1
|
Walsh C. Genetic Implications for Cancer Management: The Changing Landscape of Poly (ADP-ribose) Polymerase Inhibitor Indications in the Treatment of Ovarian Cancer. Clin Obstet Gynecol 2024; 67:711-719. [PMID: 39324888 PMCID: PMC11495477 DOI: 10.1097/grf.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Between December 2014 and May 2020, the United States Food and Drug Administration approved 9 indications for poly (ADP-ribose) polymerase (PARP) inhibitor use in ovarian cancer. Between June 2022 and September 2022, all 3 indications for PARP inhibitor treatment of recurrent ovarian cancer were withdrawn. Between November 2022 and September 2023, all 3 indications for PARP inhibitor maintenance therapy in recurrent ovarian cancer were restricted. The 3 indications for PARP inhibitor maintenance therapy in newly diagnosed advanced ovarian cancer are unchanged. This article reviews the timelines and data leading to regulatory changes for PARP inhibitor use in ovarian cancer in the United States.
Collapse
|
2
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
3
|
Perez-Fidalgo JA, Gálvez-Montosa F, Guerra EM, Madariaga A, Manzano A, Martin-Lorente C, Rubio-Pérez MJ, Alarcón J, Barretina-Ginesta MP, Gaba L. SEOM-GEICO clinical guideline on epithelial ovarian cancer (2023). Clin Transl Oncol 2024; 26:2758-2770. [PMID: 39008159 PMCID: PMC11467069 DOI: 10.1007/s12094-024-03531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/16/2024]
Abstract
In recent years, the incorporation of new strategies to the therapeutic armamentarium has completely changed the outcomes of epithelial ovarian cancer (EOC). The identification of new predictive and prognostic biomarkers has also enabled the selection of those patients more likely to respond to targeted agents. Nevertheless, EOC is still a highly lethal disease and resistance to many of these new agents is common. The objective of this guideline is to summarize the most relevant strategies to manage EOC, to help the clinician throughout the challenging diagnostic and therapeutic processes and to provide evidence-based recommendations.
Collapse
Affiliation(s)
| | | | | | - Ainhoa Madariaga
- Department of Medical Oncology, 12 de Octubre University Hospital, Madrid, Spain
| | | | | | | | | | - María Pilar Barretina-Ginesta
- Institut Català d'Oncologia, Medical Oncology Department, Precision Oncology Group, Institut d'Investigació Biomèdica de Girona (IDIBGI), Medical Sciences Department, Universitat de Girona, Girona, Spain
| | - Lydia Gaba
- Medical Oncology Department, Hospital Clinic, Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Haggstrom L, Lee YC, Scott C, Harter P, Woelber L, Ledermann J, Gourley C, McNeish IA, Amant F, Ray-Coquard I, Leary A, Oza AM, Tinker A, González Martin A, Cecere SC, Pignata S, Colombo N, Yoshida H, Marth C, Rosengarten O, Moore KN, Gómez-García EM, Tan D, Friedlander ML. How long is long enough? An international survey exploring practice variations on the recommended duration of maintenance therapy with PARP inhibitors in patients with platinum sensitive recurrent ovarian cancer and long-term outcomes. Int J Gynecol Cancer 2024:ijgc-2024-005976. [PMID: 39438068 DOI: 10.1136/ijgc-2024-005976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE There are no data, and thus no consensus, on the optimal duration of poly(ADP-ribose) polymerase (PARP) inhibitor maintenance therapy for exceptional responders (here defined as progression-free for 5 years or longer) with platinum sensitive recurrent ovarian cancer. The current licence is to continue PARP inhibitors until progression or toxicity; however, international practice varies considerably. The risks of late progression and late-onset myeloid malignancies, defined as occurring beyond 5 years of PARP inhibition, are unknown. This study aims to examine the practice patterns and opinions regarding the management and surveillance protocols of exceptional responders with platinum sensitive recurrent ovarian cancer. METHODS An online international survey of experts from June 2023 to June 2024 was carried out, disseminated at Gynaecologic Cancer Intergroup meetings and by Chairs of Cooperative Groups. RESULTS 210 responses were received from 26 countries including Australia (27 respondents), Germany (24), the UK (21), the Netherlands (16), France (13), Spain (12), Canada (12), Italy (11), Japan (11), and other countries (63). Most respondents did not have institutional or trials group guidelines regarding duration of PARP inhibitors (154, 73.3%). For the minority with guidelines, recommendations varied: 1 year (2), 2 years (13), 3 years (4), and indefinite treatment (22). Individual practice varied considerably for those without guidelines: most (116, 76.3%) recommended ≥5 years of PARP inhibition, of which 73 (48.0%) recommended indefinite PARP inhibition. Sixty-six respondents (31.4%) reported having patients with late progression and 46 (22.0%) had cases with late-onset myeloid malignancies. Surveillance practices varied widely across all respondents. CONCLUSIONS This international survey highlights the diverse practice variations and disparate views on the optimal duration of maintenance therapy with PARP inhibitors in platinum sensitive recurrent ovarian cancer. The responses suggest a notable risk of late progression and myelodysplastic syndrome/acute myeloid leukemia among exceptional responders which needs confirmation. Detailed individual patient data is required to draw more reliable conclusions; another study is underway addressing this.
Collapse
Affiliation(s)
- Lucy Haggstrom
- Medical Oncology, Prince of Wales Hospital Nelune Comprehensive Cancer Centre, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Yeh Chen Lee
- Medical Oncology, Prince of Wales Hospital Nelune Comprehensive Cancer Centre, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Clare Scott
- The University of Melbourne, Melbourne, Victoria, Australia
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Ev, Kliniken Essen-Mitte, Essen, Germany
- Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom, Essen, Germany
| | - Linn Woelber
- Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom, Essen, Germany
- Department of Gynecology, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Jonathan Ledermann
- UCL Cancer Institute, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Charlie Gourley
- Institute of Genetics and Cancer, Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Iain A McNeish
- Imperial College London Department of Surgery and Cancer, London, UK
| | - Frédéric Amant
- Division of Gynecologic Oncology, UZ Leuven, Leuven, Belgium
- Department of Gynecologic Oncology, Center for Gynecologic Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Isabelle Ray-Coquard
- Centre Léon Bérard, Lyon, France
- Universite Claude Bernard Lyon, Villeurbanne, France
| | - Alexandra Leary
- Institut National de la Santé et de la Recherche Médicale, Institut Gustave-Roussy, Villejuif, France
| | - Amit M Oza
- Medical Oncology & Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Anna Tinker
- BC Cancer - Vancouver, Vancouver, British Columbia, Canada
| | - Antonio González Martin
- Grupo Español de Investigación en Cancer Ginecológico (GEICO), Madrid, Spain
- Medical Oncology Department, Clínica Universidad de Navarra Cancer Center, Madrid, Spain
| | - Sabrina Chiara Cecere
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
- Multicenter Italian Trials in Ovarian Cancer and Gynecologic Malignancies, Naples, Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
- Multicenter Italian Trials in Ovarian Cancer and Gynecologic Malignancies, Naples, Italy
| | - Nicoletta Colombo
- Gynecologic Oncology Program, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, Milan, Italy
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Hiroyuki Yoshida
- Department of Gynecologic Oncology, Saitama Medical University, Iruma-gun, Japan
- GOTIC - North Kanto Gynecologic Cancer Clinical Trials Consortium, Saitama, Japan
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ora Rosengarten
- Medical Gyneco-Oncology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - David Tan
- Yong Loo Lin School of Medicine, National University of Singapore Centre for Cancer Research, Singapore
| | - Michael L Friedlander
- Medical Oncology, Prince of Wales Hospital Nelune Comprehensive Cancer Centre, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Tonti N, Golia D’Augè T, Cuccu I, De Angelis E, D’Oria O, Perniola G, Laganà AS, Etrusco A, Ferrari F, Saponara S, Di Donato V, Bogani G, Giannini A. The Role of Tumor Biomarkers in Tailoring the Approach to Advanced Ovarian Cancer. Int J Mol Sci 2024; 25:11239. [PMID: 39457020 PMCID: PMC11508316 DOI: 10.3390/ijms252011239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Growing evidence has demonstrated the role of mutations of tumor biomarkers in diagnosing and treating epithelial ovarian cancer. This review aims to analyze recent literature on the correlation between tumor biomarkers and chemotherapy in nonmucinous ovarian cancer, providing suggestions for personalized treatment approaches. An extensive literature search was conducted to identify relevant studies and trials. BRCA1/2 mutations are central in homologous recombination repair deficiency (HRD) in ovarian cancer, but several other genetic mutations also contribute to varying cancer risks. While the role of MMR testing in ovarian cancer is debated, it is more commonly linked to non-serous ovarian cancer, often associated with Lynch syndrome. A significant proportion of ovarian cancer patients have HRD, affecting treatment decisions in both first-line (especially in advanced stages) and second-line therapy due to HRD's connection with platinum-based therapy and PARP inhibitors' response. However, validated genetic tests to identify HRD have not yet been universally implemented. There is no definitive therapeutic algorithm for advanced ovarian cancer, despite ongoing efforts and multiple proposed tools. Future research should focus on expanding the utility of biomarkers, reducing resistance, and increasing the actionable biomarker pool.
Collapse
Affiliation(s)
- Noemi Tonti
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (N.T.); (I.C.); (E.D.A.); (G.P.); (V.D.D.)
| | - Tullio Golia D’Augè
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (N.T.); (I.C.); (E.D.A.); (G.P.); (V.D.D.)
| | - Ilaria Cuccu
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (N.T.); (I.C.); (E.D.A.); (G.P.); (V.D.D.)
| | - Emanuele De Angelis
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (N.T.); (I.C.); (E.D.A.); (G.P.); (V.D.D.)
| | - Ottavia D’Oria
- Obstetrics and Gynecological Unit, Department of Woman’s and Child’s Health, San Camillo-Forlanini Hospital, 00152 Rome, Italy;
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (N.T.); (I.C.); (E.D.A.); (G.P.); (V.D.D.)
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.S.L.); (A.E.)
| | - Andrea Etrusco
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (A.S.L.); (A.E.)
| | - Federico Ferrari
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Stefania Saponara
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Violante Di Donato
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy; (N.T.); (I.C.); (E.D.A.); (G.P.); (V.D.D.)
| | - Giorgio Bogani
- Gynecological Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Andrea Giannini
- Unit of Gynecology, Department of Surgical and Medical Sciences and Translational Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| |
Collapse
|
6
|
Richardson DL, Quintanilha JCF, Danziger N, Li G, Sokol E, Schrock AB, Ebot E, Bhardwaj N, Norris T, Afghahi A, Frachioni A, Washington C, Dockery L, Elvin J, Graf RP, Moore KN. Effectiveness of PARP Inhibitor Maintenance Therapy in Ovarian Cancer by BRCA1/2 and a Scar-Based HRD Signature in Real-World Practice. Clin Cancer Res 2024; 30:4644-4653. [PMID: 39078736 PMCID: PMC11474169 DOI: 10.1158/1078-0432.ccr-24-1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 10/16/2024]
Abstract
PURPOSE The purpose of the study was to compare the effectiveness of PARP inhibitor maintenance therapy (mPARPi) in real-world practice by biomarker status [BRCA1/2 alterations (BRCAalt) and a homologous recombination deficiency signature (HRDsig)] in advanced ovarian cancer. EXPERIMENTAL DESIGN Patients with ovarian cancer receiving first-line platinum-based chemotherapy and either mPARPi or no maintenance were included. Patient data were obtained by a US-based de-identified ovarian cancer Clinico-Genomic Database, from ∼280 US cancer clinics (01/2015-03/2023). Real-world progression-free survival (rwPFS) and overall survival (rwOS) were compared by biomarker status using Cox models, weighted by propensity scores. RESULTS Of 673 patients, 160 received mPARPi [31.2% BRCAalt and 51.9% HRDsig(+)] and 513 no maintenance [15.6% BRCAalt and 34.1% HRDsig(+)]. BRCAalt patients receiving mPARPi versus no maintenance had favorable rwPFS [HR, 0.48; 95% confidence interval (CI), 0.26-0.87; P = 0.0154], as did BRCA wild-type (WT; HR, 0.76; 95% CI, 0.57-1.01; P = 0.0595). Favorable rwOS was not observed with mPARPi for BRCAalt or BRCA-WT. HRDsig(+) patients receiving mPARPi versus no maintenance had favorable rwPFS (HR, 0.36; 95% CI, 0.24-0.55; P < 0.001) and numerically favorable rwOS (HR, 0.46; 95% CI, 0.21-1.02; P = 0.0561). No differences were observed for HRDsig(-). mPARPi treatment interaction was observed for HRDsig(+) versus HRDsig(-) (rwPFS P < 0.001/rwOS P = 0.016) but not for BRCAalt versus BRCA-WT. Patients with BRCA-WT/HRDsig(+) receiving mPARPi had favorable rwPFS (HR, 0.40; 95% CI, 0.22-0.72; P = 0.003), whereas no difference was observed for BRCA-WT/HRDsig(-). CONCLUSIONS HRDsig predicted benefit of mPARPi better than BRCAalt. Patients with HRDsig(+) status experienced favorable outcomes, even if they had BRCA-WT status. In contrast, patients with HRDsig(-) status did not show significant benefit from mPARPi treatment. HRDsig might predict benefit from mPARPi regardless of BRCAalt status.
Collapse
Affiliation(s)
- Debra L. Richardson
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | | | | | - Gerald Li
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Ethan Sokol
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | - Ericka Ebot
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | | | | | | | | | - Christina Washington
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Lauren Dockery
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Julia Elvin
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Ryon P. Graf
- Foundation Medicine, Inc., Cambridge, Massachusetts.
| | - Kathleen N. Moore
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
7
|
da Costa AA, Somuncu O, Ravindranathan R, Mukkavalli S, Martignetti DB, Nguyen H, Jiao Y, Lamarre BP, Sadatrezaei G, Moreau L, Liu J, Iyer DR, Lazaro JB, Shapiro GI, Parmar K, D’Andrea AD. Single-Stranded DNA Gap Accumulation Is a Functional Biomarker for USP1 Inhibitor Sensitivity. Cancer Res 2024; 84:3435-3446. [PMID: 38885312 PMCID: PMC11474172 DOI: 10.1158/0008-5472.can-23-4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Recent studies suggest that PARP and POLQ inhibitors confer synthetic lethality in BRCA1-deficient tumors by accumulation of single-stranded DNA (ssDNA) gaps at replication forks. Loss of USP1, a deubiquitinating enzyme, is also synthetically lethal with BRCA1 deficiency, and USP1 inhibitors are now undergoing clinical development for these cancers. Herein, we show that USP1 inhibitors also promote the accumulation of ssDNA gaps during replication in BRCA1-deficient cells, and this phenotype correlates with drug sensitivity. USP1 inhibition increased monoubiquitinated proliferating cell nuclear antigen at replication forks, mediated by the ubiquitin ligase RAD18, and knockdown of RAD18 caused USP1 inhibitor resistance and suppression of ssDNA gaps. USP1 inhibition overcame PARP inhibitor resistance in a BRCA1-mutated xenograft model and induced ssDNA gaps. Furthermore, USP1 inhibition was synergistic with PARP and POLQ inhibition in BRCA1-mutant cells, with enhanced ssDNA gap accumulation. Finally, in patient-derived ovarian tumor organoids, sensitivity to USP1 inhibition alone or in combination correlated with the accumulation of ssDNA gaps. Assessment of ssDNA gaps in ovarian tumor organoids represents a rapid approach for predicting response to USP1 inhibition in ongoing clinical trials. Significance: USP1 inhibitors kill BRCA1-deficient cells and cause ssDNA gap accumulation, supporting the potential of using ssDNA gap detection as a functional biomarker for clinical trials on USP1 inhibitors.
Collapse
Affiliation(s)
- Alexandre A. da Costa
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ozge Somuncu
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ramya Ravindranathan
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Sirisha Mukkavalli
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - David B. Martignetti
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Huy Nguyen
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Yuqing Jiao
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Benjamin P. Lamarre
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Golbahar Sadatrezaei
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Lisa Moreau
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Joyce Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Divya R. Iyer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Jean-Bernard Lazaro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Geoffrey I. Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
8
|
Miwa M, Kitagawa M, Asami Y, Kobayashi-Kato M, Watanabe T, Ogasawara A, Hiranuma K, Kato H, Saito M, Miyagi Y, Kato T, Yoshida H, Momozawa Y, Kohno T, Shiraishi K, Hasegawa K. Prevalence and outcomes of germline pathogenic variants of homologous recombination repair genes in ovarian cancer. Cancer Sci 2024. [PMID: 39385713 DOI: 10.1111/cas.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Germline pathogenic variants (PVs) are pivotal in gynecological oncology. We focused on the prevalence, clinicopathological features, and survival impact of homologous recombination repair (HRR) PVs in patients with epithelial ovarian cancer (EOC). This was a multicenter retrospective cohort study, and 1248 patients with EOC were registered. Eligible patients (n = 1112) underwent germline DNA analysis for 26 cancer predisposition genes, including nine HRR-related genes, such as BRCA1/2, BRIP1, PALB2, RAD51C/D, and ATM. The associations between clinicopathological factors and HRR-related PVs were examined. Kaplan-Meier and Cox regression analyses were conducted. Among 1091 analyzed patients, 153 (14.0%) carried PVs and 140 (12.8%) were HRR-related. HRR-PV-positive status significantly correlated with serous carcinoma (22.9% vs. 4.8%, P < 0.0001) and advanced disease (18.5% vs. 5.9%, P < 0.0001). The HRR-PV-positive group exhibited higher prevalence of personal breast (12.9%) and familial breast/ovarian (29.2%) cancer history. HRR status independently improved overall survival in stage III/IV disease (P = 0.04) but not progression-free survival. HRR-related germline PVs exhibit distinct clinicopathological features with survival implications. Variants were significantly associated with serous carcinoma and advanced disease, underscoring the importance of genetic testing to develop individualized EOC treatment strategies. Considering the study period (2000-2019), the limited use of bevacizumab and poly (ADP-ribose) polymerase inhibitors as maintenance therapy should be recognized.
Collapse
Affiliation(s)
- Maiko Miwa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Masakazu Kitagawa
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yuka Asami
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Aiko Ogasawara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kengo Hiranuma
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hisamori Kato
- Department of Gynecology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| |
Collapse
|
9
|
Venkatachalam A, Correia C, Peterson KL, Hou X, Schneider PA, Strathman AR, Flatten KS, Sine CC, Balczewski EA, McGehee CD, Larson MC, Duffield LN, Meng XW, Vincelette ND, Ding H, Oberg AL, Couch FJ, Swisher EM, Li H, Weroha SJ, Kaufmann SH. Proapoptotic activity of JNK-sensitive BH3-only proteins underpins ovarian cancer response to replication checkpoint inhibitors. Mol Cancer 2024; 23:224. [PMID: 39375715 PMCID: PMC11457406 DOI: 10.1186/s12943-024-02125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Recent studies indicate that replication checkpoint modulators (RCMs) such as inhibitors of CHK1, ATR, and WEE1 have promising monotherapy activity in solid tumors, including platinum-resistant high grade serous ovarian cancer (HGSOC). However, clinical response rates are generally below 30%. While RCM-induced DNA damage has been extensively examined in preclinical and clinical studies, the link between replication checkpoint interruption and tumor shrinkage remains incompletely understood. Here we utilized HGSOC cell lines and patient-derived xenografts (PDXs) to study events leading from RCM treatment to ovarian cancer cell death. These studies show that RCMs increase CDC25A levels and CDK2 signaling in vitro, leading to dysregulated cell cycle progression and increased replication stress in HGSOC cell lines independent of homologous recombination status. These events lead to sequential activation of JNK and multiple BH3-only proteins, including BCL2L11/BIM, BBC3/PUMA and the BMF, all of which are required to fully initiate RCM-induced apoptosis. Activation of the same signaling pathway occurs in HGSOC PDXs that are resistant to poly(ADP-ribose) polymerase inhibitors but respond to RCMs ex vivo with a decrease in cell number in 3-dimensional culture and in vivo with xenograft shrinkage or a significantly diminished growth rate. These findings identify key cell death-initiating events that link replication checkpoint inhibition to antitumor response in ovarian cancer.
Collapse
Affiliation(s)
- Annapoorna Venkatachalam
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Cristina Correia
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Kevin L Peterson
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Xianon Hou
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Paula A Schneider
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Annabella R Strathman
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Karen S Flatten
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Chance C Sine
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Emily A Balczewski
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
- Present Address: Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Cordelia D McGehee
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Melissa C Larson
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Laura N Duffield
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - X Wei Meng
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Nicole D Vincelette
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
- Present Address: H. Lee Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Husheng Ding
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Ann L Oberg
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Fergus J Couch
- Division of Experimental Pathology, Department of Laboratory Medicine, and Pathology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - S John Weroha
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA.
- Department of Oncology, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA.
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Cheng X, Li P, Jiang R, Meng E, Wu H. ADC: a deadly killer of platinum resistant ovarian cancer. J Ovarian Res 2024; 17:196. [PMID: 39367438 PMCID: PMC11451100 DOI: 10.1186/s13048-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
Platinum is a key component of ovarian cancer systemic therapy. However, most patients will eventually face a recurrence, leading to chemotherapy resistance, especially against platinum. For individuals with platinum-resistant ovarian cancer (PROC), treatment options are limited, and their survival prospects are grim. The emergence of antibody-drug conjugates (ADCs) shows promises as a future treatment for PROC. This review synthesizes current research on the effectiveness of ADCs in treating PROC. It encapsulates the advancements and clinical trials of novel ADCs that target specific antigens such as Folate Receptor alpha (FRα), MUC16, NaPi2b, Mesothelin, Dipeptidase 3(DPEP3), and human epidermal growth factor receptor 2 (HER2), as well as tissue factor, highlighting their potential anti-tumor efficacy and used in combination with other therapies. The ADCs landscape in ovarian cancer therapeutics is swiftly evolving, promising more potent and efficacious treatment avenues.
Collapse
Affiliation(s)
- Xu Cheng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Ping Li
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Rongqi Jiang
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Enqing Meng
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China
| | - Hao Wu
- The Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
11
|
Marshall CH, Teply BA, Lu J, Oliveira L, Wang H, Mao SS, Kelly WK, Paller CJ, Markowski MC, Denmeade SR, King S, Sullivan R, Davicioni E, Proudfoot JA, Eisenberger MA, Carducci MA, Lotan TL, Antonarakis ES. Olaparib Without Androgen Deprivation for High-Risk Biochemically Recurrent Prostate Cancer Following Prostatectomy: A Nonrandomized Controlled Trial. JAMA Oncol 2024; 10:1400-1408. [PMID: 39172479 PMCID: PMC11342218 DOI: 10.1001/jamaoncol.2024.3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 08/23/2024]
Abstract
Importance Olaparib is a poly(adenosine diphosphate-ribose) polymerase inhibitor that provides benefit in combination with hormonal therapies in patients with metastatic prostate cancer who harbor homologous recombination repair (HRR) alterations. Its efficacy in the absence of androgen deprivation therapy has not been tested. Objective To determine the activity of olaparib monotherapy among patients with high-risk biochemically recurrent (BCR) prostate cancer after radical prostatectomy. Design, Setting, and Participants This phase 2, single-arm nonrandomized controlled trial enrolled genetically unselected patients across 4 sites in the US from May 2017 to November 2022. Eligible patients had BCR disease following radical prostatectomy, a prostate-specific antigen (PSA) doubling time of 6 months or shorter, an absolute PSA value of 1.0 ng/mL or higher, and a testosterone level of 150 ng/dL or higher. Intervention Treatment was with olaparib, 300 mg, by mouth twice daily until doubling of the baseline PSA, clinical or radiographic progression, or unacceptable toxic effects. Main Outcome and Measure The primary end point was a confirmed 50% or higher decline in PSA from baseline (PSA50). Key secondary end points were outcomes by HRR alteration status, as well as safety and tolerability. Results Of the 51 male patients enrolled (mean [SD] age, 63.8 [6.8] years), 13 participants (26%) had a PSA50 response, all within the HRR-positive group (13 of 27 participants [48%]). All 11 participants with BRCA2 alterations experienced a PSA50 response. Common adverse events were fatigue in 32 participants (63%), nausea in 28 (55%), and leukopenia in 22 (43%), and were consistent with known adverse effects of olaparib. Conclusions and Relevance In this nonrandomized controlled trial, olaparib monotherapy led to high and durable PSA50 response rates in patients with BRCA2 alterations. Olaparib warrants further study as a treatment strategy for some patients with BCR prostate cancer but does not have sufficient activity in those without HRR alterations and should not be considered for those patients. Trial Registration ClinicalTrials.gov Identifier: NCT03047135.
Collapse
Affiliation(s)
| | | | - Jiayun Lu
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lia Oliveira
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Wang
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shifeng S. Mao
- Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - W. Kevin Kelly
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | | | | | | | - Serina King
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rana Sullivan
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | - Tamara L. Lotan
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
12
|
Mitri Z, Goodyear SM, Mills G. Strategies for the prevention or reversal of PARP inhibitor resistance. Expert Rev Anticancer Ther 2024; 24:959-975. [PMID: 39145413 DOI: 10.1080/14737140.2024.2393251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Advances in our understanding of tumor biology shed light on hallmarks of cancer development and progression that include dysregulated DNA damage repair (DDR) machinery. Leveraging the underlying tumor genomic instability and tumor-specific defects in DDR, Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induced DNA damage emerges as a novel non-chemotherapy therapeutic opportunity. PARPis are currently approved in multiple tumor types, with the largest benefit seen in tumors with homologous recombination repair (HRR) deficiency, including germline and somatic mutations in BRCA1/2 genes (BRCA) and other pathway members such as PALB2 and Rad51c. AREAS COVERED This review article summarizes the current approval landscape and known and proposed mechanisms of resistance to PARPi. Further, therapeutic strategies to overcome PARPi resistance are discussed, including ongoing clinical trials. EXPERT OPINION PARPi have proven to be a safe and effective therapy and represents a cornerstone treatment across multiple solid tumor types. Elucidating innate and acquired mechanisms of resistance, coupled with the emergence of novel therapeutic options to capitalize on the activity of PARPi and prevent or reverse the acquisition of resistance, provides an opportunity to further expand the role of PARPi in cancer therapy.
Collapse
Affiliation(s)
- Zahi Mitri
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun M Goodyear
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| | - Gordon Mills
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
13
|
Morgan RD, Burghel GJ, Flaum N, Schlecht H, Clamp AR, Hasan J, Mitchell C, Salih Z, Moon S, Hogg M, Lord R, Forde C, Lalloo F, Woodward ER, Crosbie EJ, Taylor SS, Jayson GC, Evans DGR. Extended panel testing in ovarian cancer reveals BRIP1 as the third most important predisposition gene. Genet Med 2024; 26:101230. [PMID: 39096152 DOI: 10.1016/j.gim.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE The prevalence of germline pathogenic variants (PVs) in homologous recombination repair (HRR) and Lynch syndrome (LS) genes in ovarian cancer (OC) is uncertain. METHODS An observational study reporting the detection rate of germline PVs in HRR and LS genes in all OC cases tested in the North West Genomic Laboratory Hub between September 1996 and May 2024. Effect sizes are reported using odds ratios (ORs) and 95% confidence intervals (95% CI) for unselected cases tested between April 2021 and May 2024 versus 50,703 controls from the Breast Cancer Risk after Diagnostic Gene Sequencing study. RESULTS 2934 women were tested for BRCA1/2 and 433 (14.8%) had a PV. In up to 1572 women tested for PVs in non-BRCA1/2 HRR genes, detection rates were PALB2 = 0.8%, BRIP1 = 1.1%, RAD51C = 0.4% and RAD51D = 0.4%. In 940 unselected cases, BRIP1 (OR = 8.7, 95% CI 4.6-15.8) was the third most common OC predisposition gene followed by RAD51C (OR = 8.3, 95% CI 3.1-23.1), RAD51D (OR = 6.5, 95% CI 2.1-19.7), and PALB2 (OR = 3.9, 95% CI 1.5-10.3). No PVs in LS genes were detected in unselected cases. CONCLUSION Panel testing in OC resulted in a detection rate of 2% to 3% for germline PVs in non-BRCA1/2 HRR genes, with the largest contributor being BRIP1. Screening for LS in unselected cases of OC is unnecessary.
Collapse
Affiliation(s)
- Robert D Morgan
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
| | - George J Burghel
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicola Flaum
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom
| | - Andrew R Clamp
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Jurjees Hasan
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Claire Mitchell
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Zena Salih
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sarah Moon
- University Hospitals of Morecambe Bay NHS Trust, Lancaster, United Kingdom
| | - Martin Hogg
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Rosemary Lord
- Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Claire Forde
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Gordon C Jayson
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - D Gareth R Evans
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
14
|
Korzun T, Moses AS, Diba P, Sattler AL, Olson B, Taratula OR, Pejovic T, Marks DL, Taratula O. Development and Perspectives: Multifunctional Nucleic Acid Nanomedicines for Treatment of Gynecological Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301776. [PMID: 37518857 PMCID: PMC10827528 DOI: 10.1002/smll.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Gynecological malignancies are a significant cause of morbidity and mortality across the globe. Due to delayed presentation, gynecological cancer patients are often referred late in the disease's course, resulting in poor outcomes. A considerable number of patients ultimately succumb to chemotherapy-resistant disease, which reoccurs at advanced stages despite treatment interventions. Although efforts have been devoted to developing therapies that demonstrate reduced resistance to chemotherapy and enhanced toxicity profiles, current clinical outcomes remain unsatisfactory due to treatment resistance and unfavorable off-target effects. Consequently, innovative biological and nanotherapeutic approaches are imperative to strengthen and optimize the therapeutic arsenal for gynecological cancers. Advancements in nanotechnology-based therapies for gynecological malignancies offer significant advantages, including reduced toxicity, expanded drug circulation, and optimized therapeutic dosing, ultimately leading to enhanced treatment effectiveness. Recent advances in nucleic acid therapeutics using microRNA, small interfering RNA, and messenger RNA provide novel approaches for cancer therapeutics. Effective single-agent and combinatorial nucleic acid therapeutics for gynecological malignancies have the potential to transform cancer treatment by giving safer, more tailored approaches than conventional therapies. This review highlights current preclinical studies that effectively exploit these approaches for the treatment of gynecological malignant tumors and malignant ascites.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Brennan Olson
- Mayo Clinic Department of Otolaryngology-Head and Neck Surgery, 200 First St. SW, Rochester, MN, 55905, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tanja Pejovic
- Departments of Obstetrics and Gynecology and Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
| |
Collapse
|
15
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
16
|
Moosavi F, Hassani B, Nazari S, Saso L, Firuzi O. Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence. Biochim Biophys Acta Rev Cancer 2024; 1879:189185. [PMID: 39326802 DOI: 10.1016/j.bbcan.2024.189185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Zwimpfer TA, Ewald H, Bilir E, Jayawardana M, Appenzeller-Herzog C, Bizzarri N, Razumova Z, Kacperczyk-Bartnik J, Heinzelmann-Schwarz V, Friedlander M, Bowtell DD, Garsed DW. Predictive value of homologous recombination deficiency status for survival outcomes in primary tubo-ovarian high-grade serous carcinoma. Cochrane Database Syst Rev 2024; 9:CD015896. [PMID: 39312297 PMCID: PMC11418971 DOI: 10.1002/14651858.cd015896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (prognosis). The objectives are as follows: To evaluate the predictive value of the prognostic factor HRD status, as determined by various clinically validated HRD assays at the time of staging laparotomy, compared to BRCA1/2 mutation status for progression-free survival and overall survival in patients with tubo-ovarian high-grade serous carcinoma treated in the first-line setting with a combination of surgery and platinum-based chemotherapy and/or maintenance with PARP inhibitors.
Collapse
Affiliation(s)
- Tibor A Zwimpfer
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Gynaecological Cancer Centre, University Hospital Basel, Basel, Switzerland
| | - Hannah Ewald
- University Medical Library, University of Basel, Basel, Switzerland
| | - Esra Bilir
- Department of Global Health, Koç University Graduate School of Health Sciences, Istanbul, Turkey
- Department of Gynecologic Oncology, Koc University School of Medicine, Istanbul, Turkey
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Madawa Jayawardana
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | | | - Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento per la Salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Zoia Razumova
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - David Dl Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
18
|
González-Martín A, Rubio MJ, Heitz F, Depont Christensen R, Colombo N, Van Gorp T, Romeo M, Ray-Coquard I, Gaba L, Leary A, De Sande LM, Lebreton C, Redondo A, Fabbro M, Barretina Ginesta MP, Follana P, Pérez-Fidalgo JA, Rodrigues M, Santaballa A, Sabatier R, Bermejo-Pérez MJ, Lotz JP, Pardo B, Marquina G, Sánchez-Lorenzo L, Quindós M, Estévez-García P, Guerra Alía E, Manso L, Casado V, Kommoss S, Tognon G, Henry S, Bruchim I, Oaknin A, Selle F. Atezolizumab Combined With Platinum and Maintenance Niraparib for Recurrent Ovarian Cancer With a Platinum-Free Interval >6 Months: ENGOT-OV41/GEICO 69-O/ANITA Phase III Trial. J Clin Oncol 2024:JCO2400668. [PMID: 39292975 DOI: 10.1200/jco.24.00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 07/18/2024] [Indexed: 09/20/2024] Open
Abstract
PURPOSE To evaluate atezolizumab combined with platinum-based chemotherapy (CT) followed by maintenance niraparib for late-relapsing recurrent ovarian cancer. METHODS The multicenter placebo-controlled double-blind randomized phase III ENGOT-OV41/GEICO 69-O/ANITA trial (ClinicalTrials.gov identifier: NCT03598270) enrolled patients with measurable high-grade serous, endometrioid, or undifferentiated recurrent ovarian cancer who had received one or two previous CT lines (most recent including platinum) and had a treatment-free interval since last platinum (TFIp) of >6 months. Patients were stratified by investigator-selected carboplatin doublet, TFIp, BRCA status, and PD-L1 status in de novo biopsy and randomly assigned 1:1 to receive either atezolizumab or placebo throughout standard therapy comprising six cycles of a carboplatin doublet followed (in patients with response/stable disease) by maintenance niraparib until progression. The primary end point was investigator-assessed progression-free survival (PFS) per RECIST v1.1. RESULTS Between November 2018 and January 2022, 417 patients were randomly assigned (15% BRCA-mutated, 36% PD-L1-positive, 66% TFIp >12 months, 11% previous poly [ADP-ribose] polymerase inhibitor after frontline CT, and 53% previous bevacizumab). Median follow-up was 28.6 months (95% CI, 26.6 to 30.5 months). Atezolizumab did not significantly improve PFS (hazard ratio, 0.89 [95% CI, 0.71 to 1.10]; P = .28). Median PFS was 11.2 months (95% CI, 10.1 to 12.1 months) with atezolizumab versus 10.1 months (95% CI, 9.2 to 11.2 months) with standard therapy. Subgroup analyses generally showed consistent results, including analyses by PD-L1 status. The objective response rate (ORR) was 45% (95% CI, 39 to 52) with atezolizumab and 43% (95% CI, 36 to 49) with standard therapy. The safety profile was as expected from previous experience of these drugs. CONCLUSION Combining atezolizumab with CT and maintenance niraparib for late-relapsing recurrent ovarian cancer did not significantly improve PFS or the ORR.
Collapse
Affiliation(s)
- Antonio González-Martín
- Medical Oncology Department, Translational Oncology Group, CIMA, Universidad de Navarra, Cancer Center Clínica Universidad de Navarra, Madrid, Spain
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
| | - María Jesús Rubio
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Medical Oncology Department, Reina Sofia University Hospital of Cordoba, Cordoba, Spain
| | - Florian Heitz
- Department for Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
- Department of Gynaecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Arbeitsgemeinschaft Gynaekologische Onkologie (AGO), Wiesbaden, Germany
| | | | - Nicoletta Colombo
- Gynecologic Oncology Program, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
- Mario Negri Gynecologic Oncology Group (MaNGO), Milan, Italy
| | - Toon Van Gorp
- Division of Gynaecological Oncology, University Hospital Leuven, Leuven Cancer Institute, Leuven, Belgium
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | - Margarita Romeo
- Medical Oncology Department, Institut Català d'Oncologia, Institut Germans Trias i Pujol (IGTP), Badalona, Spain
- Centre Leon Bérard and University of Lyon, Lyon, France
| | - Isabelle Ray-Coquard
- Centre Leon Bérard and University of Lyon, Lyon, France
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France
| | - Lydia Gaba
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Medical Oncology Department Hospital Clinic and Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Alexandra Leary
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France
- Gustave Roussy, Villejuif, France
| | - Luis Miguel De Sande
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Medical Oncology Service, Complejo Asistencial Universitario de León, León, Spain
| | - Coriolan Lebreton
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France
- Medical Oncology Department-Gynecologic Group, Institut Bergonié-Centre Régional de Lutte Contre le Cancer (CLCC), Bordeaux, France
| | - Andrés Redondo
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Medical Oncology Department, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Michel Fabbro
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France
- Institut du Cancer de Montpellier Val d'Aurelle, Montpellier, France
| | - Maria-Pilar Barretina Ginesta
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Medical Oncology Department, Institut Català d'Oncologia, IDIBGI, Girona, Spain
| | - Philippe Follana
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France
- Centre Antoine Lacassagne, Nice, France
| | - J Alejandro Pérez-Fidalgo
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Medical Oncology Department, University Hospital of Valencia, INCLIVA Biomedical Research Institute, CIBERONC, Valencia, Spain
| | - Manuel Rodrigues
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France
- Institut Curie, Paris, France
| | - Ana Santaballa
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Hospital Universitario La Fe, Valencia, Spain
| | - Renaud Sabatier
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France
- Institut Paoli Calmettes, Marseille, France
| | - Maria José Bermejo-Pérez
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Jean-Pierre Lotz
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France
- Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Beatriz Pardo
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Institut Català d'Oncologia, Hospital Duran i Reynals, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gloria Marquina
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Department of Medical Oncology, Department of Medicine, Hospital Clínico San Carlos, School of Medicine, Instituto de Investigación Sanitaria (IdISSC), EURACAN Referral Centre, Universidad Complotense de Madrid (UCM), Madrid, Spain
| | - Luisa Sánchez-Lorenzo
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Clínica Universidad de Navarra, Madrid, Spain
| | - María Quindós
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- A Coruña Biomedical Research Institute (INIBIC), A Coruña University Hospital, A Coruña, Spain
| | - Purificación Estévez-García
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Hospital Universitario Virgen del Rocío and Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Eva Guerra Alía
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Luis Manso
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Victoria Casado
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Hospital Universitario Fundación Jimenez Díaz, Madrid, Spain
| | - Stefan Kommoss
- Arbeitsgemeinschaft Gynaekologische Onkologie (AGO), Wiesbaden, Germany
- Universitätsklinikum Tübingen, Universitätsfrauenklinik, Tübingen, Germany
- Current address: Diakonie-Klinikum Schwäbisch Hall gGmbH, Schwäbisch Hall, Germany
| | - Germana Tognon
- Mario Negri Gynecologic Oncology Group (MaNGO), Milan, Italy
- Spedali Civili di Brescia, Brescia, Italy
| | - Stéphanie Henry
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
- CHU UCL NAMUR (site Ste Elisabeth), Université Catholique de Louvain, Namur, Belgium
| | - Ilan Bruchim
- Gynecologic Oncology Department, Hillel Yaffe Medical Center, Affiliated with the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Israeli Society of Gynecologic Oncology (ISGO), Ashkelon, Israel
| | - Ana Oaknin
- Grupo Español de Investigación en Cáncer ginecológicO (GEICO), Madrid, Spain
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Frédéric Selle
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO), Paris, France
- Medical Oncology Service, Groupe Hospitalier Diaconesses Croix Saint Simon, Paris, France
| |
Collapse
|
19
|
Sun G, Liu Y. Efficacy and safety of PARP inhibitor maintenance therapy for ovarian cancer: a meta-analysis and trial sequential analysis of randomized controlled trials. Front Pharmacol 2024; 15:1460285. [PMID: 39376601 PMCID: PMC11457084 DOI: 10.3389/fphar.2024.1460285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Background The landscape of poly (ADP-ribose) polymerase (PARP) inhibitor treatment for ovarian cancer (OC) is continually evolving. This research aimed to evaluate the efficacy and safety of PARP inhibitors compared to placebo as a maintenance therapy for OC patients. Methods We conducted a search of PubMed, Embase, Web of Science, and the Cochrane Library databases for randomized controlled trials (RCTs) involving the use of PARP inhibitors as maintenance therapy in OC patients, up to 16 June 2024. Data regarding progression-free survival (PFS), overall survival (OS), chemotherapy-free interval (CFI), time to first subsequent therapy or death (TFST), time to second subsequent therapy or death (TSST), and treatment-emergent adverse events (TEAEs) were aggregated. Pooled hazard ratio (HR) and their corresponding 95% confidence intervals (CI) were calculated for PFS, OS, CFI, TFST, and TSST. Additionally, the relative risk (RR) and 95% CI for TEAEs were determined. Results This meta-analysis encompassed 20 RCTs involving 7,832 participants. The overall analysis demonstrated that maintenance therapy with PARP inhibitors led to significant improvements in PFS (HR: 0.398, 95% CI = 0.339-0.467, 95% PI = 0.219-0.724), OS (HR: 0.677, 95% CI = 0.582-0.788, 95% PI = 0.546-0.839), CFI (HR: 0.417, 95% CI = 0.368-0.472, 95% PI = 0.265-0.627), TFST (HR: 0.441, 95% CI = 0.391-0.498, 95% PI = 0.308-0.632), and TSST (HR: 0.574, 95% CI = 0.507-0.649, 95% PI = 0.488-0.674) compared with placebo. Subgroup analyses further indicated that PARP inhibitor maintenance treatment significantly improved PFS, regardless of homologous recombination status (all p < 0.05). However, the risks of any grade (RR = 1.046, 95% CI = 1.032-1.059, 95% PI = 1.028-1.055) and grade ≥3 TEAEs (RR = 2.931, 95% CI = 2.641-3.253, 95% PI = 2.128-3.792) were increased by PARP inhibitor maintenance therapy compared to placebo. Conclusion Our research elucidated the benefits of maintenance therapy with PARP inhibitors in patients with OC, showing improvements in PFS, OS, CFI, TFST, and TSST. Vigilance regarding TEAEs is paramount for clinicians implementing PARP inhibitor maintenance therapy in clinical practice. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024560286.
Collapse
Affiliation(s)
- Guojuan Sun
- The Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- Department of Gynaecology and Obstetrics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Adjei NN, Haas A, Zhao H, Primm KM, Giordano SH, Sun CC, Meyer LA. Real-world trends in the use of maintenance therapy in ovarian cancer across the United States from 2017 to 2021. Gynecol Oncol 2024; 190:255-261. [PMID: 39260122 DOI: 10.1016/j.ygyno.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE We assessed real-world trends in the use of maintenance therapy [MT] (i.e., polyADP-ribose polymerase inhibitors (PARPi) and/or bevacizumab following platinum-based chemotherapy), among U.S. patients with ovarian cancer. METHODS Using Medicare and commercial administrative health claims data from Optum's de-identified Clinformatics® Data Mart Database, we identified patients who had been diagnosed with ovarian cancer between January 1, 2010, and March 31, 2021, and received platinum-based chemotherapy and MT. Multivariable logistic regression and Cox proportional hazards regression were used to evaluate associations between demographic and clinical characteristics and MT use. RESULTS Our study included 6339 patients, with a median age of 70 years. The majority were White (70.1 %), Medicare-insured (71.9 %), and were treated in the South (42.5 %). Of the 31.5 % who received MT, 18.1 % received bevacizumab alone, 10.2 % PARPi alone, and 3.3 % both. After adjusting for insurance type, PARPi and bevacizumab use increased significantly from 2017 to 2020. Patients with a high Elixhauser comorbidity index were more likely to receive MT than were patients with a low index [OR (95 % CI): 1.46 (1.28-1.67), p < 0.0001]. PARPi use was significantly associated with treatment in the South [1.42 (1.10-1.83), p = 0.01]. Compared to patients who received neither agents, those who received bevacizumab, alone or in combination with PARPi, had a higher risk of death [HR = 2.02 (95 % CI: 1.70-2.28, p < 0.0001) and 1.66 (1.24-2.23), p = 0.001, respectively]. CONCLUSIONS The majority of patients with ovarian cancer are not utilizing maintenance therapy after platinum-based chemotherapy. Age, comorbidity status, and geographic region of treatment were associated with MT use. Understanding the factors and real-world outcomes associated with MT use is important to support patients in making value concordant and informed decisions.
Collapse
Affiliation(s)
- Naomi N Adjei
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Allen Haas
- Department of Health Services Research, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Zhao
- Department of Health Services Research, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin M Primm
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon H Giordano
- Department of Health Services Research, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charlotte C Sun
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Larissa A Meyer
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Wei M, Liu R, Xu Y, Chen X, Liu C, Bai X, Zhang X, Gao S, Li J, Sheng Z, Lian J, Wang W, Zhang J, Shi S, Xu J, Yu X. Phase 1b study of first-line fuzuloparib combined with modified FOLFIRINOX followed by fuzuloparib maintenance monotherapy in pancreatic adenocarcinoma. BMC Med 2024; 22:365. [PMID: 39232761 PMCID: PMC11375820 DOI: 10.1186/s12916-024-03581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Chemotherapy remains the standard first-line treatment for pancreatic adenocarcinoma, but with limited efficacy. We aimed to explore the feasibility of adding the PARP inhibitor fuzuloparib to mFOLFIRINOX in the locally advanced/metastatic (LA/M) setting. METHODS This was the dose-escalation and -expansion, phase 1b portion of a phase 1b/2 study. Patients were given oral fuzuloparib at escalating doses starting at 30 mg twice daily (BID) plus intravenous mFOLFIRINOX q2w for 8-12 cycles, followed by maintenance fuzuloparib at 150 mg BID. Cohorts at the maximal tolerated dose (MTD) and lower dose of fuzuloparib were expanded. Primary endpoints were dose-limiting toxicity (DLT), MTD, and recommended phase 2 dose (RP2D). RESULTS As of data cutoff on Jan 15, 2023, 39 patients were recruited. 12 patients were enrolled during dose escalation (30 mg [n = 4]; 60 mg [n = 6]; 100 mg [n = 2]). DLT occurred in 1 patient in 60 mg cohort and 1 patient in 100 mg cohort. 60 mg BID was determined to be the MTD, and then 60 and 30 mg cohorts were expanded to 22 and 15 patients, respectively. The most common grade ≥ 3 treatment-related adverse events were hematologic toxicities. Efficacy in 60 mg cohort seemed to be most favorable, with an objective response rate of 50.0% (95% CI, 26.0-74.0) and disease control rate of 94.4% (95% CI, 72.7-99.9). CONCLUSIONS First-line fuzuloparib plus mFOLFIRINOX followed by maintenance fuzuloparib was generally safe and showed encouraging anti-tumor activity in patients with LA/M pancreatic adenocarcinoma. The RP2D of fuzuloparib combination was 60 mg BID. TRIAL REGISTRATION ClinicalTrials.gov, NCT04228601.
Collapse
Affiliation(s)
- Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Rujiao Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yunyun Xu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaobing Chen
- Department of Internal Oncology, Henan Cancer Hospital, Zhengzhou, China
| | - Chao Liu
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xueli Bai
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuiping Gao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jialin Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zhen Sheng
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Jianpo Lian
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Wenliang Wang
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Jian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Kristeleit R, Leary A, Oaknin A, Redondo A, George A, Chui S, Seiller A, Liste-Hermoso M, Willis J, Shemesh CS, Xiao J, Lin KK, Molinero L, Guan Y, Ray-Coquard I, Mileshkin L. PARP inhibition with rucaparib alone followed by combination with atezolizumab: Phase Ib COUPLET clinical study in advanced gynaecological and triple-negative breast cancers. Br J Cancer 2024; 131:820-831. [PMID: 38971950 PMCID: PMC11369183 DOI: 10.1038/s41416-024-02776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Combining PARP inhibitors (PARPis) with immune checkpoint inhibitors may improve clinical outcomes in selected cancers. We evaluated rucaparib and atezolizumab in advanced gynaecological or triple-negative breast cancer (TNBC). METHODS After identifying the recommended dose, patients with PARPi-naive BRCA-mutated or homologous recombination-deficient/loss-of-heterozygosity-high platinum-sensitive ovarian cancer or TNBC received rucaparib plus atezolizumab. Tumour biopsies were collected pre-treatment, during single-agent rucaparib run-in, and after starting combination therapy. RESULTS The most common adverse events with rucaparib 600 mg twice daily and atezolizumab 1200 mg on Day 1 every 3 weeks were gastrointestinal effects, fatigue, liver enzyme elevations, and anaemia. Responding patients typically had BRCA-mutated tumours and higher pre-treatment tumour levels of PD-L1 and CD8 + T cells. Markers of DNA damage repair decreased during rucaparib run-in and combination treatment in responders, but typically increased in non-responders. Apoptosis signature expression showed the reverse. CD8 + T-cell activity and STING pathway activation increased during rucaparib run-in, increasing further with atezolizumab. CONCLUSIONS In this small study, rucaparib plus atezolizumab demonstrated acceptable safety and activity in BRCA-mutated tumours. Increasing anti-tumour immunity and inflammation might be a key mechanism of action for clinical benefit from the combination, potentially guiding more targeted development of such regimens. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (NCT03101280).
Collapse
Affiliation(s)
- Rebecca Kristeleit
- University College London Cancer Institute, London, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
- Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.
| | | | - Ana Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andres Redondo
- Medical Oncology Department, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Angela George
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Stephen Chui
- Product Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | | | - Jenna Willis
- Product Development Safety, Roche Products Ltd, Welwyn Garden City, UK
| | - Colby S Shemesh
- Clinical Pharmacology Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Jim Xiao
- Clovis Oncology, San Francisco, CA, USA
| | | | - Luciana Molinero
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Yinghui Guan
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Isabelle Ray-Coquard
- Centre Leon Bérard, HESPER laboratory EA 7425, Université Claude Bernard Lyon Est, Lyon, France
| | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Adrianto N, Mangkuliguna G, Tandiono EJ, Sibarani CNR. Efficacy and safety of rucaparib in patients with recurrent high-grade ovarian carcinoma: A systematic review and meta-analysis. Taiwan J Obstet Gynecol 2024; 63:601-609. [PMID: 39266137 DOI: 10.1016/j.tjog.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 09/14/2024] Open
Abstract
Ovarian cancer stands as the third most prevalent gynecological malignancy. The advent of PARP inhibitors, particularly rucaparib, has revolutionized the landscape of advanced ovarian cancer treatment, demonstrating notable efficacy with minimal toxicity, especially in patients not previously exposed to PARP inhibitors. Rucaparib's precision-driven approach, targeting specific genetic mutations, disrupts DNA repair mechanisms, resulting in cytotoxic effects on neoplastic cells. This comprehensive review delves into the clinical efficacy and safety profile of rucaparib in recurrent ovarian cancer, showcasing its promising therapeutic approach. A systematic search of studies reporting rucaparib efficacy and safety, up to September 2023, was conducted across various reputable databases and sources. The meta-analysis of seven articles revealed a pooled objective response rate (ORR) of 0.331 (95% CI, 0.221-0.449; I2 = 92.4%), underscoring rucaparib's efficacy, particularly evident in the BRCA-mutated cohort. Rucaparib consistently outperformed controls in progression-free survival (PFS) and overall survival (OS). Safety evaluations indicated that 98.7% of patients experienced treatment-emergent adverse events (TEAEs), with 61% being grade ≥3. Notable TEAEs included nausea (69.0%), fatigue (66.8%), vomiting (37.3%), and constipation (32.1%). Hematological concerns comprised anemia (47.9%), thrombocytopenia, elevated AST/ALT (37.3%), and serum creatinine levels (19.7%). Despite favourable outcomes, the rucaparib group recorded higher event rates across various metrics than controls. The findings underscore the need for meticulous monitoring and dose adjustments to optimize therapeutic outcomes and mitigate the increased risks associated with adverse events. International Prospective Register of Systematic Review Identifier: CRD42023459646.
Collapse
Affiliation(s)
- Nicholas Adrianto
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya No.2, Penjaringan, North Jakarta, Daerah Khusus Ibukota, Jakarta 14440, Indonesia.
| | - Ghea Mangkuliguna
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya No.2, Penjaringan, North Jakarta, Daerah Khusus Ibukota, Jakarta 14440, Indonesia
| | - Eunike Jennifer Tandiono
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya No.2, Penjaringan, North Jakarta, Daerah Khusus Ibukota, Jakarta 14440, Indonesia
| | - Candra Novi Ricardo Sibarani
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Padjadjaran University, Dr. Hasan Sadikin General Hospital, Jl. Pasteur No.38, Pasteur, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
24
|
Itamochi H, Takeshima N, Hamanishi J, Hasegawa K, Matsuura M, Miura K, Nagao S, Nakai H, Tanaka N, Tokunaga H, Nishio S, Watari H, Yokoyama Y, Kase Y, Sumino S, Kato A, Suri A, Yasuoka T, Takehara K. Niraparib in Japanese patients with platinum-sensitive recurrent ovarian cancer: final results of a multicenter phase 2 study. J Gynecol Oncol 2024; 35:e115. [PMID: 39058367 PMCID: PMC11390257 DOI: 10.3802/jgo.2024.35.e115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE This study evaluated the long-term safety and efficacy of niraparib in Japanese patients with platinum-sensitive recurrent ovarian cancer. METHODS This was a follow-up analysis of a phase 2, multicenter, open-label, single-arm study in Japanese women with platinum-sensitive, relapsed ovarian cancer. Participants received niraparib (starting dose 300 mg) once daily in continuous 28-day cycles. The primary endpoint was the incidence of Grade 3 or 4 thrombocytopenia-related events (defined as the overall incidence of the MedDRA Preferred Terms "thrombocytopenia" and "platelet count decreased") occurring in the 30 days after initial administration of niraparib, and secondary endpoints included evaluation of treatment-emergent adverse events and progression-free survival. RESULTS Nineteen patients (median age, 62 years; median body weight, 53.9 kg) were enrolled. As previously reported, the incidence of Grade 3 or 4 thrombocytopenia-related events during the first 30 days of treatment was 31.6%. At data cutoff, median (range) treatment exposure was 504.0 (56-1,054) days and mean ± standard deviation dose intensity was 154.4±77.5 mg/day. The most common treatment-emergent adverse events were nausea (n=14, 73.7%), decreased platelet count (n=12, 63.2%), decreased neutrophil count (n=11, 57.9%), anemia, vomiting, and decreased appetite (all n=9, 47.4%). One patient was diagnosed with treatment-related leukemia, which resulted in death. Median (95% confidence interval) progression-free survival was 18.0 (5.6-26.7) months. CONCLUSION Overall, the safety profile of niraparib was considered manageable in this study population of Japanese patients with platinum-sensitive, relapsed ovarian cancer and was consistent with that observed in studies of non-Japanese patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03759587.
Collapse
Affiliation(s)
- Hiroaki Itamochi
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Nobuhiro Takeshima
- Department of Obstetrics and Gynecology, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Motoki Matsuura
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoji Nagao
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Naotake Tanaka
- Department of Gynecology, Chiba Cancer Center, Chiba, Japan
| | - Hideki Tokunaga
- Department of Gynecology, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Divison of Obstetrics and Gynecology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shin Nishio
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Fukuoka, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Yoichi Kase
- Clinical Science, Oncology Cell Therapy and Therapeutic Area Unit, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Shuuji Sumino
- Biostatistics, Japan Development Center, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Ai Kato
- Department of Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Ajit Suri
- Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Toshiaki Yasuoka
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Kazuhiro Takehara
- Department of Gynecologic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| |
Collapse
|
25
|
Telli ML, Litton JK, Beck JT, Jones JM, Andersen J, Mina LA, Brig R, Danso M, Yuan Y, Symmans WF, Hopkins JF, Albacker LA, Abbattista A, Noonan K, Mata M, Laird AD, Blum JL. Neoadjuvant talazoparib in patients with germline BRCA1/2 mutation-positive, early-stage triple-negative breast cancer: exploration of tumor BRCA mutational status. Breast Cancer 2024; 31:886-897. [PMID: 38869771 PMCID: PMC11341741 DOI: 10.1007/s12282-024-01603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Talazoparib monotherapy in patients with germline BRCA-mutated, early-stage triple-negative breast cancer (TNBC) showed activity in the neoadjuvant setting in the phase II NEOTALA study (NCT03499353). These biomarker analyses further assessed the mutational landscape of the patients enrolled in the NEOTALA study. METHODS Baseline tumor tissue from the NEOTALA study was tested retrospectively using FoundationOne®CDx. To further hypothesis-driven correlative analyses, agnostic heat-map visualizations of the FoundationOne®CDx tumor dataset were used to assess overall mutational landscape and identify additional candidate predictive biomarkers of response. RESULTS All patients enrolled (N = 61) had TNBC. In the biomarker analysis population, 75.0% (39/52) and 25.0% (13/52) of patients exhibited BRCA1 and BRCA2 mutations, respectively. Strong concordance (97.8%) was observed between tumor BRCA and germline BRCA mutations, and 90.5% (38/42) of patients with tumor BRCA mutations evaluable for somatic-germline-zygosity were predicted to exhibit BRCA loss of heterozygosity (LOH). No patients had non-BRCA germline DNA damage response (DDR) gene variants with known/likely pathogenicity, based on a panel of 14 non-BRCA DDR genes. Ninety-eight percent of patients had TP53 mutations. Genomic LOH, assessed continuously or categorically, was not associated with response. CONCLUSION The results from this exploratory biomarker analysis support the central role of BRCA and TP53 mutations in tumor pathobiology. Furthermore, these data support assessing germline BRCA mutational status for molecular eligibility for talazoparib in patients with TNBC.
Collapse
Affiliation(s)
- Melinda L Telli
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Thaddeus Beck
- Department of Medical Oncology and Hematology, Highlands Oncology, Springdale, AR, USA
| | - Jason M Jones
- Avera Medical Group Oncology & Hematology, Avera Cancer Institute, Sioux Falls, SD, USA
| | - Jay Andersen
- Medical Oncology, Compass Oncology, West Cancer Center, US Oncology Network, Tigard, OR, USA
| | - Lida A Mina
- Hematology Oncology Department, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Raymond Brig
- Medical Oncology, Brig Center for Cancer Care and Survivorship, Knoxville, TN, USA
| | - Michael Danso
- Medical Oncology, Virginia Oncology Associates, Norfolk, VA, USA
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, Cedars-Sinai Cancer Center, West Hollywood, CA, USA
| | - William F Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Kay Noonan
- Clinical Oncology, Pfizer Inc., Groton, CT, USA
| | | | | | - Joanne L Blum
- Department of Oncology, Texas Oncology-Baylor Charles A. Sammons Cancer Center, US Oncology Network, Dallas, TX, USA
| |
Collapse
|
26
|
Cheng HH, Shevach JW, Castro E, Couch FJ, Domchek SM, Eeles RA, Giri VN, Hall MJ, King MC, Lin DW, Loeb S, Morgan TM, Offit K, Pritchard CC, Schaeffer EM, Szymaniak BM, Vassy JL, Katona BW, Maxwell KN. BRCA1, BRCA2, and Associated Cancer Risks and Management for Male Patients: A Review. JAMA Oncol 2024; 10:1272-1281. [PMID: 39052257 DOI: 10.1001/jamaoncol.2024.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Importance Half of all carriers of inherited cancer-predisposing variants in BRCA1 and BRCA2 are male, but the implications for their health are underrecognized compared to female individuals. Germline variants in BRCA1 and BRCA2 (also known as pathogenic or likely pathogenic variants, referred to here as BRCA1/2 PVs) are well known to significantly increase the risk of breast and ovarian cancers in female carriers, and knowledge of BRCA1/2 PVs informs established cancer screening and options for risk reduction. While risks to male carriers of BRCA1/2 PVs are less characterized, there is convincing evidence of increased risk for prostate cancer, pancreatic cancer, and breast cancer in males. There has also been a rapid expansion of US Food and Drug Administration-approved targeted cancer therapies, including poly ADP ribose polymerase (PARP) inhibitors, for breast, pancreatic, and prostate cancers associated with BRCA1/2 PVs. Observations This narrative review summarized the data that inform cancer risks, targeted cancer therapy options, and guidelines for early cancer detection. It also highlighted areas of emerging research and clinical trial opportunities for male BRCA1/2 PV carriers. These developments, along with the continued relevance to family cancer risk and reproductive options, have informed changes to guideline recommendations for genetic testing and strengthened the case for increased genetic testing for males. Conclusions and Relevance Despite increasing clinical actionability for male carriers of BRCA1/2 PVs, far fewer males than female individuals undergo cancer genetic testing. Oncologists, internists, and primary care clinicians should be vigilant about offering appropriate genetic testing to males. Identifying more male carriers of BRCA1/2 PVs will maximize opportunities for cancer early detection, targeted risk management, and cancer treatment for males, along with facilitating opportunities for risk reduction and prevention in their family members, thereby decreasing the burden of hereditary cancer.
Collapse
Affiliation(s)
- Heather H Cheng
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Medicine (Hematology and Oncology), University of Washington, Seattle
| | - Jeffrey W Shevach
- Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fergus J Couch
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, New York
| | - Susan M Domchek
- Department of Medicine, Basser Center for BRCA and Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Rosalind A Eeles
- The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Veda N Giri
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut
| | - Michael J Hall
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mary-Claire King
- Department of Medicine (Medical Genetics) and Department of Genome Sciences, University of Washington, Seattle
| | - Daniel W Lin
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle
| | - Stacy Loeb
- Department of Urology and Population Health, New York University School of Medicine, New York
- Department of Surgery/Urology, Manhattan Veterans Affairs, New York, New York
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor
| | - Kenneth Offit
- Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Edward M Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brittany M Szymaniak
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason L Vassy
- Harvard Medical School at VA Boston Healthcare System, Boston, Massachusetts
| | - Bryson W Katona
- Department of Medicine, Basser Center for BRCA and Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Kara N Maxwell
- Department of Medicine, Basser Center for BRCA and Abramson Cancer Center, University of Pennsylvania, Philadelphia
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Rutkowska A, Eberl HC, Werner T, Hennrich ML, Sévin DC, Petretich M, Reddington JP, Pocha S, Gade S, Martinez-Segura A, Dvornikov D, Karpiak J, Sweetman GMA, Fufezan C, Duempelfeld B, Braun F, Schofield C, Keles H, Alvarado D, Wang Z, Jansson KH, Faelth-Savitski M, Curry E, Remlinger K, Stronach EA, Feng B, Sharma G, Coleman K, Grandi P, Bantscheff M, Bergamini G. Synergistic Effects of PARP Inhibition and Cholesterol Biosynthesis Pathway Modulation. CANCER RESEARCH COMMUNICATIONS 2024; 4:2427-2443. [PMID: 39028932 PMCID: PMC11403291 DOI: 10.1158/2767-9764.crc-23-0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
An in-depth multiomic molecular characterization of PARP inhibitors revealed a distinct poly-pharmacology of niraparib (Zejula) mediated by its interaction with lanosterol synthase (LSS), which is not observed with other PARP inhibitors. Niraparib, in a similar way to the LSS inhibitor Ro-48-8071, induced activation of the 24,25-epoxysterol shunt pathway, which is a regulatory signaling branch of the cholesterol biosynthesis pathway. Interestingly, the combination of an LSS inhibitor with a PARP inhibitor that does not bind to LSS, such as olaparib, had an additive effect on killing cancer cells to levels comparable with niraparib as a single agent. In addition, the combination of PARP inhibitors and statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, an enzyme catalyzing the rate-limiting step in the mevalonate pathway, had a synergistic effect on tumor cell killing in cell lines and patient-derived ovarian tumor organoids. These observations suggest that concomitant inhibition of the cholesterol biosynthesis pathway and PARP activity might result in stronger efficacy of these inhibitors against tumor types highly dependent on cholesterol metabolism. SIGNIFICANCE The presented data indicate, to our knowledge, for the first time, the potential benefit of concomitant modulation of cholesterol biosynthesis pathway and PARP inhibition and highlight the need for further investigation to assess its translational relevance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joel Karpiak
- Medicine Design-Computational Sciences, R&D, GSK, Heidelberg, Germany
| | | | - Christian Fufezan
- Data Streams and Operations, and Data Science and Data Engineering, R&D, GSK, Heidelberg, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Florian Braun
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | | | - Hakan Keles
- Genomic Sciences, R&D, GSK, Heidelberg, Germany
| | - David Alvarado
- Oncology, Synthetic Lethality Research Unit, R&D, GSK, Heidelberg, Germany
| | - Zhuo Wang
- Oncology, Synthetic Lethality Research Unit, R&D, GSK, Heidelberg, Germany
| | | | | | | | | | | | - Bin Feng
- Oncology, Advanced Analytics Experimental Medicine Unit, R&D, GSK, Heidelberg, Germany
| | - Geeta Sharma
- Oncology, Synthetic Lethality Research Unit, R&D, GSK, Heidelberg, Germany
| | - Kevin Coleman
- Oncology, Synthetic Lethality Research Unit, R&D, GSK, Heidelberg, Germany
| | | | | | | |
Collapse
|
28
|
Xu-Vuillard A, Guerin-Charbonnel C, Bocquet F, Cheeseman S, Kubelac PM, Zenatri M, Hall G, Achimas-Cadariu P, Hanvic B, Fenton H, Sturz-Lazăr AML, Augereau P, Ray-Coquard I, Leary A, Frenel JS. Efficacy of chemotherapy after progression during or following PARPi exposure in ovarian cancer. ESMO Open 2024; 9:103694. [PMID: 39232440 PMCID: PMC11403296 DOI: 10.1016/j.esmoop.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase inhibitors (PARPis) improved advanced ovarian cancer treatment. Most patients progress during or following PARPi exposure, however, with concerns about sensitivity of subsequent chemotherapy. PATIENTS AND METHODS In this international cohort study, we evaluated the efficacy of a subsequent chemotherapy following PARPi exposure in high-grade ovarian carcinoma patients. Endpoints included progression-free survival (PFS), overall survival and a multivariable Cox model was built to identify factors influencing PFS. RESULTS We included 291 patients from four international centers treated between January 2002 and December 2021. The median number of previous chemotherapy was 1 (1.0-7.0), the median duration of PARPi exposure was 6.5 months (0.2-54.3 months). PARPi was used in first line in 14.1% patients. Most progressions occurred under PARPi exposure (89.1%). A BRCA pathogenic variant was identified in 130 patients (44.7%), absent in 157 patients (54.0%), and undocumented in 4 patients (1.4%). Platinum-based CT (PBC) and non-PBC were administered as subsequent treatments in, respectively, 182 patients (62.5%) and 109 patients (37.5%). Multivariable analyses showed that platinum-free interval (PFI) >6 months [adjusted hazards ratio (HR), 0.52; 95% confidence interval (CI) 0.39-0.70] and type of initial surgery (adjusted HR, 1.41; 95% CI 1.07-1.87; interval or closing surgery versus primary surgery) were associated with PFS, independent of BRCA status or line of therapy (≥2 versus 1). In patients with a PFI >6 months, PBC was numerically associated with the best PFS (adjusted HR, 0.68; 95% CI 0.46-1.01). CONCLUSION This is the largest real-world study assessing the efficacy of subsequent chemotherapy in patients progressing during PARPi exposure. The patients have poor outcomes. PBC is the best option in patients progressing on PARPi and eligible for PBC rechallenge (PFI >6 months).
Collapse
Affiliation(s)
- A Xu-Vuillard
- Medical Oncology Department, Gustave Roussy, Villejuif; Sorbonne Université, Paris
| | - C Guerin-Charbonnel
- Department of Biostatistics and Analytics, Institut de Cancérologie de L'Ouest, Nantes
| | - F Bocquet
- Data Factory, Institut de Cancérologie de L'ouest, Nantes, France
| | - S Cheeseman
- Leeds Cancer Center, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - P M Kubelac
- The Oncology Institute Prof. Dr Ion Chiricuta, Kluj-Napoca, Romania
| | - M Zenatri
- Medical Oncology Department, Institut de Cancérologie de L'Ouest, Saint-Herblain
| | - G Hall
- Leeds Cancer Center, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - P Achimas-Cadariu
- The Oncology Institute Prof. Dr Ion Chiricuta, Kluj-Napoca, Romania; Medical Oncology Department, Institut de Cancérologie de L'Ouest, Saint-Herblain; Medical Oncology Department, Centre Leon Berard, Lyon, France; Oncology Evidence Network, IQVIA, London, UK; City Hospital, Timisoara, Romania; Medical Oncology Department, Institut de Cancérologie de L'Ouest, Angers, France; University of Medicine and Pharmacy Iuliu Hatieganu, Kluj-Napoca, Romania
| | - B Hanvic
- Medical Oncology Department, Centre Leon Berard, Lyon, France
| | - H Fenton
- Oncology Evidence Network, IQVIA, London, UK
| | | | - P Augereau
- Medical Oncology Department, Institut de Cancérologie de L'Ouest, Angers, France
| | - I Ray-Coquard
- Medical Oncology Department, Centre Leon Berard, Lyon, France
| | - A Leary
- Medical Oncology Department, Gustave Roussy, Villejuif
| | - J-S Frenel
- Medical Oncology Department, Institut de Cancérologie de L'Ouest, Saint-Herblain.
| |
Collapse
|
29
|
Bianchi T, Grassi T, Bazzurini L, Testa F, Corti J, Pecis Cavagna G, Bombelli M, Lissoni AA, Di Martino G, Trezzi G, De Ponti E, Fruscio R, Landoni F. The paradigm shift in advanced ovarian cancer: Outcomes of extensive primary cytoreductive surgery. A single-center retrospective analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108523. [PMID: 38996586 DOI: 10.1016/j.ejso.2024.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVE The standard surgical treatment of advanced ovarian carcinoma is primary debulking surgery (PDS) aiming to complete cytoreduction. The need to achieve complete cytoreduction has shifted the surgical paradigm to more complex procedures, whose impact on morbidity is controversial. The objective of this retrospective analysis is to explore the impact of extensive PDS on morbidity and oncologic outcomes in a real-world scenario. METHODS A retrospective single-center analysis was performed on 137 patients with advanced high-grade ovarian carcinoma (HGOC) who received PDS in 2015-2020. Patients treated in 2015-2017 (Group 1) were compared to patients treated in 2018-2020 (Group 2). The two periods were chosen according to the higher complexity of surgical procedures introduced in 2018. RESULTS The increase in complete cytoreduction observed in Group2 (RD 0: 33 % vs 61 %, p = 0,008) was related to a higher surgical complexity (Aletti Score: 4 vs 6, p = 0,003) and did not reflect an increase in peri-operative complications (CCI: 20,9 vs 20,9, p = 0,11). After a median FUP of 44 months, PFS and OS at 24 months were 33,60 % vs 47,33 % (p = 0,288) and 72,10 % vs 80,37 % (p = 0,022) in Group 1 and 2, respectively. CONCLUSIONS An extensive surgical effort leads to a significant increase in complete cytoreduction with acceptable morbidity. Arm-in-arm with novel maintenance therapies, it contributes to increasing the outcomes of patients with advanced HGOC.
Collapse
Affiliation(s)
- Tommaso Bianchi
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Tommaso Grassi
- Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Luca Bazzurini
- Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Filippo Testa
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Jasmine Corti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Giorgia Pecis Cavagna
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Martina Bombelli
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Andrea Alberto Lissoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Giampaolo Di Martino
- Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Gaetano Trezzi
- Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Elena De Ponti
- Medical Physics, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Robert Fruscio
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy.
| | - Fabio Landoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy; Clinic of Obstetrics and Gynecology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
30
|
Moss E, Taylor A, Andreou A, Ang C, Arora R, Attygalle A, Banerjee S, Bowen R, Buckley L, Burbos N, Coleridge S, Edmondson R, El-Bahrawy M, Fotopoulou C, Frost J, Ganesan R, George A, Hanna L, Kaur B, Manchanda R, Maxwell H, Michael A, Miles T, Newton C, Nicum S, Ratnavelu N, Ryan N, Sundar S, Vroobel K, Walther A, Wong J, Morrison J. British Gynaecological Cancer Society (BGCS) ovarian, tubal and primary peritoneal cancer guidelines: Recommendations for practice update 2024. Eur J Obstet Gynecol Reprod Biol 2024; 300:69-123. [PMID: 39002401 DOI: 10.1016/j.ejogrb.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Esther Moss
- College of Life Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Adrian Andreou
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, UK
| | - Christine Ang
- Northern Gynaecological Oncology Centre, Gateshead, UK
| | - Rupali Arora
- Department of Cellular Pathology, University College London NHS Trust, 60 Whitfield Street, London W1T 4E, UK
| | | | | | - Rebecca Bowen
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, UK
| | - Lynn Buckley
- Beverley Counselling & Psychotherapy, 114 Holme Church Lane, Beverley, East Yorkshire HU17 0PY, UK
| | - Nikos Burbos
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital Colney Lane, Norwich NR4 7UY, UK
| | | | - Richard Edmondson
- Saint Mary's Hospital, Manchester and University of Manchester, M13 9WL, UK
| | - Mona El-Bahrawy
- Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | | | - Jonathan Frost
- Gynaecological Oncology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Bath BA1 3NG, UK; University of Exeter, Exeter, UK
| | - Raji Ganesan
- Department of Cellular Pathology, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | | | - Louise Hanna
- Department of Oncology, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, UK
| | - Baljeet Kaur
- North West London Pathology (NWLP), Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London and Barts Health NHS Trust, UK
| | - Hillary Maxwell
- Dorset County Hospital, Williams Avenue, Dorchester, Dorset DT1 2JY, UK
| | - Agnieszka Michael
- Royal Surrey NHS Foundation Trust, Guildford GU2 7XX and University of Surrey, School of Biosciences, GU2 7WG, UK
| | - Tracey Miles
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, UK
| | - Claire Newton
- Gynaecology Oncology Department, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Shibani Nicum
- Department of Oncology, University College London Cancer Institute, London, UK
| | | | - Neil Ryan
- The Centre for Reproductive Health, Institute for Regeneration and Repair (IRR), 4-5 Little France Drive, Edinburgh BioQuarter City, Edinburgh EH16 4UU, UK
| | - Sudha Sundar
- Institute of Cancer and Genomic Sciences, University of Birmingham and Pan Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham B18 7QH, UK
| | - Katherine Vroobel
- Department of Cellular Pathology, Royal Marsden Foundation NHS Trust, London SW3 6JJ, UK
| | - Axel Walther
- Bristol Cancer Institute, University Hospitals Bristol and Weston NHS Foundation Trust, UK
| | - Jason Wong
- Department of Histopathology, East Suffolk and North Essex NHS Foundation Trust, Ipswich Hospital, Heath Road, Ipswich IP4 5PD, UK
| | - Jo Morrison
- University of Exeter, Exeter, UK; Department of Gynaecological Oncology, GRACE Centre, Musgrove Park Hospital, Somerset NHS Foundation Trust, Taunton TA1 5DA, UK.
| |
Collapse
|
31
|
Hu Y, Wang C, Liang H, Li J, Yang Q. The treatment landscape of triple-negative breast cancer. Med Oncol 2024; 41:236. [PMID: 39210220 DOI: 10.1007/s12032-024-02456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer (TNBC) tumors are biologically aggressive breast cancer. On the molecular level, TNBC is a highly heterogeneous disease; more biotechnologies are gradually being used to advance the understanding of TNBC subtypes and help establish more targeted therapies. Multiple TNBC target-related agents are already approved by the Food and Drug Administration for clinical use, including PI3K/AKT/mTOR inhibitors, PRAP inhibitors, and antibody-drug conjugates. Some innovative approaches, like peptide strategies, also promise to treat TNBC. Currently, the interplay between TNBC tumors and their tumor microenvironment provides a promising prospect for improving the efficacy of immunotherapy. In this review, we summarize the prevalent TNBC subtype methodologies, discuss the evolving therapeutic strategies, and propose new therapeutic possibilities based on existing foundational theories, with the attempt to serve as a reference to further advance tailoring treatment of TNBC.
Collapse
Affiliation(s)
- Yi Hu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chen Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Huishi Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
32
|
Arcieri M, Andreetta C, Tius V, Zapelloni G, Titone F, Restaino S, Vizzielli G. Molecular biology as a driver in therapeutic choices for ovarian cancer. Int J Gynecol Cancer 2024:ijgc-2024-005700. [PMID: 39209430 DOI: 10.1136/ijgc-2024-005700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The majority of patients with ovarian cancer relapse within 3 years of first line chemotherapy. Therefore, choosing the most appropriate treatment in the recurrence setting has a fundamental role in defining a patient's prognosis. Treatment options include systemic and intra-peritoneal chemotherapy, secondary cytoreductive surgery, and stereotactic body radiotherapy. The best therapeutic choice depends on multiple factors and not only on treatment-free interval. For systemic therapy, prior lines therapy, residual toxicities, comorbidities, performance status, and patient preferences should be taken into account. Secondary cytoreductive surgery can be proposed in patients in which complete tumor resectability can be predicted and in those with oligometastatic disease. Stereotactic body radiotherapy represents a valid alternative to surgery for oligometastatic disease with high local control and minimal toxicity. Current evidence has demonstrated an emerging role of BRCA mutational status and molecular profiling in the impacting response to systemic and local treatments. Therefore, these could provide guidance in the treatment decision process and help identify patients who respond better to poly(ADP-ribose) polymerase (PARP)-inhibitors or immunotherapy or to a combined approach with surgery rather than to platinum-based chemotherapy. Current knowledge in this field could help widen therapeutic options, especially for platinum-resistant patients. In this review, we offer an overview of the state of the art regarding the role of chemotherapy, radiotherapy, and surgery in this setting and their implications in clinical practice and in the treatment decision process, so as to provide the best tailored therapy in patients with recurrent ovarian cancer.
Collapse
Affiliation(s)
- Martina Arcieri
- Clinic of Obstetrics and Gynecology, 'S. Maria della Misericordia' University Hospital, Azienda sanitaria universitaria Friuli Centrale, Udine, Italy
| | - Claudia Andreetta
- Department of Medical Oncology, 'S. Maria della Misericordia' University Hospital, Azienda sanitaria universitaria Friuli Centrale, Udine, Friuli-Venezia Giulia, Italy
| | - Veronica Tius
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Friuli-Venezia Giulia, Italy
| | - Giulia Zapelloni
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Friuli-Venezia Giulia, Italy
| | - Francesca Titone
- Department of Radiation Oncology, S. Maria della Misericordia' University Hospital, Azienda sanitaria universitaria Friuli Centrale, Udine, Friuli-Venezia Giulia, Italy
| | - Stefano Restaino
- Clinic of Obstetrics and Gynecology, 'S. Maria della Misericordia' University Hospital, Azienda sanitaria universitaria Friuli Centrale, Udine, Italy
- PhD School in Biomedical Sciences, Gender Medicine, Child and Women Health, University of Sassari, Sassari, Sardegna, Italy
| | - Giuseppe Vizzielli
- Clinic of Obstetrics and Gynecology, 'S. Maria della Misericordia' University Hospital, Azienda sanitaria universitaria Friuli Centrale, Udine, Italy
- Medical Area Department (DAME), in Department of Medicine (DMED), University of Udine, Udine, Friuli-Venezia Giulia, Italy
| |
Collapse
|
33
|
Herencia-Ropero A, Llop-Guevara A, Staniszewska AD, Domènech-Vivó J, García-Galea E, Moles-Fernández A, Pedretti F, Domènech H, Rodríguez O, Guzmán M, Arenas EJ, Verdaguer H, Calero-Nieto FJ, Talbot S, Tobalina L, Leo E, Lau A, Nuciforo P, Dienstmann R, Macarulla T, Arribas J, Díez O, Gutiérrez-Enríquez S, Forment JV, O'Connor MJ, Albertella M, Balmaña J, Serra V. The PARP1 selective inhibitor saruparib (AZD5305) elicits potent and durable antitumor activity in patient-derived BRCA1/2-associated cancer models. Genome Med 2024; 16:107. [PMID: 39187844 PMCID: PMC11348616 DOI: 10.1186/s13073-024-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase 1 and 2 (PARP1/2) inhibitors (PARPi) are targeted therapies approved for homologous recombination repair (HRR)-deficient breast, ovarian, pancreatic, and prostate cancers. Since inhibition of PARP1 is sufficient to cause synthetic lethality in tumors with homologous recombination deficiency (HRD), PARP1 selective inhibitors such as saruparib (AZD5305) are being developed. It is expected that selective PARP1 inhibition leads to a safer profile that facilitates its combination with other DNA damage repair inhibitors. Here, we aimed to characterize the antitumor activity of AZD5305 in patient-derived preclinical models compared to the first-generation PARP1/2 inhibitor olaparib and to identify mechanisms of resistance. METHODS Thirteen previously characterized patient-derived tumor xenograft (PDX) models from breast, ovarian, and pancreatic cancer patients harboring germline pathogenic alterations in BRCA1, BRCA2, or PALB2 were used to evaluate the efficacy of AZD5305 alone or in combination with carboplatin or an ataxia telangiectasia and Rad3 related (ATR) inhibitor (ceralasertib) and compared it to the first-generation PARPi olaparib. We performed DNA and RNA sequencing as well as protein-based assays to identify mechanisms of acquired resistance to either PARPi. RESULTS AZD5305 showed superior antitumor activity than the first-generation PARPi in terms of preclinical complete response rate (75% vs. 37%). The median preclinical progression-free survival was significantly longer in the AZD5305-treated group compared to the olaparib-treated group (> 386 days vs. 90 days). Mechanistically, AZD5305 induced more replication stress and genomic instability than the PARP1/2 inhibitor olaparib in PARPi-sensitive tumors. All tumors at progression with either PARPi (39/39) showed increase of HRR functionality by RAD51 foci formation. The most prevalent resistance mechanisms identified were the acquisition of reversion mutations in BRCA1/BRCA2 and the accumulation of hypomorphic BRCA1. AZD5305 did not sensitize PDXs with acquired resistance to olaparib but elicited profound and durable responses when combined with carboplatin or ceralasertib in 3/6 and 5/5 models, respectively. CONCLUSIONS Collectively, these results show that the novel PARP1 selective inhibitor AZD5305 yields a potent antitumor response in PDX models with HRD and delays PARPi resistance alone or in combination with carboplatin or ceralasertib, which supports its use in the clinic as a new therapeutic option.
Collapse
Affiliation(s)
- Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain.
| | | | - Joanna Domènech-Vivó
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
- Programa de doctorat en Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo García-Galea
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alejandro Moles-Fernández
- Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Flaminia Pedretti
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | - Heura Domènech
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | - Marta Guzmán
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | - Enrique J Arenas
- Growth Factors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Monforte de Lemos, Madrid, Spain
- Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Helena Verdaguer
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | | | | | | | - Alan Lau
- Oncology R&D, AstraZeneca, Cambridge, UK
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Teresa Macarulla
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joaquín Arribas
- Growth Factors Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Monforte de Lemos, Madrid, Spain
- Departament of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
- Cancer Research Program, The Hospital del Mar Research Institute, Barcelona, Spain
| | - Orland Díez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain
| | | | | | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain.
- Department of Medical Oncology, Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain.
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Carrer Natzaret 115-117, 08035, Barcelona, Spain.
| |
Collapse
|
34
|
Jin W, Zhang Z, Sun W, Li J, Xiong W. Neurological toxicities with poly (ADP-ribose) polymerase inhibitors in cancer patients: a systematic review and meta-analysis. J Chemother 2024:1-15. [PMID: 39180239 DOI: 10.1080/1120009x.2024.2392463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
We conducted this meta-analysis to investigate neurological toxicities with poly (ADP-ribose) polymerase inhibitors (PARPis) in cancer patients. Databases were searched for randomized controlled trials (RCTs) from 1 January 2000 to 1 November 2023. Forty-six RCTs and 9529 patients were included. PARPis could increase the risk of all-grade headache [risk ratio (RR), 1.22; 95% confidence intervals (CI), 1.14-1.30; P < 0.00001], dizziness (RR, 1.40; 95% CI, 1.28-1.53; P < 0.00001), dysgeusia (RR, 1.93; 95% CI, 1.44-2.60; P < 0.0001) and insomnia (RR, 1.32; 95% CI, 1.09-1.60; P < 0.0001) in cancer patients. Headache was the most common neurological toxicity. Niraparib was associated with a higher risk of headache and insomnia, talazoparib with a higher risk of dizziness and rucaparib with a higher risk of dysgeusia. Breast cancer patients receiving PARPis have a higher risk of dysgeusia, while ovarian cancer patients are at an increased risk of insomnia. PARPis may increase the risk of mild to moderate neurological toxicities, but not severe ones.
Collapse
Affiliation(s)
- Wenfang Jin
- College of Pharmacy, Southwest Minzu University, Chengdu, P.R. China
| | - Zhifeng Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, P.R. China
| | - Wenxia Sun
- Engineering Research Center For Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, P.R. China
| | - Jing Li
- College of Pharmacy, Southwest Minzu University, Chengdu, P.R. China
| | - Wen Xiong
- Chengdu Institute for Food and Drug Control, Chengdu, P.R. China
| |
Collapse
|
35
|
Škof E, Stegel V, Dragoš VŠ, Blatnik A, Gregorič B, Škerl P, Klančar G, Klasinc AZ, Bombač A, Krajc M, Novaković S. Exploring the impact of BRCA1 and BRCA2 mutation type and location on Olaparib maintenance therapy in platinum-sensitive relapsed ovarian Cancer patients: A single center report. Gynecol Oncol 2024; 190:104-112. [PMID: 39178525 DOI: 10.1016/j.ygyno.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE In patients with platinum-sensitive relapsed ovarian cancer (PSROC) harboring pathogenic/likely pathogenic variants (PV) in BRCA1 and BRCA2 genes, olaparib maintenance monotherapy (OMT) is a viable option. Our study aimed to evaluate the impact of different BRCA1/2 PV in survival outcomes and safety of OMT in BRCA1/2-mutated PSROC patients, focusing on the type and location of PV. METHODS We assessed the outcomes of 100 BRCA1/2-mutated PSROC patients treated at our institute, analyzing progression-free survival (PFS) and overall survival (OS). Germline and tumor BRCA1/2 genotyping was conducted using Illumina's next-generation sequencing (NGS). RESULTS PFS and OS were significantly shorter in PSROC patients with PV in BRCA1 compared to those with PV in BRCA2 (PFS:14.0 vs. 38.8 months, p = 0.007, OS: 21.8 vs. 62.0 months, p = 0.011). Notably, there was a significant difference in PFS based on the intragenic location of BRCA1 PV, with shorter PFS in patients with 1st/2nd relapse, harboring PV in BRCA1 RING domain compared to those with PV in the DNA binding domain (DBD) and BRCT domains (12.4 vs. 23.0 months, p = 0.046). No differences in PFS and OS were observed between patients with germline versus somatic BRCA1/2 PV (PFS:14.9 vs.19.3, p = 0.316, OS: not reached vs. 25.8 months; p = 0.224). However, there were significant differences in the reasons for OMT discontinuation between patients with germline and somatic BRCA1/2 PV, primarily due to adverse side effects. CONCLUSIONS In summary, the type and location of BRCA1 and BRCA2 PV provide additional insight into the expected survival outcomes of olaparib MT in PSROC patients. TRIAL REGISTRATION NUMBER ISRCTN42408038, Name of registry: ISRCTN registry, Date of registration: 24/11/2015.
Collapse
Affiliation(s)
- Erik Škof
- Department of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Vita Šetrajčič Dragoš
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Ana Blatnik
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Brigita Gregorič
- Department of Medical Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Petra Škerl
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Gašper Klančar
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Anja Zagožen Klasinc
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Alenka Bombač
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Mateja Krajc
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia; University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia.
| |
Collapse
|
36
|
Xiao F, Wang Z, Qiao L, Zhang X, Wu N, Wang J, Yu X. Application of PARP inhibitors combined with immune checkpoint inhibitors in ovarian cancer. J Transl Med 2024; 22:778. [PMID: 39169400 PMCID: PMC11337781 DOI: 10.1186/s12967-024-05583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
The advent of polyadenosine diphosphate ribose polymerase inhibitors (PARPi) has brought about significant changes in the field of ovarian cancer treatment. However, in 2022, Rucaparib, Olaparib, and Niraparib, had their marketing approval revoked for third-line and subsequent therapies due to an increased potential for adverse events. Consequently, the exploration of new treatment modalities remains imperative. Recently, the integration of PARPi with immune checkpoint inhibitors (ICIs) has emerged as a potential remedy option within the context of ovarian cancer. This article offers a comprehensive examination of the mechanisms and applications of PARPi and ICIs in the treatment of ovarian cancer. It synthesizes the existing evidence supporting their combined use and discusses key considerations that merit attention in ongoing development efforts.
Collapse
Affiliation(s)
- Fen Xiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - ZhiBin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liu Qiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - NaYiYuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Xing Yu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China.
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| |
Collapse
|
37
|
Tang M, Liu P, Du L, Li Y, Chen J, Li Y. Detection and analysis of the safety profile of talazoparib based on FAERS database. Expert Opin Drug Saf 2024:1-8. [PMID: 39129518 DOI: 10.1080/14740338.2024.2392011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Talazoparib was approved for the treatment of breast cancer. However, the safety of talazoparib in a large population sample over an extended period remained uncertain. The objective of this study is to offer guidance for the secure utilization of talazoparib in clinical settings. METHODS Four algorithms were used to quantify the signals of talazoparib associated adverse events(AEs), using data from the food and drug administration adverse event reporting system(FAERS) between fourth quater of 2018 and second quater of 2023. RESULTS A total of 7,186,517 records were reported, with 737 indicating talazoparib as the primary suspected (PS) AEs. A total of 40 significant preferred terms (PTs) that adhere to the four algorithms were simultaneously retained. There is a possibility of experiencing unforeseen and noteworthy AEs, including embolism(0.46%), pulmonary embolism(1.06%), hyponatremia(0.46%), hypokalemia(0.40%), hematuria(0.33%), and pericardial effusion(0.26%). Most of the AEs related to talazoparib occurred within the initial month of starting the medication, with a median onset time of 79 days (IQR: 22-207 days). CONCLUSION Results of our study were consistent with clinical observations, and we also found potential new and unexpected AEs signals for talazoparib, suggesting prospective clinical studies were needed to confirm these results and illustrate their relationship. Our results may provide valuable evidence for further safety studies of talazoparib.
Collapse
Affiliation(s)
- Mufei Tang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peiyan Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linzhe Du
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jinjin Chen
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Kwong A, Ho CYS, Au CH, Tey SK, Ma ESK. Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families. J Pers Med 2024; 14:866. [PMID: 39202057 PMCID: PMC11355318 DOI: 10.3390/jpm14080866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND RAD51C and RAD51D are crucial in homologous recombination (HR) DNA repair. The prevalence of the RAD51C and RAD51D mutations in breast cancer varies across ethnic groups. Associations of RAD51C and RAD51D germline pathogenic variants (GPVs) with breast and ovarian cancer predisposition have been recently reported and are of interest. METHODS We performed multi-gene panel sequencing to study the prevalence of RAD51C and RAD51D germline mutations among 3728 patients with hereditary breast and/or ovarian cancer (HBOC). RESULTS We identified 18 pathogenic RAD51C and RAD51D mutation carriers, with a mutation frequency of 0.13% (5/3728) and 0.35% (13/3728), respectively. The most common recurrent mutation was RAD51D c.270_271dupTA; p.(Lys91Ilefs*13), with a mutation frequency of 0.30% (11/3728), which was also commonly identified in Asians. Only four out of six cases (66.7%) of this common mutation tested positive for homologous recombination deficiency (HRD). CONCLUSIONS Taking the family studies in our registry and tumor molecular pathology together, we concluded that this relatively common RAD51D variant showed incomplete penetrance in our local Chinese community. Personalized genetic counseling emphasizing family history for families with this variant, as suggested at the UK Cancer Genetics Group (UKCGG) Consensus meeting, would also be appropriate in Chinese families.
Collapse
Affiliation(s)
- Ava Kwong
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Cancer Genetics Centre, Breast Surgery Centre, Surgery Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Cecilia Yuen Sze Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Chun Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Sze Keong Tey
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Edmond Shiu Kwan Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| |
Collapse
|
39
|
Guffanti F, Mengoli I, Damia G. Current HRD assays in ovarian cancer: differences, pitfalls, limitations, and novel approaches. Front Oncol 2024; 14:1405361. [PMID: 39220639 PMCID: PMC11361952 DOI: 10.3389/fonc.2024.1405361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Ovarian carcinoma (OC) still represents an insidious and fatal malignancy, and few significant results have been obtained in the last two decades to improve patient survival. Novel targeted therapies such as poly (ADP-ribose) polymerase inhibitors (PARPi) have been successfully introduced in the clinical management of OC, but not all patients will benefit, and drug resistance almost inevitably occurs. The identification of patients who are likely to respond to PARPi-based therapies relies on homologous recombination deficiency (HRD) tests, as this condition is associated with response to these treatments. This review summarizes the genomic and functional HRD assays currently used in clinical practice and those under evaluation, the clinical implications of HRD testing in OC, and their current pitfalls and limitations. Special emphasis will be placed on the functional HRD assays under development and the use of machine learning and artificial intelligence technologies as novel strategies to overcome the current limitations of HRD tests for a better-personalized treatment to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Giovanna Damia
- Laboratory of Preclinical Gynaecological Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
40
|
Bazan Russo TD, Mujacic C, Di Giovanni E, Vitale MC, Ferrante Bannera C, Randazzo U, Contino S, Bono M, Gristina V, Galvano A, Perez A, Badalamenti G, Russo A, Bazan V, Incorvaia L. Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors. Cancer Gene Ther 2024:10.1038/s41417-024-00815-2. [PMID: 39122831 DOI: 10.1038/s41417-024-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated tumors.This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.
Collapse
Affiliation(s)
- Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Ugo Randazzo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
41
|
Lendinez-Sanchez G, Diaz-Redondo T, Iglesias-Campos M, Garrido-Almazán L, Alba-Conejo E, Rueda-Dominguez A, Sanchez-Muñoz A. Role of poly-ADP-ribose polymerase inhibitors after brain progression in platinum-sensitive ovarian cancer: a case report and review of the literature. Front Oncol 2024; 14:1423992. [PMID: 39156698 PMCID: PMC11327502 DOI: 10.3389/fonc.2024.1423992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction The incidence of brain metastases in ovarian cancer is quite rare, being approximately 1%-2%. According to retrospective studies, patients with BRCA 1/2 mutations present a higher risk. The trimodal approach based on surgery, radiotherapy, and chemotherapy presents better outcomes, but the prognosis remains poor with overall survival since the brain progression is around 1 year. Poly-ADP-ribose polymerase inhibitors (PARPi) have provided a new alternative for the management of advanced ovarian cancer. The SOLO2, NOVA, and ARIEL3 clinical trials do not refer data on patients with brain metastases, and the published evidence for PARPi in this setting comes only from case reports and retrospective studies. Case report We present the case of a 54-year-old woman with stage IV ovarian high-grade serous papillary carcinoma who, after 37 months of treatment with olaparib, presented a single brain lesion. After radical treatment with surgery and adjuvant whole-brain radiotherapy, she resumed olaparib with no evidence of disease during 15 months. After a second single brain relapse treated with stereotactic radiosurgery, the patient continued olaparib beyond the brain progression with no evidence of extracranial disease. Despite that there were no changes in size or number of brain lesions, the neurological situation progressively worsened and the patient died 8 months after the second progression. Discussion The higher incidence of brain metastases of ovarian cancer points out a possible tropism for the CNS in BRCA-mutated patients. In preclinical studies, PARPi has shown to cross the blood-brain barrier, with possible antitumor activity in the central nervous system (CNS) while maintaining control of extracranial disease. The best survival data are obtained with a trimodal approach, and adding a PARPi could improve the survival outcomes in the context of platinum-sensitivity disease. Targeted therapies combined with local treatments are also used in other malignancies, suggesting potential effectiveness due to tumor heterogeneity. PARPi before brain metastasis may delay its diagnosis, and using iPARP after brain metastases could improve the outcome of this population. Conclusion The role that PARPi may have in the treatment of brain metastases of ovarian cancer requires more studies. In the context of radical treatment of brain metastasis (surgery and/or RT), with no evidence of extracranial disease, maintaining treatment with PARPi beyond the brain progression should be considered.
Collapse
Affiliation(s)
- Gonzalo Lendinez-Sanchez
- Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | - Tamara Diaz-Redondo
- Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | - Marcos Iglesias-Campos
- Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | - Lucía Garrido-Almazán
- Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | - Emilio Alba-Conejo
- Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
- Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Antonio Rueda-Dominguez
- Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
- Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Alfonso Sanchez-Muñoz
- Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
- Faculty of Medicine, University of Malaga, Malaga, Spain
| |
Collapse
|
42
|
Dou YN, Grimstein C, Mascaro J, Wang J. Biomarkers for Precision Patient Selection in Cancer Therapy Approvals in the US, from 2011 to 2023. Clin Pharmacol Ther 2024; 116:304-314. [PMID: 38747390 DOI: 10.1002/cpt.3306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 07/17/2024]
Abstract
During the period of 2011-2023, the US Food and Drug Administration (US FDA) granted 139 accelerated and 329 regular approvals for 86 and 152 cancer therapeutic products, respectively. The percentage of approvals for a biomarker-defined population was numerically higher in accelerated approvals in comparison to regular approvals, that is, 48% vs. 40%. From 2011-2016 to 2017-2023, there was an increasing number of approvals with biomarker-defined populations in lung and breast cancers, serving as the primary driver for the overall increase in the percentage of approvals for biomarker-defined populations in solid tumors relative to hematological malignancies. Over the years, approvals were incorporating a more diverse collection of distinct biomarkers, from 3 in 2011 to 16 in 2022. Overall, HER2, hormone receptor (HR), EGFR, ALK, BRAF, and PD-L1-defined populations received the highest numbers of approvals. The FDA decision on approving a biomarker-defined or an all-comers population may depend on a number of factors and may evolve over time based on emerging evidence. The review discusses selected FDA approvals where a pivotal trial enrolled an all-comers population but the approved indication was restricted to a biomarker-defined population, as well as challenges in clinical trial design in the context of precision medicine. The prominent role of biomarkers in optimizing trial design and identifying a population most likely to benefit from treatment underlines the significance of a comprehensive understanding of disease biology and drug mechanisms. Our review illustrates that biomarker-driven approaches enhance the likelihood of identifying optimal patient populations, potentially streamlining trials through accelerated approval pathways for cancer drug development.
Collapse
Affiliation(s)
- Yannan Nancy Dou
- Oncology Regulatory Science, Strategy & Excellence, AstraZeneca, Gaithersburg, Maryland, USA
| | - Christian Grimstein
- Oncology Regulatory Science, Strategy & Excellence, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jacques Mascaro
- Oncology Regulatory Science, Strategy & Excellence, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jian Wang
- Oncology Regulatory Science, Strategy & Excellence, AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
43
|
Yadav S, Couch FJ, Domchek SM. Germline Genetic Testing for Hereditary Breast and Ovarian Cancer: Current Concepts in Risk Evaluation. Cold Spring Harb Perspect Med 2024; 14:a041318. [PMID: 38151326 PMCID: PMC11293548 DOI: 10.1101/cshperspect.a041318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our understanding of hereditary breast and ovarian cancer has significantly improved over the past two decades. In addition to BRCA1/2, pathogenic variants in several other DNA-repair genes have been shown to increase the risks of breast and ovarian cancer. The magnitude of cancer risk is impacted not only by the gene involved, but also by family history of cancer, polygenic risk scores, and, in certain genes, pathogenic variant type or location. While estimates of breast and ovarian cancer risk associated with pathogenic variants are available, these are predominantly based on studies of high-risk populations with young age at diagnosis of cancer, multiple primary cancers, or family history of cancer. More recently, breast cancer risk for germline pathogenic variant carriers has been estimated from population-based studies. Here, we provide a review of the field of germline genetic testing and risk evaluation for hereditary breast and ovarian cancers in high-risk and population-based settings.
Collapse
Affiliation(s)
- Siddhartha Yadav
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
44
|
Carballo EV, Kim KH, Penn CA. Trends in estimated PARP inhibitor eligibility and benefit among US epithelial ovarian cancer patients. Gynecol Oncol 2024; 187:204-211. [PMID: 38795509 DOI: 10.1016/j.ygyno.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE To estimate the annual percentage of patients with epithelial ovarian cancer (EOC) who could be eligible for and benefit from PARP inhibitor therapy amidst changing US Food and Drug Administration (FDA)-approved indications. METHODS This is a simulated retrospective observational study using publicly available data on patients with advanced-stage EOC. PARPi eligibility is based on FDA approvals and withdrawals from 2014 through 2023, along with published demographic and genomic data. Clinical trial data is used to estimate treatment benefit. PARPi including olaparib, niraparib, and rucaparib are analyzed in aggregate with sub-analyses by molecular classification and treatment timing. Results are reported as the percentage of EOC patients appropriate for any cancer-directed therapy. RESULTS PARPi were approved for 9 different indications in EOC between 2014 and 2021; reduced to 6 indications by 2023. Eligibility increased from 2.0% (95% CI,1.3%-1.6%) in 2014 to a maximum of 93.4% (95% CI,90.1%-94.6%) in 2021. The maximum percentage of patients with 2-year PFS benefit was 22.0% (95% CI, 17.2%-26.8%) in 2021, projected to decrease to 13.0% (95% CI, 9.9%-15.9%) in 2024. Most of this decrease was seen in the homologous recombination deficient, BRCA wild-type population (8.4% to 4.0%). CONCLUSIONS PARPi eligibility increased at a greater rate than benefit resulting in a low population-level benefit-to-eligibility ratio until 2021. Recent FDA withdrawals improved this ratio with an accompanied decrease in the absolute number of patients benefiting. To further optimize population-level benefit-to-eligibility ratio of targeted therapies in ovarian cancer, we need to identify better biomarkers, treatment combinations, and novel therapeutic targets.
Collapse
Affiliation(s)
- Erica V Carballo
- Division of Gynecologic Oncology, Vanderbilt University Medical Center, United States of America.
| | - Kenneth H Kim
- Division of Gynecologic Oncology, Cedars-Sinai Medical Center, United States of America
| | - Courtney A Penn
- Division of Gynecologic Oncology, Vanderbilt University Medical Center, United States of America
| |
Collapse
|
45
|
Dinkins K, Barton W, Wheeler L, Smith HJ, Mythreye K, Arend RC. Targeted therapy in high grade serous ovarian Cancer: A literature review. Gynecol Oncol Rep 2024; 54:101450. [PMID: 39092168 PMCID: PMC11292514 DOI: 10.1016/j.gore.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Ovarian cancer continues to have a high mortality rate despite therapeutic advances. Traditionally, treatment has focused on surgery followed by systemic platinum- based chemotherapy. Unfortunately, most patients develop resistance to platinum agents, highlighting the need for targeted therapies. PARP inhibitors and anti-angiogenic agents, such as bevacizumab, have more recently changed upfront therapy. Unfortunately, other targeted therapies including immunotherapy have not seen the same success. Emerging therapeutic targets and modalities such as small molecule tyrosine kinase inhibitors, lipid metabolism targeting agents, gene therapy, ribosome targeted drugs as well as several other therapeutic classes have been and are currently under investigation. In this review, we discuss targeted therapies in high grade serous ovarian cancer from preclinical studies to phase III clinical trials.
Collapse
Affiliation(s)
- Kaitlyn Dinkins
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Wade Barton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Lauren Wheeler
- Lister Hill Library, University of Alabama at Birmingham, Birmingham, AL
| | - Haller J. Smith
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Karthikeyan Mythreye
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca C. Arend
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
46
|
Lebedeva A, Veselovsky E, Kavun A, Belova E, Grigoreva T, Orlov P, Subbotovskaya A, Shipunov M, Mashkov O, Bilalov F, Shatalov P, Kaprin A, Shegai P, Diuzhev Z, Migiaev O, Vytnova N, Mileyko V, Ivanov M. Untapped Potential of Poly(ADP-Ribose) Polymerase Inhibitors: Lessons Learned From the Real-World Clinical Homologous Recombination Repair Mutation Testing. World J Oncol 2024; 15:562-578. [PMID: 38993246 PMCID: PMC11236374 DOI: 10.14740/wjon1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024] Open
Abstract
Background Testing for homologous recombination deficiency (HRD) mutations is pivotal to assess individual risk, to proact preventive measures in healthy carriers and to tailor treatments for cancer patients. Increasing prominence of poly(ADP-ribose) polymerase (PARP) inhibitors with remarkable impact on molecular-selected patient survival across diverse nosologies, ingrains testing for BRCA genes and beyond in clinical practice. Nevertheless, testing strategies remain a question of debate. While several pathogenic BRCA1/2 gene variants have been described as founder pathogenic mutations frequently found in patients from Russia, other homologous recombination repair (HRR) genes have not been sufficiently explored. In this study, we present real-world data of routine HRR gene testing in Russia. Methods We evaluated clinical and sequencing data from cancer patients who had germline/somatic next-generation sequencing (NGS) HRR gene testing in Russia (BRCA1/2/ATM/CHEK2, or 15 HRR genes). The primary objectives of this study were to evaluate the frequency of BRCA1/2 and non-BRCA gene mutations in real-world unselected patients from Russia, and to determine whether testing beyond BRCA1/2 is feasible. Results Data of 2,032 patients were collected from February 2021 to February 2023. Most had breast (n = 715, 35.2%), ovarian (n = 259, 12.7%), pancreatic (n = 85, 4.2%), or prostate cancer (n = 58, 2.9%). We observed 586 variants of uncertain significance (VUS) and 372 deleterious variants (DVs) across 487 patients, with 17.6% HRR-mutation positivity. HRR testing identified 120 (11.8%) BRCA1/2-positive, and 172 (16.9%) HRR-positive patients. With 51 DVs identified in 242 formalin-fixed paraffin-embedded (FFPE), testing for variant origin clarification was required in one case (0.4%). Most BRCA1/2 germline variants were DV (121 DVs, 26 VUS); in non-BRCA1/2 genes, VUS were ubiquitous (53 DVs, 132 VUS). In silico prediction identified additional 4.9% HRR and 1.2% BRCA1/2/ATM/CHEK2 mutation patients. Conclusions Our study represents one of the first reports about the incidence of DV and VUS in HRR genes, including genes beyond BRCA1/2, identified in cancer patients from Russia, assessed by NGS. In silico predictions of the observed HRR gene variants suggest that non-BRCA gene testing is likely to result in higher frequency of patients who are candidates for PARP inhibitor therapy. Continuing sequencing efforts should clarify interpretation of frequently observed non-BRCA VUS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Orlov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Anna Subbotovskaya
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Maksim Shipunov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Oleg Mashkov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Fanil Bilalov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Peter Shatalov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Peter Shegai
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | | | | | | | - Vladislav Mileyko
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
47
|
Liu JF, Xiong N, Wenham RM, Wahner-Hendrickson A, Armstrong DK, Chan N, O'Malley DM, Lee JM, Penson RT, Cristea MC, Abbruzzese JL, Matsuo K, Olawaiye AB, Barry WT, Cheng SC, Polak M, Swisher EM, Shapiro GI, Kohn EC, Ivy SP, Matulonis UA. A phase 2 trial exploring the significance of homologous recombination status in patients with platinum sensitive or platinum resistant relapsed ovarian cancer receiving combination cediranib and olaparib. Gynecol Oncol 2024; 187:105-112. [PMID: 38759516 PMCID: PMC11309890 DOI: 10.1016/j.ygyno.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE Combination cediranib/olaparib has reported activity in relapsed ovarian cancer. This phase 2 trial investigated the activity of cediranib/olaparib in relapsed ovarian cancer and its association with homologous recombination deficiency (HRD). METHODS Seventy patients were enrolled to cohorts of either platinum-sensitive or platinum-resistant ovarian cancer and received olaparib tablets 200 mg twice daily and cediranib tablets 30 mg once daily under a continuous dosing schedule. HRD testing was performed on pre-treatment, on-treatment and archival biopsies by sequencing key homologous recombination repair (HRR) genes and by genomic LOH analysis. The primary objective for the platinum-sensitive cohort was the association of HRD, defined as presence of HRR gene mutation, with progression-free survival (PFS). The primary objective for the platinum-resistant cohort was objective response rate (ORR), with a key secondary endpoint evaluating the association of HRD status with activity. RESULTS In platinum-sensitive ovarian cancer (N = 35), ORR was 77.1% (95% CI 59.9-89.6%) and median PFS was 16.4 months (95% CI 13.2-18.6). Median PFS in platinum-sensitive HRR-HRD cancers (N = 22) was 16.8 months (95% CI 11.3-18.6), and 16.4 months (95% CI 9.4-NA) in HRR-HR proficient cancers (N = 13; p = 0.57). In platinum-resistant ovarian cancer (N = 35), ORR was 22.9% (95% CI 10.4-40.1%) with median PFS 6.8 months (95% CI 4.2-9.1). Median PFS in platinum-resistant HRR-HRD cancers (N = 7) was 10.5 months (95% CI 3.6-NA) and 5.6 months (95% CI 3.6-7.6) in HRR-HR proficient cancers (N = 18; p = 0.23). CONCLUSIONS Cediranib/olaparib had clinical activity in both platinum-sensitive and -resistant ovarian cancer. Presence of HRR gene mutations was not associated with cediranib/olaparib activity in either setting.
Collapse
Affiliation(s)
- Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America.
| | - Niya Xiong
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Robert M Wenham
- Department of Gynecologic Oncology, Moffitt Cancer Center, Tampa, FL, United States of America
| | | | - Deborah K Armstrong
- Department of Medical Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States of America
| | - Nancy Chan
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States of America
| | - David M O'Malley
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, United States of America
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Richard T Penson
- Department of Medical Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mihaela C Cristea
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States of America
| | - James L Abbruzzese
- Department of Medical Oncology, Duke Cancer Institute, Durham, NC, United States of America
| | - Koji Matsuo
- Department of Obstetrics & Gynecology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States of America
| | - Alexander B Olawaiye
- Department of OBGYN, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - William T Barry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Su-Chun Cheng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Madeline Polak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Elizabeth M Swisher
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States of America
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Elise C Kohn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America; Clinical Investigations Branch, NCI Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States of America
| | - S Percy Ivy
- Investigational Drug Branch, NCI Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States of America
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| |
Collapse
|
48
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
49
|
Hao XY, Song WW, Li ML, Guo Y. Past and present: a bibliometric study on the treatment of recurrent ovarian cancer. Front Pharmacol 2024; 15:1442022. [PMID: 39139644 PMCID: PMC11319122 DOI: 10.3389/fphar.2024.1442022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Ovarian cancer (OC) is a gynecological malignancy with a high mortality rate worldwide. The unfavorable prognosis of OC is mainly attributed to the recurrent propensity. Recently, mortality from OC has exhibited a downward trend. These favorable patterns are likely to be driven by advancements in novel therapeutic regimens. However, there is a lack of visualize analysis of the application of these new drugs on women with recurrent OC (ROC). Therefore, we aimed to provide a bibliometric analysis of the evolving paradigms in the ROC treatment. Methods Documents on ROC treatment were systematically collected from the MEDLINE database and Web of Science Core Collection (WOSCC). The retrieved documents were exported in the plain text file format, and files were named and saved to the paths specified by the Java application. Microsoft Excel (version 2010), Citespace (6.2.R4) and VOSviewer (1.6.19) were used for data analysis, and included the following: 1) annual publication trend; 2) contributions of countries, institutions and authors; 3) co-citation of journals and references; and 4) co-occurrence of keywords. Results A total of 914 documents published in the MEDLINE and 9,980 ones in WOSCC were retrieved. There has been an upward trend in the productivity of publications on ROC treatment on by years. The United States was the leading contributor in this field, and the University of Texas System stood out as the most productive institution. Giovanni Scambia and Maurie Markman were the research leaders in the field of ROC treatment. The journal Gynecologic Oncology had the highest citation frequency. The reference entitled with "Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer" got highest centrality of 0.14 in the co-citation network. Keyword analysis revealed that the focus of current ROC treatment was on platinum-based anticancer drugs, paclitaxel, angiogenesis inhibitors (AIs), immune checkpoint inhibitors (ICIs) and poly (ADP-ribose) polymerase inhibitors (PARPis). Conclusion Scholars from a multitude of countries have been instrumental in the advancement of ROC treatment. The research hotspots and trend in the field of predominantly originated from leading international journals and specialized periodicals focused on gynecologic oncology. Maintenance therapy using AIs or (and) PARPis has emerged as a significant complement to platinum-based chemotherapy for patients with ROC.
Collapse
Affiliation(s)
- Xiao-yuan Hao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen-wei Song
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Clinical Medical Research Center for Precision Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miao-ling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Guo
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Clinical Medical Research Center for Precision Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
50
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|