1
|
Dhangar S, Shanmukhaiah C, Ghatanatti J, Sawant L, Maurya N, Vundinti BR. Comprehensive analysis of tyrosine kinase domain mutations and imatinib resistance in chronic myeloid leukemia patients. Leuk Res 2025; 152:107679. [PMID: 40112623 DOI: 10.1016/j.leukres.2025.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Tyrosine kinase domain mutations (TKDMs) plays an important role in prognosis of chronic myeloid leukemia (CML). The aim of the present study was to identify the TKDMs associated with imatinib mesylate (IM) drug resistant in CML, following European leukemia Net (ELN) guidelines. Direct sequencing analysis revealed point mutations in 69.44 % (50/72), compound/ polyclonal mutations in 11.11 % (8/72) and large deletions in 4.16 % (3/72) of IM non-responder CML patients. Additionally, we have identified low level mutations in 30.55 % of warning group patients through NGS analysis, that include singly occurring point mutations (5) and polyclonal (6) mutations with mutant allele frequency ranging from 1.1 % to 14.70 %. The low-level mutations detected through NGS in warning group patients; may be responsible for suboptimal response in our study. However, follow-up studies are important to understand the mechanism of clonal evolution. We also identified 5 novel mutations that had not been reported in public databases which expands the spectrum of known mutations in BCR::ABL1 fusion gene. Our study also highlighted the impact on patient outcomes following the implementation of ELN guidelines underscores the importance of adherence to standardized protocols in clinical practice.
Collapse
Affiliation(s)
- Somprakash Dhangar
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India
| | | | - Jagdeeshwar Ghatanatti
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India
| | - Leena Sawant
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India
| | - Nehakumari Maurya
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR, National Institute of Immunohaematology, KEM hospital Campus, Parel, Mumbai, Maharashtra, India.
| |
Collapse
|
2
|
Lukhtanov VA, Pazhenkova EA. Cytogenetics of insects in the era of chromosome-level genome assemblies. Vavilovskii Zhurnal Genet Selektsii 2025; 29:230-237. [PMID: 40297294 PMCID: PMC12036569 DOI: 10.18699/vjgb-25-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 04/30/2025] Open
Abstract
Over the past few years, a revolution has occurred in cytogenetics, driven by the emergence and spread of methods for obtaining high-quality chromosome-level genome assemblies. In fact, this has led to a new tool for studying chromosomes and chromosomal rearrangements, and this tool is thousands of times more powerful than light microscopy. This tool has revolutionized the cytogenetics of many groups of insects for which previously karyotype information, if available at all, was limited to the chromosome number. Even more impressive are the achievements of the genomic approach for studying the general patterns of chromosome organization and evolution in insects. Thus, it has been shown that rapid transformations of chromosomal numbers, which are often found in the order Lepidoptera, are most often carried out in the most parsimonious way, as a result of simple fusions and fissions of chromosomes. It has been established that these fusions and fissions are not random and occur independently in different phylogenetic lineages due to the reuse of the same ancestral chromosomal breakpoints. It has been shown that the tendency for chromosome fissions is correlated with the presence in chromosomes of the so-called interstitial telomeres, i. e. telomere-like structures located not at the ends of chromosomes, but inside them. It has been revealed that, in most insects, telomeric DNA is not just a set of short repeats, but a very long sequence consisting of (TTAGG)n (or other telomeric motifs), regularly and specifically interrupted by retrotransposons, and the telomeric motifs are diverse in terms of their length and nucleotide composition. The number of high-quality chromosome-level genome assemblies available for insects in the GenBank database is growing exponentially and now exceeds a thousand species. Therefore, the exceptional prospects for using genomic data for karyotype analysis are beyond doubt.
Collapse
Affiliation(s)
- V A Lukhtanov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
3
|
Zhao J, Liu TF, Wu KF, Yang LC, Xu XJ, Lu J, Shao JB, Li F, Ma FT, Guo X, Li H, Liu AG, Wang NL, Shen HP, Li Y, Liu SX, Liang CD, Shen SH, Fang YJ, Gao YJ. Clinical and molecular characteristics of paediatric mature B-cell acute lymphocytic leukaemia and non-Hodgkin lymphoma with bone marrow involvement: A joint study between the CCCG leukaemia and lymphoma groups. Br J Haematol 2025; 206:1149-1159. [PMID: 39962993 DOI: 10.1111/bjh.20011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/05/2025] [Indexed: 04/12/2025]
Abstract
Mature B-cell acute lymphocytic leukaemia (B-ALL) is distinguished from B-cell non-Hodgkin lymphoma (B-NHL) by the arbitrariness of the 25% cut-off, and given that the percentage of bone marrow (BM) blasts can vary according to site of aspirate, we refrained from differentiating mature B-ALL from B-NHL with BM infiltration. A total of 156 patients from the Chinese Children Cancer Group with BM blasts of more than 5% and consistent with immunophenotypic features of mature B cells were included in this study. The 2-year progression-free survival, 2-year event-free survival and 2-year overall survival were 76.6 ± 3.6%, 69.7 ± 3.7% and 80.1 ± 3.3% respectively. Central nervous system (CNS) involvement, serum ferritin levels higher than four times normal and rituximab no more than two doses were associated with lower PFS. Male, bulky disease and head/neck region involvement were associated with higher rate of CNS invasion. We performed an integrative transcriptomic characterization of 36 cases. Structure variant included IG::MYC, IGH::CACS11, MEF2D::BCL9, IGH::VPS53 and ACIN1::NUTM1. SNV analysis uncovered driver variations affecting 10 recurrently mutated genes including ID3, TP53, MYC, ARID1A, SMARCA4, DDX3X, CCND3, RHOA, SMARCB1, FOXO1 and GNA13. Mature B-ALL/B-NHL with BM involvement was a heterogeneous group of malignancies in both clinical features and genetic alternations. Genetics analysis was helpful for making accurate diagnoses and guiding appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Feng Liu
- Pediatric Blood Diseases Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ke-Fei Wu
- Department of Hematology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang-Chun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ju Xu
- Pediatric Hematology/Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Lu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing-Bo Shao
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fu Li
- Department of Hematology and Oncology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Fu-Tian Ma
- Department of Hematology and Oncology, Hebei Children's Hospital, Shijiazhuang, China
| | - Xia Guo
- Department of Hematology and Oncology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hui Li
- Department of Hematology and Oncology, Children's Hospital of Wuhan, Wuhan, China
| | - Ai-Guo Liu
- Department of Hematology and Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning-Ling Wang
- Children's Hematology-Oncology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - He-Ping Shen
- Department of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Li
- Pediatric Hematology/Oncology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Si-Xi Liu
- Department of Hematology-Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Chang-Da Liang
- Department of Hematology-Oncology, Children's Hospital of Jiangxi Province, Nanchang, China
| | - Shu-Hong Shen
- Department of Hematology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Jun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Jin Gao
- Department of Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
de Oliveira MEM, Cebim MA, Talib MSF, Faustino M, de Jesus Silva MJ, Goissis MD, de Sá LRM, Vannucchi CI. XY disorder of sexual development in a dog: a case study by histopathology, genotyping and karyotyping. Vet Res Commun 2025; 49:96. [PMID: 39903346 DOI: 10.1007/s11259-025-10664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
This study aims to report a case of sexual ambiguity in a 3-yr mongrel dog and its respective etiological approach. There was a complaint of trauma and pinpoint bleeding in a chronical exposed structure, which examination indicated to be penis-like with perineoscrotal insertion and ventral hypospadia, surrounded by skin folds that resembled vulvar labia majora or hypoplastic prepuce. No evident scrotum and testicles were noted. Abdominal ultrasonography revealed ectopic testicles and an undefined structure filled with high-cellularity content in close contact with the prostate dorsal wall. The dog underwent exploratory laparotomy, revealing structures morphologically compatible with testicles and epididymides, connected by a tubular structure macroscopically resembling uterine horns, which was subjected to histopathological analysis and genotyping. For the external genitalia, penectomy was performed, followed by lateral mucosa reinsertion of the urethra, remaining a skin extension with vulvar-lips appearance. Histopathological examination revealed testicular hypoplasia and bilateral epididymal dysplasia and confirmed that the tubular structure was indeed an excessive distended epididymal duct. Blood sample was collected for cytogenetic analysis, which revealed variations in the diploid number (2n = 78, XY) due to addition (2n = 79) or absence of acrocentric autosomal chromosomes (2n < 78). Sex genotyping confirmed a male sex (XY). In conclusion, this clinical case demonstrated a XY disorder of sexual development (male pseudohermaphroditism) due to phenotypic sex ambiguity (ambiguous external genitalia), yet with a non-function degenerated testes and hypertrophic dilation of the epididymides, suggesting a disorder of male hormonal biosynthesis.
Collapse
Affiliation(s)
| | - Marcella Araujo Cebim
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mariana Semião Francisco Talib
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marcelo Faustino
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Lilian Rose Marques de Sá
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Camila Infantosi Vannucchi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Baville E, Carstanjen B, Thomas-Cancian A, Calgaro A, Bonnet N, Tiret L, Gache V, Abitbol M. Inherited non-syndromic polydactyly in a Berber and Arabian-Berber horse family. Equine Vet J 2025. [PMID: 39853805 DOI: 10.1111/evj.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND Supernumerary digits, or polydactyly, have been described in various species including humans, wild and domestic animals. In horses, it represents the most common congenital limb malformation, which has only been described in isolated cases or nuclear families. Molecular aetiology has not been reported. OBJECTIVES To characterise the phenotype of a non-syndromic pre-axial polydactyly in a horse family and to decipher the inheritance pattern. STUDY DESIGN Retrospective study. METHODS Forty-three members of the family including a previously reported polydactyl case were recruited. Available clinical and radiographical findings from the initial case and its family members were summarised and karyotypic examinations of the horses were performed. RESULTS On clinical examination, eight horses (including the previously reported case) had one or two supernumerary digits on their forelimbs and one additional case was diagnosed using radiography. Additional digits were located on the medial side of the forelimbs in all nine polydactyl horses. Radiography highlighted variable expression of the defect, which was either unilateral or bilateral. Variations were observed in the number of supernumerary phalanges, the level of development of a rudimentary metacarpal bone, the individualisation of a supernumerary digit and the existence of a rudimentary hoof. All nine affected horses were related to a single stallion. Pedigree analysis revealed that the most likely inheritance pattern was autosomal dominant with incomplete penetrance and variable expressivity. A more complex mode could not be ruled out. MAIN LIMITATIONS Restricted recruitment of the family members due to confidentiality constraints and to international dispersal of the relatives, quality of radiographs. CONCLUSIONS We describe an equine preaxial polydactyly in a Berber and Arabian-Berber family most likely with autosomal dominant inheritance with incomplete penetrance. This is the first description of an inherited non-syndromic polydactyly in horses.
Collapse
Affiliation(s)
- Ella Baville
- Université de Lyon, VetAgro Sup, Marcy l'Etoile, France
| | | | | | - Anne Calgaro
- Université de Toulouse, Genphyse, INRAE, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Nathale Bonnet
- Université de Toulouse, Genphyse, INRAE, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Laurent Tiret
- Université Paris-Est Créteil, INSERM, EFS, EnvA, IMRB Team Relaix, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Vincent Gache
- Université de Lyon, UCBL1 CNRS UMR5261, INSERM U1315, Institut NeuroMyoGene INMG-PNMG Team MNCA, Lyon, France
| | - Marie Abitbol
- Université de Lyon, VetAgro Sup, Marcy l'Etoile, France
- Université de Lyon, UCBL1 CNRS UMR5261, INSERM U1315, Institut NeuroMyoGene INMG-PNMG Team MNCA, Lyon, France
| |
Collapse
|
6
|
George GV, Elsadawi M, Evans AG, Ali S, Zhang B, Iqbal MA. Utilization of RT-PCR and Optical Genome Mapping in Acute Promyelocytic Leukemia with Cryptic PML::RARA Rearrangement: A Case Discussion and Systemic Literature Review. Genes (Basel) 2024; 16:7. [PMID: 39858554 PMCID: PMC11765422 DOI: 10.3390/genes16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) is characterized by abnormal promyelocytes and t(15;17)(q24;q21) PML::RARA. Rarely, patients may have cryptic or variant rearrangements. All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) is largely curative provided that the diagnosis is established early. METHODS We present the case of a 36-year-old male who presented with features concerning for disseminated intravascular coagulation. Although the initial diagnostic work-up, including pathology and flow cytometry evaluation, suggested a diagnosis of APL, karyotype and fluorescence in situ hybridization (FISH), using the PML/RARA dual fusion and RARA breakapart probes, were negative. We performed real-time polymerase chain reaction (RT-PCR) and optical genome mapping (OGM) to further confirm the clinicopathological findings. RESULTS RT-PCR revealed a cryptic PML::RARA fusion transcript. OGM further confirmed the nature and orientation of a cryptic rearrangement with an insertion of RARA into PML at intron 3 (bcr3). In light of these findings, we performed a systematic literature review to understand the prevalence, diagnosis, and prognosis of APL with cryptic PML::RARA rearrangements. CONCLUSIONS This case, in conjunction with the results of our systematic literature review, highlights the importance of performing confirmatory testing in FISH-negative cases of suspected APL to enable prompt diagnosis and appropriate treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/pathology
- Male
- Adult
- Oncogene Proteins, Fusion/genetics
- Retinoic Acid Receptor alpha/genetics
- Promyelocytic Leukemia Protein/genetics
- Gene Rearrangement
- In Situ Hybridization, Fluorescence
- Translocation, Genetic
- Chromosome Mapping/methods
Collapse
Affiliation(s)
- Giby V. George
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - Murad Elsadawi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Andrew G. Evans
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - Sarmad Ali
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - M. Anwar Iqbal
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| |
Collapse
|
7
|
Kartout-Benmessaoud Y, Ouchia-Benissad S, Mahiddine-Aoudjit L, Ladjali-Mohammedi K. Highlighting chromosomal rearrangements of five species of Galliformes (Domestic fowl, Common and Japanese quail, Barbary and Chukar partridge) and the Houbara bustard, an endangered Otidiformes: banding cytogenetic is a powerful tool. COMPARATIVE CYTOGENETICS 2024; 18:213-237. [PMID: 39664601 PMCID: PMC11632352 DOI: 10.3897/compcytogen.18.135056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Birds are one of the most diverse groups among terrestrial vertebrates. They evolved from theropod dinosaurs, are closely related to the sauropsid group and separated from crocodiles about 240 million years ago. According to the IUCN, 12% of bird populations are threatened with potential extinction. Classical cytogenetics remains a powerful tool for comparing bird genomes and plays a crucial role in the preservation populations of endangered species. It thus makes it possible to detect chromosomal abnormalities responsible for early embryonic mortalities. Thus, in this work, we have provided new information on part of the evolutionary history by analysing high-resolution GTG-banded chromosomes to detect inter- and intrachromosomal rearrangements in six species. Indeed, the first eight autosomal pairs and the sex chromosomes of the domestic fowl Gallusgallusdomesticus Linnaeus, 1758 were compared with five species, four of which represent the order Galliformes (Common and Japanese quail, Gambras and Chukar partridge) and one Otidiformes species (Houbara bustard). Our findings suggest a high degree of conservation of the analysed ancestral chromosomes of the four Galliformes species, with the exception of (double, terminal, para and pericentric) inversions, deletion and the formation of neocentromeres (1, 2, 4, 7, 8, Z and W chromosomes). In addition to the detected rearrangements, reorganisation of the Houbara bustard chromosomes mainly included fusions and fissions involving both macro- and microchromosomes (especially on 2, 4 and Z chromosomes). We also found interchromosomal rearrangements involving shared microchromosomes (10, 11, 13, 14 and 19) between the two analysed avian orders. These rearrangements confirm that the structure of avian karyotypes will be more conserved at the interchromosomal but not at intrachromosomal scale. The appearance ofa small number of inter- and intrachromosomal rearrangements that occurred during evolution suggests a high degree of conservatism of genome organisation in these six species studied. A summary diagram of the rearrangements detected in this study is proposed to explain the chronology of the appearance of various evolutionary events starting from the ancestral karyotype.
Collapse
Affiliation(s)
- Yasmine Kartout-Benmessaoud
- Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics. PO box 32 El-Alia, Bab-Ezzouar, 16110, Algiers, AlgeriaUniversity of Sciences and Technology Houari Boumediene (USTHB)AlgiersAlgeria
- Faculty of Nature and Life Sciences, Department of Physico-Chemical Biology, University Abderrahmane Mira, Campus Targa Ouzemour, 06000, Bejaia, AlgeriaUniversity Abderrahmane MiraBejaiaAlgeria
| | - Siham Ouchia-Benissad
- Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics. PO box 32 El-Alia, Bab-Ezzouar, 16110, Algiers, AlgeriaUniversity of Sciences and Technology Houari Boumediene (USTHB)AlgiersAlgeria
| | - Leila Mahiddine-Aoudjit
- Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics. PO box 32 El-Alia, Bab-Ezzouar, 16110, Algiers, AlgeriaUniversity of Sciences and Technology Houari Boumediene (USTHB)AlgiersAlgeria
- Department of Biology, Faculty of Science, M'Hamed Bougara University of Boumerdes, Boumerdes, AlgeriaM'Hamed Bougara University of BoumerdesBoumerdesAlgeria
| | - Kafia Ladjali-Mohammedi
- Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics. PO box 32 El-Alia, Bab-Ezzouar, 16110, Algiers, AlgeriaUniversity of Sciences and Technology Houari Boumediene (USTHB)AlgiersAlgeria
| |
Collapse
|
8
|
Pavlova SV, Romanenko SA, Matveevsky SN, Kuksin AN, Dvoyashov IA, Kovalskaya YM, Proskuryakova AA, Serdyukova NA, Petrova TV. Supernumerary Chromosomes Enhance Karyotypic Diversification of Narrow-Headed Voles of the Subgenus Stenocranius (Rodentia, Mammalia). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:538-556. [PMID: 39233501 DOI: 10.1002/jez.b.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
The subgenus Stenocranius contains two cryptic species: Lasiopodomys gregalis (subdivided into three allopatrically distributed and genetically well-isolated lineages A, B, and C) and Lasiopodomys raddei. To identify karyotype characteristics of this poorly studied cryptic species complex, we used comparative cytogenetic analysis of 138 individuals from 41 localities in South Siberia and Mongolia. A detailed description of the L. raddei karyotype and of the L. gregalis lineage С karyotype is presented for the first time. The A chromosome complement of all examined narrow-headed voles consisted of 2n = 36 and a fundamental number of autosomal arms (FNa) of 50. Between species, patterns of differential staining were similar, though additional C-heterochromatic blocks were found in L. gregalis lineages; Ag-positive nucleolar organizers and ribosomal DNA (rDNA) clusters are located on eight and nine acrocentric pairs, respectively. No B chromosomes (Bs) were found in the Early Pleistocene relic L. raddei, while one to five small heterochromatic acrocentric Bs were detected in all L. gregalis lineages; the number and frequency of Bs varied considerably within lineages, but no intraindividual variation was observed. In both species, telomeric repeats were visualized at termini of all chromosomes, including Bs. The number and localization of rDNA clusters on Bs varied among B-carriers. Immunodetection of several meiotic proteins indicated that meio-Bs are transcriptionally inactive and have a pattern of meiotic behavior similar to that of sex chromosomes (some homology of Bs to sex chromosomes is supposed). The nature, mechanisms of inheritance and stability of Bs in L. gregalis require further investigation.
Collapse
Affiliation(s)
- Svetlana V Pavlova
- Laboratory of Population Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana A Romanenko
- Laboratory of Animal Cytogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey N Matveevsky
- Cytogenetics Laboratory, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Aleksander N Kuksin
- Laboratory of Biodiversity and Geoecology, Tuvinian Institute for Exploration of Natural Resources, Siberian Branch of the Russian Academy of Sciences, Kyzyl, Russia
| | - Ivan A Dvoyashov
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Yulia M Kovalskaya
- Laboratory of Behaviour and Behavioral Ecology of Mammals, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A Proskuryakova
- Laboratory of Animal Cytogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia A Serdyukova
- Laboratory of Animal Cytogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana V Petrova
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
9
|
Beklemisheva VR, Tishakova KV, Romanenko SA, Andreushkova DA, Yudkin VA, Interesova EА, Yang F, Ferguson-Smith MA, Graphodatsky AS, Proskuryakova AA. Detailed cytogenetic analysis of three duck species (the northern pintail, mallard, and common goldeneye) and karyotype evolution in the family Anatidae (Anseriformes, Aves). Vavilovskii Zhurnal Genet Selektsii 2024; 28:759-769. [PMID: 39722672 PMCID: PMC11667572 DOI: 10.18699/vjgb-24-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 12/28/2024] Open
Abstract
Galliformes and Anseriformes are two branches of the Galloanserae group, basal to other Neognathae. In contrast to Galliformes, Anseriformes have not been thoroughly researched by cytogenetic methods. This report is focused on representatives of Anseriformes and the evolution of their chromosome sets. Detailed cytogenetic analysis (G-banding, C- banding, and fluorescence in situ hybridization) was performed on three duck species: the northern pintail (Anas acuta, 2n = 80), the mallard (A. platyrhynchos, 2n = 80), and the common goldeneye (Bucephala clangula, 2n = 80). Using stone curlew (Burhinus oedicnemus, 2n = 42, Charadriiformes) chromosome painting probes, we created homology maps covering macrochromosomes and some microchromosomes. The results indicated a high level of syntenic group conservation among the duck genomes. The two Anas species share their macrochromosome number, whereas in B. clangula, this number is increased due to fissions of two ancestral elements. Additionally, in this species, the presence of massive heterochromatic blocks in most macroautosomes and sex chromosomes was discovered. Localization of clusters of ribosomal DNA and telomere repeats revealed that the duck karyotypes contain some microchromosomes that bear ribosomal RNA genes and/or are enriched for telomere repeats and constitutive heterochromatin. Dot plot (D-GENIES) analysis confirmed the established view about the high level of syntenic group conservation among Anatidae genomes. The new data about the three Anatidae species add knowledge about the transformation of macro- and sex chromosomes of Anseriformes during evolution.
Collapse
Affiliation(s)
- V R Beklemisheva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K V Tishakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Romanenko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Andreushkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Yudkin
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E А Interesova
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Tomsk State University, Tomsk, Russia
| | - F Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - M A Ferguson-Smith
- Cambridge Resource Center for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - A S Graphodatsky
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Proskuryakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Konno M, Miura H, Sato A, Fujishima A, Makino K, Shirasawa H, Nomura K, Terada Y. Amniotic fluid glucose concentration as a predictor of fetal trisomy. J Obstet Gynaecol Res 2024; 50:2076-2080. [PMID: 39375176 DOI: 10.1111/jog.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
AIM We aimed to assess the amniotic fluid glucose concentration cut-off as an indicator of fetal chromosomal abnormalities, such as trisomy 13, 18, and 21. METHODS This prospective observational study included pregnant females who underwent amniocentesis. Participants were divided into two groups on the border of 22 weeks of gestational age (<22 and ≥22-week groups). RESULTS In total, 224 pregnant females were included in the analysis. In the <22 week group, 15 females had trisomies 13/18/21 and 174 females had no trisomies. In the ≥22 week group, 18 females had trisomies 13/18/21 and 17 had no trisomies. In each group, there was a difference in amniotic fluid glucose concentration between fetuses with trisomies 13, 18, and 21 and other fetuses with normal karyotype or minor chromosomal abnormalities. In both groups, the amniotic glucose concentration was noticeably lower in trisomies 13/18/21 (p = 0.002 in the <22 week group; p = 0.039 in the ≥22 week group). According to receiver operating characteristic curves, the optimal cut-off point of glucose concentration was 46 mg/dL in the <22 week group (odds ratio 6.55; 95% confidence interval 1.78-24.1) and 24 mg/dL in the ≥22 week group (odds ratio 8.40; 95% confidence interval 1.83-38.6). CONCLUSIONS Our study suggested that glucose concentration in amniotic fluid is an indicator of trisomy 13, 18, and 21. Amniotic fluid glucose concentration itself does not diagnose fetal trisomy, but this may be helpful in selecting treatment facilities.
Collapse
Affiliation(s)
- Megumi Konno
- Division of Obstetrics and Gynaecology, Department of Reproductive and Developmental Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroshi Miura
- Division of Obstetrics and Gynaecology, Department of Reproductive and Developmental Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Akira Sato
- Division of Obstetrics and Gynaecology, Department of Reproductive and Developmental Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiko Fujishima
- Division of Obstetrics and Gynaecology, Department of Reproductive and Developmental Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenichi Makino
- Division of Obstetrics and Gynaecology, Department of Reproductive and Developmental Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiromitsu Shirasawa
- Division of Obstetrics and Gynaecology, Department of Reproductive and Developmental Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Kyoko Nomura
- Department of Environmental Health Science and Public Health, Akita University Graduate School of Medicine, Akita, Japan
| | - Yukihiro Terada
- Division of Obstetrics and Gynaecology, Department of Reproductive and Developmental Medicine, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
11
|
Petrovic B, Milicevic S, Sljivancanin D, Zdelar Stojanovic L, Stamenkovic J, Grk M, Dusanovic Pjevic M. The likelihood of detecting abnormal karyotypes in fetuses with a single major anomaly or "soft" marker on ultrasonographic scanning. Clin Dysmorphol 2024; 33:137-144. [PMID: 38410977 DOI: 10.1097/mcd.0000000000000496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
OBJECTIVE Fetuses with abnormal karyotypes often exhibit distinctive ultrasonographic markers, including major anomalies and "soft" markers, indicating potential chromosomal issues. A crucial consideration arises when a single fetal anomaly is detected, raising the question of whether karyotyping is warranted, given the associated procedural risks. Our objective was to establish correlations between single fetal anomalies identified through ultrasound and chromosomal abnormalities. METHODS A cross-sectional study analyzed the karyotype of 1493 fetuses and detected a single ultrasonographic anomaly over a 16-year period. Karyotyping was performed using the standard karyotype technique. Moreover, data regarding the type of anomaly detected ultrasonographically, karyotype results, and outcomes following interventions were collected. Among other methods, the use of positive likelihood ratios (LR+) was used to evaluate the diagnostic accuracy of ultrasound compared to karyotyping. RESULTS In total, an aberrant karyotype was identified in 99 fetuses (6.6%). This was most commonly observed in cases involving a "soft" marker, occurring in 27 out of 218 fetuses (12.4%). The most frequently detected aberrant karyotype resulted from aneuploidies (80.6% of cases), notably trisomy 21 (50.5%). "Soft" markers predicted chromosomal issues (LR+ = 1.9; OR = 2.4), and isolated polyhydramnios (LR+ = 1.54; OR = 1.6) showed significance in predicting fetal chromosomal aberrations. CONCLUSION When assessing the necessity for karyotyping in fetuses with single major anomalies or "soft" markers, it is crucial to consider individual risks for chromosomopathies, including the LR+ of the detected marker. In cases where fetuses exhibit isolated anomalies with a normal karyotype, additional diagnostic measures, such as molecular cytogenetic and molecular genetics techniques, may become necessary.
Collapse
Affiliation(s)
- Bojana Petrovic
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia
| | - Srboljub Milicevic
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia
- Faculty of Medicine, University of Belgrade
| | - Dragisa Sljivancanin
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia
- Faculty of Medicine, University of Belgrade
| | | | - Jelena Stamenkovic
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia
- Faculty of Medicine, University of Belgrade
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
12
|
Egawa Y, Higuchi T, Hashida Y, Ueno K, Kojima K, Daibata M. Novel paired CD13-negative (MT-50.1) and CD13-positive (MT-50.4) HTLV-1-infected T-cell lines with differential regulatory T cell-like activity. Sci Rep 2024; 14:12549. [PMID: 38822041 PMCID: PMC11143202 DOI: 10.1038/s41598-024-63494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) occurs after human T-cell leukemia virus type-1 (HTLV-1) infection with a long latency period exceeding several decades. This implies the presence of immune evasion mechanisms for HTLV-1-infected T cells. Although ATL cells have a CD4+CD25+ phenotype similar to that of regulatory T cells (Tregs), they do not always possess the immunosuppressive functions of Tregs. Factors that impart effective immunosuppressive functions to HTLV-1-infected cells may exist. A previous study identified a new CD13+ Treg subpopulation with enhanced immunosuppressive activity. We, herein, describe the paired CD13- (designated as MT-50.1) and CD13+ (MT-50.4) HTLV-1-infected T-cell lines with Treg-like phenotype, derived from the peripheral blood of a single patient with lymphoma-type ATL. The cell lines were found to be derived from HTLV-1-infected non-leukemic cells. MT-50.4 cells secreted higher levels of immunosuppressive cytokines, IL-10 and TGF-β, expressed higher levels of Foxp3, and showed stronger suppression of CD4+CD25- T cell proliferation than MT-50.1 cells. Furthermore, the CD13 inhibitor bestatin significantly attenuated MT-50.4 cell growth, while it did not for MT-50.1 cells. These findings suggest that CD13 expression may be involved in the increased Treg-like activity of MT-50.4 cells. Hence, MT-50.4 cells will be useful for in-depth studies of CD13+Foxp3+ HTLV-1-infected cells.
Collapse
Affiliation(s)
- Yuki Egawa
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Tomonori Higuchi
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Yumiko Hashida
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Kazuyuki Ueno
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, 780-0955, Japan
| | - Kensuke Kojima
- Department of Hematology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
13
|
Bhardwaj M, Mishra SK, Gupta A, Mehta P, Sharma S, Mohanty SK. Three-way Philadelphia Translocation [t(46, XX, t(9;22;16) (q34;q11.2;q24)] in Chronic Myeloid Leukemia: A Report of Two Cases with Review of the Literature. J Cancer Res Ther 2024; 20:1066-1070. [PMID: 38261414 DOI: 10.4103/jcrt.jcrt_274_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/20/2023] [Indexed: 01/25/2024]
Abstract
ABSTRACT Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm that is genetically characterized by the presence of the Philadelphia (Ph) chromosome. Variant Ph translocation has been observed in 5% to 10% of the CML cases. In the previous studies, many different types of variant Ph translocations have been observed involving chromosomes 1p36, 3p21, 5q13, 6p21, 9q22, 11q13, 12p13, 17p13, and 10p15. According to the published literature, only two cases with the complex translocations involving long arm of chromosome 16 at band q24 have been reported. We report two female patients with complex translocation (three-way) involving chromosomes 9, 22, and 16 at breakpoint q24 and both patients responded well to Imatinib. The present study included 469 patients of clinically diagnosed CML patients who were referred for cytogenetic analysis to our laboratory. Cytogenetic analysis was performed by GTG banding, and the karyotype was designated according to the International System for Human Cytogenetic Nomenclature. Fluorescence in situ hybridization (FISH) analysis was performed for complex and variant BCR-ABL cases. Of total 469 cases, 248 patients showed classical Ph chromosome [t(9;22)(q34;q11.2)], 198 cases were normal, and 23 patients had variant and complex Ph chromosome translocation. Two patients showed three-way translocation involving long arm of chromosomes 9, 22, and 16 at band 9q34, 22q11.2, and 16q24. In this report, patients with variant Ph translocation did not have a significantly different outcome as compared to the classical translocation. Both cases responded well to Imatinib.
Collapse
MESH Headings
- Humans
- Antineoplastic Agents/therapeutic use
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 9/genetics
- Imatinib Mesylate/therapeutic use
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Philadelphia Chromosome
- Translocation, Genetic
Collapse
Affiliation(s)
- Mohit Bhardwaj
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Sourav K Mishra
- Department of Medical Oncology, Advanced Medical Research Institute, Bhubaneswar, Odisha, India
| | - Aastha Gupta
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Prashant Mehta
- Department of Medical Oncology, Asian Institute of Oncology, Faridabad, Haryana, India
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
| | - Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, Haryana, India
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Karamysheva TV, Lebedev IN, Minaycheva LI, Nazarenko LP, Kashevarova AA, Fedotov DA, Skryabin NA, Lopatkina ME, Cheremnykh AD, Fonova EA, Nikitina TV, Sazhenova EA, Skleimova MM, Kolesnikov NA, Drozdov GV, Yakovleva YS, Seitova GN, Orishchenko KE, Rubtsov NB. A case report of Pallister-Killian syndrome with an unusual mosaic supernumerary marker chromosome 12 with interstitial 12p13.1-p12.1 duplication. Front Genet 2024; 15:1331066. [PMID: 38528911 PMCID: PMC10961358 DOI: 10.3389/fgene.2024.1331066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Pallister-Killian syndrome (PKS) is a rare inherited disease with multiple congenital anomalies, profound intellectual disability, and the presence in the karyotype of sSMC - i(12)(p10). The frequency of PKS may be underestimated due to problems with cytogenetic diagnosis caused by tissue-specific mosaicism and usually a low percentage of peripheral blood cells containing sSMC. Such tissue-specific mosaicism also complicates a detailed analysis of the sSMC, which, along with the assessment of mosaicism in different tissues, is an important part of cytogenetic diagnosis in PKS. Unfortunately, a full-fledged diagnosis in PKS is either practically impossible or complicated. On the one hand, this is due to problems with the biopsy of various tissues (skin biopsy with fibroblast culture is most often used in practice); on the other - a low percentage of dividing peripheral blood cells containing sSMC, which often significantly complicates the analysis of its composition and organization. In the present study, a detailed analysis of sSMC was carried out in a patient with a characteristic clinical picture of PKS. A relatively high percentage of peripheral blood cells with sSMC (50%) made it possible to perform a detailed molecular cytogenetic analysis of de novo sSMC using chromosomal in situ suppression hybridization (CISS-hybridization), multicolor FISH (mFISH), multicolor chromosome banding (MCB), array CGH (aCGH), and quantitative real-time PCR (qPCR), and short tandem repeat (STR) - analysis. As a result, it was found that the sSMC is not a typical PKS derivative of chromosome 12. In contrast to the classical i(12)(p10) for PKS, the patient's cells contained an acrocentric chromosome consisting of 12p material. Clusters of telomeric repeats were found at the both ends of the sSMC. Furthemore, the results of aCGH and qPCR indicate the presence of interstitial 8.9 Mb duplication at 12p13.1-p12.1 within the sSMC, which leads to different representations of DNA from different segments of 12p within cells containing sSMC. The obtained data raise the question of the instability of the sSMC and, as a consequence, the possible presence of additional rearrangements, which, in traditional cytogenetic analysis of patients with PKS, are usually described as i(12)(p10).
Collapse
Affiliation(s)
- T. V. Karamysheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
- Department of Genetic Technologies, Novosibirsk State University, Novosibirsk, Russia
| | - I. N. Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Department of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| | - L. I. Minaycheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - L. P. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Department of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| | - A. A. Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - D. A. Fedotov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N. A. Skryabin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - M. E. Lopatkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - A. D. Cheremnykh
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E. A. Fonova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Department of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| | - T. V. Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E. A. Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - M. M. Skleimova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N. A. Kolesnikov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - G. V. Drozdov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Y. S. Yakovleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Department of Medical Genetics, Siberian State Medical University, Tomsk, Russia
| | - G. N. Seitova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - K. E. Orishchenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
- Department of Genetic Technologies, Novosibirsk State University, Novosibirsk, Russia
| | - N. B. Rubtsov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
- Department of Genetic Technologies, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
15
|
Adriano MRG, Bortolai A, Madia FAR, da Silva Carvalho GF, Nascimento AM, Zanardo EA, Wolff BM, Waisberg J, Bos-Mikich A, Kulikowski LD, Dias AT. Cytogenetics investigation in 151 Brazilian infertile male patients and genomic analysis in selected cases: experience of 14 years in a public genetic service. BMC Res Notes 2024; 17:67. [PMID: 38444014 PMCID: PMC10916190 DOI: 10.1186/s13104-024-06710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVES Male infertility accounts for approximately 30% of cases of reproductive failure. The characterization of genetic variants using cytogenomic techniques is essential for the adequate clinical management of these patients. We aimed to conduct a cytogenetic investigation of numerical and structural rearrangements and a genomic study of Y chromosome microdeletions/microduplications in infertile men derived from a single centre with over 14 years of experience. RESULTS We evaluated 151 infertile men in a transversal study using peripheral blood karyotypes and 15 patients with normal karyotypes through genomic investigation by multiplex ligation-dependent probe amplification (MLPA) or polymerase chain reaction of sequence-tagged sites (PCR-STS) techniques. Out of the 151 patients evaluated by karyotype, 13 presented chromosomal abnormalities: two had numerical alterations, and 11 had structural chromosomal rearrangements. PCR-STS detected a BPY2 gene region and RBMY2DP pseudogene region microdeletion in one patient. MLPA analysis allowed the identification of one patient with CDY2B_1 and CDY2B_2 probe duplications (CDY2B and NLGN4Y genes) and one patient with BPY2_1, BPY2_2, and BPY2_4 probe duplications (PRY and RBMY1J genes).
Collapse
Affiliation(s)
- Márcia Regina Gimenes Adriano
- Laboratório de Citogenética, Serviço de Laboratório de Análises Clínicas, Instituto de Assistência Médica do Servidor Público do Estado de São Paulo (IAMSPE), São Paulo, SP, 04039-901, Brasil.
| | - Adriana Bortolai
- Laboratório de Citogenética, Serviço de Laboratório de Análises Clínicas, Instituto de Assistência Médica do Servidor Público do Estado de São Paulo (IAMSPE), São Paulo, SP, 04039-901, Brasil
| | - Fabricia Andreia Rosa Madia
- Laboratório de Citogenômica, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, 05403-000, Brasil
| | - Gleyson Francisco da Silva Carvalho
- Laboratório de Citogenômica, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, 05403-000, Brasil
| | - Amom Mendes Nascimento
- Laboratório de Citogenômica, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, 05403-000, Brasil
| | - Evelin Aline Zanardo
- Laboratório de Citogenômica, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, 05403-000, Brasil
| | - Beatriz Martins Wolff
- Laboratório de Citogenômica, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, 05403-000, Brasil
| | - Jaques Waisberg
- Laboratório de Citogenética, Serviço de Laboratório de Análises Clínicas, Instituto de Assistência Médica do Servidor Público do Estado de São Paulo (IAMSPE), São Paulo, SP, 04039-901, Brasil
| | - Adriana Bos-Mikich
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90050-170, Brasil
| | - Leslie Domenici Kulikowski
- Laboratório de Citogenômica, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, 05403-000, Brasil
| | - Alexandre Torchio Dias
- Laboratório de Citogenética, Serviço de Laboratório de Análises Clínicas, Instituto de Assistência Médica do Servidor Público do Estado de São Paulo (IAMSPE), São Paulo, SP, 04039-901, Brasil
- Laboratório de Citogenômica, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, 05403-000, Brasil
- Universidade Paulista - UNIP - Instituto de Ciências da Saúde - Curso de Biomedicina, São Paulo, Brasil
- CITOGEM Biotecnologia, São Paulo, Brasil
| |
Collapse
|
16
|
Porubsky D, Eichler EE. A 25-year odyssey of genomic technology advances and structural variant discovery. Cell 2024; 187:1024-1037. [PMID: 38290514 PMCID: PMC10932897 DOI: 10.1016/j.cell.2024.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
This perspective focuses on advances in genome technology over the last 25 years and their impact on germline variant discovery within the field of human genetics. The field has witnessed tremendous technological advances from microarrays to short-read sequencing and now long-read sequencing. Each technology has provided genome-wide access to different classes of human genetic variation. We are now on the verge of comprehensive variant detection of all forms of variation for the first time with a single assay. We predict that this transition will further transform our understanding of human health and biology and, more importantly, provide novel insights into the dynamic mutational processes shaping our genomes.
Collapse
Affiliation(s)
- David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
17
|
Lynch A, Bradford S, Burkard ME. The reckoning of chromosomal instability: past, present, future. Chromosome Res 2024; 32:2. [PMID: 38367036 DOI: 10.1007/s10577-024-09746-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Quantitative measures of CIN are crucial to our understanding of its role in cancer. Technological advances have changed the way CIN is quantified, offering increased accuracy and insight. Here, we review measures of CIN through its rise as a field, discuss considerations for its measurement, and look forward to future quantification of CIN.
Collapse
Affiliation(s)
- Andrew Lynch
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Shermineh Bradford
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
18
|
Pompermayer E, Ysebaert MP, Vinardell T, Oikawa MA, Johnson JP, Fernandes T, David F. One-stage surgical case management of a two-year-old Arabian horse affected by male-pseudo hermaphroditism. J Equine Vet Sci 2024; 133:105007. [PMID: 38237706 DOI: 10.1016/j.jevs.2024.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
A two-year-old Arabian horse presented for abnormal external genitalia and dangerous stallion-like behavior was diagnosed with disorder of sexual development (DSD), also known as intersex/hermaphroditism. Standing 1-stage surgical procedure performed under sedation, and local anesthesia to concurrently eliminate stallion-like behavior, risk of neoplastic transformation of intraabdominal gonads, and to replace ambiguous external genital with a functional, and cosmetically more acceptable anatomy. Step-1) Laparoscopic abdominal exploration and gonadectomy; Step-2) Rudimentary penis resection and perineal urethrostomy. The horse tolerated surgery well (combined surgery time 185 min) with no complications. At macroscopic examination of the gonads, they resembled hypoplastic testis-like tissues. Microscopic examination confirmed presence of seminiferous tubules, Leydig and Sertoli/granulosa cells. Cytogenetic evaluation revealed a 64,XX karyotype, SRY-negative. The stallion-like behavior subsided within days post-operatively. Long-term follow-up revealed the genitoplasty site healed without urine scalding or urethral stricture. The owner satisfaction was excellent and the horse could be used post-surgery as an athlete.
Collapse
Affiliation(s)
- E Pompermayer
- Equine Veterinary Medical Center - Member of Qatar Foundation, Al Shaqab Street, Al Rayyan, Doha, Qatar
| | - M P Ysebaert
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80523-1601, USA
| | - T Vinardell
- Equine Care Group, Paalstraat 8, 3560 Lummen, Belgium
| | - M-A Oikawa
- Equine Veterinary Medical Center - Member of Qatar Foundation, Al Shaqab Street, Al Rayyan, Doha, Qatar
| | - J P Johnson
- Equine & Camel Hospital, Abu Dhabi, United Arab Emirates
| | - T Fernandes
- Equine Veterinary Medical Center - Member of Qatar Foundation, Al Shaqab Street, Al Rayyan, Doha, Qatar
| | - F David
- EquiTom - Namur, member of the Equine Care Group, 15 Chaussée de Nivelles, 5032 Mazy, Belgium.
| |
Collapse
|
19
|
Uryu H, Mishima Y, Ishihara Y, Shirouchi Y, Yamauchi N, Hirano M, Hirano K, Teramoto Y, Yoshida K, Maruyama D. Complex karyotype determined using conventional cytogenetic analysis is a poor prognostic factor in patients with multiple myeloma. J Clin Exp Hematop 2024; 64:10-20. [PMID: 38538316 PMCID: PMC11079984 DOI: 10.3960/jslrt.23047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 05/12/2024] Open
Abstract
High-risk cytogenetic abnormalities (HRCAs) influence the prognosis of multiple myeloma (MM). However, additional cytogenetic aberrations can lead to poor outcomes. This study aimed to clarify whether HRCAs and additional chromosomal abnormalities affect MM prognosis. Patients with newly diagnosed MM who were treated with novel agents were retrospectively evaluated. The primary objective was to assess the difference in progression-free survival (PFS) and overall survival (OS) between patients with/without HRCAs and between patients with/without complex karyotype (CK). The secondary objectives were to identify factors affecting PFS/OS and factors related to CK. HRCAs were defined as del(17p), t(4;14), t(14;16), and gain/amplification(1q) assessed using fluorescence in situ hybridization. CK was defined as ≥3 chromosomal abnormalities on G-banding. Among 110 patients, 40 had HRCAs and 15 had CK. In this study, survival durations between patients with/without HRCAs were similar, while the CK group had significantly poorer PFS/OS than the no-CK group (median PFS: 9 vs. 24 months and median OS: 29 vs. 97 months, respectively), and a poor prognostic impact of CK was maintained in patients with HRCAs. In multivariate analysis, CK was correlated with poor PFS/OS (hazard ratio [HR]: 2.39, 95% confidence interval [95% CI]: 1.22-4.66 and HR: 2.66, 95% CI: 1.10-6.45, respectively). Bone marrow plasma cell (BMPC) ≥60% (odds ratio [OR] = 6.40, 95% CI: 1.50-27.2) and Revised International Staging System III (OR = 7.53, 95% CI: 2.09-27.1) were associated with CK. Our study suggests that CK may contribute to the poor prognosis of MM. Aggressive disease status including high BMPC proliferation could be relevant to CK.
Collapse
Affiliation(s)
- Hideki Uryu
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| | - Yuko Mishima
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| | - Yuko Ishihara
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| | - Yuko Shirouchi
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| | - Nobuhiko Yamauchi
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| | - Mitsuhito Hirano
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| | - Kei Hirano
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| | - Yukako Teramoto
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| | - Kikuaki Yoshida
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| | - Dai Maruyama
- Department of Hematology
Oncology, Cancer Institute Hospital, Japanese Foundation for
Cancer Research, Tokyo, Japan
| |
Collapse
|
20
|
Krasnova O, Kovaleva A, Saveleva A, Kulakova K, Bystrova O, Martynova M, Domnina A, Sopova J, Neganova I. Mesenchymal stem cells lose the senescent phenotype under 3D cultivation. Stem Cell Res Ther 2023; 14:373. [PMID: 38111010 PMCID: PMC10729581 DOI: 10.1186/s13287-023-03599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cell culture is widely used in various fields of cell biology. In comparison to conventional two-dimensional (2D) cell culture, 3D cell culture facilitates a more accurate replication of the in vivo microenvironment, which is essential for obtaining more relevant results. The application of 3D cell culture techniques in regenerative medicine, particularly in mesenchymal stem cell (MSC)-based research, has been extensively studied. Many of these studies focus on the enhanced paracrine activity of MSCs cultured in 3D environments. However, few focus on the cellular processes that occur during 3D cultivation. METHODS In this work, we studied the changes occurring within 3D-cultured MSCs (3D-MSCs). Specifically, we examined the expression of numerous senescent-associated markers, the actin cytoskeleton structure, the architecture of the Golgi apparatus and the localization of mTOR, one of the main positive regulators of replicative senescence. In addition, we assessed whether the selective elimination of senescent cells occurs upon 3D culturing by using cell sorting based on autofluorescence. RESULTS Our findings indicate that 3D-MSCs were able to lose replicative senescence markers under 3D cell culture conditions. We observed changes in actin cytoskeleton structure, Golgi apparatus architecture and revealed that 3D cultivation leads to the nuclear localization of mTOR, resulting in a decrease in its active cytoplasmic form. Additionally, our findings provide evidence that 3D cell culture promotes the phenotypic reversion of senescent cell phenotype rather than their removal from the bulk population. CONCLUSION These novel insights into the biology of 3D-MSCs can be applied to research in regenerative medicine to overcome replicative senescence and MSC heterogeneity as they often pose significant concerns regarding safety and effectiveness for therapeutic purposes.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| | - A Kovaleva
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A Saveleva
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - K Kulakova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - O Bystrova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - M Martynova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A Domnina
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - J Sopova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
21
|
Romanenko SA, Kliver SF, Serdyukova NA, Perelman PL, Trifonov VA, Seluanov A, Gorbunova V, Azpurua J, Pereira JC, Ferguson-Smith MA, Graphodatsky AS. Integration of fluorescence in situ hybridization and chromosome-length genome assemblies revealed synteny map for guinea pig, naked mole-rat, and human. Sci Rep 2023; 13:21055. [PMID: 38030702 PMCID: PMC10687270 DOI: 10.1038/s41598-023-46595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia.
| | - Sergei F Kliver
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Natalia A Serdyukova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jorge Azpurua
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Jorge C Pereira
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| |
Collapse
|
22
|
Machado CRD, Azambuja M, Domit C, da Fonseca GF, Glugoski L, Gazolla CB, de Almeida RB, Pucci MB, Pires TT, Nogaroto V, Vicari MR. Integrating morphological, molecular and cytogenetic data for F2 sea turtle hybrids diagnosis revealed balanced chromosomal sets. J Evol Biol 2023; 36:1595-1608. [PMID: 37885128 DOI: 10.1111/jeb.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 10/28/2023]
Abstract
Hybridization could be considered part of the evolutionary history of many species. The hybridization among sea turtle species on the Brazilian coast is atypical and occurs where nesting areas and reproductive seasons overlap. Integrated analysis of morphology and genetics is still scarce, and there is no evidence of the parental chromosome set distribution in sea turtle interspecific hybrids. In this study, chromosome markers previously established for pure sea turtle species were combined with morphological and molecular analyses aiming to recognize genetic composition and chromosome sets in possible interspecific hybrids initially identified by mixed morphology. The data showed that one hybrid could be an F2 individual among Caretta caretta × Eretmochelys imbricata × Chelonia mydas, and another is resulting from backcross between C. caretta × Lepidochelys olivacea. Native alleles of different parental lineages were reported in the hybrids, and, despite this, it was verified that the hybrid chromosome sets were still balanced. Thus, how sea turtle hybridism can affect genetic features in the long term is a concern, as the implications of the crossing-over in hybrid chromosomal sets and the effects on genetic function are still unpredictable.
Collapse
Affiliation(s)
- Caroline Regina Dias Machado
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Gabriel Fraga da Fonseca
- Laboratório de Ecologia e Conservação, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Larissa Glugoski
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Rafael Bonfim de Almeida
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
| | - Marcela Baer Pucci
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
23
|
Kouvidi E, Tsarouha H, Zachaki S, Katsidi C, Tsimela H, Pantou A, Kanavakis E, Mavrou A. The Types and Frequencies of X Chromosome Abnormalities in Women with Reproductive Problems. Cytogenet Genome Res 2023; 163:274-278. [PMID: 37788650 DOI: 10.1159/000534428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION X chromosome architecture and integrity are essential for normal ovarian function. Both numerical and structural X chromosome abnormalities play an important role in female infertility. This study aimed to determine the types and frequency of X chromosome aberrations detected in women referred for cytogenetic investigation due to reproductive problems. METHODS 2,936 women (average age: 37.5 years) were enrolled in the present study. Peripheral blood karyotyping was performed by conventional cytogenetic techniques. For each woman, 20 G-banded metaphases were studied and in case of suspected mosaicism, analysis was extended to 100 metaphases. RESULTS 2,588/2,936 (88.15%) of women had a normal karyotype (46,XX), while 348/2,936 (11.85%) had an abnormal one. Thirty-two women (1.09%) carried autosomal chromosome abnormalities and 316 (10.76%) had X chromosome rearrangements. In 311/2,936 women (10.59%), X chromosome numerical aberrations were detected (low-level mosaicism), and in 5/2,936 cases (0.17%), X structural abnormalities (two with pericentric inversion, one with Xq deletion and two 45,X mosaics, one with an Xp deletion cell line and the other with isochromosome Xq cell line). Low-level X mosaicism was a common finding in women >35 years as compared to younger ones (92.93% vs. 7.07%), a finding consistent with loss of chromosome X with aging. Other X chromosome abnormalities were detected in younger women (32.3 ± 4.13 vs. 41.04 ± 4.5 years). The mean age of women with Turner-like phenotype was 28.75 ± 6.6 years. CONCLUSION The study confirms that the incidence of X chromosome abnormalities is increased in women with fertility problems and that karyotype is the gold standard for their identification. Genetic counseling is recommended in these cases to provide information concerning available treatment and fertility options.
Collapse
Affiliation(s)
- Elisavet Kouvidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Haralambia Tsarouha
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Sophia Zachaki
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Christina Katsidi
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Hara Tsimela
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Amelia Pantou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Emmanuel Kanavakis
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| | - Ariadni Mavrou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics and Research, Athens, Greece
| |
Collapse
|
24
|
Ossama HM, Kholeif S, Elhady GM. The Use of Fluorescence In situ Hybridisation in the Diagnosis of Hidden Mosaicism in Egyptian Patients with Turner Syndrome. J Hum Reprod Sci 2023; 16:286-298. [PMID: 38322635 PMCID: PMC10841934 DOI: 10.4103/jhrs.jhrs_128_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024] Open
Abstract
Background Turner syndrome (TS) is the most common chromosomal abnormality in females. The diagnosis of TS is based on karyotyping of 30 blood lymphocytes. This technique does not rule out tissue mosaicism or low-grade mosaicism in the blood. Because of the associated risk of gonadoblastoma, mosaicism is especially important in case this involves a Y chromosome. Aims This study was set to determine the value of additional genetic studies such as fluorescent in situ hybridisation and the inclusion of buccal cells in search for mosaicism in TS patients. Settings and Design This cross-sectional, descriptive study was performed in Human Genetics Department, Medical Research Institute, Alexandria University. Materials and Methods Fluorescence in situ hybridisation technique was applied to lymphocyte cultures as well as buccal smears using centromeric probes for X and Y chromosomes. Genotype phenotype correlation was also evaluated. Statistical Analysis Used Descriptive study where categorical variables were described using number and percentage and continuous variables were described using mean and standard deviation. Results Fluorescence in situ hybridisation technique study detected hidden mosaicism in 60% of studied patients; 20% of patients had a cell line containing Y material, while 40% had variable degrees of X, XX mosaicism, and in the remaining 40% no second cell line was detected. Fluorescence in situ hybridisation study helped identify the origin of the marker to be Y in all patients. The introduction of an additional cell line helped in identifying mosaicism in patients with monosomy X. Virilisation signs were only observed among TS patients with Y cell line mosaicism. The clinical manifestations were more severe in patients with monosomy X than other mosaic cases. Conclusions Molecular cytogenetic investigation for all suspected cases of TS should be considered for appropriate treatment plan and genetic counselling.
Collapse
Affiliation(s)
- Heba Mohamed Ossama
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Soha Kholeif
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ghada Mohamed Elhady
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
Stroupe S, Martone C, McCann B, Juras R, Kjöllerström HJ, Raudsepp T, Beard D, Davis BW, Derr JN. Chromosome-level reference genome for North American bison (Bison bison) and variant database aids in identifying albino mutation. G3 (BETHESDA, MD.) 2023; 13:jkad156. [PMID: 37481261 PMCID: PMC10542314 DOI: 10.1093/g3journal/jkad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
We developed a highly contiguous chromosome-level reference genome for North American bison to provide a platform to evaluate the conservation, ecological, evolutionary, and population genomics of this species. Generated from a F1 hybrid between a North American bison dam and a domestic cattle bull, completeness and contiguity exceed that of other published bison genome assemblies. To demonstrate the utility for genome-wide variant frequency estimation, we compiled a genomic variant database consisting of 3 true albino bison and 44 wild-type pelage color bison. Through the examination of genomic variants fixed in the albino cohort and absent in the controls, we identified a nonsynonymous single nucleotide polymorphism (SNP) mutation on chromosome 29 in exon 3 of the tyrosinase gene (c.1114C>T). A TaqMan SNP Genotyping Assay was developed to genotype this SNP in a total of 283 animals across 29 herds. This assay confirmed the absence of homozygous variants in all animals except 7 true albino bison included in this study. In addition, the only heterozygous animals identified were 2 wild-type pelage color dams of albino offspring. Therefore, we propose that this new high-quality bison genome assembly and incipient variant database provides a highly robust and informative resource for genomics investigations for this iconic North American species.
Collapse
Affiliation(s)
- Sam Stroupe
- Department of Veterinary Pathobiology, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Carly Martone
- Department of Veterinary Pathobiology, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Blake McCann
- National Park Service, Theodore Roosevelt National Park, Medora, ND 58645, USA
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Helena Josefina Kjöllerström
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - Donald Beard
- Texas Parks and Wildlife, Caprock Canyons State Park & Trailway, Quitaque, TX 79255, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
- Department of Small Animal Clinical Sciences, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| | - James N Derr
- Department of Veterinary Pathobiology, Texas A&M University School of Veterinary Medicine and Biomedical Science, College Station, TX 77843, USA
| |
Collapse
|
26
|
Chandel D, Sanghavi P, Verma R. Clinical profile and cytogenetic correlations in females with primary amenorrhea. Clin Exp Reprod Med 2023; 50:192-199. [PMID: 37643833 PMCID: PMC10477417 DOI: 10.5653/cerm.2023.05848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE This study was conducted to investigate chromosomal abnormalities and their correlations with clinical and radiological findings in females with primary amenorrhea (PA). METHODS Detailed forms were recorded for 470 females, including the construction of three-generation pedigrees. Peripheral venous blood was drawn, with informed consent, for cytogenetic analysis. RESULTS An abnormal karyotype was found in 16.38% of participants. The incidence of structural abnormalities (6.8%) exceeded that of numerical abnormalities (6.15%). Turner syndrome represented 45% of all numerical abnormalities. Furthermore, the Y chromosome was detected in 5% of females with PA. Among the structural chromosomal abnormalities detected (n=32) were mosaicism (25%), deletions (12.5%), isochromosomes (18.75%), fragile sites (3.12%), derivatives (3.12%), marker chromosomes (3.12%), and normal variants (29.125%). An examination of secondary sexual characteristics revealed that 29.6% of females had a complete absence of breast development, 29.78% lacked pubic hair, and 36.88% exhibited no axillary hair development. Radiological findings revealed that 51.22% of females had a hypoplastic uterus and 26.66% had a completely absent uterus. Abnormal ovarian development, such as the complete absence of both ovaries, absence of one ovary, one absent and other streak, or both streak ovaries, was observed in 69.47% of females with PA. Additionally 43.1%, 36.1%, 67.4%, and 8% of females had elevated levels of serum follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone, and prolactin, respectively. CONCLUSION This study underscores the importance of karyotyping as a fundamental diagnostic tool for assessing PA. The cytogenetic correlation with these profiles will aid in genetic counseling and further management of the condition.
Collapse
Affiliation(s)
- Divya Chandel
- Department of Zoology, BioMedical Technology and Human Genetics, Gujarat University, Ahmedabad, India
| | - Priyanka Sanghavi
- Department of Zoology, BioMedical Technology and Human Genetics, Gujarat University, Ahmedabad, India
| | - Ramtej Verma
- Department of Zoology, BioMedical Technology and Human Genetics, Gujarat University, Ahmedabad, India
| |
Collapse
|
27
|
Bogdanov A, Tambovtseva V, Matveevsky S, Bakloushinskaya I. Speciation on the Roof of the World: Parallel Fast Evolution of Cryptic Mole Vole Species in the Pamir-Alay-Tien Shan Region. Life (Basel) 2023; 13:1751. [PMID: 37629608 PMCID: PMC10455883 DOI: 10.3390/life13081751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Speciation is not always accompanied by morphological changes; numerous cryptic closely related species were revealed using genetic methods. In natural populations of Ellobius tancrei (2n = 54-30) and E. alaicus (2n = 52-48) of the Pamir-Alay and Tien Shan, the chromosomal variability due to Robertsonian translocations has been revealed. Here, by comprehensive genetic analysis (karyological analyses as well as sequencing of mitochondrial genes, cytb and COI, and nuclear genes, XIST and IRBP) of E. alaicus and E. tancrei samples from the Inner Tien Shan, the Alay Valley, and the Pamir-Alay, we demonstrated fast and independent diversification of these species. We described an incompletely consistent polymorphism of the mitochondrial and nuclear markers, which arose presumably because of habitat fragmentation in the highlands, rapid karyotype changes, and hybridization of different intraspecific varieties and species. The most intriguing results are a low level of genetic distances calculated from mitochondrial and nuclear genes between some phylogenetic lines of E. tancrei and E. alaicus, as well significant species-specific chromosome variability in both species. The chromosomal rearrangements are what most clearly define species specificity and provide further diversification. The "mosaicism" and inconsistency in polymorphism patterns are evidence of rapid speciation in these mammals.
Collapse
Affiliation(s)
- Aleksey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Valentina Tambovtseva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
28
|
Proskuryakova AA, Ivanova ES, Makunin AI, Larkin DM, Ferguson-Smith MA, Yang F, Uphyrkina OV, Perelman PL, Graphodatsky AS. Comparative studies of X chromosomes in Cervidae family. Sci Rep 2023; 13:11992. [PMID: 37491593 PMCID: PMC10368622 DOI: 10.1038/s41598-023-39088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
The family Cervidae is the second most diverse in the infraorder Pecora and is characterized by variability in the diploid chromosome numbers among species. X chromosomes in Cervidae evolved through complex chromosomal rearrangements of conserved segments within the chromosome, changes in centromere position, heterochromatic variation, and X-autosomal translocations. The family Cervidae consists of two subfamilies: Cervinae and Capreolinae. Here we build a detailed X chromosome map with 29 cattle bacterial artificial chromosomes of representatives of both subfamilies: reindeer (Rangifer tarandus), gray brocket deer (Mazama gouazoubira), Chinese water deer (Hydropotes inermis) (Capreolinae); black muntjac (Muntiacus crinifrons), tufted deer (Elaphodus cephalophus), sika deer (Cervus nippon) and red deer (Cervus elaphus) (Cervinae). To track chromosomal rearrangements during Cervidae evolution, we summarized new data, and compared them with available X chromosomal maps and chromosome level assemblies of other species. We demonstrate the types of rearrangements that may have underlined the variability of Cervidae X chromosomes. We detected two types of cervine X chromosome-acrocentric and submetacentric. The acrocentric type is found in three independent deer lineages (subfamily Cervinae and in two Capreolinae tribes-Odocoileini and Capreolini). We show that chromosomal rearrangements on the X-chromosome in Cervidae occur at a higher frequency than in the entire Ruminantia lineage: the rate of rearrangements is 2 per 10 million years.
Collapse
Affiliation(s)
- Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090.
| | - Ekaterina S Ivanova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, Russia, 630090
| | - Alexey I Makunin
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
| | - Denis M Larkin
- The Royal Veterinary College, Royal College Street, University of London, London, NW1 0TU, UK
| | - Malcolm A Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Center for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Olga V Uphyrkina
- Federal Research Center for Biodiversity of the Terrestrial Biota of East Asia, Vladivostok, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
| |
Collapse
|
29
|
Poisson W, Bastien A, Gilbert I, Carrier A, Prunier J, Robert C. Cytogenetic screening of a Canadian swine breeding nucleus using a newly developed karyotyping method named oligo-banding. Genet Sel Evol 2023; 55:47. [PMID: 37430194 DOI: 10.1186/s12711-023-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The frequency of chromosomal rearrangements in Canadian breeding boars has been estimated at 0.91 to 1.64%. These abnormalities are widely recognized as a potential cause of subfertility in livestock production. Since artificial insemination is practiced in almost all intensive pig production systems, the use of elite boars carrying cytogenetic defects that have an impact on fertility can lead to major economic losses. To avoid keeping subfertile boars in artificial insemination centres and spreading chromosomal defects within populations, cytogenetic screening of boars is crucial. Different techniques are used for this purpose, but several issues are frequently encountered, i.e. environmental factors can influence the quality of results, the lack of genomic information outputted by these techniques, and the need for prior cytogenetic skills. The aim of this study was to develop a new pig karyotyping method based on fluorescent banding patterns. RESULTS The use of 207,847 specific oligonucleotides generated 96 fluorescent bands that are distributed across the 18 autosomes and the sex chromosomes. Tested alongside conventional G-banding, this oligo-banding method allowed us to identify four chromosomal translocations and a rare unbalanced chromosomal rearrangement that was not detected by conventional banding. In addition, this method allowed us to investigate chromosomal imbalance in spermatozoa. CONCLUSIONS The use of oligo-banding was found to be appropriate for detecting chromosomal aberrations in a Canadian pig nucleus and its convenient design and use make it an interesting tool for livestock karyotyping and cytogenetic studies.
Collapse
Affiliation(s)
- William Poisson
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada
| | - Alexandre Bastien
- Plateforme d'imagerie et microscopie, Institut de biologie intégrative et des systèmes, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada
| | - Alexandra Carrier
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada
| | - Julien Prunier
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada.
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Québec, QC, Canada.
| |
Collapse
|
30
|
Middlebrooks B, McCue P, Nelson B, May E, Divine C, Barton C, Conley A. Monorchidism in a Phenotypic Mare With a 64,XY, SRY-Positive Karyotype. J Equine Vet Sci 2023; 126:104232. [PMID: 36736748 DOI: 10.1016/j.jevs.2023.104232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Disorders of sexual development (DSD) are associated with atypical chromosomal, gonadal, or phenotypic sex. It is likely that the number of cases of DSD are underestimated in the equine population. Monorchidism in the horse is very rare. This case report describes the clinical assessment of a phenotypic mare with stallion-like behavior which led to the diagnosis of a DSD. A 4-year-old Quarter Horse mare presented in good body condition, with normal external genitalia for a mare, and normal mammary glands with two bilaterally symmetric teats. No uterus, cervix, or gonads were detected on transrectal palpation. Transrectal ultrasonography revealed a single gonad in the right dorsal abdomen with the morphologic appearance of a testicle. Presurgical hormonal evaluation revealed elevated serum testosterone and anti-Müllerian hormone (AMH) concentrations. The right gonad was successfully removed via standing exploratory laparoscopy and submitted for histopathology. No gonad was identified on the left side during laparoscopy. Histopathologic examination confirmed that the excised gonad was a testicle. Cytogenetic and molecular analysis revealed a 64,XY, SRY-positive chromosomal constitution. Hormonal evaluation 5 weeks after surgery revealed low serum testosterone and AMH levels. A diagnosis of monorchidism was based on ultrasound examination, laparoscopic exploration of the abdomen, removal of a single gonad, and a subsequent decrease in serum testosterone and AMH concentrations to basal levels. In summary, a combination of clinical signs, endocrine evaluation, chromosomal and molecular analysis, and histopathology can be used in the diagnosis of DSD conditions.
Collapse
Affiliation(s)
| | - Patrick McCue
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Brad Nelson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Emily May
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Christina Divine
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Charlie Barton
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Alan Conley
- Department of Population Health and Reproduction, University of California, Davis, CA
| |
Collapse
|
31
|
Nakhaei-Rad S, Haghighi F, Bazgir F, Dahlmann J, Busley AV, Buchholzer M, Kleemann K, Schänzer A, Borchardt A, Hahn A, Kötter S, Schanze D, Anand R, Funk F, Kronenbitter AV, Scheller J, Piekorz RP, Reichert AS, Volleth M, Wolf MJ, Cirstea IC, Gelb BD, Tartaglia M, Schmitt JP, Krüger M, Kutschka I, Cyganek L, Zenker M, Kensah G, Ahmadian MR. Molecular and cellular evidence for the impact of a hypertrophic cardiomyopathy-associated RAF1 variant on the structure and function of contractile machinery in bioartificial cardiac tissues. Commun Biol 2023; 6:657. [PMID: 37344639 PMCID: PMC10284840 DOI: 10.1038/s42003-023-05013-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Dahlmann
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Alexandra Viktoria Busley
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Marcel Buchholzer
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karolin Kleemann
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Borchardt
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sebastian Kötter
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Funk
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Vera Kronenbitter
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marianne Volleth
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany
| | - Matthew J Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Joachim P Schmitt
- Institute of Pharmacology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingo Kutschka
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto von Guericke-University, Magdeburg, Germany.
| | - George Kensah
- Clinic for Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany.
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
32
|
Morales-Donoso JA, Vacari GQ, Bernegossi AM, Sandoval EDP, Peres PHF, Galindo DJ, de Thoisy B, Vozdova M, Kubickova S, Barbanti Duarte JM. Revalidation of Passalites Gloger, 1841 for the Amazon brown brocket deer P.nemorivagus (Cuvier, 1817) (Mammalia, Artiodactyla, Cervidae). Zookeys 2023; 1167:241-264. [PMID: 37388777 PMCID: PMC10300653 DOI: 10.3897/zookeys.1167.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023] Open
Abstract
Mazamanemorivaga (Cuvier, 1817) is a gray brocket deer that inhabits the Amazon region. An assessment of previous studies revealed inconsistencies in its current taxonomic classification, suggesting the need for an update in its genus classification. A taxonomic repositioning of this species is proposed through the collection of a specimen from its type locality (French Guiana) with subsequent morphological (coloring pattern, body measurements, and craniometry), cytogenetics (G Band, C Band, conventional Giemsa, Ag-NOR staining, and BAC probe mapping), and molecular phylogenetic analysis (mitochondrial genes Cyt B of 920 bp, COI I of 658 bp, D-loop 610 bp), and comparisons with other specimens of the same taxon, as well as other Neotropical deer species. The morphological and cytogenetic differences between this and other Neotropical Cervidae confirm the taxon as a unique and valid species. The phylogenetic analysis evidenced the basal position of the M.nemorivaga specimens within the Blastocerina clade. This shows early diversification and wide divergence from the other species, suggesting that the taxon should be transferred to a different genus. A taxonomic update of the genus name is proposed through the validation of Passalites Gloger, 1841, with Passalitesnemorivagus (Cuvier, 1817) as the type species. Future research should focus on evaluating the potential existence of other species within the genus Passalites, as suggested in the literature.
Collapse
Affiliation(s)
- Jorge Alfonso Morales-Donoso
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - Gabrielle Queiroz Vacari
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - Agda Maria Bernegossi
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - Eluzai Dinai Pinto Sandoval
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - Pedro Henrique Faria Peres
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| | - David Javier Galindo
- Laboratorio de Reproducción Animal, Departamento de Producción Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marco, San Borja, Lima, PeruUniversidad Nacional Mayor de San MarcoLimaPeru
| | | | - Miluse Vozdova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech RepublicCentral European Institute of Technology-Veterinary Research InstituteBrnoCzech Republic
| | - Svatava Kubickova
- Central European Institute of Technology-Veterinary Research Institute, 621 00, Brno, Czech RepublicCentral European Institute of Technology-Veterinary Research InstituteBrnoCzech Republic
| | - José Mauricio Barbanti Duarte
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal-SP, BrazilUniversidade Estadual Paulista (UNESP)JaboticabalBrazil
| |
Collapse
|
33
|
Mohiuddin Malla T, Amin Shah Z, Hussain Bhat A, Ahmad Malik M, Anjum Baba R, Rasool R, Rasool J, Ashaq S, Haq F. Fishing for ETV6/RUNX1 fusion and MLL gene rearrangements and their additional abnormalities in childhood acute lymphoblastic leukemia patients of Kashmir. Gene 2023; 856:147128. [PMID: 36565795 DOI: 10.1016/j.gene.2022.147128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Evidence suggests that ETV6/RUNX1 translocation in pediatric acute lymphocytic leukemia shows geographical variation. Therefore, the present study aimed at unveiling the incidence of ETV6/RUNX1 fusion in pediatric acute lymphocytic leukemia cases of this region using fluorescent in-situ hybridization. Besides, we aimed to determine the incidence of MLL gene rearrangement and the pattern of chromosomal abnormalities in this study group. METHODS Samples from 57 acute lymphocytic leukemia cases of pediatric age group were subjected to fluorescent in-situ hybridization and conventional cytogenetic analysis using standard methods. RESULTS Conventional cytogenetic analysis revealed chromosomal abnormalities in 19.3% cases. The other major chromosomal abnormalities reported were monosomies in 10.5%, hypodiploidy in 7%, marker chromosomes in 3.5% and deletions in 3.5% cases. We found a 44,XX,-7,-18, r(5), i(17q) complex karyotype in one of the cases. Fluorescent in-situ hybridization analysis revealed ETV6/RUNX1 translocation to be present in 28.07% cases and MLL gene rearrangement in 3.5% cases. 12.5% of ETV6/RUNX1 fusion positive cases were found to have a loss of ETV6 allele. Besides, 8.8% cases were found to exhibit a signal pattern suggestive of RUNX1 amplification. ETV6 gene deletion and MLL gene amplification was detected in 3.5% cases each, of our study. CONCLUSIONS Frequency of ETV6/RUNX1 fusion oncogene was found to be higher in pediatric ALL cases of Kashmir region as compared to that reported from other parts of India. Besides, a case was found to have a karyotype viz 44,XX,-7,-18, r(5), i(17q) that has not been reported elsewhere in the childhood ALL.
Collapse
Affiliation(s)
- Tahir Mohiuddin Malla
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Zafar Amin Shah
- Department of Immunology & Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India.
| | - Aashiq Hussain Bhat
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Manzoor Ahmad Malik
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Rafia Anjum Baba
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Roohi Rasool
- Department of Immunology & Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Javaid Rasool
- Department of Hematology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Sozi Ashaq
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Faizanul Haq
- Cancer Diagnostic and Research Centre, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| |
Collapse
|
34
|
Wixmerten A, Miot S, Bittorf P, Wolf F, Feliciano S, Hackenberg S, Häusner S, Krenger W, Haug M, Martin I, Pullig O, Barbero A. Good Manufacturing Practice-compliant change of raw material in the manufacturing process of a clinically used advanced therapy medicinal product-a comparability study. Cytotherapy 2023; 25:548-558. [PMID: 36894437 DOI: 10.1016/j.jcyt.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 01/08/2023] [Indexed: 03/09/2023]
Abstract
The development of medicinal products often continues throughout the different phases of a clinical study and may require challenging changes in raw and starting materials at later stages. Comparability between the product properties pre- and post-change thus needs to be ensured. Here, we describe and validate the regulatory compliant change of a raw material using the example of a nasal chondrocyte tissue-engineered cartilage (N-TEC) product, initially developed for treatment of confined knee cartilage lesions. Scaling up the size of N-TEC as required for the treatment of larger osteoarthritis defects required the substitution of autologous serum with a clinical-grade human platelet lysate (hPL) to achieve greater cell numbers necessary for the manufacturing of larger size grafts. A risk-based approach was performed to fulfill regulatory requirements and demonstrate comparability of the products manufactured with the standard process (autologous serum) already applied in clinical indications and the modified process (hPL). Critical attributes with regard to quality, purity, efficacy, safety and stability of the product as well as associated test methods and acceptance criteria were defined. Results showed that hPL added during the expansion phase of nasal chondrocytes enhances proliferation rate, population doublings and cell numbers at passage 2 without promoting the overgrowth of potentially contaminant perichondrial cells. N-TEC generated with the modified versus standard process contained similar content of DNA and cartilaginous matrix proteins with even greater expression levels of chondrogenic genes. The increased risk for tumorigenicity potentially associated with the use of hPL was assessed through karyotyping of chondrocytes at passage 4, revealing no chromosomal changes. Moreover, the shelf-life of N-TEC established for the standard process could be confirmed with the modified process. In conclusion, we demonstrated the introduction of hPL in the manufacturing process of a tissue engineered product, already used in a late-stage clinical trial. Based on this study, the national competent authorities in Switzerland and Germany accepted the modified process which is now applied for ongoing clinical tests of N-TEC. The described activities can thus be taken as a paradigm for successful and regulatory compliant demonstration of comparability in advanced therapy medicinal products manufacturing.
Collapse
Affiliation(s)
- Anke Wixmerten
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Sylvie Miot
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Patrick Bittorf
- Fraunhofer ISC - Translational Center Regenerative Therapies, Würzburg, Germany
| | - Francine Wolf
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Sandra Feliciano
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Head and Neck Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Sebastian Häusner
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Werner Krenger
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Martin Haug
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Oliver Pullig
- Fraunhofer ISC - Translational Center Regenerative Therapies, Würzburg, Germany; Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andrea Barbero
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
35
|
Irregularities in Meiotic Prophase I as Prerequisites for Reproductive Isolation in Experimental Hybrids Carrying Robertsonian Translocations. DIVERSITY 2023. [DOI: 10.3390/d15030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The basic causes of postzygotic isolation can be elucidated if gametogenesis is studied, which is a drastically different process in males and females. As a step toward clarifying this problem, we obtained an experimental inbred lineage of the eastern mole vole Ellobius tancrei, whose founder animals were animals with identical diploid numbers 2n = 50 but with different Robertsonian translocations (Rb), namely 2Rb4.12 and 2Rb9.13 in the female and 2Rb.2.18 and 2Rb5.9 in the male. Here, we analyzed strictly inbred hybrids (F1, fertile and F10, sterile) using immunocytochemical methods in order to study spermatocytes during the meiotic prophase I. Previously, the presence of trivalents was assumed to have no significant effect on spermatogenesis and fertility in hybrids, but we demonstrated that spermatogenesis might be disturbed due to the cumulative effects of the retarded synapses of Rb bivalents as well as trivalents and their associations with XX sex bivalents. Alterations in the number of gametes due to the described processes led to a decrease in reproductive capacity up to sterility and can be examined as a mechanism for reproductive isolation, thus starting speciation.
Collapse
|
36
|
Cernohorska H, Kubickova S, Musilova P, Vozdova M, Vodicka R, Rubes J. Supernumerary Marker Chromosome Identified in Asian Elephant ( Elephas maximus). Animals (Basel) 2023; 13:ani13040701. [PMID: 36830488 PMCID: PMC9952010 DOI: 10.3390/ani13040701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
We identified a small, supernumerary marker chromosome (sSMC) in two phenotypically normal Asian elephants (Elephas maximus): a female (2n = 57,XX,+mar) and her male offspring (2n = 57,XY,+mar). sSMCs are defined as structurally abnormal chromosomes that cannot be identified by conventional banding analysis since they are usually small and often lack distinct banding patterns. Although current molecular techniques can reveal their origin, the mechanism of their formation is not yet fully understood. We determined the origin of the marker using a suite of conventional and molecular cytogenetic approaches that included (a) G- and C-banding, (b) AgNOR staining, (c) preparation of a DNA clone using laser microdissection of the marker chromosome, (d) FISH with commercially available human painting and telomeric probes, and (e) FISH with centromeric DNA derived from the centromeric regions of a marker-free Asian elephant. Moreover, we present new information on the location and number of NORs in Asian and savanna elephants. We show that the metacentric marker was composed of heterochromatin with NORs at the terminal ends, originating most likely from the heterochromatic region of chromosome 27. In this context, we discuss the possible mechanism of marker formation. We also discuss the similarities between sSMCs and B chromosomes and whether the marker chromosome presented here could evolve into a B chromosome in the future.
Collapse
Affiliation(s)
- Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
- Correspondence: ; Tel.: +420-533331425
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Petra Musilova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| | | | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Veterinary Research Institute, 62100 Brno, Czech Republic
| |
Collapse
|
37
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
38
|
Beklemisheva VR, Lemskaya NA, Prokopov DY, Perelman PL, Romanenko SA, Proskuryakova AA, Serdyukova NA, Utkin YA, Nie W, Ferguson-Smith MA, Yang F, Graphodatsky AS. Maps of Constitutive-Heterochromatin Distribution for Four Martes Species (Mustelidae, Carnivora, Mammalia) Show the Formative Role of Macrosatellite Repeats in Interspecific Variation of Chromosome Structure. Genes (Basel) 2023; 14:489. [PMID: 36833416 PMCID: PMC9957230 DOI: 10.3390/genes14020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.
Collapse
Affiliation(s)
- Violetta R. Beklemisheva
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya A. Lemskaya
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry Yu. Prokopov
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Polina L. Perelman
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Svetlana A. Romanenko
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia A. Proskuryakova
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya A. Serdyukova
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yaroslav A. Utkin
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Fentang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Alexander S. Graphodatsky
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
39
|
Kuchi Bhotla H, Balasubramanian B, Rengasamy KRR, Arumugam VA, Alagamuthu KK, Chithravel V, Chaudhary A, Alanazi AM, Pappuswamy M, Meyyazhagan A. Genotoxic repercussion of high-intensity radiation (x-rays) on hospital radiographers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:123-131. [PMID: 36541415 DOI: 10.1002/em.22523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 05/24/2023]
Abstract
Recent technological advances in the medical field have increased the plausibility of exposing humans to high-intensity wavelength radiations like x-rays and gamma rays while diagnosing or treating specific medical maladies. These radiations induce nucleotide changes and chromosomal alterations in the exposed population, intentionally or accidentally. A radiological investigation is regularly used in identifying the disease, especially by the technicians working in intensive care units. The current study observes the genetic damages like chromosomal abnormalities (CA) in clinicians who are occupationally exposed to high-intensity radiations (x-rays) at their workplaces using universal cytogenetic tools like micronucleus assay (MN), sister chromatid exchange and comet assay. The study was conducted between 100 exposed practitioners from the abdominal scanning, chest scanning, cranial and orthopedic or bone scanning department and age-matched healthy controls. We observed a slightly higher rate of MN and CA (p < .05) in orthopedic and chest department practitioners than in other departments concerning increasing age and duration of exposure at work. Our results emphasize taking extra precautionary measures in clinical and hospital radiation laboratories to protect the practitioners.
Collapse
Affiliation(s)
| | | | - Kannan R R Rengasamy
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Karthick Kumar Alagamuthu
- Department of Biotechnology, Selvamm Arts and Science College (Autonomous), Namakkal, Tamil Nadu, India
| | | | - Aditi Chaudhary
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | - Amer M Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
40
|
Kulkarni V, Chellasamy SK, Dhangar S, Ghatanatti J, Vundinti BR. Comprehensive molecular analysis identifies eight novel variants in XY females with disorders of sex development. Mol Hum Reprod 2023; 29:6972780. [PMID: 36617173 PMCID: PMC10167928 DOI: 10.1093/molehr/gaad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Disorders of sex development (DSD) are a group of clinical conditions with variable presentation and genetic background. Females with or without development of secondary sexual characters and presenting with primary amenorrhea (PA) and a 46,XY karyotype are one of the classified groups in DSD. In this study, we aimed to determine the genetic mutations in 25 females with PA and a 46,XY karyotype to show correlations with their phenotypes. Routine Sanger sequencing with candidate genes like SRY, AR, SRD5A2, and SF1, which are mainly responsible for 46,XY DSD in adolescent females, was performed. In a cohort of 25 patients of PA with 46,XY DSD, where routine Sanger sequencing failed to detect the mutations, next-generation sequencing of a targeted gene panel with 81 genes was used for the molecular diagnosis. The targeted sequencing identified a total of 21 mutations including 8 novel variants in 20 out of 25 patients with DSD. The most frequently identified mutations in our series were in AR (36%), followed by SRD5A2 (20%), SF1 (12%), DHX37 (4%), HSD17B3 (4%), and DMRT2 (4%). We could not find any mutation in the DSD-related genes in five (20%) patients due to complex molecular mechanisms in 46,XY DSD, highlighting the possibility of new DSD genes which are yet to be discovered in these disorders. In conclusion, genetic testing, including cytogenetics and molecular genetics, is important for the diagnosis and management of 46,XY DSD cases.
Collapse
Affiliation(s)
- Vinayak Kulkarni
- Department of Anatomy, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, India.,Department of Cytogenetics, ICMR-National Institute of Immunohematology, Mumbai, India
| | - Selvaa Kumar Chellasamy
- Bioinformatics Division, School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, India
| | - Somprakash Dhangar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, Mumbai, India
| | | | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, Mumbai, India
| |
Collapse
|
41
|
Tavares FDS, Oliveira da Silva W, Ferguson-Smith MA, Klautau AGCDM, Oliveira JM, Rodrigues ALF, Melo-Santos G, Pieczarka JC, Nagamachi CY, Noronha RCR. Ancestral chromosomal signatures of Paenungulata (Afroteria) reveal the karyotype of Amazonian manatee (Trichechus inunguis, Sirenia: Trichechidae) as the oldest among American manatees. BMC Genomics 2023; 24:38. [PMID: 36694120 PMCID: PMC9872332 DOI: 10.1186/s12864-023-09129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chromosomal painting in manatees has clarified questions about the rapid evolution of sirenians within the Paenungulata clade. Further cytogenetic studies in Afrotherian species may provide information about their evolutionary dynamics, revealing important insights into the ancestral karyotype in the clade representatives. The karyotype of Trichechus inunguis (TIN, Amazonian manatee) was investigated by chromosome painting, using probes from Trichechus manatus latirostris (TML, Florida manatee) to analyze the homeologies between these sirenians. RESULTS A high similarity was found between these species, with 31 homologous segments in TIN, nineteen of which are whole autosomes, besides the X and Y sex chromosomes. Four chromosomes from TML (4, 6, 8, and 9) resulted in two hybridization signals, totaling eight acrocentrics in the TIN karyotype. This study confirmed in TIN the chromosomal associations of Homo sapiens (HSA) shared in Afrotheria, such as the 5/21 synteny, and in the Paenungulata clade with the syntenies HSA 2/3, 8/22, and 18/19, in addition to the absence of HSA 4/8 common in eutherian ancestral karyotype (EAK). CONCLUSIONS TIN shares more conserved chromosomal signals with the Paenungulata Ancestral Karyotype (APK, 2n = 58) than Procavia capensis (Hyracoidea), Loxodonta africana (Proboscidea) and TML (Sirenia), where TML presents less conserved signals with APK, demonstrating that its karyotype is the most derived among the representatives of Paenungulata. The chromosomal changes that evolved from APK to the T. manatus and T. inunguis karyotypes (7 and 4 changes, respectively) are more substantial within the Trichechus genus compared to other paenungulates. Among these species, T. inunguis presents conserved traits of APK in the American manatee genus. Consequently, the karyotype of T. manatus is more derived than that of T. inunguis.
Collapse
Affiliation(s)
- Flávia Dos Santos Tavares
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil
| | - Willam Oliveira da Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Jairo Moura Oliveira
- Zoological Park of Santarém - Universidade da Amazônia (ZOOUNAMA), Pará, Santarém, Brazil
| | - Angélica Lúcia Figueiredo Rodrigues
- Instituto de Biologia e Conservação de Mamíferos Aquáticos da Amazônia, Universidade Federal Rural da Amazônia (UFRA), Pará, Belém, Brazil
- Secretaria de Educação Do Estado Do Pará (SEDUC-PA), Belém, Brazil
| | - Gabriel Melo-Santos
- Instituto de Biologia e Conservação de Mamíferos Aquáticos da Amazônia, Universidade Federal Rural da Amazônia (UFRA), Pará, Belém, Brazil
- Laboratório de Ecologia Marinha e Conservação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Ecologia de Aves e Comportamento Animal, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal Do Pará (UFPA), Pará, Belém, Brazil.
| |
Collapse
|
42
|
Zywitza V, Frahm S, Krüger N, Weise A, Göritz F, Hermes R, Holtze S, Colleoni S, Galli C, Drukker M, Hildebrandt TB, Diecke S. Induced pluripotent stem cells and cerebral organoids from the critically endangered Sumatran rhinoceros. iScience 2022; 25:105414. [PMID: 36388963 PMCID: PMC9646950 DOI: 10.1016/j.isci.2022.105414] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Less than 80 Sumatran rhinos (SR, Dicerorhinus sumatrensis) are left on earth. Habitat loss and limited breeding possibilities are the greatest threats to the species and lead to a continuous population decline. To stop the erosion of genetic diversity, reintroduction of genetic material is indispensable. However, as the propagation rate of captive breeding is far too low, innovative technologies have to be developed. Induced pluripotent stem cells (iPSCs) are a powerful tool to fight extinction. They give rise to each cell within the body including gametes and provide a unique modality to preserve genetic material across time. Additionally, they enable studying species-specific developmental processes. Here, we generate iPSCs from the last male Malaysian SR Kertam, who died in 2019, and characterize them comprehensively. Differentiation in cells of the three germ layers and cerebral organoids demonstrate their high quality and great potential for supporting the rescue of this critically endangered species.
Collapse
Affiliation(s)
- Vera Zywitza
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, 13125 Berlin, Germany
| | - Silke Frahm
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, 13125 Berlin, Germany
| | - Norman Krüger
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, 13125 Berlin, Germany
| | - Anja Weise
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Frank Göritz
- Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Robert Hermes
- Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | | | - Cesare Galli
- Avantea, 26100 Cremona, Italy
- Fondazione Avantea, 26100 Cremona, Italy
| | - Micha Drukker
- Helmholtz Zentrum München, Institute of Stem Cell Research, 85764 Neuherberg, Germany
| | - Thomas B. Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Freie Universität Berlin, Faculty of Veterinary Medicine, 14163 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform Pluripotent Stem Cells, 13125 Berlin, Germany
| |
Collapse
|
43
|
da Silva NKN, Nagamachi CY, Rodrigues LRR, O’Brien PCM, Yang F, Ferguson-Smith MA, Pieczarka JC. Chromosome painting and phylogenetic analysis suggest that the genus Lophostoma (Chiroptera, Phyllostomidae) is paraphyletic. Sci Rep 2022; 12:19514. [PMID: 36376355 PMCID: PMC9663435 DOI: 10.1038/s41598-022-21391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
The subfamily Phyllostominae (Chiroptera, Phyllostomidae) comprises 10 genera of Microchiroptera bats from the Neotropics. The taxonomy of this group is controversial due to incongruities in the phylogenetic relationships evident from different datasets. The genus Lophostoma currently includes eight species whose phylogenetic relationships have not been resolved. Integrative analyzes including morphological, molecular and chromosomal data are powerful tools to investigate the phylogenetics of organisms, particularly if obtained by chromosomal painting. In the present work we performed comparative genomic mapping of three species of Lophostoma (L. brasiliense 2n = 30, L. carrikeri 2n = 26 and L. schulzi 2n = 26), by chromosome painting using whole chromosome probes from Phyllostomus hastatus and Carollia brevicauda; this included mapping interstitial telomeric sites. The karyotype of L. schulzi (LSC) is a new cytotype. The species L. brasiliense and L. carrikeri showed interstitial telomeric sequences that probably resulted from expansions of repetitive sequences near pericentromeric regions. The addition of chromosomal painting data from other species of Phyllostominae allowed phylogeny construction by maximum parsimony, and the determination that the genera of this subfamily are monophyletic, and that the genus Lophostoma is paraphyletic. Additionally, a review of the taxonomic status of LSC is suggested to determine if this species should be reclassified as part of the genus Tonatia.
Collapse
Affiliation(s)
- Natalia Karina Nascimento da Silva
- grid.271300.70000 0001 2171 5249Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará Brazil ,grid.442052.5Departamento de Morfofuncional, Universidade do Estado do Pará, Tucuruí, Pará Brazil
| | - Cleusa Yoshiko Nagamachi
- grid.271300.70000 0001 2171 5249Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará Brazil
| | - Luis Reginaldo Ribeiro Rodrigues
- grid.448725.80000 0004 0509 0076Laboratório de Genética & Biodiversidade, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Santarém, Pará Brazil
| | - Patricia Caroline Mary O’Brien
- grid.5335.00000000121885934Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Fengtang Yang
- grid.10306.340000 0004 0606 5382Cytogenetics Facility, Wellcome Trust Sanger Institute, Hinxton, UK ,grid.27255.370000 0004 1761 1174School of Life Sciences and Medicine, Shandong University, Jinan, China
| | - Malcolm Andrew Ferguson-Smith
- grid.5335.00000000121885934Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Julio Cesar Pieczarka
- grid.271300.70000 0001 2171 5249Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Pará Brazil
| |
Collapse
|
44
|
MIZUTANI KOSUKE, YOKOI SHIGEAKI, SAWADA SEIYA, SAKAMOTO IPPEI, KAMEYAMA KOJI, KAMEI SHINGO, HIRADE KOUSEKI, SUGIYAMA SEIJI, MATSUNAGA KENGO, YAMADA TETSUYA, KATO YASUTAKA, NISHIHARA HIROSHI, ISHIHARA SATOSHI, DEGUCHI TAKASHI. Derivative Chromosome 3 Loss from t(3;6)(q12;q14) Followed by Differential VHL Mutations Underlie Multifocal ccRCC. Cancer Genomics Proteomics 2022; 19:740-746. [PMID: 36316043 PMCID: PMC9620442 DOI: 10.21873/cgp.20356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/AIM The Von Hippel-Lindau (VHL) gene encodes a protein (pVHL) that plays an important role in proteasome degradation of hypoxia inducible factor α (HIFα) through E3 activation. Accumulation of HIFα by loss of functional pVHL promotes tumorigenesis, thus, VHL has tumor suppressor gene capability in clear cell renal cell carcinoma (ccRCC). VHL is the most frequently mutated gene in ccRCC. The complete loss of VHL is mainly achieved by loss of chromosome 3p, which has a VHL coding region in combination with mutation or hypermethylation of the remaining copy of VHL. Given the risk of constitutional chromosome 3 translocation for RCC, it is important to detect the translocation and understand the mechanism underlying the development of multifocal ccRCC. CASE REPORT A 67-year-old female patient diagnosed with multifocal RCC underwent robot-assisted partial nephrectomy (RAPN) for three kidney tumors. A cancer gene panel test using next generation sequencing (NGS) detected differential VHL mutations (c.533T>G; p.L178R, c.465_466insTA; p.T157Ifs*3, c.343C>A; p.H115N), while VHL mutation was not detected in peripheral blood DNA. A tendency toward copy number loss of genes on der(3) was also detected in all tumors, but not in the germline one. A karyotype analysis revealed a germline translocation between 3 and 6, t(3;6)(q12;q14). CONCLUSION Chromosome 3 translocation and loss of derivative chromosome containing 3p and subsequent somatic differential VHL mutations in this case strongly support the previously proposed three-step model to explain the development of familial conventional ccRCC.
Collapse
Affiliation(s)
- KOSUKE MIZUTANI
- Cancer Genomic Testing and Treatment Center, Central Japan International Medical Center, Minokamo, Japan,Department of Urology, Central Japan International Medical Center, Minokamo, Japan
| | - SHIGEAKI YOKOI
- Department of Urology, Central Japan International Medical Center, Minokamo, Japan
| | - SEIYA SAWADA
- Cancer Genomic Testing and Treatment Center, Central Japan International Medical Center, Minokamo, Japan
| | - IPPEI SAKAMOTO
- Bioinformatics Department, Communication Engineering Center, Electronic Systems Business Group, Mitsubishi Electric Software Corporation, Tokyo, Japan
| | - KOJI KAMEYAMA
- Department of Urology, Central Japan International Medical Center, Minokamo, Japan
| | - SHINGO KAMEI
- Department of Urology, Central Japan International Medical Center, Minokamo, Japan
| | - KOUSEKI HIRADE
- Cancer Genomic Testing and Treatment Center, Central Japan International Medical Center, Minokamo, Japan
| | - SEIJI SUGIYAMA
- Department of Pathology, Central Japan International Medical Center, Minokamo, Japan
| | - KENGO MATSUNAGA
- Department of Pathology, Central Japan International Medical Center, Minokamo, Japan
| | - TETSUYA YAMADA
- Department of Pathology, Central Japan International Medical Center, Minokamo, Japan
| | - YASUTAKA KATO
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan,Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Japan
| | - HIROSHI NISHIHARA
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan,Department of Biology and Genetics, Laboratory of Cancer Medical Science, Hokuto Hospital, Obihiro, Japan
| | - SATOSHI ISHIHARA
- Cancer Genomic Testing and Treatment Center, Central Japan International Medical Center, Minokamo, Japan,Department of Urology, Central Japan International Medical Center, Minokamo, Japan
| | - TAKASHI DEGUCHI
- Department of Urology, Central Japan International Medical Center, Minokamo, Japan
| |
Collapse
|
45
|
Romanenko SA, Prokopov DY, Proskuryakova AA, Davletshina GI, Tupikin AE, Kasai F, Ferguson-Smith MA, Trifonov VA. The Cytogenetic Map of the Nile Crocodile ( Crocodylus niloticus, Crocodylidae, Reptilia) with Fluorescence In Situ Localization of Major Repetitive DNAs. Int J Mol Sci 2022; 23:13063. [PMID: 36361851 PMCID: PMC9656864 DOI: 10.3390/ijms232113063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 01/16/2024] Open
Abstract
Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.
Collapse
Affiliation(s)
- Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Yu. Prokopov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Anastasia A. Proskuryakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Guzel I. Davletshina
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Fumio Kasai
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, The National Institute of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki 567-0085, Osaka, Japan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | | | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
46
|
Deepika MLN, Tella S, Avvari S, Pratibha N, Ananthapur V. A Rare Case of Dysmorphism with Duplication in Chromosome 22. Indian J Clin Biochem 2022; 37:504-506. [PMID: 36262789 PMCID: PMC9573841 DOI: 10.1007/s12291-020-00945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Affiliation(s)
- MLN Deepika
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, India
| | - Sunitha Tella
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, India
| | - Srilekha Avvari
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, India
| | - Nallari Pratibha
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, India
| | | |
Collapse
|
47
|
Establishment and characterization of chemotherapy-enriched sphere-forming cells with stemness phenotypes as a new cell line (BAG 50) of gastric carcinoma. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:201. [PMID: 36175578 DOI: 10.1007/s12032-022-01742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/26/2022] [Indexed: 10/14/2022]
Abstract
Gastric cancer is a malignancy with a high mortality rate worldwide. Cancer stem cells (CSCs) are a small subpopulation of tumor cells that possess the tumor-initiating ability, self-renewal capacity, and high resistance to conventional therapies. Due to the diversity and complexity of human tumors, new cell lines are urgently needed to supply clinically and physiologically relevant cancer models. Here, we report establishing a novel cell line (BAG50) with stemness properties. Chemotherapy-enriched sphere-forming cells with CSC properties isolated from a patient with GC were cultured in a serum-containing medium and passaged for up to 51 passages. The colony-forming ability and tumor-forming capacity of BAG50 cells were evaluated in vitro and in vivo. mRNA upregulation of stemness-related transcriptional factors using real-time PCR as well as expression of CSC markers using flow cytometry was investigated. Finally, STR profiling and chromosome studies were performed. BAG50 cells formed floating spheroid colonies in a serum-free medium. Subcutaneous injection of these cells generated xenograft tumors in nude mice. Pluripotency markers (SOX-2, OCT4, and Cripto-1) in them were upregulated compared with normal gastric cells. The majority of them expressed CSC markers of CD44, CD54, and EpCAM, and stemness marker of oct-4. STR profiling showed a unique DNA fingerprint. Karyotype also demonstrated multiple aneuploidies and chromosomal translocations. We suggested that the highly tumorigenic BAG50 cell line with stem cell-like phenotypes may provide a valuable in vitro tool to support new diagnostic, prognostic, and predictive biomarkers as well as the development of more effective treatment strategies.
Collapse
|
48
|
Bernegossi AM, Borges CHDS, Sandoval EDP, Cartes JL, Cernohorska H, Kubickova S, Vozdova M, Caparroz R, González S, Duarte JMB. Resurrection of the genus Subulo Smith, 1827 for the gray brocket deer, with designation of a neotype. J Mammal 2022. [DOI: 10.1093/jmammal/gyac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The gray brocket deer, Mazama gouazoubiraG. Fischer, 1814, occurs in South America and presents an extensive degree of morphological and genetic variability. Previous phylogenetic research showed that the genus Mazama is polyphyletic and imposed the designation of a different genus-group name for M. gouazoubira. We aimed to review and clarify the taxonomy of M. gouazoubira through the proposal of updating the nomenclature for this taxon and by the characterization of specimens collected close to the original type locality (topotypes). The topotypes were characterized by morphological (general characterization and morphometry), cytogenetic (conventional staining, Ag-NOR, G- and C-banding, and fluorescence in situ hybridization), and phylogenetic (mitogenomes) approaches. We revealed chromosome homologies between cattle and M. gouazoubira using an entire set of cattle whole chromosome painting probes and propose an updated G-band idiogram for the species. The morphometric analysis did not discriminate the individuals of M. gouazoubira, including the topotypes, from other small brocket deer species. However, the phylogenetic analysis, based on a Bayesian inference tree of the mitogenomes, confirmed the polyphyly of the genus Mazama and supported the need to change the gray brocket deer genus-group name. Based on our revision, we validated the genus SubuloSmith, 1827, and fixed a type species for the genus. In the absence of the holotype, we denominated a neotype described by the collection of a male topotype in Paraguay. The nomenclature rearrangement presented here is a starting point that will assist in the taxonomic resolution of Neotropical deer.
Collapse
Affiliation(s)
- Agda Maria Bernegossi
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP) , Jaboticabal , São Paulo , Brazil
| | - Carolina Heloisa de Souza Borges
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP) , Jaboticabal , São Paulo , Brazil
- Centro de Aquicultura da Unesp (CAUNESP) , Jaboticabal , São Paulo , Brazil
| | - Eluzai Dinai Pinto Sandoval
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP) , Jaboticabal , São Paulo , Brazil
| | - José Luis Cartes
- Guyra Paraguay, Avda Cnel Bóveda , Parque del Río, Viñas Cue, Asunción , Paraguay
| | - Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute , Brno , Czech Republic
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute , Brno , Czech Republic
| | - Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute , Brno , Czech Republic
| | - Renato Caparroz
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília , Brasília , Brazil
| | - Susana González
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable , Montevidéo , Uruguay
| | - José Maurício Barbanti Duarte
- Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias da Universidade Estadual Paulista (UNESP) , Jaboticabal, São Paulo , Brazil
| |
Collapse
|
49
|
Mahmoudi A, Golenishchev FN, Malikov VG, Arslan A, Pavlova SV, Petrova TV, Kryštufek B. Taxonomic evaluation of the “irani–schidlovskii” species complex (Rodentia: Cricetidae) in the Middle East: a morphological and genetic combination. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Amendola M, Brusson M, Miccio A. CRISPRthripsis: The Risk of CRISPR/Cas9-induced Chromothripsis in Gene Therapy. Stem Cells Transl Med 2022; 11:1003-1009. [PMID: 36048170 PMCID: PMC9585945 DOI: 10.1093/stcltm/szac064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/23/2022] [Indexed: 12/22/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system has allowed the generation of disease models and the development of therapeutic approaches for many genetic and non-genetic disorders. However, the generation of large genomic rearrangements has raised safety concerns for the clinical application of CRISPR/Cas9 nuclease approaches. Among these events, the formation of micronuclei and chromosome bridges due to chromosomal truncations can lead to massive genomic rearrangements localized to one or few chromosomes. This phenomenon, known as chromothripsis, was originally described in cancer cells, where it is believed to be caused by defective chromosome segregation during mitosis or DNA double-strand breaks. Here, we will discuss the factors influencing CRISPR/Cas9-induced chromothripsis, hereafter termed CRISPRthripsis, and its outcomes, the tools to characterize these events and strategies to minimize them.
Collapse
Affiliation(s)
- Mario Amendola
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Mégane Brusson
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Université Paris Cité, Imagine Institute, Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Université Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|