1
|
Huang B, Qu Y, Zhang H, Ma J, Chen J, Jie C, Liu F, Chu Z, Liu Y, Han Y, Wang X, Wang W. The characterization of a novel IRF8-like homolog and its role in the immune modulation of the sea urchin Strongylocentrotus intermedius. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110179. [PMID: 39922248 DOI: 10.1016/j.fsi.2025.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Interferon regulatory factor (IRF) proteins, functioning as transcription factors, are essential for various animal species' innate immune defense and stress responses. However, further research is required to elucidate the roles of IRF in echinoderms. In this study, a new IRF gene (SiIRF8-like) was obtained from the sea urchin (Strongylocentrotus intermedius). The open reading frame for SiIRF8-like spanned 2004 bp and encoded a protein composed of 667 amino acids. Domain prediction analysis revealed a typical IRF domain at the N-terminus and an IRF3 domain at the C terminus of the SiIRF8-like protein, exhibiting similar amino acid sequences across different species. Phylogenetic analyses indicated that SiIRF8-like proteins were closely related to mollusk IRF8 proteins. Quantitative real-time PCR revealed detectable levels of SiIRF8-like mRNA in all sea urchin tissues examined, with the highest expression observed in coelomocytes. Furthermore, lipopolysaccharide and polyinosinic-polycytidylic acid treatments significantly increased transcript expression levels of SiIRF8-like. Subcellular localization experiments revealed that SiIRF8-like is mainly localized in the nucleus. Additionally, dual-luciferase reporter assays indicated that overexpression of SiIRF8-like in HEK293T cells could specifically activate reporter genes such as interleukin 6, interferon α/β/γ, activating protein 1, and interferon-stimulated response element. Finally, the overexpressed SiIRF8-like could promote the phosphorylation of protein kinases (JNK and Erk1/2). These preliminary findings regarding the immune functions linked to the SiIRF8-like protein offer valuable insights into the innate immunity mechanisms of invertebrate IRFs and provide theoretical support for developing disease-resistant strains of sea urchins.
Collapse
Affiliation(s)
- Baoyu Huang
- School of Fisheries, Ludong University, Yantai, China
| | - Yifan Qu
- School of Fisheries, Ludong University, Yantai, China
| | - Haikun Zhang
- School of Fisheries, Ludong University, Yantai, China
| | - Jilv Ma
- School of Fisheries, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Fisheries, Ludong University, Yantai, China
| | - Cui Jie
- School of Fisheries, Ludong University, Yantai, China
| | - Fengchen Liu
- School of Fisheries, Ludong University, Yantai, China
| | - Zhongyi Chu
- School of Fisheries, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai, China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, China.
| | - Wenhao Wang
- Yantai Marine Economic Research Institute, Yantai, China.
| |
Collapse
|
2
|
Gong X, Xu L, Cai P. Friend or foe of tripartite motif-containing protein 21 in cardiovascular disease: A review. Int J Biol Macromol 2025:142682. [PMID: 40164260 DOI: 10.1016/j.ijbiomac.2025.142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
As an E3 ubiquitin ligase and an Fc receptor, tripartite motif-containing protein 21 (TRIM21) plays a crucial role in immune defense, signal transduction, and cellular regulation. TRIM21 is widely expressed in various tissues, but it is particularly abundant in cardiovascular tissues and is involved in the pathogenesis of various cardiovascular diseases (CVDs). However, although TRIM21 is involved in the regulation of several key molecular pathways in the immune system, its specific role in CVD remains unclear. In this review, we comprehensively summarize the regulatory role of TRIM21 in signaling pathways and discuss the function of TRIM21 in CVD, to provide a systematic understanding of this important protein in CVD and offer insights for further research into the pathogenesis of CVD and its potential applications.
Collapse
Affiliation(s)
- Xiangmei Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Li H, Zhang Y, Peh HY. Interferon regulatory factor 3 beyond innate immunity: Regulation in obesity and metabolic disorders. Semin Immunol 2025; 78:101948. [PMID: 40156960 DOI: 10.1016/j.smim.2025.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Interferon regulatory factor 3 (IRF3) is a transcription factor known primarily for its role in antiviral immunity via regulation of type I interferons (IFNs). Recent research has broadened its significance to encompass metabolic disorders, particularly obesity and diabetes. Obesity is characterized by chronic low-grade inflammation, insulin resistance, and metabolic dysfunction, all of which are increasingly found to be associated with immune signaling pathways. IRF3 has emerged as an important regulator in the development of obesity and type 2 diabetes (T2D), predominantly through its regulation of inflammatory cytokines production in various cells in adipose tissue. In obese individuals, IRF3 is activated in the adipocytes and adipose tissue macrophages, to promote the expression of inflammatory cytokines, thereby contributing to chronic inflammation and exacerbating insulin resistance. Moreover, IRF3 has been linked to mitochondrial dysfunction in hepatic disorders, further amplifying metabolic stress and imbalances associated with obesity. The growing evidence suggests that IRF3 is an important mediator in both immune and metabolic pathways, highlighting its potential as a target for the development of therapeutic interventions for obesity-related inflammation and metabolic dysfunction.
Collapse
Affiliation(s)
- Heng Li
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| | - Hong Yong Peh
- NUSMED Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Singapore Lipidomics Incubator, Life Science Institute, National University of Singapore, Singapore 117456, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
4
|
Rahlf CR, Tarakanova VL. Role of Interferon Regulatory Factor 1 in acute and chronic virus infections. Virology 2025; 603:110386. [PMID: 39754861 PMCID: PMC11788042 DOI: 10.1016/j.virol.2024.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Decades of research have defined the function of interferon regulatory factors (IRFs) in the antiviral immune response. Interferon regulatory factor-1 (IRF-1) is the founding member of the IRF family, with recognized antiviral effects across diverse virus infections. While most antiviral activities of IRF-1 were defined in vitro, fewer studies examined the role of IRF-1 during viral infection of an intact host. Taking advantage of mouse models of global or cell type-specific IRF-1 deficiency, recent studies demonstrate intriguing virus- and cell type-specific functions of IRF-1 during in vivo infection, underlining the complexity of this ancient transcription factor. Here, we review the role of IRF-1 during acute and chronic viral infections of an intact host, with particular focus on relating observations found in mouse models to those observed in a recent study of pediatric patients with IRF-1 insufficiency. By appreciating the complexity of IRF-1 in the immune response, we highlight several virus- and cell type-specific functions of IRF-1 in contributing to host antiviral immunity.
Collapse
Affiliation(s)
- Cade R Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Maleki AH, Rajabivahid M, Khosh E, Khanali Z, Tahmasebi S, Ghorbi MD. Harnessing IL-27: challenges and potential in cancer immunotherapy. Clin Exp Med 2025; 25:34. [PMID: 39797931 PMCID: PMC11724803 DOI: 10.1007/s10238-025-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways. Specifically, IL-27 is identified as augmenting cytokine of immune responses, including Th1 cell differentiation, TCd4 + cell proliferation, and IFN-γ production with the help of IL-12. According to several published studies, due to the pro-inflammatory or anti-inflammatory functions of cytokine related to the biological context in various disorders and diseases, IL-27 has been considered a complex regulator of the immune system. Surprisingly, the dual role of IL-27, the same as the double-edged sword, has also been evidenced in clinical models of various hematological or solid tumors. Predominantly, Il-27 applies anti-tumor functions by inducing the responses of a cytotoxic T lymphocyte (CTL) and Th1 and suppressing the growth, proliferation, angiogenesis, invasiveness, metastasis, and survival of tumor cells. On the other hand, IL-27 may also play a protumor role in cancers and induce tumor progression. The current update study aimed to summarize the protumor anti-tumor and biological functions of IL-27 in different hematological malignancies and solid tumors.
Collapse
Affiliation(s)
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elnaz Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Khanali
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmood Dehghani Ghorbi
- Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Pan H, Su Q, Hong P, You Y, Zhou L, Zou J, Sun J, Zhong G, Liao J, Zhang H, Tang Z, Hu L. Arsenic-induced mtDNA release promotes inflammatory responses through cGAS-STING signaling in chicken hepatocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106129. [PMID: 39477583 DOI: 10.1016/j.pestbp.2024.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024]
Abstract
Arsenic is a toxic element that can cause severe liver damage in humans and animals. Arsenic-based inorganic pesticides, such as lead arsenate, copper arsenate, and calcium arsenate, are widely used for insect control and can eventually affect human health through accumulation in the food chain. However, the relationship between arsenic trioxide (ATO)-induced hepatotoxicity and the cGAS-STING signaling pathway has not been reported. The aim of this study was to investigate the potential role of inflammatory response in ATO-induced hepatotoxicity in chickens. In this study, we found that ATO exposure resulted in mtDNA leakage into the cytoplasm of chicken hepatocytes, which activated the cGAS-STING pathway and significantly increased the cGAS, STING, TBK1, and IRF7 mRNA and protein expression levels. Moreover, type I interferon response was activated. Concurrently, STING triggered the activation of the traditional NF-κB signaling pathway and promoted the expression of pro-inflammatory cytokine genes, including TNF-α, IL-6, and IL-1β. Subsequently, we found that both mtDNA clearance with EtBr and inhibition of the cGAS-STING pathway with H-151 reversed the ATO-induced innate immune and inflammatory responses. In summary, the above findings indicate that chicken hepatocytes can induce innate immune responses and inflammatory responses via mtDNA-cGAS-STING under ATO-exposure conditions, which is of great significance for further studies on the toxicity mechanism of ATO.
Collapse
Affiliation(s)
- Hang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Panjing Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yanli You
- College of Life Science, Yantai University, Yantai, 264005, Shandong Province, China.
| | - Limeng Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Junbo Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jingping Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
9
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol 2024; 20:573-587. [PMID: 38769435 PMCID: PMC11392651 DOI: 10.1038/s41574-024-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Interferon regulatory factors (IRFs) comprise a family of nine transcription factors in mammals. IRFs exert broad effects on almost all aspects of immunity but are best known for their role in the antiviral response. Over the past two decades, IRFs have been implicated in metabolic physiology and pathophysiology, partly as a result of their known functions in immune cells, but also because of direct actions in adipocytes, hepatocytes, myocytes and neurons. This Review focuses predominantly on IRF3 and IRF4, which have been the subject of the most intense investigation in this area. IRF3 is located in the cytosol and undergoes activation and nuclear translocation in response to various signals, including stimulation of Toll-like receptors, RIG-I-like receptors and the cGAS-STING pathways. IRF3 promotes weight gain, primarily by inhibiting adipose thermogenesis, and also induces inflammation and insulin resistance using both weight-dependent and weight-independent mechanisms. IRF4, meanwhile, is generally pro-thermogenic and anti-inflammatory and has profound effects on lipogenesis and lipolysis. Finally, new data are emerging on the role of other IRF family members in metabolic homeostasis. Taken together, data indicate that IRFs serve as critical yet underappreciated integrators of metabolic and inflammatory stress.
Collapse
Affiliation(s)
- Zunair Ahmad
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Bahrain
| | - Wahab Kahloan
- AdventHealth Orlando Family Medicine, Orlando, FL, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Babadei O, Strobl B, Müller M, Decker T. Transcriptional control of interferon-stimulated genes. J Biol Chem 2024; 300:107771. [PMID: 39276937 PMCID: PMC11489399 DOI: 10.1016/j.jbc.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Interferon-induced genes are among the best-studied groups of coregulated genes. Nevertheless, intense research into their regulation, supported by new technologies, is continuing to provide insights into their many layers of transcriptional regulation and to reveal how cellular transcriptomes change with pathogen-induced innate and adaptive immunity. This article gives an overview of recent findings on interferon-induced gene regulation, paying attention to contributions beyond the canonical JAK-STAT pathways.
Collapse
Affiliation(s)
- Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
12
|
Zhang SD, Li H, Zhou YL, Liu XC, Li DC, Hao CF, You QD, Xu XL. Protein-protein interactions in cGAS-STING pathway: a medicinal chemistry perspective. Future Med Chem 2024; 16:1801-1820. [PMID: 39263789 PMCID: PMC11457635 DOI: 10.1080/17568919.2024.2383164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024] Open
Abstract
Protein-protein interactions (PPIs) play pivotal roles in biological processes and are closely linked with human diseases. Research on small molecule inhibitors targeting PPIs provides valuable insights and guidance for novel drug development. The cGAS-STING pathway plays a crucial role in regulating human innate immunity and is implicated in various pathological conditions. Therefore, modulators of the cGAS-STING pathway have garnered extensive attention. Given that this pathway involves multiple PPIs, modulating PPIs associated with the cGAS-STING pathway has emerged as a promising strategy for modulating this pathway. In this review, we summarize an overview of recent advancements in medicinal chemistry insights into cGAS-STING PPI-based modulators and propose alternative strategies for further drug discovery based on the cGAS-STING pathway.
Collapse
Affiliation(s)
- Shi-Duo Zhang
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ye-Ling Zhou
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Chun Liu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - De-Chang Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chuan-Feng Hao
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
13
|
Wang ZX, Liu B, Xie H, Liu X, Li X, Shi F, Ouyang S, Zhang YA. Crystal Structures of DNA-bound Fish IRF10 and IRF11 Reveal the Determinants of IFN Regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:743-752. [PMID: 39058321 DOI: 10.4049/jimmunol.2300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
IFN regulatory factors (IRFs) are transcription factors that mediate homeostatic mechanisms of host defense against pathogens. In addition to IRF1-9, which are conserved across vertebrates, teleost fishes have two other IRFs, IRF10 and IRF11. In zebrafish (Danio rerio), IRF10 represses the expression of IFNφ1 and IFNφ3, whereas IRF11 exerts the opposite effect. In this study, we found IRF10 could significantly inhibit the expression of IFNφ1 and IFNφ3 induced by IFN11 to synergistically regulate type I IFN expression. To clarify the synergistically regulatory mechanism of IRF10 and IRF11 in type I IFN expression, we determined and analyzed the crystal structures of the DNA-binding domains (DBDs) of zebrafish IRF10 and IRF11 bound to DNA, as well as IRF11 DBD in apo form. The interactions of IRF10-DBD and IRF11-DBD with DNA backbone were elaborated in detail. Further analysis showed that IRF10 and IRF11 have the same binding patterns and comparable affinities with the IFN-sensitive response elements of IFNφ1 and IFNφ3 promoters. Therefore, IRF10 could function as a controlling factor for IRF11 by competitive binding of the IFN-sensitive response elements to coregulate the host IFN response. Accordingly, similar to IRF1 and IRF2 in mammals, IRF10 and IRF11 act as another pair of negative and positive regulators to balance the antiviral responses in fish.
Collapse
Affiliation(s)
- Zhao-Xi Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bin Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Haizhou Xie
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xin Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiangliang Li
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fuqiang Shi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Sellaththurai SR, Jung S, Nadarajapillai K, Kim MJ, Lee J. Functional characterization of irf3 against viral hemorrhagic septicemia virus infection using a CRISPR/Cas9-mediated zebrafish knockout model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105208. [PMID: 38834141 DOI: 10.1016/j.dci.2024.105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/11/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Interferon regulatory factors (IRFs) are transcription factors involved in immune responses, such as pathogen response regulation, immune cell growth, and differentiation. IRFs are necessary for the synthesis of type I interferons through a signaling cascade when pathogen recognition receptors identify viral DNA or RNA. We discovered that irf3 is expressed in the early embryonic stages and in all immune organs of adult zebrafish. We demonstrated the antiviral immune mechanism of Irf3 against viral hemorrhagic septicemia virus (VHSV) using CRISPR/Cas9-mediated knockout zebrafish (irf3-KO). In this study, we used a truncated Irf3 protein, encoded by irf3 with a 10 bp deletion, for further investigation. Upon VHSV injection, irf3-KO zebrafish showed dose-dependent high and early mortality compared with zebrafish with the wild-type Irf3 protein (WT), confirming the antiviral activity of Irf3. Based on the results of expression analysis of downstream genes upon VHSV challenge, we inferred that Irf3 deficiency substantially affects the expression of ifnphi1 and ifnphi2. However, after 5 days post infection (dpi), ifnphi3 expression was not significantly altered in irf3-KO compared to that in WT, and irf7 transcription showed a considerable increase in irf3-KO after 5 dpi, indicating irf7's control over ifnphi3 expression. The significantly reduced expression of isg15, viperin, mxa, and mxb at 3 dpi also supported the effect of Irf3 deficiency on the antiviral activity in the early stage of infection. The higher mortality in irf3-KO zebrafish than in WT might be due to an increased inflammation and tissue damage that occurs in irf3-KO because of delayed immune response. Our results suggest that Irf3 plays a role in antiviral immunity of zebrafish by modulating critical immune signaling molecules and regulating antiviral immune genes.
Collapse
Affiliation(s)
- Sarithaa Raguvaran Sellaththurai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
15
|
Kolecka-Bednarczyk A, Frydrychowicz M, Budny B, Ruciński M, Dompe C, Gabryel P, Płachno BJ, Ruchała M, Ziemnicka K, Zieliński P, Budna-Tukan J. Specific Deletions of Chromosomes 3p, 5q, 13q, and 21q among Patients with G2 Grade of Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:8642. [PMID: 39201328 PMCID: PMC11354976 DOI: 10.3390/ijms25168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) leads as a primary cause of cancer-related premature mortality in Western populations. This study leverages cutting-edge gene-expression-profiling technologies to perform an in-depth molecular characterization of NSCLC specimens, with the objective of uncovering tumor-specific genomic alterations. By employing DNA microarray analysis, our research aims to refine the classification of NSCLC for early detection, guide molecular-targeted treatment approaches, enhance prognostication, and broaden the scientific understanding of the disease's biology. We identified widespread genomic abnormalities in our samples, including the recurrent loss of chromosomal regions 3p, 5q, 13q, and 21q and the gain of 12p. Furthermore, utilizing Metascape for bioinformatic analysis revealed critical biological pathways disrupted in NSCLC, offering promising leads for novel therapeutic interventions.
Collapse
Affiliation(s)
- Agata Kolecka-Bednarczyk
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Magdalena Frydrychowicz
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
| | - Claudia Dompe
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.F.); (C.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Piotr Gabryel
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Cracow, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (B.B.); (M.R.); (K.Z.)
| | - Paweł Zieliński
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (P.G.); (P.Z.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.R.); (J.B.-T.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
16
|
Crow MK, Olferiev M, Kirou KA. Standing on Shoulders: Interferon Research From Viral Interference to Lupus Pathogenesis and Treatment. Arthritis Rheumatol 2024; 76:1002-1012. [PMID: 38500017 DOI: 10.1002/art.42849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The discovery of interferon in the 1950s represents much more than the identification of the first cytokine and the key mediator of antiviral host defense. Defining the molecular nature and complexity of the type I interferon family, as well as its inducers and molecular mechanisms of action, was the work of investigators working at the highest level and producing insights of great consequence. Current knowledge of receptor-ligand interactions, cell signaling, and transcriptional regulation derives from studies of type I interferon. It is on the shoulders of the giants who produced that knowledge that others stand and have revealed critical mechanisms of the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. The design of novel therapeutics is informed by the advances in investigation of type I interferon, with the potential for important impact on patient management.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| |
Collapse
|
17
|
Jiao Z, Li W, Xiang C, Li D, Huang W, Nie P, Huang B. IRF11 synergizes with STAT1 and STAT2 to promote type I IFN production. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109656. [PMID: 38801844 DOI: 10.1016/j.fsi.2024.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Interferon regulatory factor 11 (IRF11), a fish specific member of IRF family, is a transcription factor known for its positive role in teleost antiviral defense by regulating IFN expression. Despite its recognized function, the precise mechanism of IRF11 in type I IFNs production remains largely unknown. In this study, we identified IRF11 in Japanese eel, Anguilla japonica, (AjIRF11) and determined its involvement in the later phase of fish IFN production. Our results demonstrate that IRF11-induced IFN production operates through ISRE binding. Mutations in each ISRE site within the promoter of AjIFN2 or AjIFN4 abolished IRF11-mediated activation of IFN promoters. In addition, the overexpression of AjIRF11 does not significantly impact the activation of AjIFN promoters induced by RLR-related signaling pathway proteins. Furthermore, IRF11-knockdown in ZFLs (zebrafish liver cells) has no effect on the RLRs-induced expression of zebrafish IFN-φ1 and IFN-φ3, indicating that IRF11 is not involved in the RLR-mediated IFN production. However, AjIRF11 can form transcription complexes with AjSTAT1 or AjSTAT2, or form homo- or heterodimers with AjIRF1 to stimulate the transcription of type I IFNs. Overall, it is shown in this study that IRF11 can act synergistically with STAT1 and/or STAT2 for the induction of IFN.
Collapse
Affiliation(s)
- Zhiyuan Jiao
- Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Wenxing Li
- Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Chao Xiang
- Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - DongLi Li
- Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen, 361021, PR China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, PR China
| | - Pin Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Bei Huang
- Fisheries College, Jimei University, Xiamen, 361021, PR China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, PR China.
| |
Collapse
|
18
|
Su J, Tan S, Li Y, Chen X, Liu J, Luo Y, Pan C, Zhang L. Clinical significance and biological function of interferon regulatory factor 1 in non-small cell lung cancer. Front Pharmacol 2024; 15:1413699. [PMID: 38915471 PMCID: PMC11194705 DOI: 10.3389/fphar.2024.1413699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
The clinical application and biological function of interferon regulatory factor 1 (IRF1) in non-small cell lung cancer (NSCLC) patients undergoing chemoimmunotherapy remain elusive. The aim of this study was to investigate the predictive and prognostic significance of IRF1 in NSCLC patients. We employed the cBioPortal database to predict frequency changes in IRF1 and explore its target genes. Bioinformatic methods were utilized to analyze the relationship between IRF1 and immune regulatory factors. Retrospective analysis of clinical samples was conducted to assess the predictive and prognostic value of IRF1 in chemoimmunotherapy. Additionally, A549 cells with varying IRF1 expression levels were constructed to investigate its effects on NSCLC cells, while animal experiments were performed to study the role of IRF1 in vivo. Our findings revealed that the primary mutation of IRF1 is deep deletion and it exhibits a close association with immune regulatory factors. KRAS and TP53 are among the target genes of IRF1, with interferon and IL-2 being the predominantly affected pathways. Clinically, IRF1 levels significantly correlate with the efficacy of chemoimmunotherapy. Patients with high IRF1 levels exhibited a median progression-free survival (mPFS) of 9.5 months, whereas those with low IRF1 levels had a shorter mPFS of 5.8 months. IRF1 levels positively correlate with PD-L1 distribution and circulating IL-2 levels. IL-2 enhances the biological function of IRF1 and recapitulates its role in vivo in the knockdown group. Therefore, IRF1 may possess predictive and prognostic value for chemoimmunotherapy in NSCLC patients through the regulation of the IL-2 inflammatory pathway.
Collapse
Affiliation(s)
- Jialin Su
- Thoracic Medicine Department, Hunan Cancer Hospital, Changsha, Hunan Province, China
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan Province, China
| | - Shuhua Tan
- Thoracic Medicine Department, Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Yuning Li
- Thoracic Medicine Department, Hunan Cancer Hospital, Changsha, Hunan Province, China
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan Province, China
| | - Xinglong Chen
- Thoracic Medicine Department, Hunan Cancer Hospital, Changsha, Hunan Province, China
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan Province, China
| | - Jiasi Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan Province, China
| | - Yongzhong Luo
- Thoracic Medicine Department, Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Changqie Pan
- Thoracic Medicine Department, Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Lemeng Zhang
- Thoracic Medicine Department, Hunan Cancer Hospital, Changsha, Hunan Province, China
| |
Collapse
|
19
|
Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol 2024; 133:112077. [PMID: 38615379 DOI: 10.1016/j.intimp.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells. Since these cells take part in the homeostasis of the immune system and dysfunction of them contributes to the initiation and progress of systemic lupus erythematosus (SLE), the roles of IRF4 in the SLE development becomes an important topic. Here we systemically discuss the biological characteristics of IRF4 in various immune cells and analyze the pathologic effects of IRF4 alteration in SLE and the potential targeting therapeutics of SLE.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China; Department of Clinical Immunology, the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou 510630, China
| | - Rongzhen Liang
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Song Guo Zheng
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
20
|
Xian Y, Wang X, Yu Y, Chen X. Transcriptomics confirms IRF1 as a key regulator of pyroptosis in diabetic retinopathy. Biochem Biophys Res Commun 2024; 709:149760. [PMID: 38554602 DOI: 10.1016/j.bbrc.2024.149760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a retinal microvascular complication caused by hyperglycemia, which can lead to visual impairment or blindness. Pyroptosis is a type of inflammation-related programmed cell death, activated by caspase-1, resulting in the maturation of IL-1β and IL-18 and the rupture of the cell membrane. RNA sequencing (RNA-seq) is a high-throughput sequencing technique that reveals the presence and quantity of RNA in the genome at a specific time point, i.e., the transcriptome. RNA-seq can analyze gene expression levels, splicing variants, mutations, fusions, editing and other post-transcriptional modifications, as well as gene expression differences between different samples or conditions. It has been widely used in biological and medical research, clinical diagnosis and new drug development. This study aimed to establish an in vitro model of diabetic retinopathy by culturing human retinal endothelial cells (HREC) with high glucose (30 mmol/L), and to detect their transcriptome expression by RNA-seq, screen for key genes related to pyroptosis, and validate the sequencing results by subsequent experiments. METHODS We used RNA-seq to detect the transcriptome expression differences between HREC cells cultured with high glucose and control group, and identified differentially expressed genes by GO/KEGG analysis. We constructed a PPI network and determined the key genes by Cytoscape software and CytoHubba plugin. We validated the expression of related factors by Western Blot, qPCR and ELISA. RESULTS We performed GO and KEGG analysis on the RNA-seq data and found differentially expressed genes. We used Cytoscape and CytoHubba plugin to screen out IRF1 as the key gene, and then detected the expression of IRF1 in HREC under high glucose and control group by Western Blot and qPCR. We found that the expression of Caspase-1, GSDMD and IL-1β proteins in HREC under high glucose increased, while the expression of these proteins decreased after the inhibition of IRF1 by siRNA. ELISA showed that the secretion of IL-1β in HREC under high glucose increased, while the inhibition of IRF1 reduced the secretion of IL-1β. These results indicate that IRF1 plays an important role in DR, and provides a new target and strategy for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Yang Xian
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China
| | - Xingli Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China
| | - Yong Yu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China
| | - XiaoLong Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
21
|
Geisert RD, Bazer FW, Lucas CG, Pfeiffer CA, Meyer AE, Sullivan R, Johns DN, Sponchiado M, Prather RS. Maternal recognition of pregnancy in the pig: A servomechanism involving sex steroids, cytokines and prostaglandins. Anim Reprod Sci 2024; 264:107452. [PMID: 38522133 DOI: 10.1016/j.anireprosci.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Riley Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
22
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
23
|
Berenji E, Valipour Motlagh A, Fathi M, Esmaeili M, Izadi T, Rezvanian P, Zanjirband M, Safaeinejad Z, Nasr-Esfahani MH. Discovering therapeutic possibilities for polycystic ovary syndrome by targeting XIST and its associated ceRNA network through the analysis of transcriptome data. Sci Rep 2024; 14:6180. [PMID: 38486041 PMCID: PMC10940664 DOI: 10.1038/s41598-024-56524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Long non-coding RNA (lncRNA) regulates many physiological processes by acting as competitive endogenous RNA (ceRNA). The dysregulation of lncRNA X-inactive specific transcript (XIST) has been shown in various human disorders. However, its role in the pathogenesis of polycystic ovary syndrome (PCOS) is yet to be explored. This study aimed to explore the underlying mechanism of XIST in the pathogenesis of PCOS, specifically through dataset functional analysis. GEO PCOS datasets including RNA-seq, microarray, and miRNA-seq in granulosa cells (GCs) and blood, were examined and comprehensively analyzed. Enrichment analysis, ROC curve constructions, lncRNA-miRNA-mRNA interaction network analyses, and qRT-PCR validation were performed followed by a series of drug signature screenings. Our results revealed significant dysregulation in the expression of 1131 mRNAs, 30 miRNAs, and XIST in GCs of PCOS patients compared to healthy individuals. Of the120 XIST-correlated upregulated genes, 25 were enriched in inflammation-related pathways. Additionally, 5 miRNAs were identified as negative regulators of XIST-correlated genes. Accordingly, a ceRNA network containing XIST-miRNAs-mRNAs interactions was constructed. Furthermore, 6 genes, including AQP9, ETS2, PLAU, PLEK, SOCS3, and TNFRSF1B served as both GCs and blood-based biomarkers. By analyzing the number of interactions among XIST, miRNAs, and mRNAs, we pinpointed ETS2 as the pivotal gene within the ceRNA network. Our findings reveal a novel XIST- hsa-miR-146a-5p, hsa-miR-144-3p, and hsa-miR-1271-5p-ETS2 axis that comprehensively elucidates the XIST-associated mechanism underlying PCOS onset. qRT-PCR analysis further confirmed the, overexpression of both XIST and ETS2 . Furthermore, our results demonstrated that XIST and ETS2 were correlated with some assisted reproductive technologies outcomes. Finally, we identified two novel compounds including, methotrexate/folate and threonine using drug-gene interaction databases for PCOS management. These findings provide novel insights into the molecular etiology, diagnosis, and potential therapeutic interventions for PCOS.
Collapse
Affiliation(s)
- Elahe Berenji
- ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Ali Valipour Motlagh
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Marziyeh Fathi
- ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Maryam Esmaeili
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Tayebeh Izadi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Parsa Rezvanian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Maryam Zanjirband
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran
| | - Zahra Safaeinejad
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, P.O. Box 816513-1378, Isfahan, Iran.
| |
Collapse
|
24
|
Ma J, Chen J, Cui J, Liu W, Qu Y, Lu X, Wang A, Huang B, Wang X. A molluscan IRF interacts with IKKα/β family protein and modulates NF-κB and MAPK activity. Int J Biol Macromol 2024; 256:128319. [PMID: 38000607 DOI: 10.1016/j.ijbiomac.2023.128319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
Interferon regulatory factor (IRF) family proteins are key transcription factors involved in vital physiological processes such as immune defense. However, the function of IRF in invertebrates, especially in marine shellfish is not clear. In this study, a new IRF gene (CfIRF2) was identified in the Zhikong scallop, Chlamys farreri, and its immune function was analyzed. CfIRF2 has an open reading frame of 1107 bp encoding 368 amino acids. The N-terminus of CfIRF2 consists of a typical IRF domain, with conserved amino acid sequences. Phylogenetic analysis suggested close evolutionary relationship with shellfish IRF1 subfamily proteins. Expression pattern analysis showed that CfIRF2 mRNA was expressed in all tissues, with the highest expression in the hepatopancreas and gills. CfIRF2 gene expression was substantially enhanced by a pathogenic virus (such as acute viral necrosis virus) and poly(I:C) challenge. Co-immunoprecipitation assay identified CfIRF2 interaction with the IKKα/β family protein CfIKK1 of C. farreri, demonstrating a unique signal transduction mechanism in marine mollusks. Moreover, CfIRF2 interacted with itself to form homologous dimers. Overexpression of CfIRF2 in HEK293T cells activated reporter genes containing interferon stimulated response elements and NF-κB genes in a dose-dependent manner and promoted the phosphorylation of protein kinases (JNK, Erk1/2, and P38). Our results provide insights into the functions of IRF in mollusks innate immunity and also provide valuable information for enriching comparative immunological theory for the prevention of diseases in scallop farming.
Collapse
Affiliation(s)
- Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Jie Cui
- School of Agriculture, Ludong University, Yantai, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Yifan Qu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiuqi Lu
- School of Agriculture, Ludong University, Yantai, China
| | - Anhao Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China.
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
25
|
Liu Y, He Y, Cao J, Lu H, Zou R, Zuo Z, Li R, Zhang Y, Sun J. Correlative analysis of transcriptome and proteome in Penaeus vannamei reveals key signaling pathways are involved in IFN-like antiviral regulation mediated by interferon regulatory factor (PvIRF). Int J Biol Macromol 2023; 253:127138. [PMID: 37776923 DOI: 10.1016/j.ijbiomac.2023.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Interferon regulatory factors (IRFs) are crucial transcription factors that regulate interferon (IFN) induction in response to pathogen invasion. The regulatory mechanism of IRF has been well studied in vertebrates, but little has been known in arthropods. Therefore, in order to obtain new insights into the potential molecular mechanism of Peneaus vannamei IRF (PvIRF) in response to viral infection, comprehensive comparative analysis of the transcriptome and proteome profiles in shrimp infected with WSSV after knocking down PvIRF was conducted by using RNA sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ). The sequence characterization, molecular functional evolution and 3D spatial structure of PvIRF were analyzed by using bioinformatics methods. PvIRF share the higher homology with different species in N-terminal end (containing DNA binding domain (DBD) including DNA sequence recognition sites and metal binding site) than that in C-terminal end. Within 4 IRF subfamilies of vertebrates, PvIRF had closer relationship with IRF1 subfamily. The DBD of PvIRF and C. gigas IRF1a were composed of α-helices and β-folds which was similar with the DBD structure of M. musculus IRF2. Interestingly, different from the five Tryptophan repeats highly homologous in the DBD of vertebrate IRF, the first and fifth tryptophans of PvIRF mutate to Phenylalanine and Leucine respectively, while the mutations were conserved among shrimp IRFs. RNAi knockdown of PvIRF gene by double-strand RNA could obviously promote the in vivo propagation of WSSV in shrimp and increase the mortality of WSSV-infected shrimp. It suggested that PvIRF was involved in inhibiting the replication of WSSV in shrimp. A total of 8787 transcripts and 2846 proteins were identified with significantly differential abundances in WSSV-infected shrimp after PvIRF knockdown, among which several immune-related members were identified and categorized into 10 groups according to their possible functions. Furthermore, the variation of expression profile from members of key signaling pathways involving JAK/STAT and Toll signaling pathway implied that they might participate IRF-mediated IFN-like regulation in shrimp. Correlative analyses indicated that 722 differentially expressed proteins (DEPs) shared the same expression profiles with their corresponding transcripts, including recognition-related proteins (CTLs and ITGs), chitin-binding proteins (peritrophin), and effectors (ALFs and SWD), while 401 DEPs with the opposite expression profiles across the two levels emphasized the critical role of post-transcriptional and post-translational modification. The results provide candidate signaling pathway including pivotal genes and proteins involved in the regulatory mechanism of interferon mediated by IRF on shrimp antiviral response. This is the first report in crustacean to explore the IFN-like antiviral regulation pathway mediated by IRF on the basis of transcriptome and proteomics correlative analysis, and will provide new ideas for further research on innate immune and defense mechanisms of crustacean.
Collapse
Affiliation(s)
- Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yuxin He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinlai Cao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Hangjia Lu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ruifeng Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ran Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
26
|
Song X, Zhang T, Xing B, Wang J, Zhai X, Wang X, Miao R, Li T, Wei L. Role of Cherry Valley duck IRF1 mediated signal pathway in host anti-duck Tembusu virus. Vet Immunol Immunopathol 2023; 265:110666. [PMID: 37979488 DOI: 10.1016/j.vetimm.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
China is the country with the largest amount of duck breeding as well as duck meat and egg production. In recent years, the emergence and spread of duck Tembusu virus (DTMUV) has become one of the important factors in reducing the amount of duck slaughter, which seriously endangers the duck breeding industry in our country. In-depth research on the mechanism of duck innate immunity facilitates the exploration of new models for the treatment of DTMUV infection. IRF1 can induce the expression of many antiviral immune factors in the animal organism and play an important role in the innate immune response. In this study, we used interfering RNA to knock down the IRF1 gene in DEF cells and then the cells were infected with DTMUV. We found that knockdown of IRF1 promoted DTMUV replication at an early stage and caused downregulation of the expression of several major pattern recognition receptors (PRRs), interleukins (IL), interferons (IFN), antiviral proteins, and MHC molecules by assay, showing that the duIRF1-mediated signaling pathway plays an extremely important role in DTMUV-induced host innate immunity. In addition, we constructed the recombinant expression plasmid pET32a(+)-duIRF1-His, and finally prepared the polyclonal antibody of duIRF1 with good specificity, hoping to provide a detection means for research on the mechanism of IRF1 in innate immunity in our laboratory and in this field.
Collapse
Affiliation(s)
- Xingdong Song
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Tingting Zhang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250024, China
| | - Bin Xing
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Jinchao Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xinyu Zhai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xiuyuan Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Runchun Miao
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Tianxu Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Liangmeng Wei
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
27
|
Li K, Xia Y, He J, Wang J, Li J, Ye M, Jin X. The SUMOylation and ubiquitination crosstalk in cancer. J Cancer Res Clin Oncol 2023; 149:16123-16146. [PMID: 37640846 DOI: 10.1007/s00432-023-05310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The cancer occurrence and progression are largely affected by the post-translational modifications (PTMs) of proteins. Currently, it has been shown that the relationship between ubiquitination and SUMOylation is highly complex and interactive. SUMOylation affects the process of ubiquitination and degradation of substrates. Contrarily, SUMOylation-related proteins are also regulated by the ubiquitination process thus altering their protein levels or activity. Emerging evidence suggests that the abnormal regulation between this crosstalk may lead to tumorigenesis. PURPOSE In this review, we have discussed the study of the relationship between ubiquitination and SUMOylation, as well as the possibility of a corresponding application in tumor therapy. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION The interaction between ubiquitination and SUMOylation is crucial for the occurrence and development of cancer. A greater understanding of the crosstalk of SUMOylation and ubiquitination may be more conducive to the development of more selective and effective SUMOylation inhibitors, as well as a promotion of synergy with other tumor treatment strategies.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yongming Xia
- Department of Oncology, Yuyao People's Hospital of Zhejiang, Yuyao, 315400, Zhejiang, China
| | - Jian He
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jie Wang
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jingyun Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
28
|
Thouenon R, Kracker S. Human inborn errors of immunity associated with IRF4. Front Immunol 2023; 14:1236889. [PMID: 37809068 PMCID: PMC10556498 DOI: 10.3389/fimmu.2023.1236889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The transcription factor interferon regulatory factor 4 (IRF4) belongs to the IRF family and has several important functions for the adaptive immune response. Mutations affecting IRF family members IRF1, IRF3, IRF7, IRF8, or IRF9 have been described in patients presenting with inborn errors of immunity (IEI) highlighting the importance of these factors for the cellular host defense against mycobacterial and/or viral infections. IRF4 deficiency and haploinsufficiency have been associated with IEI. More recently, two novel IRF4 disease-causing mechanisms have been described due to the characterization of IEI patients presenting with cellular immunodeficiency associated with agammaglobulinemia. Here, we review the phenotypes and physiopathological mechanisms underlying IEI of IRF family members and, in particular, IRF4.
Collapse
Affiliation(s)
- Romane Thouenon
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR, Paris, France
| | - Sven Kracker
- Université Paris Cité, Paris, France
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR, Paris, France
| |
Collapse
|
29
|
Smith JR, Dowling JW, McFadden MI, Karp A, Schwerk J, Woodward JJ, Savan R, Forero A. MEF2A suppresses stress responses that trigger DDX41-dependent IFN production. Cell Rep 2023; 42:112805. [PMID: 37467105 PMCID: PMC10652867 DOI: 10.1016/j.celrep.2023.112805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular stress in the form of disrupted transcription, loss of organelle integrity, or damage to nucleic acids can elicit inflammatory responses by activating signaling cascades canonically tasked with controlling pathogen infections. These stressors must be kept in check to prevent unscheduled activation of interferon, which contributes to autoinflammation. This study examines the role of the transcription factor myocyte enhancing factor 2A (MEF2A) in setting the threshold of transcriptional stress responses to prevent R-loop accumulation. Increases in R-loops lead to the induction of interferon and inflammatory responses in a DEAD-box helicase 41 (DDX41)-, cyclic GMP-AMP synthase (cGAS)-, and stimulator of interferon genes (STING)-dependent manner. The loss of MEF2A results in the activation of ATM and RAD3-related (ATR) kinase, which is also necessary for the activation of STING. This study identifies the role of MEF2A in sustaining transcriptional homeostasis and highlights the role of ATR in positively regulating R-loop-associated inflammatory responses.
Collapse
Affiliation(s)
- Julian R Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jack W Dowling
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew I McFadden
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Karp
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Discovery PREP, The Ohio State University, Columbus, OH 43210, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Cancer Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Zhang D, Irving AT. Antiviral effects of interferon-stimulated genes in bats. Front Cell Infect Microbiol 2023; 13:1224532. [PMID: 37661999 PMCID: PMC10472940 DOI: 10.3389/fcimb.2023.1224532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
The interferon pathway is the first line of defense in viral infection in all mammals, and its induction stimulates broad expression of interferon-stimulated genes (ISGs). In mice and also humans, the antiviral function of ISGs has been extensively studied. As an important viral reservoir in nature, bats can coexist with a variety of pathogenic viruses without overt signs of disease, yet only limited data are available for the role of ISGs in bats. There are multiple species of bats and work has begun deciphering the differences and similarities between ISG function of human/mouse and different bat species. This review summarizes the current knowledge of conserved and bat-specific-ISGs and their known antiviral effector functions.
Collapse
Affiliation(s)
- Dan Zhang
- Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Aaron T. Irving
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Infection, Immunity & Cancer, Zhejiang University-University of Edinburgh Institute, Haining, China
- BIMET - Biomedical and Health Translational Research Centre of Zhejiang Province, China
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Zheng Y, Zhang H, Luo Q, Sha H, Li G, Mu X, He Y, Kong W, Wu A, Zhang H, Yu X. Research Progress on NSP11 of Porcine Reproductive and Respiratory Syndrome Virus. Vet Sci 2023; 10:451. [PMID: 37505856 PMCID: PMC10384725 DOI: 10.3390/vetsci10070451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a virulent infectious disease caused by the PRRS virus (PRRSV). The non-structural protein 11 (NSP11) of PRRSV is a nidovirus-specific endonuclease (NendoU), which displays uridine specificity and catalytic functions conserved throughout the entire NendoU family and exerts a wide range of biological effects. This review discusses the genetic evolution of NSP11, its effects on PRRSV replication and virulence, its interaction with other PRRSV and host proteins, its regulation of host immunity, the conserved characteristics of its enzyme activity (NendoU), and its diagnosis, providing an essential theoretical basis for in-depth studies of PRRSV pathogenesis and vaccine design.
Collapse
Affiliation(s)
- Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xuanru Mu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yingxin He
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Anfeng Wu
- Maccura Biotechnology Co., Ltd., Chengdu 510000, China
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xingang Yu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
32
|
Sekrecka A, Kluzek K, Sekrecki M, Boroujeni ME, Hassani S, Yamauchi S, Sada K, Wesoly J, Bluyssen HAR. Time-dependent recruitment of GAF, ISGF3 and IRF1 complexes shapes IFNα and IFNγ-activated transcriptional responses and explains mechanistic and functional overlap. Cell Mol Life Sci 2023; 80:187. [PMID: 37347298 DOI: 10.1007/s00018-023-04830-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
To understand in detail the transcriptional and functional overlap of IFN-I- and IFN-II-activated responses, we used an integrative RNAseq-ChIPseq approach in Huh7.5 cells and characterized the genome-wide role of pSTAT1, pSTAT2, IRF9 and IRF1 in time-dependent ISG expression. For the first time, our results provide detailed insight in the timely steps of IFNα- and IFNγ-induced transcription, in which pSTAT1- and pSTAT2-containing ISGF3 and GAF-like complexes and IRF1 are recruited to individual or combined ISRE and GAS composite sites in a phosphorylation- and time-dependent manner. Interestingly, composite genes displayed a more heterogeneous expression pattern, as compared to GAS (early) and ISRE genes (late), with the time- and phosphorylation-dependent recruitment of GAF, ISGF3 and IRF1 after IFNα stimulation and GAF and IRF1 after IFNγ. Moreover, functional composite genes shared features of GAS and ISRE genes through transcription factor co-binding to closely located sites, and were able to sustain IFN responsiveness in STAT1-, STAT2-, IRF9-, IRF1- and IRF9/IRF1-mutant Huh7.5 cells compared to Wt cells. Thus, the ISRE + GAS composite site acted as a molecular switch, depending on the timely available components and transcription factor complexes. Consequently, STAT1, STAT2 and IRF9 were identified as functional composite genes that are part of a positive feedback loop controlling long-term IFNα and IFNγ responses. More important, in the absence of any one of the components, the positive feedback regulation of the ISGF3 and GAF components appeared to be preserved. Together, these findings provide further insight in the existence of a novel ISRE + GAS composite-dependent intracellular amplifier circuit prolonging ISG expression and controlling cellular responsiveness to different types of IFNs and subsequent antiviral activity. It also offers an explanation for the existing molecular and functional overlap between IFN-I- and IFN-II-activated ISG expression.
Collapse
Affiliation(s)
- Agata Sekrecka
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kluzek
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Michal Sekrecki
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mahdi Eskandarian Boroujeni
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Sanaz Hassani
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Shota Yamauchi
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kiyonao Sada
- Department of Genome Science and Microbiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Joanna Wesoly
- High Throughput Technologies Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A R Bluyssen
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
33
|
Pereira M, Gazzinelli RT. Regulation of innate immune signaling by IRAK proteins. Front Immunol 2023; 14:1133354. [PMID: 36865541 PMCID: PMC9972678 DOI: 10.3389/fimmu.2023.1133354] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) families are of paramount importance in coordinating the early immune response to pathogens. Signaling via most TLRs and IL-1Rs is mediated by the protein myeloid differentiation primary-response protein 88 (MyD88). This signaling adaptor forms the scaffold of the myddosome, a molecular platform that employs IL-1R-associated kinase (IRAK) proteins as main players for transducing signals. These kinases are essential in controlling gene transcription by regulating myddosome assembly, stability, activity and disassembly. Additionally, IRAKs play key roles in other biologically relevant responses such as inflammasome formation and immunometabolism. Here, we summarize some of the key aspects of IRAK biology in innate immunity.
Collapse
Affiliation(s)
- Milton Pereira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| | - Ricardo T. Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States,Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil,Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, SP, Brazil,*Correspondence: Milton Pereira, ; Ricardo T. Gazzinelli,
| |
Collapse
|
34
|
Rosain J, Neehus AL, Manry J, Yang R, Le Pen J, Daher W, Liu Z, Chan YH, Tahuil N, Türel Ö, Bourgey M, Ogishi M, Doisne JM, Izquierdo HM, Shirasaki T, Le Voyer T, Guérin A, Bastard P, Moncada-Vélez M, Han JE, Khan T, Rapaport F, Hong SH, Cheung A, Haake K, Mindt BC, Pérez L, Philippot Q, Lee D, Zhang P, Rinchai D, Al Ali F, Ahmad Ata MM, Rahman M, Peel JN, Heissel S, Molina H, Kendir-Demirkol Y, Bailey R, Zhao S, Bohlen J, Mancini M, Seeleuthner Y, Roelens M, Lorenzo L, Soudée C, Paz MEJ, González ML, Jeljeli M, Soulier J, Romana S, L'Honneur AS, Materna M, Martínez-Barricarte R, Pochon M, Oleaga-Quintas C, Michev A, Migaud M, Lévy R, Alyanakian MA, Rozenberg F, Croft CA, Vogt G, Emile JF, Kremer L, Ma CS, Fritz JH, Lemon SM, Spaan AN, Manel N, Abel L, MacDonald MR, Boisson-Dupuis S, Marr N, Tangye SG, Di Santo JP, Zhang Q, Zhang SY, Rice CM, Béziat V, Lachmann N, Langlais D, Casanova JL, Gros P, Bustamante J. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 2023; 186:621-645.e33. [PMID: 36736301 PMCID: PMC9907019 DOI: 10.1016/j.cell.2022.12.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Wassim Daher
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Natalia Tahuil
- Department of Immunology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Özden Türel
- Department of Pediatric Infectious Disease, Bezmialem Vakif University Faculty of Medicine, 34093 İstanbul, Turkey
| | - Mathieu Bourgey
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computation Genomics, Montreal, QC H3A 0G1, Canada
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Helena M Izquierdo
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Takayoshi Shirasaki
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Cheung
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura Pérez
- Department of Immunology and Rheumatology, "J. P. Garrahan" National Hospital of Pediatrics, C1245 CABA Buenos Aires, Argentina
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Danyel Lee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | | | | | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Umraniye Education and Research Hospital, Department of Pediatric Genetics, 34764 İstanbul, Turkey
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Marie Roelens
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - María Elvira Josefina Paz
- Department of Pediatric Pathology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - María Laura González
- Central Laboratory, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, 75014 Paris, France
| | - Jean Soulier
- Inserm/CNRS U944/7212, Paris Cité University, 75006 Paris, France; Hematology Laboratory, Saint-Louis Hospital, AP-HP, 75010 Paris, France; National Reference Center for Bone Marrow Failures, Saint-Louis and Robert Debré Hospitals, 75010 Paris, France
| | - Serge Romana
- Rare Disease Genomic Medicine Department, Paris Cité University, Necker Hospital for Sick Children, 75015 Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | | - Flore Rozenberg
- Department of Virology, Paris Cité University, Cochin Hospital, 75014 Paris, France
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Guillaume Vogt
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes, Lille University, Lille Pasteur Institute, Lille University Hospital, 59000 Lille, France; Neglected Human Genetics Laboratory, Paris Cité University, 75006 Paris, France
| | - Jean-François Emile
- Pathology Department, Ambroise-Paré Hospital, AP-HP, 92100 Boulogne-Billancourt, France
| | - Laurent Kremer
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Stanley M Lemon
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, the Netherlands
| | - Nicolas Manel
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany; Department of Pediatric Pulmonology, Allergology and Neonatology and Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Philippe Gros
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
35
|
Li F, Liu W, Chen J, Huang B, Zheng Y, Ma J, Cai S, Li L, Liu F, Wang X, Wei L, Liu Y, Zhang M, Han Y, Zhang X, Wang X. CfIRF8-like interacts with the TBK1/IKKε family protein and regulates host antiviral innate immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108497. [PMID: 36539167 DOI: 10.1016/j.fsi.2022.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The interferon regulatory factor (IRF) family, a class of transcription factors with key functions, are important in host innate immune defense and stress response. However, further research is required to determine the functions of IRFs in invertebrates. In this study, the coding sequence of an IRF gene was obtained from the Zhikong scallop (Chlamys farreri) and named CfIRF8-like. The open reading frame of CfIRF8-like was 1371 bp long and encoded 456 amino acids. Protein domain prediction revealed a typical IRF domain in the N-terminus of the CfIRF8-like protein and a typical IRF3 domain in the C-terminus. Multiple sequence alignment confirmed the conservation of the amino acid sequences of these two functional protein domains. Phylogenetic analysis showed that CfIRF8-like clustered with mollusk IRF8 proteins and then clustered with vertebrate IRF3, IRF4, and IRF5 subfamily proteins. Quantitative real-time PCR detected CfIRF8-like mRNA in all tested scallop tissues, with the highest expression in the gills. Simultaneously, the expression of CfIRF8-like transcripts in gills was significantly induced by polyinosinic-polycytidylic acid challenge. The results of protein interaction experiments showed that CfIRF8-like could directly bind the TBK1/IKKε family protein of scallop (CfIKK2) via its N-terminal IRF domain, revealing the presence of an ancient functional TBK1/IKKε-IRF signaling axis in scallops. Finally, dual-luciferase reporter assay results showed that the overexpression of CfIRF8-like in human embryonic kidney 293T cells could specifically activate the interferon β promoter of mammals and the interferon-stimulated response element promoter in dose-dependent manners. The findings of this preliminary analysis of the signal transduction and immune functions of scallop CfIRF8-like protein lay a foundation for an in-depth understanding of the innate immune function of invertebrate IRFs and the development of comparative immunology. The experimental results also provide theoretical support for the breeding of scallop disease-resistant strains.
Collapse
Affiliation(s)
- Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China.
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Shuai Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, China; Ocean School, Yantai University, Yantai, China
| | - Fengchen Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
36
|
Liu W, Li F, Ma J, Chen J, Huang B, Li L, Fan N, Wang X, Zheng Y, Wang X, Wei L, Liu Y, Zhang M, Liu F, Qi Y, Wang X. Scallop interferon regulatory factor 1 interacts with myeloid differentiation primary response protein 88 and is crucial for antiviral innate immunity. Int J Biol Macromol 2022; 222:1250-1263. [PMID: 36191792 DOI: 10.1016/j.ijbiomac.2022.09.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
The interferon regulatory factor (IRF) family comprises transcription factors that are crucial in immune defense, stress response, reproduction, and development. However, the function of IRFs in invertebrates is unclear. Here, the full-length cDNA of an IRF-encoding gene (CfIRF1) in the Zhikong scallop (Chlamys farreri) comprising 2007 bp with an open reading frame of 1053 bp that encoded 350 amino acids was characterized, and its immune function was studied. The CfIRF1 protein contained a typical IRF domain at its N-terminus. CfIRF1 was clustered with other proteins of the IRF1 subfamily, implying that they were closely related. CfIRF1 mRNA transcripts could be detected in all tested scallop tissues, with the highest expression observed in the gills and hepatopancreas. CfIRF1 expression was significantly induced by the polyinosinic-polycytidylic acid and acute viral necrosis virus challenge. CfIRF1 could directly interact with myeloid differentiation primary response protein 88 (MyD88), the key adaptor molecule of the toll-like receptor signaling pathway. CfIRF1 did not interact with scallop IKK1 (IKKα/β family protein), IKK2, IKK3 (IKKε/TBK1 family protein), or with other IRF family proteins (IRF2 or IRF3). However, CfIRF1 interacted with itself to form a homodimer. CfIRF1 could specifically activate the interferon β promoter of mammals and the promoter containing the interferon-stimulated response element (ISRE) in a dose-dependent manner. The truncated form of CfIRF1 had a significantly reduced ISRE activation ability, indicating that structural integrity was crucial for CfIRF1 to function as a transcription factor. Our findings provide insights into the functions of mollusk IRFs in innate immunity. The research results also provide valuable information that enriches the theory of comparative immunology and that can help prevent diseases in scallop farming.
Collapse
Affiliation(s)
- Wenjuan Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Fangshu Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jilv Ma
- School of Agriculture, Ludong University, Yantai, China
| | - Jiwen Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China.
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, China; Ocean School, Yantai University, Yantai, China
| | - Nini Fan
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Xiaomei Wang
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Fengchen Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
37
|
Yang X, Diaz V, Huang H. The Role of Interferon Regulatory Factor 1 in Regulating Microglial Activation and Retinal Inflammation. Int J Mol Sci 2022; 23:14664. [PMID: 36498991 PMCID: PMC9739975 DOI: 10.3390/ijms232314664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS). Microglial activation plays a prominent role in neuroinflammation and CNS diseases. However, the underlying mechanisms of microglial activation are not well understood. Here, we report that the transcription factor interferon regulatory factor 1 (IRF1) plays critical roles in microglial activation and retinal inflammation by regulating pro- and anti-inflammatory gene expression. IRF1 expression was upregulated in activated retinal microglia compared to those at the steady state. IRF1 knockout (KO) in BV2 microglia cells (BV2ΔIRF1) created by CRISPR/Cas9 genome-editing technique causes decreased microglia proliferation, migration, and phagocytosis. IRF1-KO decreased pro-inflammatory M1 marker gene expression induced by lipopolysaccharides (LPS), such as IL-6, COX-2, and CCL5, but increased anti-inflammatory M2 marker gene expression by IL-4/13, such as Arg-1, CD206, and TGF-β. Compared to the wild-type cells, microglial-conditioned media (MCM) of activated BV2ΔIRF1 cell cultures reduced toxicity or death to several retinal cells, including mouse cone photoreceptor-like 661 W cells, rat retinal neuron precursor R28 cells, and human ARPE-19 cells. IRF1 knockdown by siRNA alleviated microglial activation and retinal inflammation induced by LPS in mice. Together, the findings suggest that IRF1 plays a vital role in regulating microglial activation and retinal inflammation and, therefore, may be targeted for treating inflammatory and degenerative retinal diseases.
Collapse
Affiliation(s)
- Xu Yang
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Aier Eye Hospital Group, Aier Eye Institute, Changsha 410015, China
| | - Valeria Diaz
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Hu Huang
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
38
|
Zhang Y, Zhang J, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Wang Z, Wang Z, Gu M, Tan R. IRF1/ZNF350/GPX4-mediated ferroptosis of renal tubular epithelial cells promote chronic renal allograft interstitial fibrosis. Free Radic Biol Med 2022; 193:579-594. [PMID: 36356714 DOI: 10.1016/j.freeradbiomed.2022.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Renal interstitial fibrosis and tubular atrophy are essential pathological characteristics of chronic renal allograft dysfunction (CAD). Herein, we revealed that ferroptosis of renal tubular epithelial cells (RTECs) might contribute to renal tubular injury in CAD. Mechanistically, TNF-α induced ferroptosis by inhibiting GPX4 transcription through upregulating IRF1 in RTECs. IRF1 could bind with ZNF350 to form a transcription factor complex, which directly binds to the GPX4 promoter region to inhibit GPX4 transcription. Ferroptotic RTECs might secrete profibrotic factors, including PDGF-BB and IL-6, to activate neighboring fibroblasts to transform into myofibroblasts or induce EMT in adjacent RTECs. In conclusion, our results confirmed a novel role of ferroptosis in renal tubular injury and interstitial fibrosis, thereby providing insights into the pathogenesis of chronic renal allograft interstitial fibrosis during CAD.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dengyuan Feng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeping Gui
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhou Hang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Jondle CN, Sylvester PA, Schmalzriedt DL, Njoya K, Tarakanova VL. The Antagonism between the Murine Gammaherpesvirus Protein Kinase and Global Interferon Regulatory Factor 1 Expression Shapes the Establishment of Chronic Infection. J Virol 2022; 96:e0126022. [PMID: 36169331 PMCID: PMC9599343 DOI: 10.1128/jvi.01260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect most vertebrate species and are associated with B cell lymphomas. Manipulation of B cell differentiation is critical for natural infection and lymphomagenesis driven by gammaherpesviruses. Specifically, human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) drive differentiation of infected naive B cells into the germinal center to achieve exponential increase in the latent viral reservoir during the establishment of chronic infection. Infected germinal center B cells are also the target of viral lymphomagenesis, as most EBV-positive B cell lymphomas bear the signature of the germinal center response. All gammaherpesviruses encode a protein kinase, which, in the case of Kaposi's sarcoma-associated herpesvirus (KSHV) and MHV68, is sufficient and necessary, respectively, to drive B cell differentiation in vivo. In this study, we used the highly tractable MHV68 model of chronic gammaherpesvirus infection to unveil an antagonistic relationship between MHV68 protein kinase and interferon regulatory factor 1 (IRF-1). IRF-1 deficiency had minimal effect on the attenuated lytic replication of the kinase-null MHV68 in vivo. In contrast, the attenuated latent reservoir of the kinase-null MHV68 was partially to fully rescued in IRF-1-/- mice, along with complete rescue of the MHV68-driven germinal center response. Thus, the novel viral protein kinase-IRF-1 antagonism was largely limited to chronic infection dominated by viral latency and was less relevant for lytic replication during acute infection and in vitro. Given the conserved nature of the viral and host protein, the antagonism between the two, as defined in this study, may regulate gammaherpesvirus infection across species. IMPORTANCE Gammaherpesviruses are prevalent pathogens that manipulate physiological B cell differentiation to establish lifelong infection. This manipulation is also involved in gammaherpesvirus-driven B cell lymphomas, as differentiation of latently infected B cells through the germinal center response targets these for transformation. In this study, we define a novel antagonistic interaction between a conserved gammaherpesvirus protein kinase and a host antiviral and tumor suppressor transcription factor. The virus-host antagonism unveiled in this study was critically important to shape the magnitude of gammaherpesvirus-driven germinal center response. In contrast, the virus-host antagonism was far less relevant for lytic viral replication in vitro and during acute infection in vivo, highlighting the emerging concept that nonoverlapping mechanisms shape the parameters of acute and chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- C. N. Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - P. A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - D. L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - K. Njoya
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - V. L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
40
|
Moorman HR, Reategui Y, Poschel DB, Liu K. IRF8: Mechanism of Action and Health Implications. Cells 2022; 11:2630. [PMID: 36078039 PMCID: PMC9454819 DOI: 10.3390/cells11172630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor of the IRF protein family. IRF8 was originally identified as an essentialfactor for myeloid cell lineage commitment and differentiation. Deletion of Irf8 leads to massive accumulation of CD11b+Gr1+ immature myeloid cells (IMCs), particularly the CD11b+Ly6Chi/+Ly6G- polymorphonuclear myeloid-derived suppressor cell-like cells (PMN-MDSCs). Under pathological conditions such as cancer, Irf8 is silenced by its promoter DNA hypermethylation, resulting in accumulation of PMN-MDSCs and CD11b+ Ly6G+Ly6Clo monocytic MDSCs (M-MDSCs) in mice. IRF8 is often silenced in MDSCs in human cancer patients. MDSCs are heterogeneous populations of immune suppressive cells that suppress T and NK cell activity to promote tumor immune evasion and produce growth factors to exert direct tumor-promoting activity. Emerging experimental data reveals that IRF8 is also expressed in non-hematopoietic cells. Epithelial cell-expressed IRF8 regulates apoptosis and represses Osteopontin (OPN). Human tumor cells may use the IRF8 promoter DNA methylation as a mechanism to repress IRF8 expression to advance cancer through acquiring apoptosis resistance and OPN up-regulation. Elevated OPN engages CD44 to suppress T cell activation and promote tumor cell stemness to advance cancer. IRF8 thus is a transcription factor that regulates both the immune and non-immune components in human health and diseases.
Collapse
Affiliation(s)
- Hannah R. Moorman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yazmin Reategui
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
41
|
Jian Z, Ma R, Zhu L, Deng H, Li F, Zhao J, Deng L, Lai S, Sun X, Tang H, Xu Z. Evasion of interferon-mediated immune response by arteriviruses. Front Immunol 2022; 13:963923. [PMID: 36091073 PMCID: PMC9454096 DOI: 10.3389/fimmu.2022.963923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
IFN is the most potent antiviral cytokine required for the innate and adaptive immune responses, and its expression can help the host defend against viral infection. Arteriviruses have evolved strategies to antagonize the host cell’s innate immune responses, interfering with IFN expression by interfering with RIG, blocking PRR, obstructing IRF-3/7, NF-κB, and degrading STAT1 signaling pathways, thereby assisting viral immune evasion. Arteriviruses infect immune cells and may result in persistence in infected hosts. In this article, we reviewed the strategies used by Arteriviruses to antagonize IFN production and thwart IFN-activated antiviral signaling, mainly including structural and nonstructural proteins of Arteriviruses encoding IFN antagonists directly or indirectly to disrupt innate immunity. This review will certainly provide a better insight into the pathogenesis of the arthritis virus and provide a theoretical basis for developing more efficient vaccines.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Rui Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
- *Correspondence: Zhiwen Xu,
| |
Collapse
|
42
|
CD24 Expression Dampens the Basal Antiviral State in Human Neuroblastoma Cells and Enhances Permissivity to Zika Virus Infection. Viruses 2022; 14:v14081735. [PMID: 36016357 PMCID: PMC9416398 DOI: 10.3390/v14081735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) exhibits distinct selectivity for infection of various cells and tissues, but how host cellular factors modulate varying permissivity remains largely unknown. Previous studies showed that the neuroblastoma cell line SK-N-AS (expressing low levels of cellular protein CD24) was highly restricted for ZIKV infection, and that this restriction was relieved by ectopic expression of CD24. We tested the hypothesis that CD24 expression allowed ZIKV replication by suppression of the antiviral response. SK-N-AS cells expressing an empty vector (termed CD24-low cells) showed elevated basal levels of phosphorylated STAT1, IRF-1, IKKE, and NFκB. In response to exogenously added type I interferon (IFN-I), CD24-low cells had higher-level induction of antiviral genes and activity against two IFN-I-sensitive viruses (VSV and PIV5-P/V) compared to SK-N-AS cells with ectopic CD24 expression (termed CD24-high cells). Media-transfer experiments showed that the inherent antiviral state of CD24-low cells was not dependent on a secreted factor such as IFN-I. Transcriptomics analysis revealed that CD24 expression decreased expression of genes involved in intracellular antiviral pathways, including IFN-I, NFκB, and Ras. Our findings that CD24 expression in neuroblastoma cells represses intracellular antiviral pathways support the proposal that CD24 may represent a novel biomarker in cancer cells for susceptibility to oncolytic viruses.
Collapse
|
43
|
BMSC-derived exosomes promote tendon-bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats. Stem Cell Res Ther 2022; 13:295. [PMID: 35841008 PMCID: PMC9284827 DOI: 10.1186/s13287-022-02975-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. Methods Highly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro. The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. Results Bioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. Conclusions BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02975-0.
Collapse
|
44
|
Tawaratsumida K, Redecke V, Wu R, Kuriakose J, Bouchard JJ, Mittag T, Lohman BK, Mishra A, High AA, Häcker H. A phospho-tyrosine-based signaling module using SPOP, CSK, and LYN controls TLR-induced IRF activity. SCIENCE ADVANCES 2022; 8:eabq0084. [PMID: 35857476 PMCID: PMC9269885 DOI: 10.1126/sciadv.abq0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Toll-like receptors (TLRs) recognize pathogen- and host-derived factors and control immune responses via the adaptor protein MyD88 and members of the interferon regulatory transcription factor (IRF) family. IRFs orchestrate key effector functions, including cytokine release, cell differentiation, and, under certain circumstances, inflammation pathology. Here, we show that IRF activity is generically controlled by the Src kinase family member LYN, which phosphorylates all TLR-induced IRFs at a conserved tyrosine residue, resulting in K48-linked polyubiquitination and proteasomal degradation of IRFs. We further show that LYN activity is controlled by the upstream kinase C-terminal Src kinase (CSK), whose activity, in turn, is controlled by the adaptor protein SPOP, which serves as molecular bridge to recruit CSK into the TLR signaling complex and to activate CSK catalytic activity. Consistently, deletion of SPOP or CSK results in increased LYN activity, LYN-directed IRF degradation, and inhibition of IRF transcriptional activity. Together, the data reveal a key regulatory mechanism for IRF family members controlling TLR biology.
Collapse
Affiliation(s)
- Kazuki Tawaratsumida
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vanessa Redecke
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeeba Kuriakose
- Children’s GMP, LLC., St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jill J. Bouchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brian K. Lohman
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ashutosh Mishra
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hans Häcker
- Laboratory of Innate Immunity and Signal Transduction, Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
45
|
Campbell TM, Liu Z, Zhang Q, Moncada-Velez M, Covill LE, Zhang P, Alavi Darazam I, Bastard P, Bizien L, Bucciol G, Lind Enoksson S, Jouanguy E, Karabela ŞN, Khan T, Kendir-Demirkol Y, Arias AA, Mansouri D, Marits P, Marr N, Migeotte I, Moens L, Ozcelik T, Pellier I, Sendel A, Şenoğlu S, Shahrooei M, Smith CE, Vandernoot I, Willekens K, Kart Yaşar K, Bergman P, Abel L, Cobat A, Casanova JL, Meyts I, Bryceson YT. Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. J Exp Med 2022; 219:e20220202. [PMID: 35670811 PMCID: PMC9178406 DOI: 10.1084/jem.20220202] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-β. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4+ and CD8+ T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-β and compensatory adaptive immunity.
Collapse
Affiliation(s)
- Tessa Mollie Campbell
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Qian Zhang:
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Laura E. Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Ilad Alavi Darazam
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Giorgia Bucciol
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Sara Lind Enoksson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Şemsi Nur Karabela
- Department of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Taushif Khan
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Andres Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Davood Mansouri
- Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Per Marits
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Nico Marr
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Isabelle Migeotte
- Centre de Génétique Humaine de l’Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Bilkent-Ankara, Turkey
| | - Isabelle Pellier
- Université d'Angers, INSERM, CNRS, CRCINA, Pediatric Immuno-Hemato-oncology Unit, CHU Angers, Angers, France
| | - Anton Sendel
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sevtap Şenoğlu
- Department of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - C.I. Edvard Smith
- Department of Infectious Diseases, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Translational Research Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Vandernoot
- Centre de Génétique Humaine de l’Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Karen Willekens
- Department of Molecular Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Kadriye Kart Yaşar
- Department of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Peter Bergman
- Department of Infectious Diseases, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Jean-Laurent Casanova:
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
46
|
Savedchuk S, Raslan R, Nystrom S, Sparks MA. Emerging Viral Infections and the Potential Impact on Hypertension, Cardiovascular Disease, and Kidney Disease. Circ Res 2022; 130:1618-1641. [PMID: 35549373 DOI: 10.1161/circresaha.122.320873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viruses are ubiquitous in the environment and continue to have a profound impact on human health and disease. The COVID-19 pandemic has highlighted this with impressive morbidity and mortality affecting the world's population. Importantly, the link between viruses and hypertension, cardiovascular disease, and kidney disease has resulted in a renewed focus and attention on this potential relationship. The virus responsible for COVID-19, SARS-CoV-2, has a direct link to one of the major enzymatic regulatory systems connected to blood pressure control and hypertension pathogenesis, the renin-angiotensin system. This is because the entry point for SARS-CoV-2 is the ACE2 (angiotensin-converting enzyme 2) protein. ACE2 is one of the main enzymes responsible for dampening the primary effector peptide Ang II (angiotensin II), metabolizing it to Ang-(1-7). A myriad of clinical questions has since emerged and are covered in this review. Several other viruses have been linked to hypertension, cardiovascular disease, and kidney health. Importantly, patients with high-risk apolipoprotein L1 (APOL1) alleles are at risk for developing the kidney lesion of collapsing glomerulopathy after viral infection. This review will highlight several emerging viruses and their potential unique tropisms for the kidney and cardiovascular system. We focus on SARS-CoV-2 as this body of literature in regards to cardiovascular disease has advanced significantly since the COVID-19 pandemic.
Collapse
Affiliation(s)
- Solomiia Savedchuk
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Rasha Raslan
- Internal Medicine, Virginia Commonwealth University, Richmond (R.R.)
| | - Sarah Nystrom
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
- Renal Section, Durham VA Health Care System, NC (M.A.S.)
| |
Collapse
|
47
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|
48
|
An LL, Zhao X, Gong XY, Li YL, Qu ZL, Sun HY, Guo WH, Dan C, Gui JF, Zhang YB. Promoter Binding and Nuclear Retention Features of Zebrafish IRF Family Members in IFN Response. Front Immunol 2022; 13:861262. [PMID: 35464458 PMCID: PMC9019167 DOI: 10.3389/fimmu.2022.861262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon regulatory factors (IRFs) constitute a family of transcription factors that synchronize interferon (IFN) antiviral response through translocating to nucleus and binding to the promoters of IFN and IFN-stimulated genes (ISGs). Fish contain 11 IRF members; however, whether or how fish IRF family genes function in IFN response remains limited. Herein, we determine the regulatory roles of 11 zebrafish IRF family members in IFN response relevant to their subcellular localization and promoter binding. Zebrafish IRF family members display three patterns of constitutive localization, only in nucleus (IRF1/2/9/11), only in cytoplasm (IRF3/5/7), and largely in nucleus with small amounts in cytoplasm (IRF4b/6/8/10). DNA pull-down assays confirm that all zebrafish IRF proteins are capable to bind fish IFN promoters, albeit to various degrees, thus regulating IFN gene transcription as activators (IRF1/3/5/6/7/8/9/11) or repressors (IRF2/4b/10). Further characterization of distinct IFN gene activation reveals that IRF1/3/5/6/7/8/9/11 efficiently stimulate zebrafish IFNφ1 expression, and IRF1/7/11 are responsible for zebrafish IFNφ3 expression. Two conserved basic residues within the helix α3 of DNA binding domains (DBDs) contribute to constitutive or inducible nuclear import for all zebrafish IRF family members and DNA binding for most members, thereby enabling them to function as transcription factors. Our results reveal a conserved and general mechanism that specifies zebrafish IRF family proteins to nuclear import and DNA binding, thereby regulating fish IFN response.
Collapse
Affiliation(s)
- Li-Li An
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Ying Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Ling Qu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Yu Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
49
|
Zhang C, Liu S, Yang M. The Role of Interferon Regulatory Factors in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. GASTROENTEROLOGY INSIGHTS 2022; 13:148-161. [DOI: 10.3390/gastroent13020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease with many metabolic comorbidities, such as obesity, diabetes, and cardiovascular diseases. Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, accompanies the progression of hepatic steatosis, inflammation, cell death, and varying degree of liver fibrosis. Interferons (IFNs) have been shown to play important roles in the pathogenesis of NAFLD and NASH. Their regulating transcriptional factors such as interferon regulatory factors (IRFs) can regulate IFN expression, as well as genes involved in macrophage polarization, which are implicated in the pathogenesis of NAFLD and advanced liver disease. In this review, the roles of IRF-involved signaling pathways in hepatic inflammation, insulin resistance, and immune cell activation are reviewed. IRFs such as IRF1 and IRF4 are also involved in the polarization of macrophages that contribute to critical roles in NAFLD or NASH pathogenesis. In addition, IRFs have been shown to be regulated by treatments including microRNAs, PPAR modulators, anti-inflammatory agents, and TLR agonists or antagonists. Modulating IRF-mediated factors through these treatments in chronic liver disease can ameliorate the progression of NAFLD to NASH. Furthermore, adenoviruses and CRISPR activation plasmids can also be applied to regulate IRF-mediated effects in chronic liver disease. Pre-clinical and clinical trials for evaluating IRF regulators in NAFLD treatment are essential in the future direction.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
50
|
Lin Z, Wang J, Zhang N, Yi J, Wang Z, Ma J, Wang H, Yan Y, Qian K, Sun J, Cheng Y. Functional characterization of goose IRF1 in IFN induction and anti-NDV infection. Vet Res 2022; 53:29. [PMID: 35379320 PMCID: PMC8981851 DOI: 10.1186/s13567-022-01046-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/12/2022] [Indexed: 01/09/2023] Open
Abstract
Interferon regulatory factors (IRFs) play a key role in many aspects of immune response, and IRF1, IRF3, and IRF7 are positive regulators of IFN induction in mammals. However, IRF3, as the most critical regulatory factor in mammals, is naturally absent in birds, which attracts us to study the functions of other members of the avian IRF family. In the present study, we cloned goose IRF1 (GoIRF1) and conducted a series of bioinformatics analyses to compare the protein homology of GoIRF1 with that of IRF1 in other species. The overexpression of GoIRF1 in DF-1 cells induced the activation of IFN-β, and this activation is independent of the dosage of the transfected GoIRF1 plasmids. The overexpression of GoIRF1 in goose embryonic fibroblasts (GEFs) induced the expression of IFNs, proinflammatory cytokines, and IFN-stimulated genes (ISGs); it also inhibited the replication of green fluorescent protein (GFP)-tagged Newcastle disease virus (NDV) (NDV-GFP) and GFP-tagged vesicular stomatitis virus (VSV) (VSV-GFP). Our results suggest that GoIRF1 is an important regulator of IFNs, proinflammatory cytokines, and ISGs and plays a role in antiviral innate immunity in geese.
Collapse
Affiliation(s)
- Zhenyu Lin
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nian Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianshu Yi
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kun Qian
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|