each subunit is regulated in a specific manner, this creates multiple possibilities for regulation of these receptors, with impact in synaptic function and plasticity. This review addresses the diversity of mechanisms involved in the post-translational modification of NMDA receptor subunits, and their impact on the activity and distribution of the receptors, as well as their function in nerve cells.
Collapse
Affiliation(s)
- Emanuel Tahiri
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisa Corti
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal.
| |
Collapse
|
6
|
Laumonnerie C, Shamambo M, Stabley DR, Lewis TL, Trivedi N, Howell D, Solecki DJ. Siah2 antagonism of Pard3/JamC modulates Ntn1-Dcc signaling to regulate cerebellar granule neuron germinal zone exit. Nat Commun 2025; 16:355. [PMID: 39774925 PMCID: PMC11706986 DOI: 10.1038/s41467-024-55400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Exiting a germinal zone (GZ) initiates a cascade of events that promote neuronal maturation and circuit assembly. Developing neurons and their progenitors must interpret various niche signals-such as morphogens, guidance molecules, extracellular matrix components, and adhesive cues-to navigate this region. How differentiating neurons in mouse brains integrate and adapt to multiple cell-extrinsic niche cues with their cell-intrinsic machinery in exiting a GZ is unknown. We establish cooperation between cell polarity-regulated adhesion and Netrin-1 signaling comprises a coincidence detection circuit repelling maturing neurons from their GZ. In this circuit, the Partitioning defective 3 (Pard3) polarity protein and Junctional adhesion molecule-C (JamC) adhesion molecule promote, while the Seven in absentia 2 (Siah2) ubiquitin ligase inhibits, Deleted in colorectal cancer (Dcc) receptor surface recruitment to gate differentiation linked repulsion to GZ Netrin-1. These results demonstrate cell polarity as a central integrator of adhesive- and guidance cues cooperating to spur GZ exit.
Collapse
Affiliation(s)
- Christophe Laumonnerie
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - Maleelo Shamambo
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - Daniel R Stabley
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - Tommy L Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Niraj Trivedi
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - Danielle Howell
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA
| | - David J Solecki
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38104, USA.
| |
Collapse
|
7
|
Casanova-Sepúlveda G, Boggon TJ. Regulation and signaling of the LIM domain kinases. Bioessays 2025; 47:e2400184. [PMID: 39361252 DOI: 10.1002/bies.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
The LIM domain kinases (LIMKs) are important actin cytoskeleton regulators. These proteins, LIMK1 and LIMK2, are nodes downstream of Rho GTPases and are the key enzymes that phosphorylate cofilin/actin depolymerization factors to regulate filament severing. They therefore perform an essential role in cascades that control actin depolymerization. Signaling of the LIMKs is carefully regulated by numerous inter- and intra-molecular mechanisms. In this review, we discuss recent findings that improve the understanding of LIM domain kinase regulation mechanisms. We also provide an up-to-date review of the role of the LIM domain kinases, their architectural features, how activity is impacted by other proteins, and the implications of these findings for human health and disease.
Collapse
Affiliation(s)
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Gerken OJ, Catone N, Legler DF. Identification of critical residues at the C-terminal tip of ACKR4 regulating chemokine internalization and βarrestin involvement. Cell Commun Signal 2024; 22:576. [PMID: 39623381 PMCID: PMC11610291 DOI: 10.1186/s12964-024-01961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Atypical chemokine receptors (ACKRs) play an important role in regulating the availability of chemokines and are responsible for the formation of chemokine gradients required for the directed migration of immune cells in health and disease. ACKR4 shapes gradients of the chemokines CCL19 and CCL21, which are essential for guiding leukocyte homing to lymphoid organs where they initiate an adaptive immune response against invading pathogens. How ACKRs internalize and scavenge chemokines on the molecular level remains poorly understood. Current state-of the art methods to study βarrestin recruitment, signaling and trafficking of ACKRs - and G-protein-coupled receptors in general - rely heavily on C-terminally tagged receptors with unknown consequences for receptor functions. METHODS Fluorescently labelled CCL19 was used to quantify chemokine internalization by native and tagged receptors as assessed by flow cytometry and live cell confocal microscopy. Steady-state interaction and chemokine-driven recruitment of βarrestins was determined by NanoBiT bystander assays. βarrestin-dependency for CCL19 internalization was determined in wild-type versus βarrestin1/2-double deficient cell lines. Statistical significance was determined by unpaired t-test or one-way ANOVA with Dunnett's or Tukey's multiple comparison tests. RESULTS Addition of a C-terminal tag selectively affected the function of ACKR4, but not other ACKRs. Fusing a short peptide tag or a fluorescent protein to ACKR4 significantly augmented its ability to internalize its cognate ligand CCL19. In comparison to native ACKR4, its C-terminal tagging provoked an elevated pre-association of βarrestins with the plasma membrane, yet a reduction in chemokine-driven βarrestin recruitment. Furthermore, the addition of a C-terminal tag led to a shift from a βarrestin-dependent towards a βarrestin-independent endocytosis pathway. Similar results on chemokine uptake and on βarrestin-dependency were obtained with ACKR4 variants, in which a putative class II PDZ-binding domain located at the C-terminal tip of the receptor was mutated. CONCLUSION This study identifies that the integrity of the C-terminus of ACKR4 is critical for receptor function. The addition of a C-terminal tag to ACKR4 enhances chemokine uptake and alters the involvement of βarrestins in receptor trafficking.
Collapse
Affiliation(s)
- Oliver J Gerken
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, CH-3012, Switzerland
| | - Nicola Catone
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Daniel F Legler
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland.
- Theodor Kocher Institute, University of Bern, Bern, CH-3012, Switzerland.
- Faculty of Biology, University of Konstanz, D-78464, Konstanz, Germany.
| |
Collapse
|
9
|
Guo Q, Yang YX, Li DX, Ji XJ, Wu N, Wang YT, Ye C, Shi TQ. Advances in multi-enzyme co-localization strategies for the construction of microbial cell factory. Biotechnol Adv 2024; 77:108453. [PMID: 39278372 DOI: 10.1016/j.biotechadv.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Biomanufacturing, driven by technologies such as synthetic biology, offers significant potential to advance the bioeconomy and promote sustainable development. It is anticipated to transform traditional manufacturing and become a key industry in future strategies. Cell factories are the core of biomanufacturing. The advancement of synthetic biology and growing market demand have led to the production of a greater variety of natural products and increasingly complex metabolic pathways. However, this progress also presents challenges, notably the conflict between natural product production and chassis cell growth. This conflict results in low productivity and yield, adverse side effects, metabolic imbalances, and growth retardation. Enzyme co-localization strategies have emerged as a promising solution. This article reviews recent progress and applications of these strategies in constructing cell factories for efficient natural product production. It comprehensively describes the applications of enzyme-based compartmentalization, metabolic pathway-based compartmentalization, and synthetic organelle-based compartmentalization in improving product titers. The article also explores future research directions and the prospects of combining multiple strategies with advanced technologies.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
10
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024; 32:1877-1892. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Agogo-Mawuli PS, Mendez J, Oestreich EA, Bosch DE, Siderovski DP. Molecular Modeling and In Vitro Functional Analysis of the RGS12 PDZ Domain Variant Associated with High-Penetrance Familial Bipolar Disorder. Int J Mol Sci 2024; 25:11431. [PMID: 39518985 PMCID: PMC11546610 DOI: 10.3390/ijms252111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Bipolar disorder's etiology involves genetics, environmental factors, and gene-environment interactions, underlying its heterogeneous nature and treatment complexity. In 2020, Forstner and colleagues catalogued 378 sequence variants co-segregating with familial bipolar disorder. A notable candidate was an R59Q missense mutation in the PDZ (PSD-95/Dlg1/ZO-1) domain of RGS12. We previously demonstrated that RGS12 loss removes negative regulation on the kappa opioid receptor, disrupting basal ganglia dopamine homeostasis and dampening responses to dopamine-eliciting psychostimulants. Here, we investigated the R59Q variation in the context of potential PDZ domain functional alterations. We first validated a new target for the wildtype RGS12 PDZ domain-the SAPAP3 C-terminus-by molecular docking, surface plasmon resonance (SPR), and co-immunoprecipitation. While initial molecular dynamics (MD) studies predicted negligible effects of the R59Q variation on ligand binding, SPR showed a significant reduction in binding affinity for the three peptide targets tested. AlphaFold2-generated models predicted a modest reduction in protein-peptide interactions, which is consistent with the reduced binding affinity observed by SPR, suggesting that the substituted glutamine side chain may weaken the affinity of RGS12 for its in vivo binding targets, likely through allosteric changes. This difference may adversely affect the CNS signaling related to dynorphin and dopamine in individuals with this R59Q variation, potentially impacting bipolar disorder pathophysiology.
Collapse
Affiliation(s)
- Percy S. Agogo-Mawuli
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (P.S.A.-M.)
| | - Joseph Mendez
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (P.S.A.-M.)
| | - Emily A. Oestreich
- Department of Biomedical Sciences, Pacific Northwest University of Health Sciences, Yakima, WA 98901, USA
| | - Dustin E. Bosch
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David P. Siderovski
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (P.S.A.-M.)
| |
Collapse
|
12
|
Sarkar S, Dhibar S, Jana B. Modulation of the conformational landscape of the PDZ3 domain by perturbation on a distal non-canonical α3 helix: decoding the microscopic mechanism of allostery in the PDZ3 domain. Phys Chem Chem Phys 2024; 26:21249-21259. [PMID: 39076021 DOI: 10.1039/d4cp01806k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
While allosteric signal transduction is crucial for protein signaling and regulation, the dynamic process of allosteric communication remains poorly understood. The third PDZ domain (PDZ stands for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1)) serves as a classic example of a single-domain allosteric protein, demonstrating a long-range coupling between the C-terminal α helix (known as the α3 helix) and ligand binding. A molecular level understanding of how the α3 helix modulates the ligand binding affinity of the PDZ3 domain is still lacking. In this study, extensive molecular dynamics simulations corroborated with principal component analysis (PCA), ligand binding free energy calculations, energetic frustration analysis and Markov state model analysis are employed to uncover such molecular details. We demonstrate the definite presence of a binding competent closed-like state in the conformational landscape of wild-type PDZ3. The population modulations of this closed state and other binding incompetent states in the landscape due to α3-truncation/mutation of PDZ3 are explored. A correlation between the closed state population and calculated binding free energy is established, which supports the conformation selection mechanism. Covariance analysis identified the presence of correlated motion between two distant loops (β1-β2 and β2-β3) in the wild-type PDZ3 system, which weakened due to truncation/mutation in the distant α3 helix. It has also been observed that whenever the α3 helix was perturbed, the β2-β3 loop got further away from the binding groove and it is found to be correlated with the binding free energy values. Energetic frustration analysis of the PDZ3 domain also showed that the β2-β3 loop is highly frustrated. Finally, MSM analysis revealed a relevant timescale (closed to open state transition), which is similar to the observed experimental signal transduction timescale for the system. These observations led to the conclusion that the distantly located α3 helix plays a pivotal role in regulating the conformational landscape of the PDZ3 domain, determining the ligand binding affinity and resulting in allosteric behavior of the domain.
Collapse
Affiliation(s)
- Subhajit Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Saikat Dhibar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| |
Collapse
|
13
|
Yu XJ, Xie H, Li Y, Liu M, Hou R, Predeus AV, Perez Sepulveda BM, Hinton JCD, Holden DW, Thurston TLM. Modulation of Salmonella virulence by a novel SPI-2 injectisome effector that interacts with the dystrophin-associated protein complex. mBio 2024; 15:e0112824. [PMID: 38904384 PMCID: PMC11253597 DOI: 10.1128/mbio.01128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
The injectisome encoded by Salmonella pathogenicity island 2 (SPI-2) had been thought to translocate 28 effectors. Here, we used a proteomic approach to characterize the secretome of a clinical strain of invasive non-typhoidal Salmonella enterica serovar Enteritidis that had been mutated to cause hyper-secretion of the SPI-2 injectisome effectors. Along with many known effectors, we discovered the novel SseM protein. sseM is widely distributed among the five subspecies of Salmonella enterica, is found in many clinically relevant serovars, and is co-transcribed with pipB2, a SPI-2 effector gene. The translocation of SseM required a functional SPI-2 injectisome. Following expression in human cells, SseM interacted with five components of the dystrophin-associated protein complex (DAPC), namely, β-2-syntrophin, utrophin/dystrophin, α-catulin, α-dystrobrevin, and β-dystrobrevin. The interaction between SseM and β-2-syntrophin and α-dystrobrevin was verified in Salmonella Typhimurium-infected cells and relied on the postsynaptic density-95/discs large/zonula occludens-1 (PDZ) domain of β-2-syntrophin and a sequence corresponding to a PDZ-binding motif (PBM) in SseM. A ΔsseM mutant strain had a small competitive advantage over the wild-type strain in the S. Typhimurium/mouse model of systemic disease. This phenotype was complemented by a plasmid expressing wild-type SseM from S. Typhimurium or S. Enteritidis and was dependent on the PBM of SseM. Therefore, a PBM within a Salmonella effector mediates interactions with the DAPC and modulates the systemic growth of bacteria in mice. Furthermore, the ΔsseM mutant strain displayed enhanced replication in bone marrow-derived macrophages, demonstrating that SseM restrains intracellular bacterial growth to modulate Salmonella virulence. IMPORTANCE In Salmonella enterica, the injectisome machinery encoded by Salmonella pathogenicity island 2 (SPI-2) is conserved among the five subspecies and delivers proteins (effectors) into host cells, which are required for Salmonella virulence. The identification and functional characterization of SPI-2 injectisome effectors advance our understanding of the interplay between Salmonella and its host(s). Using an optimized method for preparing secreted proteins and a clinical isolate of the invasive non-typhoidal Salmonella enterica serovar Enteritidis strain D24359, we identified 22 known SPI-2 injectisome effectors and one new effector-SseM. SseM modulates bacterial growth during murine infection and has a sequence corresponding to a postsynaptic density-95/discs large/zonula occludens-1 (PDZ)-binding motif that is essential for interaction with the PDZ-containing host protein β-2-syntrophin and other components of the dystrophin-associated protein complex (DAPC). To our knowledge, SseM is unique among Salmonella effectors in containing a functional PDZ-binding motif and is the first bacterial protein to target the DAPC.
Collapse
Affiliation(s)
- Xiu-Jun Yu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Haixia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Li
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mei Liu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ruhong Hou
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Blanca M. Perez Sepulveda
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - David W. Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Teresa L. M. Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Alves D, Neves A, Vecchi L, Souza T, Vaz E, Mota S, Nicolau-Junior N, Goulart L, Araújo T. Rho GTPase activating protein 21-mediated regulation of prostate cancer associated 3 gene in prostate cancer cell. Braz J Med Biol Res 2024; 57:e13190. [PMID: 38896642 PMCID: PMC11186590 DOI: 10.1590/1414-431x2024e13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
The overexpression of the prostate cancer antigen 3 (PCA3) gene is well-defined as a marker for prostate cancer (PCa) diagnosis. Although widely used in clinical research, PCA3 molecular mechanisms remain unknown. Herein we used phage display technology to identify putative molecules that bind to the promoter region of PCA3 gene and regulate its expression. The most frequent peptide PCA3p1 (80%) was similar to the Rho GTPase activating protein 21 (ARHGAP21) and its binding affinity was confirmed using Phage Bead ELISA. We showed that ARHGAP21 silencing in LNCaP prostate cancer cells decreased PCA3 and androgen receptor (AR) transcriptional levels and increased prune homolog 2 (PRUNE2) coding gene expression, indicating effective involvement of ARHGAP21 in androgen-dependent tumor pathway. Chromatin immunoprecipitation assay confirmed the interaction between PCA3 promoter region and ARHGAP21. This is the first study that described the role of ARHGAP21 in regulating the PCA3 gene under the androgenic pathway, standing out as a new mechanism of gene regulatory control during prostatic oncogenesis.
Collapse
Affiliation(s)
- D.A. Alves
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - A.F. Neves
- Laboratório de Biologia Molecular, Universidade Federal de Catalão, Catalão, GO, Brasil
| | - L. Vecchi
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - T.A. Souza
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - E.R. Vaz
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - S.T.S. Mota
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - N. Nicolau-Junior
- Laboratório de Modelagem Molecular, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - L.R. Goulart
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - T.G. Araújo
- Laboratório de Genética e Biotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Patos de Minas, MG, Brasil
- Laboratório de Nanobiotechnologia Prof. Dr. Luiz Ricardo Goulart Filho, Instituto de Biotechnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| |
Collapse
|
15
|
Hassani Nia F, Woike D, Bento I, Niebling S, Tibbe D, Schulz K, Hirnet D, Skiba M, Hönck HH, Veith K, Günther C, Scholz T, Bierhals T, Driemeyer J, Bend R, Failla AV, Lohr C, Alai MG, Kreienkamp HJ. Structural deficits in key domains of Shank2 lead to alterations in postsynaptic nanoclusters and to a neurodevelopmental disorder in humans. Mol Psychiatry 2024; 29:1683-1697. [PMID: 36450866 PMCID: PMC11371640 DOI: 10.1038/s41380-022-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Postsynaptic scaffold proteins such as Shank, PSD-95, Homer and SAPAP/GKAP family members establish the postsynaptic density of glutamatergic synapses through a dense network of molecular interactions. Mutations in SHANK genes are associated with neurodevelopmental disorders including autism and intellectual disability. However, no SHANK missense mutations have been described which interfere with the key functions of Shank proteins believed to be central for synapse formation, such as GKAP binding via the PDZ domain, or Zn2+-dependent multimerization of the SAM domain. We identify two individuals with a neurodevelopmental disorder carrying de novo missense mutations in SHANK2. The p.G643R variant distorts the binding pocket for GKAP in the Shank2 PDZ domain and prevents interaction with Thr(-2) in the canonical PDZ ligand motif of GKAP. The p.L1800W variant severely delays the kinetics of Zn2+-dependent polymerization of the Shank2-SAM domain. Structural analysis shows that Trp1800 dislodges one histidine crucial for Zn2+ binding. The resulting conformational changes block the stacking of helical polymers of SAM domains into sheets through side-by-side contacts, which is a hallmark of Shank proteins, thereby disrupting the highly cooperative assembly process induced by Zn2+. Both variants reduce the postsynaptic targeting of Shank2 in primary cultured neurons and alter glutamatergic synaptic transmission. Super-resolution microscopy shows that both mutants interfere with the formation of postsynaptic nanoclusters. Our data indicate that both the PDZ- and the SAM-mediated interactions of Shank2 contribute to the compaction of postsynaptic protein complexes into nanoclusters, and that deficiencies in this process interfere with normal brain development in humans.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Daniel Woike
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | | - Stephan Niebling
- EMBL Hamburg, c/o DESY, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kristina Schulz
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Hirnet
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Matilda Skiba
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | | | | - Tasja Scholz
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Joenna Driemeyer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Renee Bend
- Prevention Genetics, Marshfield, WI, USA
| | - Antonio Virgilio Failla
- UKE microscopic imaging facility (umif), University Medical Center Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Maria Garcia Alai
- EMBL Hamburg, c/o DESY, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Bondarenko V, Chen Q, Tillman TS, Xu Y, Tang P. Unconventional PDZ Recognition Revealed in α7 nAChR-PICK1 Complexes. ACS Chem Neurosci 2024; 15:2070-2079. [PMID: 38691676 PMCID: PMC11099923 DOI: 10.1021/acschemneuro.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
PDZ domains are modular domains that conventionally bind to C terminal or internal motifs of target proteins to control cellular functions through the regulation of protein complex assemblies. Almost all reported structures of PDZ-target protein complexes rely on fragments or peptides as target proteins. No intact target protein complexed with PDZ was structurally characterized. In this study, we used NMR spectroscopy and other biochemistry and biophysics tools to uncover insights into structural coupling between the PDZ domain of protein interacting with C-kinase 1 (PICK1) and α7 nicotinic acetylcholine receptors (α7 nAChR). Notably, the intracellular domains of both α7 nAChR and PICK1 PDZ exhibit a high degree of plasticity in their coupling. Specifically, the MA helix of α7 nAChR interacts with residues lining the canonical binding site of the PICK1 PDZ, while flexible loops also engage in protein-protein interactions. Both hydrophobic and electrostatic interactions mediate the coupling. Overall, the resulting structure of the α7 nAChR-PICK1 complex reveals an unconventional PDZ binding mode, significantly expanding the repertoire of functionally important PDZ interactions.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Qiang Chen
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tommy S. Tillman
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yan Xu
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Pei Tang
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
17
|
Gao L, Ardiel E, Nurrish S, Kaplan JM. Voltage-induced calcium release in Caenorhabditis elegans body muscles. Proc Natl Acad Sci U S A 2024; 121:e2317753121. [PMID: 38687794 PMCID: PMC11087772 DOI: 10.1073/pnas.2317753121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Type 1 voltage-activated calcium channels (CaV1) in the plasma membrane trigger calcium release from the sarcoplasmic reticulum (SR) by two mechanisms. In voltage-induced calcium release (VICR), CaV1 voltage sensing domains are directly coupled to ryanodine receptors (RYRs), an SR calcium channel. In calcium-induced calcium release (CICR), calcium ions flowing through activated CaV1 channels bind and activate RYR channels. VICR is thought to occur exclusively in vertebrate skeletal muscle while CICR occurs in all other muscles (including all invertebrate muscles). Here, we use calcium-activated SLO-2 potassium channels to analyze CaV1-SR coupling in Caenorhabditis elegans body muscles. SLO-2 channels were activated by both VICR and external calcium. VICR-mediated SLO-2 activation requires two SR calcium channels (RYRs and IP3 Receptors), JPH-1/Junctophilin, a PDZ (PSD95, Dlg1, ZO-1 domain) binding domain (PBD) at EGL-19/CaV1's carboxy-terminus, and SHN-1/Shank (a scaffolding protein that binds EGL-19's PBD). Thus, VICR occurs in invertebrate muscles.
Collapse
Affiliation(s)
- Luna Gao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Evan Ardiel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
- Program in Neuroscience, Harvard Medical School, Boston, MA02115
| |
Collapse
|
18
|
Zarin T, Lehner B. A complete map of specificity encoding for a partially fuzzy protein interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591103. [PMID: 38712134 PMCID: PMC11071492 DOI: 10.1101/2024.04.25.591103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Thousands of human proteins function by binding short linear motifs embedded in intrinsically disordered regions. How affinity and specificity are encoded in these binding domains and the motifs themselves is not well understood. The evolvability of binding specificity - how rapidly and extensively it can change upon mutation - is also largely unexplored, as is the contribution of 'fuzzy' dynamic residues to affinity and specificity in protein-protein interactions. Here we report the first complete map of specificity encoding for a globular protein domain. Quantifying >200,000 energetic interactions between a PDZ domain and its ligand identifies 20 major energetically coupled pairs of sites that control specificity. These are organized into six modules, with most mutations in each module reprogramming specificity for a single position in the ligand. Nine of the major energetic couplings controlling specificity are between structural contacts and 11 have an allosteric mechanism of action. The dynamic tail of the ligand is more robust to mutation than the structured residues but contributes additively to binding affinity and communicates with structured residues to enable changes in specificity. Our results quantify the binding specificities of >1,800 globular proteins to reveal how specificity is encoded and provide a direct comparison of the encoding of affinity and specificity in structured and dynamic molecular recognition.
Collapse
Affiliation(s)
- Taraneh Zarin
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Wellcome Sanger Institute, Cambridge, UK
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
19
|
Klyshko E, Kim JSH, McGough L, Valeeva V, Lee E, Ranganathan R, Rauscher S. Functional protein dynamics in a crystal. Nat Commun 2024; 15:3244. [PMID: 38622111 PMCID: PMC11018856 DOI: 10.1038/s41467-024-47473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Proteins are molecular machines and to understand how they work, we need to understand how they move. New pump-probe time-resolved X-ray diffraction methods open up ways to initiate and observe protein motions with atomistic detail in crystals on biologically relevant timescales. However, practical limitations of these experiments demands parallel development of effective molecular dynamics approaches to accelerate progress and extract meaning. Here, we establish robust and accurate methods for simulating dynamics in protein crystals, a nontrivial process requiring careful attention to equilibration, environmental composition, and choice of force fields. With more than seven milliseconds of sampling of a single chain, we identify critical factors controlling agreement between simulation and experiments and show that simulated motions recapitulate ligand-induced conformational changes. This work enables a virtuous cycle between simulation and experiments for visualizing and understanding the basic functional motions of proteins.
Collapse
Affiliation(s)
- Eugene Klyshko
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Justin Sung-Ho Kim
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Lauren McGough
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Victoria Valeeva
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ethan Lee
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Rama Ranganathan
- Center for Physics of Evolving Systems and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Sarah Rauscher
- Department of Physics, University of Toronto, Toronto, ON, Canada.
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Klyshko E, Sung-Ho Kim J, McGough L, Valeeva V, Lee E, Ranganathan R, Rauscher S. Functional Protein Dynamics in a Crystal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.06.548023. [PMID: 37461732 PMCID: PMC10350071 DOI: 10.1101/2023.07.06.548023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proteins are molecular machines and to understand how they work, we need to understand how they move. New pump-probe time-resolved X-ray diffraction methods open up ways to initiate and observe protein motions with atomistic detail in crystals on biologically relevant timescales. However, practical limitations of these experiments demands parallel development of effective molecular dynamics approaches to accelerate progress and extract meaning. Here, we establish robust and accurate methods for simulating dynamics in protein crystals, a nontrivial process requiring careful attention to equilibration, environmental composition, and choice of force fields. With more than seven milliseconds of sampling of a single chain, we identify critical factors controlling agreement between simulation and experiments and show that simulated motions recapitulate ligand-induced conformational changes. This work enables a virtuous cycle between simulation and experiments for visualizing and understanding the basic functional motions of proteins.
Collapse
Affiliation(s)
- Eugene Klyshko
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Justin Sung-Ho Kim
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Lauren McGough
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Victoria Valeeva
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ethan Lee
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Rama Ranganathan
- Center for Physics of Evolving Systems and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Sarah Rauscher
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Matoo S, Graves MJ, Choi MS, Idris RAES, Acharya P, Thapa G, Nguyen T, Atallah SY, Tipirneni AK, Stevenson PJ, Crawley SW. The microvillar protocadherin CDHR5 associates with EBP50 to promote brush border assembly. Mol Biol Cell 2024; 35:ar36. [PMID: 38170579 PMCID: PMC10916864 DOI: 10.1091/mbc.e23-02-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Transporting epithelial cells of the gut and kidney interact with their luminal environment through a densely packed collection of apical microvilli known as a brush border (BB). Proper brush border assembly depends on the intermicrovillar adhesion complex (IMAC), a protocadherin-based adhesion complex found at the distal tips of microvilli that mediates adhesion between neighboring protrusions to promote their organized packing. Loss of the IMAC adhesion molecule Cadherin-related family member 5 (CDHR5) results in significant brush border defects, though the functional properties of this protocadherin have not been thoroughly explored. Here, we show that the cytoplasmic tail of CDHR5 contributes to its correct apical targeting and functional properties in an isoform-specific manner. Library screening identified the Ezrin-associated scaffolds EBP50 and E3KARP as cytoplasmic binding partners for CDHR5. Consistent with this, loss of EBP50 disrupted proper brush border assembly with cells exhibiting markedly reduced apical IMAC levels. Together, our results shed light on the apical targeting determinants of CDHR5 and further define the interactome of the IMAC involved in brush border assembly.
Collapse
Affiliation(s)
- Samaneh Matoo
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Maura J. Graves
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Myoung Soo Choi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - Prashun Acharya
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Garima Thapa
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Tram Nguyen
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Sarah Y. Atallah
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Ashna K. Tipirneni
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - Scott W. Crawley
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
22
|
Guerin N, Childs H, Zhou P, Donald BR. DexDesign: A new OSPREY-based algorithm for designing de novo D-peptide inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579944. [PMID: 38405797 PMCID: PMC10888900 DOI: 10.1101/2024.02.12.579944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
With over 270 unique occurrences in the human genome, peptide-recognizing PDZ domains play a central role in modulating polarization, signaling, and trafficking pathways. Mutations in PDZ domains lead to diseases such as cancer and cystic fibrosis, making PDZ domains attractive targets for therapeutic intervention. D-peptide inhibitors offer unique advantages as therapeutics, including increased metabolic stability and low immunogenicity. Here, we introduce DexDesign, a novel OSPREY-based algorithm for computationally designing de novo D-peptide inhibitors. DexDesign leverages three novel techniques that are broadly applicable to computational protein design: the Minimum Flexible Set, K*-based Mutational Scan, and Inverse Alanine Scan, which enable exponential reductions in the size of the peptide sequence search space. We apply these techniques and DexDesign to generate novel D-peptide inhibitors of two biomedically important PDZ domain targets: CAL and MAST2. We introduce a new framework for analyzing de novo peptides-evaluation along a replication/restitution axis-and apply it to the DexDesign-generated D-peptides. Notably, the peptides we generated are predicted to bind their targets tighter than their targets' endogenous ligands, validating the peptides' potential as lead therapeutic candidates. We provide an implementation of DexDesign in the free and open source computational protein design software OSPREY.
Collapse
|
23
|
Guerin N, Childs H, Zhou P, Donald BR. DexDesign: an OSPREY-based algorithm for designing de novo D-peptide inhibitors. Protein Eng Des Sel 2024; 37:gzae007. [PMID: 38757573 PMCID: PMC11099876 DOI: 10.1093/protein/gzae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
With over 270 unique occurrences in the human genome, peptide-recognizing PDZ domains play a central role in modulating polarization, signaling, and trafficking pathways. Mutations in PDZ domains lead to diseases such as cancer and cystic fibrosis, making PDZ domains attractive targets for therapeutic intervention. D-peptide inhibitors offer unique advantages as therapeutics, including increased metabolic stability and low immunogenicity. Here, we introduce DexDesign, a novel OSPREY-based algorithm for computationally designing de novo D-peptide inhibitors. DexDesign leverages three novel techniques that are broadly applicable to computational protein design: the Minimum Flexible Set, K*-based Mutational Scan, and Inverse Alanine Scan. We apply these techniques and DexDesign to generate novel D-peptide inhibitors of two biomedically important PDZ domain targets: CAL and MAST2. We introduce a framework for analyzing de novo peptides-evaluation along a replication/restitution axis-and apply it to the DexDesign-generated D-peptides. Notably, the peptides we generated are predicted to bind their targets tighter than their targets' endogenous ligands, validating the peptides' potential as lead inhibitors. We also provide an implementation of DexDesign in the free and open source computational protein design software OSPREY.
Collapse
Affiliation(s)
- Nathan Guerin
- Department of Computer Science, Duke University, 308 Research Drive, Durham, NC 27708, United States
| | - Henry Childs
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, United States
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 22710, United States
| | - Bruce R Donald
- Department of Computer Science, Duke University, 308 Research Drive, Durham, NC 27708, United States
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, United States
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 22710, United States
- Department of Mathematics, Duke University, 120 Science Drive, Durham, NC 27708, United States
| |
Collapse
|
24
|
Naik MT, Naik N, Hu T, Wang SH, Marshall J. Structure-based design of peptidomimetic inhibitors of PSD-95 with improved affinity for the PDZ3 domain. FEBS Lett 2024; 598:233-241. [PMID: 37904289 PMCID: PMC10842001 DOI: 10.1002/1873-3468.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
Aberrant brain-derived neurotrophic factor (BDNF) signaling has been proposed to contribute to the pathophysiology of depression and other neurological disorders such as Angelman syndrome. We have previously shown that targeting the tropomyosin receptor kinase B/postsynaptic density protein-95 (PSD-95) nexus in the BDNF signaling pathway by peptidomimetic inhibitors is a promising approach for therapeutic intervention. Here, we used structure-based knowledge to develop a new Syn3 peptidomimetic compound series that fuses peptides derived from the PSD-95-binding protein SynGAP to our prototype compound CN2097. The new compounds target the PSD-95 PDZ3 domain and adjoining αC helix to achieve bivalent binding that results in up to 7-fold stronger affinity compared to CN2097. These compounds were designed to improve CN2097 specificity for the PSD-95 PDZ3 domain, and structure-activity relationship studies were performed to improve their resistance to proteolysis.
Collapse
Affiliation(s)
- Mandar T. Naik
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02912, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| | - Nandita Naik
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02912, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| | - Tony Hu
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02912, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02912, United States of America
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| |
Collapse
|
25
|
Casanova-Sepúlveda G, Sexton JA, Turk BE, Boggon TJ. Autoregulation of the LIM kinases by their PDZ domain. Nat Commun 2023; 14:8441. [PMID: 38114480 PMCID: PMC10730565 DOI: 10.1038/s41467-023-44148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
LIM domain kinases (LIMK) are important regulators of actin cytoskeletal remodeling. These protein kinases phosphorylate the actin depolymerizing factor cofilin to suppress filament severing, and are key nodes between Rho GTPase cascades and actin. The two mammalian LIMKs, LIMK1 and LIMK2, contain consecutive LIM domains and a PDZ domain upstream of the C-terminal kinase domain. The roles of the N-terminal regions are not fully understood, and the function of the PDZ domain remains elusive. Here, we determine the 2.0 Å crystal structure of the PDZ domain of LIMK2 and reveal features not previously observed in PDZ domains including a core-facing arginine residue located at the second position of the 'x-Φ-G-Φ' motif, and that the expected peptide binding cleft is shallow and poorly conserved. We find a distal extended surface to be highly conserved, and when LIMK1 was ectopically expressed in yeast we find targeted mutagenesis of this surface decreases growth, implying increased LIMK activity. PDZ domain LIMK1 mutants expressed in yeast are hyperphosphorylated and show elevated activity in vitro. This surface in both LIMK1 and LIMK2 is critical for autoregulation independent of activation loop phosphorylation. Overall, our study demonstrates the functional importance of the PDZ domain to autoregulation of LIMKs.
Collapse
Affiliation(s)
| | - Joel A Sexton
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
26
|
Korbula K, Hammerschmid I, Lesigang J, Dong G. Sec8 specifically interacts with the PDZ2 domain of synapse associated protein 102 (SAP102). Front Cell Dev Biol 2023; 11:1254611. [PMID: 37849738 PMCID: PMC10577314 DOI: 10.3389/fcell.2023.1254611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
The exocyst is an evolutionarily conserved protein complex tethering secretory vesicles before their docking and fusion with the plasma membrane. The complex also plays important roles in cell migration, synaptogenesis, and neurite outgrowth. One of its subunits, Sec8, was reported to interact with two major synaptic scaffolding proteins SAP102 and PSD-95 that share high sequence homology and contain three PDZ domains at their N-terminal region. The interaction is via the binding of the C-terminal ITTV motif in Sec8 to the PDZ domains of the two synaptic proteins. However, it remains elusive to which PDZ domain(s) Sec8 binds and how their interaction occurs. Here we reported a 2.5 Å resolution crystal structure of the C-terminal half of rat Sec8 containing the ITTV motif. The structure shows that Sec8 contains an enormously long helix at its C-terminus, which bears a unique long "spacer" of 14 residues to bridge the ITTV motif to the compact core of Sec8. We found that Sec8 preferentially binds PDZ2 over PDZ1 and PDZ3 of SAP102. Deletion of the spacer completely abolished the binding of Sec8 to SAP102. Overall, our structural studies, biochemical data and modeling analyses altogether provide an explanation for how Sec8 interacts with SAP102.
Collapse
Affiliation(s)
- Katharina Korbula
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria
| | | | - Johannes Lesigang
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria
| | - Gang Dong
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria
| |
Collapse
|
27
|
Zhu LJ, Li F, Zhu DY. nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story. Neurosci Bull 2023; 39:1439-1453. [PMID: 37074530 PMCID: PMC10113738 DOI: 10.1007/s12264-023-01060-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
28
|
Castro-Cruz M, Lembo F, Borg JP, Travé G, Vincentelli R, Zimmermann P. The Human PDZome 2.0: Characterization of a New Resource to Test for PDZ Interactions by Yeast Two-Hybrid. MEMBRANES 2023; 13:737. [PMID: 37623798 PMCID: PMC10456741 DOI: 10.3390/membranes13080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
PSD95-disc large-zonula occludens (PDZ) domains are globular modules of 80-90 amino acids that co-evolved with multicellularity. They commonly bind to carboxy-terminal sequences of a plethora of membrane-associated proteins and influence their trafficking and signaling. We previously built a PDZ resource (PDZome) allowing us to unveil human PDZ interactions by Yeast two-hybrid. Yet, this resource is incomplete according to the current knowledge on the human PDZ proteome. Here we built the PDZome 2.0 library for Yeast two-hybrid, based on a PDZ library manually curated from online resources. The PDZome2.0 contains 305 individual clones (266 PDZ domains in isolation and 39 tandems), for which all boundaries were designed based on available PDZ structures. Using as bait the E6 oncoprotein from HPV16, a known promiscuous PDZ interactor, we show that PDZome 2.0 outperforms the previous resource.
Collapse
Affiliation(s)
- Monica Castro-Cruz
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium;
- Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, 13009 Marseille, France;
| | - Frédérique Lembo
- Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, 13009 Marseille, France;
| | - Jean-Paul Borg
- Marseille Proteomics Platform, CRCM, Institute Paoli-Calmettes, Aix-Marseille Université, Inserm, CNRS, 13009 Marseille, France;
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 67404 Illkirch, France;
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, 13009 Marseille, France;
| | - Pascale Zimmermann
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium;
- Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, 13009 Marseille, France;
| |
Collapse
|
29
|
Naik MT, Naik N, Hu T, Wang SH, Marshall J. Structure-based development of new cyclic compounds targeting PSD-95 PDZ3 domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552828. [PMID: 37609345 PMCID: PMC10441386 DOI: 10.1101/2023.08.10.552828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Aberrant BDNF signaling has been proposed to contribute to the pathophysiology of depression and other neurological disorders such as Angelman syndrome. We have previously shown that targeting the TrkB / PSD-95 nexus by peptidomimetic inhibitors is a promising approach for therapeutic intervention. Here we used structure-based knowledge to develop a new peptidomimetic compound series that fuses SynGAP-derived peptides to our prototype compound CN2097. These compounds target the PSD-95 PDZ3 domain and adjoining αC helix to achieve bivalent binding that results in up to 7-fold stronger affinity compared to CN2097. These compounds were designed to improve CN2097 specificity for the PDZ3 domain and limited SAR studies have been performed to improve their resistance to proteolysis.
Collapse
Affiliation(s)
- Mandar T. Naik
- Department of Molecular Biology, Cell Biology and Biochemistry
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| | - Nandita Naik
- Department of Molecular Biology, Cell Biology and Biochemistry
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| | - Tony Hu
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology and Biochemistry
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, 02912, United States of America
| |
Collapse
|
30
|
Thüring EM, Hartmann C, Maddumage JC, Javorsky A, Michels BE, Gerke V, Banks L, Humbert PO, Kvansakul M, Ebnet K. Membrane recruitment of the polarity protein Scribble by the cell adhesion receptor TMIGD1. Commun Biol 2023; 6:702. [PMID: 37430142 DOI: 10.1038/s42003-023-05088-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Scribble (Scrib) is a multidomain polarity protein and member of the leucine-rich repeat and PDZ domain (LAP) protein family. A loss of Scrib expression is associated with disturbed apical-basal polarity and tumor formation. The tumor-suppressive activity of Scrib correlates with its membrane localization. Despite the identification of numerous Scrib-interacting proteins, the mechanisms regulating its membrane recruitment are not fully understood. Here, we identify the cell adhesion receptor TMIGD1 as a membrane anchor of Scrib. TMIGD1 directly interacts with Scrib through a PDZ domain-mediated interaction and recruits Scrib to the lateral membrane domain in epithelial cells. We characterize the association of TMIGD1 with each Scrib PDZ domain and describe the crystal structure of the TMIGD1 C-terminal peptide complexed with PDZ domain 1 of Scrib. Our findings describe a mechanism of Scrib membrane localization and contribute to the understanding of the tumor-suppressive activity of Scrib.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Janesha C Maddumage
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Birgitta E Michels
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany.
| |
Collapse
|
31
|
Tahti EF, Blount JM, Jackson SN, Gao M, Gill NP, Smith SN, Pederson NJ, Rumph SN, Struyvenberg SA, Mackley IGP, Madden DR, Amacher JF. Additive energetic contributions of multiple peptide positions determine the relative promiscuity of viral and human sequences for PDZ domain targets. Protein Sci 2023; 32:e4611. [PMID: 36851847 PMCID: PMC10022582 DOI: 10.1002/pro.4611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
Protein-protein interactions that involve recognition of short peptides are critical in cellular processes. Protein-peptide interaction surface areas are relatively small and shallow, and there are often overlapping specificities in families of peptide-binding domains. Therefore, dissecting selectivity determinants can be challenging. PDZ domains are a family of peptide-binding domains located in several intracellular signaling and trafficking pathways. These domains are also directly targeted by pathogens, and a hallmark of many oncogenic viral proteins is a PDZ-binding motif. However, amidst sequences that target PDZ domains, there is a wide spectrum in relative promiscuity. For example, the viral HPV16 E6 oncoprotein recognizes over double the number of PDZ domain-containing proteins as the cystic fibrosis transmembrane conductance regulator (CFTR) in the cell, despite similar PDZ targeting-sequences and identical motif residues. Here, we determine binding affinities for PDZ domains known to bind either HPV16 E6 alone or both CFTR and HPV16 E6, using peptides matching WT and hybrid sequences. We also use energy minimization to model PDZ-peptide complexes and use sequence analyses to investigate this difference. We find that while the majority of single mutations had marginal effects on overall affinity, the additive effect on the free energy of binding accurately describes the selectivity observed. Taken together, our results describe how complex and differing PDZ interactomes can be programmed in the cell.
Collapse
Affiliation(s)
- Elise F. Tahti
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Jadon M. Blount
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Sophie N. Jackson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Melody Gao
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Nicholas P. Gill
- Department of BiochemistryGeisel School of Medicine at DartmouthHanoverNew HampshireUSA
| | - Sarah N. Smith
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Nick J. Pederson
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | | | | | - Iain G. P. Mackley
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| | - Dean R. Madden
- Department of BiochemistryGeisel School of Medicine at DartmouthHanoverNew HampshireUSA
| | - Jeanine F. Amacher
- Department of ChemistryWestern Washington UniversityBellinghamWashingtonUSA
| |
Collapse
|
32
|
Pintor-Romero VG, Hurtado-Ortega E, Nicolás-Morales ML, Gutiérrez-Torres M, Vences-Velázquez A, Ortuño-Pineda C, Espinoza-Rojo M, Navarro-Tito N, Cortés-Sarabia K. Biological Role and Aberrant Overexpression of Syntenin-1 in Cancer: Potential Role as a Biomarker and Therapeutic Target. Biomedicines 2023; 11:biomedicines11041034. [PMID: 37189651 DOI: 10.3390/biomedicines11041034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Syntenin-1 is a 298 amino acid protein codified by the melanoma differentiation-associated gene-9 (MDA-9). Structurally, it is composed of four domains: N-terminal, PDZ1, PDZ2, and C-terminal. The PDZ domains of syntenin-1 are involved in the stability and interaction with other molecules such as proteins, glycoproteins, and lipids. Domains are also associated with several biological functions such as the activation of signaling pathways related to cell-to-cell adhesion, signaling translation, and the traffic of intracellular lipids, among others. The overexpression of syntenin-1 has been reported in glioblastoma, colorectal, melanoma, lung, prostate, and breast cancer, which promotes tumorigenesis by regulating cell migration, invasion, proliferation, angiogenesis, apoptosis, and immune response evasion, and metastasis. The overexpression of syntenin-1 in samples has been associated with worst prognostic and recurrence, whereas the use of inhibitors such as shRNA, siRNA, and PDZli showed a diminution of the tumor size and reduction in metastasis and invasion. Syntenin-1 has been suggested as a potential biomarker and therapeutic target in cancer for developing more effective diagnostic/prognostic tests or passive/active immunotherapies.
Collapse
|
33
|
Baliova M, Jahodova I, Jursky F. A Significant Difference in Core PDZ Interactivity of SARS-CoV, SARS-CoV2 and MERS-CoV Protein E Peptide PDZ Motifs In Vitro. Protein J 2023:10.1007/s10930-023-10103-x. [PMID: 36932261 PMCID: PMC10023026 DOI: 10.1007/s10930-023-10103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Small structural E protein of coronaviruses uses its C-terminal PDZ motif to compromise the cellular PDZ interactome. In this work we compared core PDZ interactivity of small (seven amino acids) peptide PDZ motifs, originating from the envelope proteins of recently transmitted coronaviruses SARS-CoV, SARS-CoV2, and MERS-CoV. As the interaction targets we used 23 domains of the largest PDZ proteins MUPP1/MPDZ and PATJ/INAD. Results revealed exceptional affinity and interaction promiscuity of MERS-CoV PDZ motif in vitro, suggesting an increased probability of potential PDZ targets in vivo. We hypothesize that together with its known ability to enter the cells from both apical and basolateral sites, this might further contribute to its elevated disruption of cellular PDZ pathways and higher virulence.
Collapse
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia
| | - Iveta Jahodova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
34
|
Gianni S, Jemth P. Allostery Frustrates the Experimentalist. J Mol Biol 2023; 435:167934. [PMID: 36586463 DOI: 10.1016/j.jmb.2022.167934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Proteins interact with other proteins, with nucleic acids, lipids, carbohydrates and various small molecules in the living cell. These interactions have been quantified and structurally characterized in numerous studies such that we today have a comprehensive picture of protein structure and function. However, proteins are dynamic and even folded proteins are likely more heterogeneous than they appear in most descriptions. One property of proteins that relies on dynamics and heterogeneity is allostery, the ability of a protein to change structure and function upon ligand binding to an allosteric site. Over the last decades the concept of allostery was broadened to embrace all types of long-range interactions across a protein including purely entropic changes without a conformational change in single protein domains. But with this re-definition came a problem: How do we measure allostery? In this opinion, we discuss some caveats arising from the quantitative description of single-domain allostery from an experimental perspective and how the limitations cannot be separated from the definition of allostery per se. Furthermore, we attempt to tie together allostery with the concept of frustration in an effort to investigate the links between these two complex, and yet general, properties of proteins. We arrive at the conclusion that the sensitivity to perturbation of allosteric networks in single protein domains is too large for the networks to be of significant biological relevance.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| |
Collapse
|
35
|
Xie J, Zhang W, Zhu X, Deng M, Lai L. Coevolution-based prediction of key allosteric residues for protein function regulation. eLife 2023; 12:81850. [PMID: 36799896 PMCID: PMC9981151 DOI: 10.7554/elife.81850] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Allostery is fundamental to many biological processes. Due to the distant regulation nature, how allosteric mutations, modifications, and effector binding impact protein function is difficult to forecast. In protein engineering, remote mutations cannot be rationally designed without large-scale experimental screening. Allosteric drugs have raised much attention due to their high specificity and possibility of overcoming existing drug-resistant mutations. However, optimization of allosteric compounds remains challenging. Here, we developed a novel computational method KeyAlloSite to predict allosteric site and to identify key allosteric residues (allo-residues) based on the evolutionary coupling model. We found that protein allosteric sites are strongly coupled to orthosteric site compared to non-functional sites. We further inferred key allo-residues by pairwise comparing the difference of evolutionary coupling scores of each residue in the allosteric pocket with the functional site. Our predicted key allo-residues are in accordance with previous experimental studies for typical allosteric proteins like BCR-ABL1, Tar, and PDZ3, as well as key cancer mutations. We also showed that KeyAlloSite can be used to predict key allosteric residues distant from the catalytic site that are important for enzyme catalysis. Our study demonstrates that weak coevolutionary couplings contain important information of protein allosteric regulation function. KeyAlloSite can be applied in studying the evolution of protein allosteric regulation, designing and optimizing allosteric drugs, and performing functional protein design and enzyme engineering.
Collapse
Affiliation(s)
- Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Weilin Zhang
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
| | - Xiaolei Zhu
- School of Sciences, Anhui Agricultural UniversityHefeiChina
| | - Minghua Deng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- School of Mathematical Sciences, Peking UniversityBeijingChina
- Center for Statistical Science, Peking UniversityBeijingChina
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- BNLMS, Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering, Peking UniversityBeijingChina
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014)BeijingChina
| |
Collapse
|
36
|
Bhatta T, Khanal P, Khanal SP, Adhikari NP. Thermodynamics and Transport Properties of Valine and Cysteine Peptides in Water. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
37
|
Cowan B, Beveridge DL, Thayer KM. Allosteric Signaling in PDZ Energetic Networks: Embedding Error Analysis. J Phys Chem B 2023; 127:623-633. [PMID: 36626697 PMCID: PMC9884075 DOI: 10.1021/acs.jpcb.2c06546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Indexed: 01/12/2023]
Abstract
Allosteric signaling in proteins has been known for some half a century, yet how the signal traverses the protein remains an active area of research. Recently, the importance of electrostatics to achieve long-range signaling has become increasingly appreciated. Our laboratory has been working on developing network approaches to capture such interactions. In this study, we turn our attention to the well-studied allosteric model protein, PDZ. We study the allosteric dynamics on a per-residue basis in key constructs involving the PDZ domain, its allosteric effector, and its peptide ligand. We utilize molecular dynamics trajectories to create the networks for the constructs to explore the allosteric effect by plotting the heat kernel results onto axes defined by principal components. We introduce a new metric to quantitate the volume sampled by a residue in the latent space. We relate our findings to PDZ and the greater field of allostery.
Collapse
Affiliation(s)
- Benjamin
S. Cowan
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| | - David L. Beveridge
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
| | - Kelly M. Thayer
- Department
of Computer Science, Wesleyan University, Middletown, Connecticut06457, United States
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut06457, United States
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut06457, United States
- College
of Integrative Sciences, Wesleyan University, Middletown, Connecticut06457, United States
| |
Collapse
|
38
|
Tahti EF, Blount JM, Jackson SN, Gao M, Gill NP, Smith SN, Pederson NJ, Rumph SN, Struyvenberg SA, Mackley IGP, Madden DR, Amacher JF. Additive energetic contributions of multiple peptide positions determine the relative promiscuity of viral and human sequences for PDZ domain targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522388. [PMID: 36711692 PMCID: PMC9881875 DOI: 10.1101/2022.12.31.522388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein-protein interactions that include recognition of short sequences of amino acids, or peptides, are critical in cellular processes. Protein-peptide interaction surface areas are relatively small and shallow, and there are often overlapping specificities in families of peptide-binding domains. Therefore, dissecting selectivity determinants can be challenging. PDZ domains are an example of a peptide-binding domain located in several intracellular signaling and trafficking pathways, which form interactions critical for the regulation of receptor endocytic trafficking, tight junction formation, organization of supramolecular complexes in neurons, and other biological systems. These domains are also directly targeted by pathogens, and a hallmark of many oncogenic viral proteins is a PDZ-binding motif. However, amidst sequences that target PDZ domains, there is a wide spectrum in relative promiscuity. For example, the viral HPV16 E6 oncoprotein recognizes over double the number of PDZ domain-containing proteins as the cystic fibrosis transmembrane conductance regulator (CFTR) in the cell, despite similar PDZ targeting-sequences and identical motif residues. Here, we determine binding affinities for PDZ domains known to bind either HPV16 E6 alone or both CFTR and HPV16 E6, using peptides matching WT and hybrid sequences. We also use energy minimization to model PDZ-peptide complexes and use sequence analyses to investigate this difference. We find that while the majority of single mutations had a marginal effect on overall affinity, the additive effect on the free energy of binding accurately describes the selectivity observed. Taken together, our results describe how complex and differing PDZ interactomes can be programmed in the cell.
Collapse
Affiliation(s)
- Elise F. Tahti
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Jadon M. Blount
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Sophie N. Jackson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Melody Gao
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Nicholas P. Gill
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sarah N. Smith
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Nick J. Pederson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Simone N. Rumph
- Department of Biochemistry, Bowdoin College, Brunswick, ME, USA
| | | | - Iain G. P. Mackley
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Dean R. Madden
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jeanine F. Amacher
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| |
Collapse
|
39
|
Paul DS, Karthe P. Improved docking of peptides and small molecules in iMOLSDOCK. J Mol Model 2023; 29:12. [DOI: 10.1007/s00894-022-05413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
|
40
|
Stevens AO, Kazan IC, Ozkan B, He Y. Investigating the allosteric response of the PICK1 PDZ domain to different ligands with all-atom simulations. Protein Sci 2022; 31:e4474. [PMID: 36251217 PMCID: PMC9667829 DOI: 10.1002/pro.4474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
The PDZ family is comprised of small modular domains that play critical roles in the allosteric modulation of many cellular signaling processes by binding to the C-terminal tail of different proteins. As dominant modular proteins that interact with a diverse set of peptides, it is of particular interest to explore how different binding partners induce different allosteric effects on the same PDZ domain. Because the PICK1 PDZ domain can bind different types of ligands, it is an ideal test case to answer this question and explore the network of interactions that give rise to dynamic allostery. Here, we use all-atom molecular dynamics simulations to explore dynamic allostery in the PICK1 PDZ domain by modeling two PICK1 PDZ systems: PICK1 PDZ-DAT and PICK1 PDZ-GluR2. Our results suggest that ligand binding to the PICK1 PDZ domain induces dynamic allostery at the αA helix that is similar to what has been observed in other PDZ domains. We found that the PICK1 PDZ-ligand distance is directly correlated with both dynamic changes of the αA helix and the distance between the αA helix and βB strand. Furthermore, our work identifies a hydrophobic core between DAT/GluR2 and I35 as a key interaction in inducing such dynamic allostery. Finally, the unique interaction patterns between different binding partners and the PICK1 PDZ domain can induce unique dynamic changes to the PICK1 PDZ domain. We suspect that unique allosteric coupling patterns with different ligands may play a critical role in how PICK1 performs its biological functions in various signaling networks.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - I. Can Kazan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Banu Ozkan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Yi He
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
41
|
Gautier C, Gianni S. A short structural extension dictates the early stages of folding of a PDZ domain. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140852. [PMID: 36055518 DOI: 10.1016/j.bbapap.2022.140852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
PDZ domains are highly abundant protein-protein interaction modules in human. One of the most extensively characterized PDZ domain, the third PDZ domain from PSD-95 (PDZ3), contains an α-helical C-terminal extension that has a key role in the function of the domain. Here we compared the folding of PDZ3 with a truncated variant (PDZ3Δα3), lacking the additional helix, by means of the so-called Φ-value analysis, an experimental technique that allows inferring the structure of folding transition states. Experiments reveal subtle but detectable differences in the folding of PDZ3Δα3 versus PDZ3, as probed by structural characterization of the folding transition states. These differences appear more remarkable in the early stages of folding, with a detectable shift of the folding nucleus. The presented results allow demonstrating that the native state exerts a weak bias at the early stages of folding, which appear to be characterized by alternative pathways.
Collapse
Affiliation(s)
- Candice Gautier
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| |
Collapse
|
42
|
Rovers E, Liu L, Schapira M. ProxyBind: a Compendium of Binding Sites for Proximity-Induced Pharmacology. Comput Struct Biotechnol J 2022; 20:6163-6171. [PMID: 36420167 PMCID: PMC9674861 DOI: 10.1016/j.csbj.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Proximity-induced pharmacology (ProxPharm) is a novel paradigm in drug discovery where a small molecule brings two proteins in close proximity to elicit a signal, generally from one protein onto another. The potential of ProxPharm compounds as a new therapeutic modality is firmly established by proteolysis targeting chimeras (PROTACs) that bring an E3 ubiquitin ligase in proximity to a target protein to induce ubiquitination and subsequent degradation of the target. The concept can be expanded to induce other post-translational modifications via the recruitment of different types of protein-modifying enzymes. To survey the human proteome for opportunities in proximity pharmacology, we systematically mapped non-catalytic drug binding pockets on the structure of protein-modifying enzymes available from the Protein Databank. In addition to binding sites exploited by previously reported ProxPharm compounds, we identified putative ligandable non-catalytic pockets in 236 kinases, 45 phosphatases, 37 deubiquitinases, 14 methyltransferases, 11 acetyltransferases, 13 glycosyltransferases, 4 deacetylases, 7 demethylases and 2 glycosidases, including cavities occupied by chemical matter that may serve as starting points for future ProxPharm compounds. This systematic survey confirms that proximity pharmacology is a versatile modality with largely unexplored and promising potential and reveals novel opportunities to pharmacologically rewire molecular circuitries. All data is available from the ProxyBind database at https://polymorph.sgc.utoronto.ca/proxybind/index.php.
Collapse
|
43
|
Pacini L, Lesieur C. GCAT: A network model of mutational influences between amino acid positions in PSD95pdz3. Front Mol Biosci 2022; 9:1035248. [PMID: 36387271 PMCID: PMC9659846 DOI: 10.3389/fmolb.2022.1035248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Proteins exist for more than 3 billion years: proof of a sustainable design. They have mechanisms coping with internal perturbations (e.g., amino acid mutations), which tie genetic backgrounds to diseases or drug therapy failure. One difficulty to grasp these mechanisms is the asymmetry of amino acid mutational impact: a mutation at position i in the sequence, which impact a position j does not imply that the mutation at position j impacts the position i. Thus, to distinguish the influence of the mutation of i on j from the influence of the mutation of j on i, position mutational influences must be represented with directions. Using the X ray structure of the third PDZ domain of PDS-95 (Protein Data Bank 1BE9) and in silico mutations, we build a directed network called GCAT that models position mutational influences. In the GCAT, a position is a node with edges that leave the node (out-edges) for the influences of the mutation of the position on other positions and edges that enter the position (in-edges) for the influences of the mutation of other positions on the position. 1BE9 positions split into four influence categories called G, C, A and T going from positions influencing on average less other positions and influenced on average by less other positions (category C) to positions influencing on average more others positions and influenced on average by more other positions (category T). The four categories depict position neighborhoods in the protein structure with different tolerance to mutations.
Collapse
Affiliation(s)
- Lorenza Pacini
- University Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, UMR5005, Université Claude Bernard Lyon 1, Villeurbanne, France
- Institut Rhônalpin des Systèmes Complexes, IXXI-ENS-Lyon, Lyon, France
| | - Claire Lesieur
- University Lyon, CNRS, INSA Lyon, Ecole Centrale de Lyon, UMR5005, Université Claude Bernard Lyon 1, Villeurbanne, France
- Institut Rhônalpin des Systèmes Complexes, IXXI-ENS-Lyon, Lyon, France
- *Correspondence: Claire Lesieur,
| |
Collapse
|
44
|
Ali AAAI, Gulzar A, Wolf S, Stock G. Nonequilibrium Modeling of the Elementary Step in PDZ3 Allosteric Communication. J Phys Chem Lett 2022; 13:9862-9868. [PMID: 36251493 DOI: 10.1021/acs.jpclett.2c02821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While allostery is of paramount importance for protein signaling and regulation, the underlying dynamical process of allosteric communication is not well understood. The PDZ3 domain represents a prime example of an allosteric single-domain protein, as it features a well-established long-range coupling between the C-terminal α3-helix and ligand binding. In an intriguing experiment, Hamm and co-workers employed photoswitching of the α3-helix to initiate a conformational change of PDZ3 that propagates from the C-terminus to the bound ligand within 200 ns. Performing extensive nonequilibrium molecular dynamics simulations, the modeling of the experiment reproduces the measured time scales and reveals a detailed picture of the allosteric communication in PDZ3. In particular, a correlation analysis identifies a network of contacts connecting the α3-helix and the core of the protein, which move in a concerted manner. Representing a one-step process and involving direct α3-ligand contacts, this cooperative transition is considered as the elementary step in the propagation of conformational change.
Collapse
Affiliation(s)
- Ahmed A A I Ali
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Adnan Gulzar
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| |
Collapse
|
45
|
Ashkinadze D, Kadavath H, Pokharna A, Chi CN, Friedmann M, Strotz D, Kumari P, Minges M, Cadalbert R, Königl S, Güntert P, Vögeli B, Riek R. Atomic resolution protein allostery from the multi-state structure of a PDZ domain. Nat Commun 2022; 13:6232. [PMID: 36266302 PMCID: PMC9584909 DOI: 10.1038/s41467-022-33687-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/28/2022] [Indexed: 12/25/2022] Open
Abstract
Recent methodological advances in solution NMR allow the determination of multi-state protein structures and provide insights into structurally and dynamically correlated protein sites at atomic resolution. This is demonstrated in the present work for the well-studied PDZ2 domain of protein human tyrosine phosphatase 1E for which protein allostery had been predicted. Two-state protein structures were calculated for both the free form and in complex with the RA-GEF2 peptide using the exact nuclear Overhauser effect (eNOE) method. In the apo protein, an allosteric conformational selection step comprising almost 60% of the domain was detected with an "open" ligand welcoming state and a "closed" state that obstructs the binding site by changing the distance between the β-sheet 2, α-helix 2, and sidechains of residues Lys38 and Lys72. The observed induced fit-type apo-holo structural rearrangements are in line with the previously published evolution-based analysis covering ~25% of the domain with only a partial overlap with the protein allostery of the open form. These presented structural studies highlight the presence of a dedicated highly optimized and complex dynamic interplay of the PDZ2 domain owed by the structure-dynamics landscape.
Collapse
Affiliation(s)
- Dzmitry Ashkinadze
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Harindranath Kadavath
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Aditya Pokharna
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Celestine N. Chi
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75121 Uppsala, Sweden
| | - Michael Friedmann
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Dean Strotz
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Pratibha Kumari
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Martina Minges
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Riccardo Cadalbert
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Stefan Königl
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Peter Güntert
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland ,grid.7839.50000 0004 1936 9721Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Frankfurt am Main, Germany ,grid.265074.20000 0001 1090 2030Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 1920397 Japan
| | - Beat Vögeli
- grid.266190.a0000000096214564Biochemistry and Molecular Genetics Department, University of Colorado School of Medicine, Colorado, CO USA
| | - Roland Riek
- grid.5801.c0000 0001 2156 2780Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
46
|
Hartmann C, Thüring EM, Greune L, Michels BE, Pajonczyk D, Leußink S, Brinkmann F, Glaesner-Ebnet M, Wardelmann E, Zobel T, Schmidt MA, Janssen KP, Gerke V, Ebnet K. Intestinal brush border formation requires a TMIGD1-based intermicrovillar adhesion complex. Sci Signal 2022; 15:eabm2449. [PMID: 36099341 DOI: 10.1126/scisignal.abm2449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Intestinal epithelial cells absorb nutrients through the brush border, composed of dense arrays of highly ordered microvilli at their apical membranes. A protocadherin-based intermicrovillar adhesion complex localized at microvilli tips mediates microvilli packing and organization. Here, we identified a second adhesion complex localized at the proximal base region of microvilli. This complex contained the immunoglobulin superfamily member TMIGD1, which directly interacted with the microvillar scaffolding proteins EBP50 and E3KARP. Complex formation with EBP50 required the activation of EBP50 by the actin-binding protein ezrin and was enhanced by the dephosphorylation of Ser162 in the PDZ2 domain of EBP50 by the phosphatase PP1α. Binding of the EBP50-ezrin complex to TMIGD1 enhanced the dynamic turnover of EBP50 at microvilli. Enterocyte-specific inactivation of Tmigd1 in mice resulted in microvillar blebbing, loss of intermicrovillar adhesion, and perturbed brush border formation. Thus, we identified a second adhesion complex in microvilli and propose a mechanism that promotes microvillar formation and dynamics.
Collapse
Affiliation(s)
- Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Birgitta E Michels
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Denise Pajonczyk
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Sophia Leußink
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Mark Glaesner-Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, D-48149 Münster, Germany
| | - Thomas Zobel
- Imaging Network Microscopy, University of Münster, D-48149 Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, ZMBE, University of Münster, D-48149 Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany.,Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, D-48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany.,Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, D-48419 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
47
|
Stevens AO, Luo S, He Y. Three Binding Conformations of BIO124 in the Pocket of the PICK1 PDZ Domain. Cells 2022; 11:cells11152451. [PMID: 35954295 PMCID: PMC9368557 DOI: 10.3390/cells11152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The PDZ family has drawn attention as possible drug targets because of the domains’ wide ranges of function and highly conserved binding pockets. The PICK1 PDZ domain has been proposed as a possible drug target because the interactions between the PICK1 PDZ domain and the GluA2 subunit of the AMPA receptor have been shown to progress neurodegenerative diseases. BIO124 has been identified as a sub µM inhibitor of the PICK1–GluA2 interaction. Here, we use all-atom molecular dynamics simulations to reveal the atomic-level interaction pattern between the PICK1 PDZ domain and BIO124. Our simulations reveal three unique binding conformations of BIO124 in the PICK1 PDZ binding pocket, referred to here as state 0, state 1, and state 2. Each conformation is defined by a unique hydrogen bonding network and a unique pattern of hydrophobic interactions between BIO124 and the PICK1 PDZ domain. Interestingly, each conformation of BIO124 results in different dynamic changes to the PICK1 PDZ domain. Unlike states 1 and 2, state 0 induces dynamic coupling between BIO124 and the αA helix. Notably, this dynamic coupling with the αA helix is similar to what has been observed in other PDZ–ligand complexes. Our analysis indicates that the interactions formed between BIO124 and I35 may be the key to inducing dynamic coupling with the αA helix. Lastly, we suspect that the conformational shifts observed in our simulations may affect the stability and thus the overall effectiveness of BIO124. We propose that a physically larger inhibitor may be necessary to ensure sufficient interactions that permit stable binding between a drug and the PICK1 PDZ domain.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Samuel Luo
- Albuquerque Academy, Albuquerque, NM 87131, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
48
|
Künzel N, Helms V. How Peptides Bind to PSD-95/Discs-Large/ZO-1 Domains. J Chem Theory Comput 2022; 18:3845-3859. [PMID: 35608157 DOI: 10.1021/acs.jctc.1c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PSD-95/discs-large/ZO-1 (PDZ) domains form a large family of adaptor proteins that bind to the C-terminal tails of their binding partner proteins. Via extensive molecular dynamics simulations and alchemical free energy calculations, we characterized the binding modi of phosphorylated and unphosphorylated EQVSAV peptides and of a EQVEAV phosphate mimic to the hPTP1E PDZ2 and MAGI1 PDZ1 domains. The simulations reproduced the well-known binding characteristics such as tight coordination of the peptidic carboxyl tail and pronounced hydrogen bonding between the peptide backbone and the backbone atoms of a β-sheet in PDZ. Overall, coordination by hPTP1E PDZ2 appeared tighter than by MAGI1 PDZ1. Simulations of wild-type PDZ and arginine mutants suggest that contacts with Arg79/85 in hPTP1E/MAGI1 are more important for the EQVEAV peptide than for EQVSAV. Alchemical free energy calculations and PaCS-MD simulations could well reproduce the difference in binding free energy between unphosphorylated EQVSAV and EQVEAV peptides and the absolute binding free energy of EQVSAV. However, likely due to small force field inaccuracies, the simulations erroneously favored binding of the phosphorylated peptide instead of its unphosphorylated counterpart, which is in contrast to the experiment.
Collapse
Affiliation(s)
- Nicolas Künzel
- Center for Bioinformatics, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| |
Collapse
|
49
|
Löffler JG, Deniz E, Feid C, Franz VG, Bredenbeck J. Versatile Vibrational Energy Sensors for Proteins. Angew Chem Int Ed Engl 2022; 61:e202200648. [PMID: 35226765 PMCID: PMC9401566 DOI: 10.1002/anie.202200648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/10/2022]
Abstract
Vibrational energy transfer (VET) is emerging as key mechanism for protein functions, possibly playing an important role for energy dissipation, allosteric regulation, and enzyme catalysis. A deep understanding of VET is required to elucidate its role in such processes. Ultrafast VIS-pump/IR-probe spectroscopy can detect pathways of VET in proteins. However, the requirement of having a VET donor and a VET sensor installed simultaneously limits the possible target proteins and sites; to increase their number we compare six IR labels regarding their utility as VET sensors. We compare these labels in terms of their FTIR, and VET signature in VET donor-sensor dipeptides in different solvents. Furthermore, we incorporated four of these labels in PDZ3 to assess their capabilities in more complex systems. Our results show that different IR labels can be used interchangeably, allowing for free choice of the right label depending on the system under investigation and the methods available.
Collapse
Affiliation(s)
- Jan G. Löffler
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Erhan Deniz
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Carolin Feid
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Valentin G. Franz
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| | - Jens Bredenbeck
- Institute of BiophysicsGoethe University FrankfurtMax-von-Laue-Straße 160438Frankfurt (Main)Germany
| |
Collapse
|
50
|
Domino effect in allosteric signaling of peptide binding. J Mol Biol 2022; 434:167661. [DOI: 10.1016/j.jmb.2022.167661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
|