1
|
Morita S, Tanaka S, Tani Y, Nakamura J, Sato MH, Satoh S, Masumura T. The rice ethylene receptor OsERS1 negatively regulates shoot growth and salt tolerance in rice etiolated seedlings. Biosci Biotechnol Biochem 2025; 89:855-861. [PMID: 40113235 DOI: 10.1093/bbb/zbaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Ethylene is a gaseous plant hormone that regulates various aspects of growth and development. It promotes shoot growth in etiolated rice seedlings, which is crucial for seedling establishment and has significant agricultural implications. Of the 5 ethylene receptors in rice, OsERS1 is the most abundantly expressed in seedlings. Therefore, we investigated the localization and role of OsERS1 in shoot growth. When expressed in rice protoplasts, OsERS1 was localized in the endoplasmic reticulum. Knockout mutants of OsERS1 exhibited enhanced shoot growth in etiolated seedlings under normal and ethylene-treated conditions. Shoot growth was also enhanced in the OsERS1 mutants under light conditions. Additionally, the induction of ethylene-responsive genes was increased in the mutants, indicating an elevated ethylene response due to the OsERS1 knockout. The mutants also showed increased salt tolerance. In conclusion, our findings suggest that OsERS1 negatively regulates shoot growth and salt tolerance in etiolated rice seedlings.
Collapse
Affiliation(s)
- Shigeto Morita
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, Japan
- Basic Research Division, Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, Seika, Soraku, Kyoto, Japan
| | - Soma Tanaka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, Japan
| | - Yuzuki Tani
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, Japan
| | - Jun'ichi Nakamura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, Japan
| | - Shigeru Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, Japan
- Basic Research Division, Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, Seika, Soraku, Kyoto, Japan
| | - Takehiro Masumura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, Japan
- Basic Research Division, Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Center, Seika, Soraku, Kyoto, Japan
| |
Collapse
|
2
|
Aragón-Raygoza A, Strable J. Diverse roles of ethylene in maize growth and development, and its importance in shaping plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1854-1865. [PMID: 39973110 PMCID: PMC12066121 DOI: 10.1093/jxb/eraf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
The gaseous plant hormone ethylene is a key developmental and growth regulator, and a pivotal endogenous response signal to abiotic and biotic interactions, including stress. Much of what is known about ethylene biosynthesis, perception, and signaling comes from decades of research primarily in Arabidopsis thaliana and other eudicot model systems. In contrast, detailed knowledge on the ethylene pathway and response to the hormone is markedly limited in maize (Zea mays L.), a global cereal crop that is a major source of calories for humans and livestock, as well as a key industrial biofeedstock. Recent reports of forward screens and targeted reverse genetics have provided important insight into conserved and unique differences of the ethylene pathway and downstream responses. Natural and edited allelic variation in the promoter regions and coding sequences of ethylene biosynthesis and signaling genes alters maize shoot and root architectures, and plays a crucial role in biomass and grain yields. This review discusses recent advances in ethylene research in maize, with an emphasis on the role of ethylene in regulating growth and development of the shoot and root systems, and ultimately how this crucial hormone impacts plant architecture and grain yield.
Collapse
Affiliation(s)
| | - Josh Strable
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
3
|
Dong X, Ding C, Zhang X, Lei L, Chen Y, Fu Q, Yang Y, Hao Y, Ye M, Zeng J, Wang X, Qian W, Huang J. Analysis of the two-component system gene family and the positive role of CsRR5 in cold stress response in tea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109739. [PMID: 40058240 DOI: 10.1016/j.plaphy.2025.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
The two-component system (TCS), a ubiquitous signaling network consisting of histidine kinases (HKs), phosphotransfers (HPs), and response regulator proteins (RRs), participates in various functions, including responses to abiotic stresses. However, a comprehensive identification of TCS genes in tea plants is still lacking. Here, we identified 60 CsTCS members in tea plants, including 23 HKs, 10 HPs, and 27 RRs. The analysis of promoter cis-regulatory elements indicated that CsTCS genes are involved in phytohormone signaling, stress responses, and growth and development. The expression of CsETR1, CsETR2b, CsERS1b, and CsEIN4b from the HK subfamily was down-regulated by ethylene, whereas CsHK2b and CsHK3a were down-regulated by cytokinin. Conversely, CsHK4a and CsHK4b were up-regulated by cytokinin. CsTCS genes were widely expressed in various tissues, with the majority associated with multiple stresses. Furthermore, we demonstrated that suppressing the type-A response regulator CsRR5 in tea plants reduced cold tolerance and the expression of CBF-COR pathway genes, indicating that CsRR5 positively regulates the cold stress response through the CBF pathway. Therefore, our study establishes a connection between the two-component system and its downstream regulation in tea plant cold stress response.
Collapse
Affiliation(s)
- Xiaobin Dong
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China; National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Changqing Ding
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xuening Zhang
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lei Lei
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yao Chen
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qianyuan Fu
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ying Yang
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yuwan Hao
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Meng Ye
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jianyan Huang
- National Center for Tea Plant Improvement, National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
4
|
Zhu H, Zhou T, Guan J, Li Z, Yang X, Li Y, Sun J, Xu Q, Xuan YH. Precise genome editing of Dense and Erect Panicle 1 promotes rice sheath blight resistance and yield production in japonica rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1832-1846. [PMID: 40035150 PMCID: PMC12018817 DOI: 10.1111/pbi.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
The primary goals of crop breeding are to enhance yield and improve disease resistance. However, the "trade-off" mechanism, in which signalling pathways for resistance and yield are antagonistically regulated, poses challenges for achieving both simultaneously. Previously, we demonstrated that knock-out mutants of the Dense and Erect Panicle 1 (DEP1) gene can significantly enhance rice resistance to sheath blight (ShB), and we mapped DEP1's association with panicle length. In this study, we discovered that dep1 mutants significantly reduced rice yield. Nonetheless, truncated DEP1 was able to achieve both ShB resistance and yield increase in japonica rice. To further explore the function of truncated DEP1 in promoting yield and ShB resistance, we generated CRISPR/Cas9-mediated genome editing mutants, including a full-length deletion mutant of DEP1, named dep1, and a truncated version, dep1-cys. Upon inoculation with Rhizoctonia solani, the dep1-cys mutant demonstrated stronger ShB resistance than the dep1 mutant. Additionally, dep1-cys increased yield per plant, whereas dep1 reduced it. Compared to the full DEP1 protein, the truncated DEP1 (dep1-cys) demonstrated a decreased interaction affinity with IDD14 and increased affinity with IDD10, which are known to positively and negatively regulate ShB resistance through the activation of PIN1a and ETR2, respectively. The dep1-cys mutant exhibited higher PIN1a and lower ETR2 expression than wild-type plants, suggesting that dep1-cys modulated IDD14 and IDD10 interactions to regulate PIN1a and ETR2, thereby enhancing ShB resistance. Overall, these data indicate that precise genome editing of DEP1 could simultaneously improve both ShB resistance and yield, effectively mitigating trade-off regulation in rice.
Collapse
Affiliation(s)
- Hongyao Zhu
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
- College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
| | - Tiange Zhou
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
- College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
| | | | - Zhuo Li
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
- College of Plant Protection, Shenyang Agricultural UniversityShenyangChina
| | - Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural UniversityShenyangChina
- Yazhouwan National LaboratorySanya CityHainan ProvinceChina
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural UniversityShenyangChina
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
| |
Collapse
|
5
|
Aman S, Swain S, Dutta E, Abbas S, Li N, Shakeel SN, Binder BM, Schaller GE. Modulation of plant growth and development through altered ethylene binding affinity of the ethylene receptor ETR1. BMC PLANT BIOLOGY 2025; 25:436. [PMID: 40186127 PMCID: PMC11971883 DOI: 10.1186/s12870-025-06469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Arabidopsis senses ethylene through a five-member family of ethylene receptors, of which the ethylene receptor ETR1 plays the major role. We examined how changes in ethylene binding affinity of ETR1 can regulate physiological and molecular responses to ethylene, taking advantage of an Asp25Asn mutation that still produces a functional ETR1 receptor (ETR1D25N) but one with 100-fold reduced ethylene binding affinity compared to wild-type ETR1 (ETR1wt). Analysis was performed in a genetic background that lacks the five native members of the receptor family so that the specific role of ETR1 in plant growth and development could be assessed. From this analysis, we determined that changes in ethylene binding affinity of ETR1 are reflected in plant growth and responses to ethylene. Differences in plant growth and ethylene responses for the ETR1wt and ETR1D25N lines were uncovered in seedlings grown under light or dark conditions, and when assayed for short- or long-term responses to ethylene. Dose response analysis revealed that differences in the ethylene responses for ETR1wt and ETR1D25N lines are proportional to the binding affinity of the corresponding receptor variants. Results from the characterization of the ETR1wt line and an etr1 etr2 ein4 triple mutant demonstrate that plants have greater sensitivity to ethylene than previously recognized.
Collapse
Affiliation(s)
- Sitwat Aman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Swadhin Swain
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Esha Dutta
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
- Division of Life Science, The Hong Kong University of Science and Technology,, Hong Kong, SAR, 518057, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology,, Hong Kong, SAR, 518057, China
| | - Samina N Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan
| | - Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
6
|
Wei YT, Bao QX, Shi YN, Mu XR, Wang YB, Jiang JH, Yu FH, Meng LS. Trichome development of systemic developing leaves is regulated by a nutrient sensor-relay mechanism within mature leaves. SCIENCE ADVANCES 2025; 11:eadq5820. [PMID: 39908362 PMCID: PMC11797492 DOI: 10.1126/sciadv.adq5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Trichome initiation and development is regulated by a diverse range of environmental signals. However, how leaf carbohydrate status determines the trichome initiation and development of systemic developing leaves remains unclear. Here, we found that a specific organ (such as a mature leaf) could function as a nutrient sensor, subsequently promoting or suppressing nonautonomous regulation of trichome initiation and development in response to alternations in nutrient levels. This physical phenomenon was regulated by a sucrose ⟶ ACS7 ⟶ ethylene ⟶ EIN3 ⟶ SUC4 ⟶ sucrose pathway in mature leaves, with a remote control of trichome production in newly developing leaves via a sucrose ⟶ ACS7 ⟶ ethylene ⟶ EIN3 ⟶ TTG1 pathway. These data provide insights into how mature leaves function as nutrient sensors that control trichome formation within distant developing leaves through a nutrient sensor-relay mechanism. Our findings uncover both a previously unidentified, nutrient sensing-regulatory mechanism and the cognate underpinning molecular architecture.
Collapse
Affiliation(s)
- Yu-ting Wei
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741600, People’s Republic of China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Qin-Xin Bao
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741600, People’s Republic of China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Ya-Na Shi
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650201, People’s Republic of China
| | - Xin-Rong Mu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Yi-Bo Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741600, People’s Republic of China
| | - Ji-Hong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Fu-Huan Yu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Lai-Sheng Meng
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741600, People’s Republic of China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| |
Collapse
|
7
|
Carlew TS, Brenya E, Ferdous M, Banerjee I, Donnelly L, Heinze E, King J, Sexton B, Lacey RF, Bakshi A, Alexandre G, Binder BM. Ethylene signals through an ethylene receptor to modulate biofilm formation and root colonization in a beneficial plant-associated bacterium. PLoS Genet 2025; 21:e1011587. [PMID: 39919096 PMCID: PMC11819568 DOI: 10.1371/journal.pgen.1011587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/12/2025] [Accepted: 01/19/2025] [Indexed: 02/09/2025] Open
Abstract
Ethylene is a plant hormone involved in many aspects of plant growth and development as well as responses to stress. The role of ethylene in plant-microbe interactions has been explored from the perspective of plants. However, only a small number of studies have examined the role of ethylene in microbes. We demonstrated that Azospirillum brasilense contains a functional ethylene receptor that we call Azospirillum Ethylene Response1 (AzoEtr1) after the nomenclature used in plants. AzoEtr1 directly binds ethylene with high affinity. Treating cells with ethylene or disrupting the receptor reduces biofilm formation and colonization of plant root surfaces. Additionally, RNA sequencing and untargeted metabolomics showed that ethylene causes wide-spread metabolic changes that affect carbon and nitrogen metabolism. One result is the accumulation of poly-hydroxybutyrate. Our data suggests a model in which ethylene from host plants alters the density of colonization by A. brasilense and re-wires its metabolism, suggesting that the bacterium implements an adaptation program upon sensing ethylene. These data provide potential new targets to regulate beneficial plant-microbe interactions.
Collapse
Affiliation(s)
- T. Scott Carlew
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Eric Brenya
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Mahbuba Ferdous
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ishita Banerjee
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Lauren Donnelly
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Eric Heinze
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Josie King
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Briana Sexton
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Randy F. Lacey
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Arkadipta Bakshi
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Gladys Alexandre
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Brad M. Binder
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
8
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
9
|
Nguyen NH, Ho PTB, Le LTT. Revisit and explore the ethylene-independent mechanism of sex expression in cucumber (Cucumis sativus). PLANT REPRODUCTION 2024; 37:409-420. [PMID: 38598160 DOI: 10.1007/s00497-024-00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
KEY MESSAGE This review provides a thorough and comprehensive perspective on the topic of cucumber sexual expression. Specifically, insights into sex expression mediated by pathways other than ethylene are highlighted. Cucumber (Cucumis sativus L.) is a common and important commercial crop that is cultivated and consumed worldwide. Additionally, this species is commonly used as a model for investigating plant sex expression. Cucumbers exhibit a variety of floral arrangements, comprising male, female, and hermaphroditic (bisexual) flowers. Generally, cucumber plants that produce female flowers are typically preferred due to their significant impact on the overall output. Various environmental conditions, such as temperature, light quality, and photoperiod, have been also shown to influence the sex expression in this species. Multiple lines of evidence indicate that ethylene and its biosynthesis genes are crucial in regulating cucumber sex expression. Gibberellins, another well-known phytohormone, can similarly influence cucumber sex expression via an ethylene-independent route. Further studies employing the next-generation sequencing technology also visualized a deeper slice of the molecular mechanism such as the role of the cell cycle program in the cucumber sex expression. This review aims to provide an overview of the sex expression of cucumber including its underlying molecular mechanism and regulatory aspects based on recent investigations.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Phuong Thi Bich Ho
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | - Linh Thi Truc Le
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Zhao L, Xie W, Huang L, Long S, Wang P. Characterization of the gibberellic oxidase gene SdGA20ox1 in Sophora davidii (Franch.) skeels and interaction protein screening. FRONTIERS IN PLANT SCIENCE 2024; 15:1478854. [PMID: 39479549 PMCID: PMC11521860 DOI: 10.3389/fpls.2024.1478854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Gibberellin 20-oxidases (GA20oxs) are multifunctional enzymes involved in regulating gibberellin (GA) biosynthesis and controlling plant growth. We identified and characterized the GA20ox1 gene in a plant height mutant of Sophora davidii, referred to as SdGA20ox1. This gene was expressed in root, stem, and leaf tissues of the adult S. davidii plant height mutant, with the highest expression observed in the stem. The expression of SdGA20ox1 was regulated by various exogenous hormones. Overexpression of SdGA20ox1 in Arabidopsis resulted in significant elongation of hypocotyl and root length in seedlings, earlier flowering, smaller leaves, reduced leaf chlorophyll content, lighter leaf color, a significant increase in adult plant height, and other phenotypes. Additionally, transgenic plants exhibited a substantial increase in biologically active endogenous GAs (GA1, GA3, and GA4) content, indicating that overexpression of SdGA20ox1 accelerates plant growth and development. Using a yeast two-hybrid (Y2H) screen, we identified two SdGA20ox1-interacting proteins: the ethylene receptor EIN4 (11430582) and the rbcS (11416005) protein. These interactions suggest a potential regulatory mechanism for S. davidii growth. Our findings provide new insights into the role of SdGA20ox1 and its interacting proteins in regulating the growth and development of S. davidii.
Collapse
Affiliation(s)
- Lili Zhao
- College of Animal Science, Guizhou University, Guiyang, China
| | - Wenhui Xie
- College of Animal Science, Guizhou University, Guiyang, China
| | - Lei Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Sisi Long
- College of Animal Science, Guizhou University, Guiyang, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
11
|
Hou X, Yang J, Xie Y, Ma B, Wang K, Pan W, Ma S, Wang L, Dong CH. The RNA helicase LOS4 regulates pre-mRNA splicing of key genes (EIN2, ERS2, CTR1) in the ethylene signaling pathway. PLANT CELL REPORTS 2024; 43:252. [PMID: 39367948 DOI: 10.1007/s00299-024-03340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE The Arabidopsis RNA helicase LOS4 plays a key role in regulating pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. The plant hormone ethylene plays diverse roles in plant growth, development, and responses to stress. Ethylene is perceived by the membrane-bound ethylene receptors complex, and then triggers downstream components, such as EIN2, to initiate signal transduction into the nucleus, leading to the activation of ethylene-responsive genes. Over the past decades, substantial information has been accumulated regarding gene cloning, protein-protein interactions, and downstream gene expressions in the ethylene pathway. However, our understanding of mRNA post-transcriptional processing and modification of key genes in the ethylene signaling pathway remains limited. This study aims to provide evidence demonstrating the involvement of the Arabidopsis RNA helicase LOS4 in pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. Various genetic approaches including RNAi gene silencing, CRISPR-Cas9 gene editing, and amino acid mutations were employed in this study. When LOS4 was silenced or knocked down, the ethylene sensitivity of etiolated seedlings was significantly enhanced. Further investigation revealed errors in the EIN2 pre-mRNA splicing when LOS4 was knocked down. In addition, aberrant pre-mRNA splicing was observed in the ERS2 and CTR1 genes in the pathway. Biochemical assays indicated that the los4-2 (E94K) mutant protein exhibited increased ATP binding and enhanced ATP hydrolytic activity. Conversely, the los4-1 (G364R) mutant had reduced substrate RNA binding and lower ATP binding activities. These findings significantly advanced our comprehension of the regulatory functions and molecular mechanisms of RNA helicase in ethylene signaling.
Collapse
Affiliation(s)
- Xiaomin Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jingli Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- Weifang University of Science and Technology, Weifang, 262700, China
| | - Yanhua Xie
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kun Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenqiang Pan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shaoqi Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lijuan Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
12
|
Zhang S, Wu S, Jia Z, Zhang J, Li Y, Ma X, Fan B, Wang P, Gao Y, Ye Z, Wang W. Exploring the influence of a single-nucleotide mutation in EIN4 on tomato fruit firmness diversity through fruit pericarp microstructure. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2379-2394. [PMID: 38623687 PMCID: PMC11331787 DOI: 10.1111/pbi.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/04/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Tomato (Solanum lycopersicum) stands as one of the most valuable vegetable crops globally, and fruit firmness significantly impacts storage and transportation. To identify genes governing tomato firmness, we scrutinized the firmness of 266 accessions from core collections. Our study pinpointed an ethylene receptor gene, SlEIN4, located on chromosome 4 through a genome-wide association study (GWAS) of fruit firmness in the 266 tomato core accessions. A single-nucleotide polymorphism (SNP) (A → G) of SlEIN4 distinguished lower (AA) and higher (GG) fruit firmness genotypes. Through experiments, we observed that overexpression of SlEIN4AA significantly delayed tomato fruit ripening and dramatically reduced fruit firmness at the red ripe stage compared with the control. Conversely, gene editing of SlEIN4AA with CRISPR/Cas9 notably accelerated fruit ripening and significantly increased fruit firmness at the red ripe stage compared with the control. Further investigations revealed that fruit firmness is associated with alterations in the microstructure of the fruit pericarp. Additionally, SlEIN4AA positively regulates pectinase activity. The transient transformation assay verified that the SNP (A → G) on SlEIN4 caused different genetic effects, as overexpression of SlEIN4GG increased fruit firmness. Moreover, SlEIN4 exerts a negative regulatory role in tomato ripening by impacting ethylene evolution through the abundant expression of ethylene pathway regulatory genes. This study presents the first evidence of the role of ethylene receptor genes in regulating fruit firmness. These significant findings will facilitate the effective utilization of firmness and ripening traits in tomato improvement, offering promising opportunities for enhancing tomato storage and transportation capabilities.
Collapse
Affiliation(s)
- Shiwen Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Shengqing Wu
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Zhiqi Jia
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Xingyun Ma
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Bingli Fan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Panqiao Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Yanna Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
13
|
Li Y, Cheng Y, Wei F, Liu Y, Zhu R, Zhao P, Zhang J, Xiang C, Kang E, Shang Z. Arabidopsis thaliana MYC2 and MYC3 Are Involved in Ethylene-Regulated Hypocotyl Growth as Negative Regulators. Int J Mol Sci 2024; 25:8022. [PMID: 39125592 PMCID: PMC11311335 DOI: 10.3390/ijms25158022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The ethylene-regulated hypocotyl elongation of Arabidopsis thaliana involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation. Etiolated seedlings of the loss-of-function mutant of MYC2 or MYC3 were significantly longer than wild-type seedlings. Single- or double-null mutants of MYC2 and MYC3 displayed remarkably enhanced response to ACC(1-aminocyclopropane-1-carboxylate), the ethylene precursor, compared to wild-type seedlings. MYC2 and MYC3 directly bind to the promoter zone of ERF1, strongly suppressing its expression. Additionally, EIN3, a key component in ethylene signaling, interacts with MYC2 or MYC3 and significantly suppresses their binding to ERF1's promoter. MYC2 and MYC3 play crucial roles in the ethylene-regulated expression of functional genes. The results revealed the novel role and functional mechanism of these transcription factors in ethylene signal transduction. The findings provide valuable information for deepening our understanding of their role in regulating plant growth and responding to stress.
Collapse
Affiliation(s)
- Yuke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Ying Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Fan Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Yingxiao Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Ruojia Zhu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China; (P.Z.); (J.Z.); (C.X.)
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China; (P.Z.); (J.Z.); (C.X.)
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, Hefei 230026, China; (P.Z.); (J.Z.); (C.X.)
| | - Erfang Kang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| | - Zhonglin Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.L.); (Y.C.); (F.W.); (Y.L.)
| |
Collapse
|
14
|
Chien YC, Yoon GM. Subcellular dynamics of ethylene signaling drive plant plasticity to growth and stress: Spatiotemporal control of ethylene signaling in Arabidopsis. Bioessays 2024; 46:e2400043. [PMID: 38571390 DOI: 10.1002/bies.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf-like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER-to-nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system-level regulatory mechanisms that collectively fine-tune ethylene responses to optimize plant growth, development, and stress adaptation.
Collapse
Affiliation(s)
- Yuan-Chi Chien
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
15
|
Fu Y, Ma L, Li J, Hou D, Zeng B, Zhang L, Liu C, Bi Q, Tan J, Yu X, Bi J, Luo L. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1319. [PMID: 38794390 PMCID: PMC11125191 DOI: 10.3390/plants13101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Seed dormancy and germination play pivotal roles in the agronomic traits of plants, and the degree of dormancy intuitively affects the yield and quality of crops in agricultural production. Seed priming is a pre-sowing seed treatment that enhances and accelerates germination, leading to improved seedling establishment. Seed priming technologies, which are designed to partially activate germination, while preventing full seed germination, have exerted a profound impact on agricultural production. Conventional seed priming relies on external priming agents, which often yield unstable results. What works for one variety might not be effective for another. Therefore, it is necessary to explore the internal factors within the metabolic pathways that influence seed physiology and germination. This review unveils the underlying mechanisms of seed metabolism and germination, the factors affecting seed dormancy and germination, as well as the current seed priming technologies that can result in stable and better germination.
Collapse
Affiliation(s)
- Yanfeng Fu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Ma
- Institute for Sustainable Horticulture, Kwantlen Polytechnic University, 20901 Langley Bypass, Langley, BC V3A 8G9, Canada;
| | - Juncai Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Danping Hou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zeng
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Like Zhang
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Chunqing Liu
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Qingyu Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Tan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Mohorović P, Geldhof B, Holsteens K, Rinia M, Daems S, Reijnders T, Ceusters J, Van den Ende W, Van de Poel B. Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants. PLANT PHYSIOLOGY 2024; 195:762-784. [PMID: 38146839 DOI: 10.1093/plphys/kiad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Ethylene is a volatile plant hormone that regulates many developmental processes and responses toward (a)biotic stress. Studies have shown that high levels of ethylene repress vegetative growth in many important crops, including tomato (Solanum lycopersicum), possibly by inhibiting photosynthesis. We investigated the temporal effects of ethylene on young tomato plants using an automated ethylene gassing system to monitor the physiological, biochemical, and molecular responses through time course RNA-seq of a photosynthetically active source leaf. We found that ethylene evokes a dose-dependent inhibition of photosynthesis, which can be characterized by 3 temporally distinct phases. The earliest ethylene responses that marked the first phase and occurred a few hours after the start of the treatment were leaf epinasty and a decline in stomatal conductance, which led to lower light perception and CO2 uptake, respectively, resulting in a rapid decline of soluble sugar levels (glucose, fructose). The second phase of the ethylene effect was marked by low carbohydrate availability, which modulated plant energy metabolism to adapt by using alternative substrates (lipids and proteins) to fuel the TCA cycle. Long-term continuous exposure to ethylene led to the third phase, characterized by starch and chlorophyll breakdown, which further inhibited photosynthesis, leading to premature leaf senescence. To reveal early (3 h) ethylene-dependent regulators of photosynthesis, we performed a ChIP-seq experiment using anti-ETHYLENE INSENSITIVE 3-like 1 (EIL1) antibodies and found several candidate transcriptional regulators. Collectively, our study revealed a temporal sequence of events that led to the inhibition of photosynthesis by ethylene and identified potential transcriptional regulators responsible for this regulation.
Collapse
Affiliation(s)
- Petar Mohorović
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Marilien Rinia
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Stijn Daems
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Timmy Reijnders
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Wim Van den Ende
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
17
|
Weraduwage SM, Whitten D, Kulke M, Sahu A, Vermaas JV, Sharkey TD. The isoprene-responsive phosphoproteome provides new insights into the putative signalling pathways and novel roles of isoprene. PLANT, CELL & ENVIRONMENT 2024; 47:1099-1117. [PMID: 38038355 DOI: 10.1111/pce.14776] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Departments of Biology and Biochemistry, Bishop's University, Sherbrooke, Quebec, Canada
| | - Douglas Whitten
- Research Technology Support Facility-Proteomics Core, Michigan State University, East Lansing, Michigan, USA
| | - Martin Kulke
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- School of Natural Sciences, Technische Universität München, Munich, Germany
| | - Abira Sahu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Shu P, Li Y, Sheng J, Shen L. Recent Advances in Dissecting the Function of Ethylene in Interaction between Host and Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4552-4563. [PMID: 38379128 DOI: 10.1021/acs.jafc.3c07978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pathogens influence the growth and development of plants, resulting in detrimental damage to their yields and quality. Ethylene, a gaseous phytohormone, serves a pivotal function in modulating diverse physiological processes in plants, including defense mechanisms against pathogen invasion. Ethylene biosynthesis is involved in both plants and pathogens. Recent empirical research elucidates the intricate interactions and regulatory mechanisms between ethylene and pathogens across various plant species. In this review, we provide a comprehensive overview of the latest findings concerning ethylene's role and its regulatory networks in host-pathogen interactions. Additionally, we explore the crosstalk between ethylene and other phytohormones. Points regarding ethylene emission and its modulation by pathogens are also emphasized. Moreover, we also discuss potential unresolved issues in the field that warrant further investigation.
Collapse
Affiliation(s)
- Pan Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Yujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, P. R. China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| |
Collapse
|
19
|
Yan Y, Guo H, Li W. Endoribonuclease DNE1 Promotes Ethylene Response by Modulating EBF1/2 mRNA Processing in Arabidopsis. Int J Mol Sci 2024; 25:2138. [PMID: 38396815 PMCID: PMC10888710 DOI: 10.3390/ijms25042138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The gaseous phytohormone ethylene plays a crucial role in plant growth, development, and stress responses. In the ethylene signal transduction cascade, the F-box proteins EIN3-BINDING F-BOX 1 (EBF1) and EBF2 are identified as key negative regulators governing ethylene sensitivity. The translation and processing of EBF1/2 mRNAs are tightly controlled, and their 3' untranslated regions (UTRs) are critical in these regulations. However, despite their significance, the exact mechanisms modulating the processing of EBF1/2 mRNAs remain poorly understood. In this work, we identified the gene DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1), which encodes an endoribonuclease and is induced by ethylene treatment, as a positive regulator of ethylene response. The loss of function mutant dne1-2 showed mild ethylene insensitivity, highlighting the importance of DNE1 in ethylene signaling. We also found that DNE1 colocalizes with ETHYLENE INSENSITIVE 2 (EIN2), the core factor manipulating the translation of EBF1/2, and targets the P-body in response to ethylene. Further analysis revealed that DNE1 negatively regulates the abundance of EBF1/2 mRNAs by recognizing and cleaving their 3'UTRs, and it also represses their translation. Moreover, the dne1 mutant displays hypersensitivity to 1,4-dithiothreitol (DTT)-induced ER stress and oxidative stress, indicating the function of DNE1 in stress responses. This study sheds light on the essential role of DNE1 as a modulator of ethylene signaling through regulation of EBF1/2 mRNA processing. Our findings contribute to the understanding of the intricate regulatory process of ethylene signaling and provide insights into the significance of ribonuclease in stress responses.
Collapse
Affiliation(s)
- Yan Yan
- Harbin Institute of Technology, Harbin 150001, China;
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenyang Li
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory, Guangdong Higher Education Institute, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Zhang J, Li L, Zhang Z, Han L, Xu L. The Effect of Ethephon on Ethylene and Chlorophyll in Zoysia japonica Leaves. Int J Mol Sci 2024; 25:1663. [PMID: 38338942 PMCID: PMC10855035 DOI: 10.3390/ijms25031663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Zoysia japonica (Zoysia japonica Steud.) is a kind of warm-season turfgrass with many excellent characteristics. However, the shorter green period and longer dormancy caused by cold stress in late autumn and winter are the most limiting factors affecting its application. A previous transcriptome analysis revealed that ethephon regulated genes in chlorophyll metabolism in Zoysia japonica under cold stress. Further experimental data are necessary to understand the effect and underlying mechanism of ethephon in regulating the cold tolerance of Zoysia japonica. The aim of this study was to evaluate the effects of ethephon by measuring the enzyme activity, intermediates content, and gene expression related to ethylene biosynthesis, signaling, and chlorophyll metabolism. In addition, the ethylene production rate, chlorophyll content, and chlorophyll a/b ratio were analyzed. The results showed that ethephon application in a proper concentration inhibited endogenous ethylene biosynthesis, but eventually promoted the ethylene production rate due to its ethylene-releasing nature. Ethephon could promote chlorophyll content and improve plant growth in Zoysia japonica under cold-stressed conditions. In conclusion, ethephon plays a positive role in releasing ethylene and maintaining the chlorophyll content in Zoysia japonica both under non-stressed and cold-stressed conditions.
Collapse
Affiliation(s)
| | | | | | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (L.L.); (Z.Z.)
| | - Lixin Xu
- College of Grassland Science, Beijing Forestry University, Beijing 100083, China; (J.Z.); (L.L.); (Z.Z.)
| |
Collapse
|
21
|
Li Q, Fu H, Yu X, Wen X, Guo H, Guo Y, Li J. The SALT OVERLY SENSITIVE 2-CONSTITUTIVE TRIPLE RESPONSE1 module coordinates plant growth and salt tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:391-404. [PMID: 37721807 DOI: 10.1093/jxb/erad368] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
High salinity stress promotes plant ethylene biosynthesis and triggers the ethylene signalling response. However, the precise mechanism underlying how plants transduce ethylene signalling in response to salt stress remains largely unknown. In this study, we discovered that SALT OVERLY SENSITIVE 2 (SOS2) inhibits the kinase activity of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) by phosphorylating the 87th serine (S87). This phosphorylation event activates the ethylene signalling response, leading to enhanced plant salt resistance. Furthermore, through genetic analysis, we determined that the loss of CTR1 or the gain of SOS2-mediated CTR1 phosphorylation both contribute to improved plant salt tolerance. Additionally, in the sos2 mutant, we observed compromised proteolytic processing of ETHYLENE INSENSITIVE 2 (EIN2) and reduced nuclear localization of EIN2 C-terminal fragments (EIN2-C), which correlate with decreased accumulation of ETHYLENE INSENSITIVE 3 (EIN3). Collectively, our findings unveil the role of the SOS2-CTR1 regulatory module in promoting the activation of the ethylene signalling pathway and enhancing plant salt tolerance.
Collapse
Affiliation(s)
- Qinpei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haiqi Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xing Wen
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Cheng H, Wang Q, Zhang Z, Cheng P, Song A, Zhou L, Wang L, Chen S, Chen F, Jiang J. The RAV transcription factor TEMPRANILLO1 involved in ethylene-mediated delay of chrysanthemum flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1652-1666. [PMID: 37696505 DOI: 10.1111/tpj.16453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
TEMPRANILLO1 (TEM1) is a transcription factor belonging to related to ABI3 and VP1 family, which is also known as ethylene response DNA-binding factor 1 and functions as a repressor of flowering in Arabidopsis. Here, a putative homolog of AtTEM1 was isolated and characterized from chrysanthemum, designated as CmTEM1. Exogenous application of ethephon leads to an upregulation in the expression of CmTEM1. Knockdown of CmTEM1 promotes floral initiation, while overexpression of CmTEM1 retards floral transition. Further phenotypic observations suggested that CmTEM1 involves in the ethylene-mediated inhibition of flowering. Transcriptomic analysis established that expression of the flowering integrator CmAFL1, a member of the APETALA1/FRUITFULL subfamily, was downregulated significantly in CmTEM1-overexpressing transgenic plants compared with wild-type plants but was verified to be upregulated in amiR-CmTEM1 lines by quantitative RT-PCR. In addition, CmTEM1 is capable of binding to the promoter of the CmAFL1 gene to inhibit its transcription. Moreover, the genetic evidence supported the notion that CmTEM1 partially inhibits floral transition by targeting CmAFL1. In conclusion, these findings demonstrate that CmTEM1 acts as a regulator of ethylene-mediated delayed flowering in chrysanthemum, partly through its interaction with CmAFL1.
Collapse
Affiliation(s)
- Hua Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingguo Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peilei Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
23
|
Guo R, Wen X, Zhang W, Huang L, Peng Y, Jin L, Han H, Zhang L, Li W, Guo H. Arabidopsis EIN2 represses ABA responses during germination and early seedling growth by inactivating HLS1 protein independently of the canonical ethylene pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1514-1527. [PMID: 37269223 DOI: 10.1111/tpj.16335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
The signaling pathways for the phytohormones ethylene and abscisic acid (ABA) have antagonistic effects on seed germination and early seedling establishment. However, the underlying molecular mechanisms remain unclear. In Arabidopsis thaliana, ETHYLENE INSENSITIVE 2 (EIN2) localizes to the endoplasmic reticulum (ER); although its biochemical function is unknown, it connects the ethylene signal with the key transcription factors EIN3 and EIN3-LIKE 1 (EIL1), leading to the transcriptional activation of ethylene-responsive genes. In this study, we uncovered an EIN3/EIL1-independent role for EIN2 in regulating the ABA response. Epistasis analysis demonstrated that this distinct role of EIN2 in the ABA response depends on HOOKLESS 1 (HLS1), the putative histone acetyltransferase acting as a positive regulator of ABA responses. Protein interaction assays supported a direct physical interaction between EIN2 and HLS1 in vitro and in vivo. Loss of EIN2 function resulted in an alteration of HLS1-mediated histone acetylation at the ABA-INSENSITIVE 3 (ABI3) and ABI5 loci, which promotes gene expression and the ABA response during seed germination and early seedling growth, indicating that the EIN2-HLS1 module contributes to ABA responses. Our study thus revealed that EIN2 modulates ABA responses by repressing HLS1 function, independently of the canonical ethylene pathway. These findings shed light on the intricate regulatory mechanisms underling the antagonistic interactions between ethylene and ABA signaling, with significant implications for our understanding of plant growth and development.
Collapse
Affiliation(s)
- Renkang Guo
- Harbin Institute of Technology, Harbin, 150001, China
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Wen
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Huang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Peng
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lian Jin
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huihui Han
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Linlin Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenyang Li
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
24
|
Choi SJ, Ahn GH, Lee KH, Jahng WJ. Synthesis of 1-(2,2-Dimethylpropyl)-Cyclopropene (1-DCP) as an Ethylene Antagonist. ACS OMEGA 2023; 8:29770-29778. [PMID: 37599926 PMCID: PMC10433477 DOI: 10.1021/acsomega.3c04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Ethylene is a gaseous hydrocarbon molecule known as a plant hormone that promotes fruit ripening and senescence. Efficiently controlling ethylene is a central key to maintaining the quality of agricultural products. The current study uncovered a synthetic method for 1-(2,2-dimethylpropyl)-cyclopropene (1-DCP) as a cyclopropene derivative to inhibit ethylene action in fruit ripening and senescence. We synthesized 1-DCP using α-diisobutylene through a two-step process, including allylic chlorination by hypochlorite and HCl, followed by α-elimination of the allylic chloride using a strong base, lithium diethylamide. GC-MS and NMR analyses demonstrated that 1-DCP was synthesized efficiently with 35% yield and 95% purity. When treated as an aqueous emulsion on plants, including persimmon and banana fruits, 1 mM 1-DCP showed effective inhibition of ethylene action by delaying the flesh softening and peel degreening, which are representative phenomena of fruit ripening and senescence induced by ethylene. Our data demonstrated that 1-DCP could be synthesized and used as a sprayable ethylene antagonist for pre- or post-harvest growth regulation in plants and fruits.
Collapse
Affiliation(s)
- Seong-Jin Choi
- Sweet
Persimmon Research Institute, Gyeongsangnam-do
Agricultural Research and Extension Services, Gimhae 52733, Korea
| | - Gwang-Hwan Ahn
- Sweet
Persimmon Research Institute, Gyeongsangnam-do
Agricultural Research and Extension Services, Gimhae 52733, Korea
| | - Kyung Hae Lee
- Department
of Ophthalmology, Julia Laboratory, Suwon 16232, Korea
- Department
of Drug Discoveries, Julia Eye Institute, Suwon 16243, Korea
| | - Wan Jin Jahng
- Department
of Ophthalmology, Julia Laboratory, Suwon 16232, Korea
- Department
of Drug Discoveries, Julia Eye Institute, Suwon 16243, Korea
| |
Collapse
|
25
|
Dorta T, Gil-Muñoz F, Carrasco F, Zuriaga E, Ríos G, Blasco M. Physiological Changes and Transcriptomic Analysis throughout On-Tree Fruit Ripening Process in Persimmon ( Diospyros kaki L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2895. [PMID: 37631107 PMCID: PMC10457761 DOI: 10.3390/plants12162895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
The involvement of effectors and transcriptional regulators in persimmon fruit maturation has been mostly approached by the literature under postharvest conditions. In order to elucidate the participation of these genes in the on-tree fruit maturation development, we have collected samples from seven persimmon germplasm accessions at different developmental stages until physiological maturation. This study has focused on the expression analysis of 13 genes involved in ethylene biosynthesis and response pathways, as well as the evolution of important agronomical traits such as skin colour, weight, and firmness. Results revealed different gene expression patterns, with genes up- and down-regulated during fruit development progression. A principal component analysis was performed to correlate gene expression with agronomical traits. The decreasing expression of the ethylene biosynthetic genes DkACO1, DkACO2, and DkACS2, in concordance with other sensing (DkERS1) and transduction genes (DkERF18), provides a molecular mechanism for the previously described high production of ethylene in immature detached fruits. On the other side, DkERF8 and DkERF16 are postulated to induce fruit softening and skin colour change during natural persimmon fruit ripening via DkXTH9 and DkPSY activation, respectively. This study provides valuable information for a better understanding of the ethylene signalling pathway and its regulation during on-tree fruit ripening in persimmon.
Collapse
Affiliation(s)
- Tania Dorta
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Francisco Gil-Muñoz
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Fany Carrasco
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Elena Zuriaga
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Gabino Ríos
- Valencian Institute for Agricultural Research (IVIA), Road CV-315 Km 10.7, 46113 Valencia, Spain (G.R.)
| | - Manuel Blasco
- CANSO, Avenue Cooperativa Agrícola Verge de Oreto, 1, 46250 L’Alcudia, Spain
| |
Collapse
|
26
|
Chakrabarti M, Bharti S. Role of EIN2-mediated ethylene signaling in regulating petal senescence, abscission, reproductive development, and hormonal crosstalk in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111699. [PMID: 37028457 DOI: 10.1016/j.plantsci.2023.111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Ethylene plays a pivotal role in a wide range of developmental, physiological, and defense processes in plants. EIN2 (ETHYLENE INSENSITIVE2) is a key player in the ethylene signaling pathway. To characterize the role of EIN2 in processes, such as petal senescence, where it has been found to play important roles along with various other developmental and physiological processes, the tobacco (Nicotiana tabacum) ortholog of EIN2 (NtEIN2) was isolated and NtEIN2 silenced transgenic lines were generated using RNA interference (RNAi). Silencing of NtEIN2 compromised plant defense against pathogens. NtEIN2 silenced lines displayed significant delays in petal senescence, and pod maturation, and adversely affected pod and seed development. This study further dissected the petal senescence in ethylene insensitive lines, that displayed alteration in the pattern of petal senescence and floral organ abscission. Delay in petal senescence was possibly because of delayed aging processes within petal tissues. Possible crosstalk between EIN2 and AUXIN RESPONSE FACTOR 2 (ARF2) in regulating the petal senescence process was also investigated. Overall, these experiments indicated a crucial role for NtEIN2 in controlling diverse developmental and physiological processes, especially in petal senescence.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr, Edinburg, TX 78539, USA.
| | - Shikha Bharti
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr, Edinburg, TX 78539, USA
| |
Collapse
|
27
|
Huang J, Zhao X, Bürger M, Chory J, Wang X. The role of ethylene in plant temperature stress response. TRENDS IN PLANT SCIENCE 2023; 28:808-824. [PMID: 37055243 DOI: 10.1016/j.tplants.2023.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Temperature influences the seasonal growth and geographical distribution of plants. Heat or cold stress occur when temperatures exceed or fall below the physiological optimum ranges, resulting in detrimental and irreversible damage to plant growth, development, and yield. Ethylene is a gaseous phytohormone with an important role in plant development and multiple stress responses. Recent studies have shown that, in many plant species, both heat and cold stress affect ethylene biosynthesis and signaling pathways. In this review, we summarize recent advances in understanding the role of ethylene in plant temperature stress responses and its crosstalk with other phytohormones. We also discuss potential strategies and knowledge gaps that need to be adopted and filled to develop temperature stress-tolerant crops by optimizing ethylene response.
Collapse
Affiliation(s)
- Jianyan Huang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Xiaobo Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
28
|
Azhar BJ, Abbas S, Aman S, Yamburenko MV, Chen W, Müller L, Uzun B, Jewell DA, Dong J, Shakeel SN, Groth G, Binder BM, Grigoryan G, Schaller GE. Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2215195120. [PMID: 37253004 PMCID: PMC10266040 DOI: 10.1073/pnas.2215195120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.
Collapse
Affiliation(s)
- Beenish J. Azhar
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Sitwat Aman
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | | | - Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Lena Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Buket Uzun
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - David A. Jewell
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - Jian Dong
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Samina N. Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Brad M. Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN37996
| | - Gevorg Grigoryan
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| |
Collapse
|
29
|
Azoulay-Shemer T, Schulze S, Nissan-Roda D, Bosmans K, Shapira O, Weckwerth P, Zamora O, Yarmolinsky D, Trainin T, Kollist H, Huffaker A, Rappel WJ, Schroeder JI. A role for ethylene signaling and biosynthesis in regulating and accelerating CO 2 - and abscisic acid-mediated stomatal movements in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:2460-2475. [PMID: 36994603 PMCID: PMC10259821 DOI: 10.1111/nph.18918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/05/2023] [Indexed: 05/19/2023]
Abstract
Little is known about long-distance mesophyll-driven signals that regulate stomatal conductance. Soluble and/or vapor-phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance in Arabidopsis thaliana by CO2 /abscisic acid (ABA) was examined. We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll-dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene-signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2 ]-shifts. According to our research, higher [CO2 ] causes Arabidopsis rosettes to produce more ethylene. An ACC-synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2 -induced stomatal movements. Ethylene-insensitive receptor (gain-of-function), etr1-1 and etr2-1, and signaling, ein2-5 and ein2-1, mutants showed intact stomatal responses to [CO2 ]-shifts, whereas loss-of-function ethylene receptor mutants, including etr2-3;ein4-4;ers2-3, etr1-6;etr2-3 and etr1-6, showed markedly accelerated stomatal responses to [CO2 ]-shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC-synthase octuple mutant and accelerated stomatal responses in the etr1-6;etr2-3, and etr1-6, but not in the etr2-3;ein4-4;ers2-3 mutants. These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2 and ABA.
Collapse
Affiliation(s)
- Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
- Fruit Tree Sciences, Agricultural Research Organization (ARO), The Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, 30095, Israel
| | - Sebastian Schulze
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Dikla Nissan-Roda
- Fruit Tree Sciences, Agricultural Research Organization (ARO), The Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, 30095, Israel
| | - Krystal Bosmans
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Or Shapira
- Fruit Tree Sciences, Agricultural Research Organization (ARO), The Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, 30095, Israel
| | - Philipp Weckwerth
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Olena Zamora
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Dmitry Yarmolinsky
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Taly Trainin
- Fruit Tree Sciences, Agricultural Research Organization (ARO), The Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, 30095, Israel
| | - Hannes Kollist
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Alisa Huffaker
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
30
|
Frommer B, Müllner S, Holtgräwe D, Viehöver P, Huettel B, Töpfer R, Weisshaar B, Zyprian E. Phased grapevine genome sequence of an Rpv12 carrier for biotechnological exploration of resistance to Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2023; 14:1180982. [PMID: 37223784 PMCID: PMC10200900 DOI: 10.3389/fpls.2023.1180982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
The downy mildew disease caused by the oomycete Plasmopara viticola is a serious threat for grapevine and can cause enormous yield losses in viticulture. The quantitative trait locus Rpv12, mediating resistance against P. viticola, was originally found in Asian Vitis amurensis. This locus and its genes were analyzed here in detail. A haplotype-separated genome sequence of the diploid Rpv12-carrier Gf.99-03 was created and annotated. The defense response against P. viticola was investigated in an infection time-course RNA-seq experiment, revealing approximately 600 upregulated Vitis genes during host-pathogen interaction. The Rpv12 regions of the resistance and the sensitivity encoding Gf.99-03 haplotype were structurally and functionally compared with each other. Two different clusters of resistance-related genes were identified within the Rpv12 locus. One cluster carries a set of four differentially expressed genes with three ACCELERATED CELL DEATH 6-like genes. The other cluster carries a set of six resistance gene analogs related to qualitative pathogen resistance. The Rpv12 locus and its candidate genes for P. viticola resistance provide a precious genetic resource for P. viticola resistance breeding. Newly developed co-segregating simple sequence repeat markers in close proximity to the R-genes enable its improved applicability in marker-assisted grapevine breeding.
Collapse
Affiliation(s)
- Bianca Frommer
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Computational Biology, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Sophia Müllner
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institute, Siebeldingen, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Reinhard Töpfer
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institute, Siebeldingen, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Eva Zyprian
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institute, Siebeldingen, Germany
| |
Collapse
|
31
|
Feng S, Jiang X, Wang R, Tan H, Zhong L, Cheng Y, Bao M, Qiao H, Zhang F. Histone H3K4 methyltransferase DcATX1 promotes ethylene induced petal senescence in carnation. PLANT PHYSIOLOGY 2023; 192:546-564. [PMID: 36623846 PMCID: PMC10152666 DOI: 10.1093/plphys/kiad008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/03/2023]
Abstract
Petal senescence is controlled by a complex regulatory network. Epigenetic regulation like histone modification influences chromatin state and gene expression. However, the involvement of histone methylation in regulating petal senescence remains poorly understood. Here, we found that the trimethylation of histone H3 at Lysine 4 (H3K4me3) is increased during ethylene-induced petal senescence in carnation (Dianthus caryophyllus L.). H3K4me3 levels were positively associated with the expression of transcription factor DcWRKY75, ethylene biosynthetic genes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DcACS1), and ACC oxidase (DcACO1), and senescence associated genes (SAGs) DcSAG12 and DcSAG29. Further, we identified that carnation ARABIDOPSIS HOMOLOG OF TRITHORAX1 (DcATX1) encodes a histone lysine methyltransferase which can methylate H3K4. Knockdown of DcATX1 delayed ethylene-induced petal senescence in carnation, which was associated with the down-regulated expression of DcWRKY75, DcACO1, and DcSAG12, whereas overexpression of DcATX1 exhibited the opposite effects. DcATX1 promoted the transcription of DcWRKY75, DcACO1, and DcSAG12 by elevating the H3K4me3 levels within their promoters. Overall, our results demonstrate that DcATX1 is a H3K4 methyltransferase that promotes the expression of DcWRKY75, DcACO1, DcSAG12 and potentially other downstream target genes by regulating H3K4me3 levels, thereby accelerating ethylene-induced petal senescence in carnation. This study further indicates that epigenetic regulation is important for plant senescence processes.
Collapse
Affiliation(s)
- Shan Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Jiang
- State key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiming Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hualiang Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
32
|
Zhu C, Huang Z, Sun Z, Feng S, Wang S, Wang T, Yuan X, Zhong L, Cheng Y, Bao M, Zhang F. The mutual regulation between DcEBF1/2 and DcEIL3-1 is involved in ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:636-650. [PMID: 36808165 DOI: 10.1111/tpj.16158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Carnation (Dianthus caryophyllus L.) is a respiratory climacteric flower, comprising one of the most important cut flowers that is extremely sensitive to plant hormone ethylene. Ethylene signaling core transcription factor DcEIL3-1 plays a key role in ethylene induced petal senescence in carnation. However, how the dose of DcEIL3-1 is regulated in the carnation petal senescence process is still not clear. Here, we screened out two EBF (EIN3 Binding F-box) genes, DcEBF1 and DcEBF2, which showed quick elevation by ethylene treatment according to the ethylene induced carnation petal senescence transcriptome. Silencing of DcEBF1 and DcEBF2 accelerated, whereas overexpression of DcEBF1 and DcEBF2 delayed, ethylene induced petal senescence in carnation by influencing DcEIL3-1 downstream target genes but not DcEIL3-1 itself. Furthermore, DcEBF1 and DcEBF2 interact with DcEIL3-1 to degrade DcEIL3-1 via an ubiquitination pathway in vitro and in vivo. Finally, DcEIL3-1 binds to the promoter regions of DcEBF1 and DcEBF2 to activate their expression. In conclusion, the present study reveals the mutual regulation between DcEBF1/2 and DcEIL3-1 during ethylene induced petal senescence in carnation, which not only expands our understanding about ethylene signal regulation network in the carnation petal senescence process, but also provides potential targets with respect to breeding a cultivar of long-lived cut carnation.
Collapse
Affiliation(s)
- Chunlin Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiheng Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shan Feng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Teng Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyi Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Institute of Flowers Research, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Huazhong Urban Agriculture, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
33
|
Chen Y, Cai X, Tang B, Xie Q, Chen G, Chen X, Hu Z. SlERF.J2 reduces chlorophyll accumulation and inhibits chloroplast biogenesis and development in tomato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111578. [PMID: 36608875 DOI: 10.1016/j.plantsci.2022.111578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Chlorophyll metabolism and chloroplast biogenesis in tomato (Solanum lycopersicum) leaves contribute to photosynthesis; however, their molecular mechanisms are poorly understood. In this study, we found that overexpression of SlERF.J2 (ethylene transcription factor) resulted in a decrease in leaf chlorophyll content and reduced accumulation of starch and soluble sugar. The slerf.j2 knockout mutant showed no apparent change. Further observation of tissue sections and transmission electron microscopy (TEM) showed that SlERF.J2 was involved in chlorophyll accumulation and chloroplast formation. RNA-seq of mature SlERF.J2-OE leaves showed that many genes involved in chlorophyll biosynthesis and chloroplast formation were significantly downregulated compared with those in WT leaves. Genome global scanning of the ERF TF binding site combined with RNA-seq differential gene expression and qRT-PCR detection analysis showed that COP1 was a potential target gene of SlERF.J2. Tobacco transient expression technology, a dual-luciferase reporter system and Y1H technology were employed to verify that SlERF.J2 could bind to the COP1 promoter. Notably, overexpression of SlERF.J2 in Nr mutants resulted in impaired chloroplast biogenesis and development. Taken together, our findings demonstrated that SlERF.J2 plays an essential role in chlorophyll accumulation and chloroplast formation, laying a foundation for enhancing plant photosynthesis.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xi Cai
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Boyan Tang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
34
|
Nie Y, Li Y, Liu M, Ma B, Sui X, Chen J, Yu Y, Dong CH. The nucleoporin NUP160 and NUP96 regulate nucleocytoplasmic export of mRNAs and participate in ethylene signaling and response in Arabidopsis. PLANT CELL REPORTS 2023; 42:549-559. [PMID: 36598573 DOI: 10.1007/s00299-022-02976-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis nucleoporin involved in the regulation of ethylene signaling via controlling of nucleocytoplasmic transport of mRNAs. The two-way transport of mRNAs between the nucleus and cytoplasm are controlled by the nuclear pore complex (NPC). In higher plants, the NPC contains at least 30 nucleoporins. The Arabidopsis nucleoporins are involved in various biological processes such as pathogen interaction, nodulation, cold response, flowering, and hormone signaling. However, little is known about the regulatory functions of the nucleoporin NUP160 and NUP96 in ethylene signaling pathway. In the present study, we provided data showing that the Arabidopsis nucleoporin NUP160 and NUP96 participate in ethylene signaling-related mRNAs nucleocytoplasmic transport. The Arabidopsis nucleoporin mutants (nup160, nup96-1, nup96-2) exhibited enhanced ethylene sensitivity. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that the nucleoporin mutants affected the nucleocytoplasmic transport of all the examined mRNAs, including the ethylene signaling-related mRNAs such as ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, and EIN3. Transcriptome analysis of the nucleoporin mutants provided clues suggesting that the nucleoporin NUP160 and NUP96 may participate in ethylene signaling via various molecular mechanisms. These observations significantly advance our understanding of the regulatory mechanisms of nucleoporin proteins in ethylene signaling and ethylene response.
Collapse
Affiliation(s)
- Yuanyuan Nie
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Menghui Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
35
|
Song H, Wu P, Lu X, Wang B, Song T, Lu Q, Li M, Xu X. Comparative physiological and transcriptomic analyses reveal the mechanisms of CO2 enrichment in promoting the growth and quality in Lactuca sativa. PLoS One 2023; 18:e0278159. [PMID: 36735719 PMCID: PMC9897578 DOI: 10.1371/journal.pone.0278159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/10/2022] [Indexed: 02/04/2023] Open
Abstract
The increase in the concentration of CO2 in the atmosphere has attracted widespread attention. To explore the effect of elevated CO2 on lettuce growth and better understand the mechanism of elevated CO2 in lettuce cultivation, 3 kinds of lettuce with 4 real leaves were selected and planted in a solar greenhouse. One week later, CO2 was applied from 8:00 a.m. to 10:00 a.m. on sunny days for 30 days. The results showed that the growth potential of lettuce was enhanced under CO2 enrichment. The content of vitamin C and chlorophyll in the three lettuce varieties increased, and the content of nitrate nitrogen decreased. The light saturation point and net photosynthetic rate of leaves increased, and the light compensation point decreased. Transcriptome analysis showed that there were 217 differentially expressed genes (DEGs) shared by the three varieties, among which 166 were upregulated, 44 were downregulated, and 7 DEGs were inconsistent in the three materials. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs involved mainly the ethylene signaling pathway, jasmonic acid signaling pathway, porphyrin and chlorophyll metabolism pathway, starch and sucrose metabolism pathway, etc. Forty-one DEGs in response to CO2 enrichment were screened out by Gene Ontology (GO) analysis, and the biological processes involved were consistent with KEGG analysis. which suggested that the growth and nutritional quality of lettuce could be improved by increasing the enzyme activity and gene expression levels of photosynthesis, hormone signaling and carbohydrate metabolism. The results laid a theoretical foundation for lettuce cultivation in solar greenhouses and the application of CO2 fertilization technology.
Collapse
Affiliation(s)
- Hongxia Song
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peiqi Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaonan Lu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bei Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Tianyue Song
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qiang Lu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Meilan Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaoyong Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| |
Collapse
|
36
|
Park HL, Seo DH, Lee HY, Bakshi A, Park C, Chien YC, Kieber JJ, Binder BM, Yoon GM. Ethylene-triggered subcellular trafficking of CTR1 enhances the response to ethylene gas. Nat Commun 2023; 14:365. [PMID: 36690618 PMCID: PMC9870993 DOI: 10.1038/s41467-023-35975-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
The phytohormone ethylene controls plant growth and stress responses. Ethylene-exposed dark-grown Arabidopsis seedlings exhibit dramatic growth reduction, yet the seedlings rapidly return to the basal growth rate when ethylene gas is removed. However, the underlying mechanism governing this acclimation of dark-grown seedlings to ethylene remains enigmatic. Here, we report that ethylene triggers the translocation of the Raf-like protein kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), a negative regulator of ethylene signaling, from the endoplasmic reticulum to the nucleus. Nuclear-localized CTR1 stabilizes the ETHYLENE-INSENSITIVE3 (EIN3) transcription factor by interacting with and inhibiting EIN3-BINDING F-box (EBF) proteins, thus enhancing the ethylene response and delaying growth recovery. Furthermore, Arabidopsis plants with enhanced nuclear-localized CTR1 exhibited improved tolerance to drought and salinity stress. These findings uncover a mechanism of the ethylene signaling pathway that links the spatiotemporal dynamics of cellular signaling components to physiological responses.
Collapse
Affiliation(s)
- Hye Lin Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dong Hye Seo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biology, Chosun University, Gwangju, 61452, Korea
| | - Arkadipta Bakshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Botany, UW-Madison, Madison, WI, USA
| | - Chanung Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuan-Chi Chien
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
37
|
Choi D, Choi JH, Park KJ, Kim C, Lim JH, Kim DH. Transcriptomic analysis of effects of 1-methylcyclopropene (1-MCP) and ethylene treatment on kiwifruit ( Actinidia chinensis) ripening. FRONTIERS IN PLANT SCIENCE 2023; 13:1084997. [PMID: 36684730 PMCID: PMC9849763 DOI: 10.3389/fpls.2022.1084997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Ethylene (ET) is a gaseous phytohormone with a crucial role in the ripening of many fruits, including kiwifruit (Actinidia spp.). Meanwhile, treatment with 1-methylcyclopropene (1-MCP), an artificial ET inhibitor delays the ripening of kiwifruit. The objective of this study was to determine the effect of ET and 1-MCP application during time-course storage of kiwifruit. In addition, we aimed to elucidate the molecular details underlying ET-mediated ripening process in kiwifruit. For this purpose, we conducted a time-course transcriptomic analysis to determine target genes of the ET-mediated maturation process in kiwifruit during storage. Thousands of genes were identified to be dynamically changed during storage and clustered into 20 groups based on the similarity of their expression patterns. Gene ontology analysis using the list of differentially expressed genes (DEGs) in 1-MCP-treated kiwifruit revealed that the identified DEGs were significantly enriched in the processes of photosynthesis metabolism and cell wall composition throughout the ripening process. Meanwhile, ET treatment rapidly triggered secondary metabolisms related to the ripening process, phenylpropanoid (e.g. lignin) metabolism, and the biosynthesis of amino acids (e.g. Phe, Cys) in kiwifruit. It was demonstrated that ET biosynthesis and signaling genes were oppositely affected by ET and 1-MCP treatment during ripening. Furthermore, we identified a ET transcription factor, AcEIL (Acc32482) which is oppositely responsive by ET and 1-MCP treatment during early ripening, potentially one of key signaling factor of ET- or 1-MCP-mediated physiological changes. Therefore, this transcriptomic study unveiled the molecular targets of ET and its antagonist, 1-MCP, in kiwifruit during ripening. Our results provide a useful foundation for understanding the molecular details underlying the ripening process in kiwifruit.
Collapse
Affiliation(s)
- Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jeong Hee Choi
- Food safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Kee-Jai Park
- Food safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Changhyun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Jeong-Ho Lim
- Food safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
38
|
Hu S, Yu K, Yan J, Shan X, Xie D. Jasmonate perception: Ligand-receptor interaction, regulation, and evolution. MOLECULAR PLANT 2023; 16:23-42. [PMID: 36056561 DOI: 10.1016/j.molp.2022.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Phytohormones integrate external environmental and developmental signals with internal cellular responses for plant survival and multiplication in changing surroundings. Jasmonate (JA), which might originate from prokaryotes and benefit plant terrestrial adaptation, is a vital phytohormone that regulates diverse developmental processes and defense responses against various environmental stresses. In this review, we first provide an overview of ligand-receptor binding techniques used for the characterization of phytohormone-receptor interactions, then introduce the identification of the receptor COI1 and active JA molecules, and finally summarize recent advances on the regulation of JA perception and its evolution.
Collapse
Affiliation(s)
- Shuai Hu
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaiming Yu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan 528200, China.
| | - Xiaoyi Shan
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
39
|
Shao Z, Zhao B, Kotla P, Burns JG, Tran J, Ke M, Chen X, Browning KS, Qiao H. Phosphorylation status of Bβ subunit acts as a switch to regulate the function of phosphatase PP2A in ethylene-mediated root growth inhibition. THE NEW PHYTOLOGIST 2022; 236:1762-1778. [PMID: 36073540 PMCID: PMC9828452 DOI: 10.1111/nph.18467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 05/20/2023]
Abstract
The various combinations and regulations of different subunits of phosphatase PP2A holoenzymes underlie their functional complexity and importance. However, molecular mechanisms governing the assembly of PP2A complex in response to external or internal signals remain largely unknown, especially in Arabidopsis thaliana. We found that the phosphorylation status of Bβ of PP2A acts as a switch to regulate the activity of PP2A. In the absence of ethylene, phosphorylated Bβ leads to an inactivation of PP2A; the substrate EIR1 remains to be phosphorylated, preventing the EIR1-mediated auxin transport in epidermis, leading to normal root growth. Upon ethylene treatment, the dephosphorylated Bβ mediates the formation of the A2-C4-Bβ protein complex to activate PP2A, resulting in the dephosphorylation of EIR1 to promote auxin transport in epidermis of elongation zone, leading to root growth inhibition. Altogether, our research revealed a novel molecular mechanism by which the dephosphorylation of Bβ subunit switches on PP2A activity to dephosphorylate EIR1 to establish EIR1-mediated auxin transport in the epidermis in elongation zone for root growth inhibition in response to ethylene.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Bo Zhao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Prashanth Kotla
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
| | - Jackson G. Burns
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
| | - Jaclyn Tran
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics CenterFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics CenterFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Karen S. Browning
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Hong Qiao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| |
Collapse
|
40
|
Kamiyoshihara Y, Achiha Y, Ishikawa S, Mizuno S, Mori H, Tateishi A, Huber DJ, Klee HJ. Heteromeric interactions of ripening-related ethylene receptors in tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6773-6783. [PMID: 35863309 DOI: 10.1093/jxb/erac314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Ripening of climacteric fruits is initiated when the gaseous plant hormone ethylene is perceived by the cell. Ethylene binding to membrane-associated ethylene receptors (ETRs) triggers a series of biochemical events through multiple components, resulting in the induction of numerous ripening-related genes. In tomato (Solanum lycopersicum L.), there are seven members of the ETR family, which each contribute to the regulation of fruit ripening. However, the relative contribution of each individual receptor to ethylene signaling remains unknown. Here, we demonstrated the formation of heteromeric receptor complexes across the two ETR subfamilies in tomato fruit. Immunoprecipitation of subfamily II SlETR4 resulted in co-purification of subfamily I (SlETR1, SlETR2, and SlETR3), but not subfamily II members (SlETR5, SlETR6, and SlETR7). Such biased interactions were verified in yeast two-hybrid assays, and in transgenic Arabidopsis plants, in which heterologous SlETR4 interacts with subfamily I ETRs. Our analysis also revealed that the receptor complexes engage the Raf-like protein kinases SlCTR1 and SlCTR3, which are potential regulators of signaling. Here, we suggest that tomato receptor members form heteromeric complexes to fine-tune signal output to the downstream pathway, which is similar to that of the Arabidopsis system but appears to be partially diverged.
Collapse
Affiliation(s)
- Yusuke Kamiyoshihara
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Yuki Achiha
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Shin Ishikawa
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Shinji Mizuno
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Akira Tateishi
- College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
- Graduate School of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, Japan
| | - Donald J Huber
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Harry J Klee
- Horticultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Zhou Y, Ma B, Tao JJ, Yin CC, Hu Y, Huang YH, Wei W, Xin PY, Chu JF, Zhang WK, Chen SY, Zhang JS. Rice EIL1 interacts with OsIAAs to regulate auxin biosynthesis mediated by the tryptophan aminotransferase MHZ10/OsTAR2 during root ethylene responses. THE PLANT CELL 2022; 34:4366-4387. [PMID: 35972379 PMCID: PMC9614475 DOI: 10.1093/plcell/koac250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice (Oryza sativa). Understanding of the crosstalk between ethylene and auxin (Aux) is limited in rice. Here, from an analysis of the root-specific ethylene-insensitive rice mutant mao hu zi 10 (mhz10), we identified the tryptophan aminotransferase (TAR) MHZ10/OsTAR2, which catalyzes the key step in indole-3-pyruvic acid-dependent Aux biosynthesis. Genetically, OsTAR2 acts downstream of ethylene signaling in root ethylene responses. ETHYLENE INSENSITIVE3 like1 (OsEIL1) directly activated OsTAR2 expression. Surprisingly, ethylene induction of OsTAR2 expression still required the Aux pathway. We also show that Os indole-3-acetic acid (IAA)1/9 and OsIAA21/31 physically interact with OsEIL1 and show promotive and repressive effects on OsEIL1-activated OsTAR2 promoter activity, respectively. These effects likely depend on their EAR motif-mediated histone acetylation/deacetylation modification. The special promoting activity of OsIAA1/9 on OsEIL1 may require both the EAR motifs and the flanking sequences for recruitment of histone acetyltransferase. The repressors OsIAA21/31 exhibit earlier degradation upon ethylene treatment than the activators OsIAA1/9 in a TIR1/AFB-dependent manner, allowing OsEIL1 activation by activators OsIAA1/9 for OsTAR2 expression and signal amplification. This study reveals a positive feedback regulation of ethylene signaling by Aux biosynthesis and highlights the crosstalk between ethylene and Aux pathways at a previously underappreciated level for root growth regulation in rice.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Yong Xin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Fang Chu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Zhu BS, Zhu YX, Zhang YF, Zhong X, Pan KY, Jiang Y, Wen CK, Yang ZN, Yao X. Ethylene Activates the EIN2- EIN3/EIL1 Signaling Pathway in Tapetum and Disturbs Anther Development in Arabidopsis. Cells 2022; 11:cells11193177. [PMID: 36231139 PMCID: PMC9563277 DOI: 10.3390/cells11193177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Ethylene was previously reported to repress stamen development in both cucumber and Arabidopsis. Here, we performed a detailed analysis of the effect of ethylene on anther development. After ethylene treatment, stamens but not pistils display obvious developmental defects which lead to sterility. Both tapetum and microspores (or microsporocytes) degenerated after ethylene treatment. In ein2-1 and ein3-1 eil1-1 mutants, ethylene treatment did not affect their fertility, indicating the effects of ethylene on anther development are mediated by EIN2 and EIN3/EIL1 in vivo. The transcription of EIN2 and EIN3 are activated by ethylene in the tapetum layer. However, ectopic expression of EIN3 in tapetum did not induce significant anther defects, implying that the expression of EIN3 are regulated post transcriptional level. Consistently, ethylene treatment induced the accumulation of EIN3 in the tapetal cells. Thus, ethylene not only activates the transcription of EIN2 and EIN3, but also stabilizes of EIN3 in the tapetum to disturb its development. The expression of several ethylene related genes was significantly increased, and the expression of the five key transcription factors required for tapetum development was decreased after ethylene treatment. Our results thus point out that ethylene inhibits anther development through the EIN2-EIN3/EIL1 signaling pathway. The activation of this signaling pathway in anther wall, especially in the tapetum, induces the degeneration of the tapetum and leads to pollen abortion.
Collapse
Affiliation(s)
- Ben-Shun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ying-Xiu Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan-Fei Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiang Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Keng-Yu Pan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: (Z.-N.Y.); (X.Y.)
| | - Xiaozhen Yao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: (Z.-N.Y.); (X.Y.)
| |
Collapse
|
43
|
Thanomchit K, Imsabai W, Burns P, McAtee PA, Schaffer RJ, Allan AC, Ketsa S. Differential expression of ethylene biosynthetic and receptor genes in pollination-induced senescence of Dendrobium flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:38-46. [PMID: 35981438 DOI: 10.1016/j.plaphy.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Following successful pollination, Dendrobium orchid flowers rapidly undergo senescence. In Dendrobium cv. Khao Chaimongkol, compatible pollination resulted in faster ethylene production and more rapid development of senescence symptoms, such as drooping, epinasty, venation and yellowing, compared with non-pollinated controls or pollination with incompatible pollinia. The DenACS1 and DenACO1 genes in the perianth of florets that had been pollinated with compatible pollinia were expressed more highly than those in non-pollinated open florets. Incompatible pollinia reduced the expression of DenACS1 and DenACO1 genes in the perianth. Transcript levels of the ethylene receptor gene DenERS1 and signaling genes DenEIL1 and DenERF1 showed differential spatial regulation with greater expression in the perianth than in the column plus ovary following compatible pollination. Compatible pollinia increased ethylene production concomitant with premature senescence and the increased expression of the DenACS1 and DenACO1 genes, and suppressed the ethylene receptor gene DenERS1, whereas incompatible pollinia did not stimulate ethylene production nor induce premature senescence but induced higher expression of DenERS1 both in the perianth and in the column plus ovary. These results suggest that the increased ethylene production in open florets pollinated with compatible pollen was partially due to an increase in the expression of DenACS1 and DenACO1 genes. The compatible pollinia induced a negative regulation of DenERS1 which may play an important role in ethylene perception and in modulating ethylene signaling transduction during pollinia-induced flower senescence.
Collapse
Affiliation(s)
- Kanokwan Thanomchit
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Wachiraya Imsabai
- Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen Campus, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Parichart Burns
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, PathumThani, 12120, Thailand
| | - Peter A McAtee
- Plant and Food Research Institute, Mt Albert Research Center, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert J Schaffer
- Plant and Food Research Institute, Mt Albert Research Center, Private Bag 92019, Auckland, 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew C Allan
- Plant and Food Research Institute, Mt Albert Research Center, Private Bag 92019, Auckland, 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Saichol Ketsa
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand; Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand.
| |
Collapse
|
44
|
Houben M, Vaughan-Hirsch J, Mou W, Van de Poel B. Ethylene Insensitive 3-Like 2 is a Brassicaceae-specific transcriptional regulator involved in fine-tuning ethylene responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4793-4805. [PMID: 35526188 DOI: 10.1093/jxb/erac198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Ethylene signaling directs a pleiotropy of developmental processes in plants. In Arabidopsis, ethylene signaling converges at the master transcription factor Ethylene Insensitive 3 (EIN3), which has five homologs, EIN3-like 1-5 (EIL1-EIL5). EIL1 is most fully characterized and operates similarly to EIN3, while EIL3-5 are not involved in ethylene signaling. EIL2 remains less investigated. Our phylogenetic analysis revealed that EIL2 homologs have only been retrieved in the Brassicaceae family, suggesting that EIL2 diverged to have specific functions in the mustard family. By characterizing eil2 mutants, we found that EIL2 is involved in regulating ethylene-specific developmental processes in Arabidopsis thaliana, albeit in a more subtle way compared with EIN3/EIL1. EIL2 steers ethylene-triggered hypocotyl elongation in light-grown seedlings and is involved in lateral root formation. Furthermore, EIL2 takes part in regulating flowering time as eil2 mutants flower on average 1 d earlier and have fewer leaves. A pEIL2:EIL2:GFP translational reporter line revealed that EIL2 protein abundance is restricted to the stele of young developing roots. EIL2 expression, and not EIL2 protein stability, is regulated by ethylene in an EIN3/EIL1-dependent way. Despite EIL2 taking part in several developmental processes, the precise upstream and downstream regulation of this ethylene- and Brassicaceae-specific transcription factor remains to be elucidated.
Collapse
Affiliation(s)
- Maarten Houben
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - John Vaughan-Hirsch
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Wangshu Mou
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
45
|
Martin RE, Marzol E, Estevez JM, Muday GK. Ethylene signaling increases reactive oxygen species accumulation to drive root hair initiation in Arabidopsis. Development 2022; 149:275731. [PMID: 35713303 DOI: 10.1242/dev.200487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022]
Abstract
Root hair initiation is a highly regulated aspect of root development. The plant hormone ethylene and its precursor, 1-amino-cyclopropane-1-carboxylic acid, induce formation and elongation of root hairs. Using confocal microscopy paired with redox biosensors and dyes, we demonstrated that treatments that elevate ethylene levels lead to increased hydrogen peroxide accumulation in hair cells prior to root hair formation. In the ethylene-insensitive receptor mutant, etr1-3, and the signaling double mutant, ein3eil1, the increase in root hair number or reactive oxygen species (ROS) accumulation after ACC and ethylene treatment was lost. Conversely, etr1-7, a constitutive ethylene signaling receptor mutant, has increased root hair formation and ROS accumulation, similar to ethylene-treated Col-0 seedlings. The caprice and werewolf transcription factor mutants have decreased and elevated ROS levels, respectively, which are correlated with levels of root hair initiation. The rhd2-6 mutant, with a defect in the gene encoding the ROS-synthesizing RESPIRATORY BURST OXIDASE HOMOLOG C (RBOHC), and the prx44-2 mutant, which is defective in a class III peroxidase, showed impaired ethylene-dependent ROS synthesis and root hair formation via EIN3EIL1-dependent transcriptional regulation. Together, these results indicate that ethylene increases ROS accumulation through RBOHC and PRX44 to drive root hair formation.
Collapse
Affiliation(s)
- R Emily Martin
- Departments of Biology and Biochemistry and the Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109,USA
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina, C1405BWE
| | - Jose M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina, C1405BWE.,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello Santiago, Santiago, Chile and ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio) and Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile, 8370146
| | - Gloria K Muday
- Departments of Biology and Biochemistry and the Center for Molecular Signaling, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109,USA
| |
Collapse
|
46
|
Ren D, Wang T, Zhou G, Ren W, Duan X, Gao L, Chen J, Xu L, Zhu P. Ethylene Promotes Expression of the Appressorium- and Pathogenicity-Related Genes via GPCR- and MAPK-Dependent Manners in Colletotrichum gloeosporioides. J Fungi (Basel) 2022; 8:jof8060570. [PMID: 35736053 PMCID: PMC9224669 DOI: 10.3390/jof8060570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
Ethylene (ET) represents a signal that can be sensed by plant pathogenic fungi to accelerate their spore germination and subsequent infection. However, the molecular mechanisms of responses to ET in fungi remain largely unclear. In this study, Colletotrichum gloeosporioides was investigated via transcriptomic analysis to reveal the genes that account for the ET-regulated fungal development and virulence. The results showed that ET promoted genes encoding for fungal melanin biosynthesis enzymes, extracellular hydrolases, and appressorium-associated structure proteins at 4 h after treatment. When the germination lasted until 24 h, ET induced multiple appressoria from every single spore, but downregulated most of the genes. Loss of selected ET responsive genes encoding for scytalone dehydratase (CgSCD1) and cerato-platanin virulence protein (CgCP1) were unable to alter ET sensitivity of C. gloeosporioides in vitro but attenuated the influence of ET on pathogenicity. Knockout of the G-protein-coupled receptors CgGPCR3-1/2 and the MAPK signaling pathway components CgMK1 and CgSte11 resulted in reduced ET sensitivity. Taken together, this study in C. gloeosporioides reports that ET can cause transcription changes in a large set of genes, which are mainly responsible for appressorium development and virulence expression, and these processes are dependent on the GPCR and MAPK pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling Xu
- Correspondence: (L.X.); (P.Z.); Tel.: +86-(021)-54341012 (L.X.); +86-(021)-24206574 (P.Z.)
| | - Pinkuan Zhu
- Correspondence: (L.X.); (P.Z.); Tel.: +86-(021)-54341012 (L.X.); +86-(021)-24206574 (P.Z.)
| |
Collapse
|
47
|
Chen J, Sui X, Ma B, Li Y, Li N, Qiao L, Yu Y, Dong CH. Arabidopsis CPR5 plays a role in regulating nucleocytoplasmic transport of mRNAs in ethylene signaling pathway. PLANT CELL REPORTS 2022; 41:1075-1085. [PMID: 35201411 DOI: 10.1007/s00299-022-02838-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis CPR5 is involved in regulation of ethylene signaling via two different ways: interacting with the ETR1 N-terminal domains, and controlling nucleocytoplasmic transport of ethylene-related mRNAs. The ETR1 receptor plays a predominant role in ethylene signaling in Arabidopsis thaliana. Previous studies showed that both RTE1 and CPR5 can directly bind to the ETR1 receptor and regulate ethylene signaling. RTE1 was suggested to promote the ETR1 receptor signaling by influencing its conformation, but little is known about the regulatory mechanism of CPR5 in ethylene signaling. In this study, we presented the data showing that both RTE1 and CPR5 bound to the N-terminal domains of ETR1, and regulated ethylene signaling via the ethylene receptor. On the other hand, the research provided evidence indicating that CPR5 could act as a nucleoporin to regulate the ethylene-related mRNAs export out of the nucleus, while RTE1 or its homolog (RTH) had no effect on the nucleocytoplasmic transport of mRNAs. Nuclear qRT-PCR analysis and poly(A)-mRNA in situ hybridization showed that defect of CPR5 restricted nucleocytoplasmic transport of mRNAs. These results advance our understanding of the regulatory mechanism of CPR5 in ethylene signaling.
Collapse
Affiliation(s)
- Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinying Sui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuetong Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Na Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
48
|
Li W, Li Q, Lyu M, Wang Z, Song Z, Zhong S, Gu H, Dong J, Dresselhaus T, Zhong S, Qu LJ. Lack of ethylene does not affect reproductive success and synergid cell death in Arabidopsis. MOLECULAR PLANT 2022; 15:354-362. [PMID: 34740849 PMCID: PMC9066556 DOI: 10.1016/j.molp.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 05/12/2023]
Abstract
The signaling pathway of the gaseous hormone ethylene is involved in plant reproduction, growth, development, and stress responses. During reproduction, the two synergid cells of the angiosperm female gametophyte both undergo programmed cell death (PCD)/degeneration but in a different manner: PCD/degeneration of one synergid facilitates pollen tube rupture and thereby the release of sperm cells, while PCD/degeneration of the other synergid blocks supernumerary pollen tubes. Ethylene signaling was postulated to participate in some of the synergid cell functions, such as pollen tube attraction and the induction of PCD/degeneration. However, ethylene-mediated induction of synergid PCD/degeneration and the role of ethylene itself have not been firmly established. Here, we employed the CRISPR/Cas9 technology to knock out the five ethylene-biosynthesis 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes and created Arabidopsis mutants free of ethylene production. The ethylene-free mutant plants showed normal triple responses when treated with ethylene rather than 1-aminocyclopropane-1-carboxylic acid, but had increased lateral root density and enlarged petal sizes, which are typical phenotypes of mutants defective in ethylene signaling. Using these ethylene-free plants, we further demonstrated that production of ethylene is not necessarily required to trigger PCD/degeneration of the two synergid cells, but certain components of ethylene signaling including transcription factors ETHYLENE-INSENSITIVE 3 (EIN3) and EIN3-LIKE 1 (EIL1) are necessary for the death of the persistent synergid cell.
Collapse
Affiliation(s)
- Wenhao Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qiyun Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Mohan Lyu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zihan Song
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Shangwei Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China.
| |
Collapse
|
49
|
Wang P, Ge M, Yu A, Song W, Fang J, Leng X. Effects of ethylene on berry ripening and anthocyanin accumulation of 'Fujiminori' grape in protected cultivation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1124-1136. [PMID: 34329497 DOI: 10.1002/jsfa.11449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although the grape berries are deliberated as a non-climacteric fruit, ethylene seems to be involved in grape berry ripening. However, the precise role of ethylene in regulating the ripening of non-climacteric fruits is poorly understood. RESULTS Exogenous ethephon (ETH) can stimulate the concentration of internal ethylene and accelerate the accumulation of anthocyanins in berries of 'Fujiminori', including malvidin-, delphinidin-, and petunidin-derivatives (3',4',5'-trihydroxylated anthocyanins) and cyanidin-derivatives (3',4'-dihydroxylated anthocyanins). The content of 3',4',5'-trihydroxylated anthocyanins was extremely higher than 3',4'-dihydroxylated anthocyanins, and ethylene did not affect the composition of anthocyanins in grape. Furthermore, we observed the expression of anthocyanin structural and regulatory genes as well as ethylene biosynthesis and response genes in response to ETH treatment. The anthocyanins accumulation is significantly associated with increased expression of anthocyanin structural (VvPAL, Vv4CH, VvCHS, VvCHI, VvF3H, and VvUFGT) and regulatory genes (VvMYBA1, VvMYBA2, and VvMYBA3), which persisted over the 12 days. In addition, exogenous ETH affected the endogenous ethylene biosynthesis (VvACO2 and VvACO4) and the downstream ethylene regulatory network (VvERS1, VvETR2, VvCTR1, and VvERF005). CONCLUSIONS These findings bring new insights into the physiological and molecular function of ethylene during berry development and ripening in grapes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peipei Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mengqing Ge
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aishui Yu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Wei Song
- Fruit Industry Development and Service Center of Qixia, Yantai, China
| | - Jinggui Fang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
50
|
Aizezi Y, Shu H, Zhang L, Zhao H, Peng Y, Lan H, Xie Y, Li J, Wang Y, Guo H, Jiang K. Cytokinin regulates apical hook development via the coordinated actions of EIN3/EIL1 and PIF transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:213-227. [PMID: 34459884 DOI: 10.1093/jxb/erab403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The apical hook is indispensable for protecting the delicate shoot apical meristem while dicot seedlings emerge from soil after germination in darkness. The development of the apical hook is co-ordinately regulated by multiple phytohormones and environmental factors. Yet, a holistic understanding of the spatial-temporal interactions between different phytohormones and environmental factors remains to be achieved. Using a chemical genetic approach, we identified kinetin riboside, as a proxy of kinetin, which promotes apical hook development of Arabidopsis thaliana in a partially ethylene-signaling-independent pathway. Further genetic and biochemical analysis revealed that cytokinin is able to regulate apical hook development via post-transcriptional regulation of the PHYTOCHROME INTERACTING FACTORs (PIFs), together with its canonical roles in inducing ethylene biosynthesis. Dynamic observations of apical hook development processes showed that ETHYLENE INSENSITVE3 (EIN3) and EIN3-LIKE1 (EIL1) are necessary for the exaggeration of hook curvature in response to cytokinin, while PIFs are crucial for the cytokinin-induced maintenance of hook curvature in darkness. Furthermore, these two families of transcription factors display divergent roles in light-triggered hook opening. Our findings reveal that cytokinin integrates ethylene signaling and light signaling via EIN3/EIL1 and PIFs, respectively, to dynamically regulate apical hook development during early seedling development.
Collapse
Affiliation(s)
- Yalikunjiang Aizezi
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Huazhang Shu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Linlin Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Hongming Zhao
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yang Peng
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hongxia Lan
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yinpeng Xie
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Jian Li
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yichuan Wang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Kai Jiang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
- SUSTech Academy for Advanced and Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| |
Collapse
|