1
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
2
|
Schwartz KS, Hernandez PV, Maurer GS, Wetzel EM, Sun M, Jalal DI, Stanhewicz AE. Impaired microvascular insulin-dependent dilation in women with a history of gestational diabetes. Am J Physiol Heart Circ Physiol 2024; 327:H793-H803. [PMID: 39058435 PMCID: PMC11482287 DOI: 10.1152/ajpheart.00223.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Women with a history of gestational diabetes mellitus (GDM) have a significantly greater lifetime risk of developing cardiovascular disease and type 2 diabetes compared with women who had an uncomplicated pregnancy (HC). Microvascular endothelial dysfunction, mediated via reduced nitric oxide (NO)-dependent dilation secondary to increases in oxidative stress, persists after pregnancy complicated by GDM. We examined whether this microvascular dysfunction reduces insulin-mediated vascular responses in women with a history of GDM. We assessed in vivo microvascular endothelium-dependent vasodilator function by measuring cutaneous vascular conductance responses to graded infusions of acetylcholine (10-10-10-1 M) and insulin (10-8-10-4 M) in control sites and sites treated with 15 mM l-NAME [NG-nitro-l-arginine methyl ester; NO-synthase (NOS) inhibitor] or 5 mM l-ascorbate. We also measured protein expression of total endothelial NOS (eNOS), insulin-mediated eNOS phosphorylation, and endothelial nitrotyrosine in isolated endothelial cells from GDM and HC. Women with a history of GDM had reduced acetylcholine (P < 0.001)- and insulin (P < 0.001)-mediated dilation, and the NO-dependent responses to both acetylcholine (P = 0.006) and insulin (P = 0.006) were reduced in GDM compared with HC. Insulin stimulation increased phosphorylated eNOS content in HC (P = 0.009) but had no effect in GDM (P = 0.306). Ascorbate treatment increased acetylcholine (P < 0.001)- and insulin (P < 0.001)-mediated dilation in GDM, and endothelial cell nitrotyrosine expression was higher in GDM compared with HC (P = 0.014). Women with a history of GDM have attenuated microvascular vasodilation responses to insulin, and this attenuation is mediated, in part, by reduced NO-dependent mechanisms. Our findings further implicate increased endothelial oxidative stress in this microvascular insulin resistance.NEW & NOTEWORTHY Women who have gestational diabetes during pregnancy are at a greater risk for cardiovascular disease and type 2 diabetes in the decade following pregnancy. The mechanisms mediating this increased risk are unclear. Herein, we demonstrate that insulin-dependent microvascular responses are reduced in women who had gestational diabetes, despite the remission of glucose intolerance. This reduced microvascular sensitivity to insulin may contribute to increased cardiovascular disease and type 2 diabetes risk in these women.
Collapse
Affiliation(s)
- Kelsey S Schwartz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Paola V Hernandez
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Grace S Maurer
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Elizabeth M Wetzel
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Mingyao Sun
- Department of Internal Medicine, Carver College of Medicine, Iowa City, Iowa, United States
| | - Diana I Jalal
- The Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa, United States
- Department of Internal Medicine, Carver College of Medicine, Iowa City, Iowa, United States
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
3
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
4
|
Ibrahim A, Khoo MI, Ismail EHE, Hussain NHN, Zin AAM, Noordin L, Abdullah S, Mahdy ZA, Lah NAZN. Oxidative stress biomarkers in pregnancy: a systematic review. Reprod Biol Endocrinol 2024; 22:93. [PMID: 39095896 PMCID: PMC11295331 DOI: 10.1186/s12958-024-01259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND This systematic review explores the level of oxidative stress (OS) markers during pregnancy and their correlation with complications. Unlike previous studies, it refrains from directly investigating the role of OS but instead synthesises data on the levels of these markers and their implications for various pregnancy-related complications such as preeclampsia, intrauterine growth restrictions, preterm premature rupture of membranes, preterm labour, gestational diabetes mellitus and miscarriages. METHOD STUDY DESIGN: Utilizing a systematic review approach, we conducted a comprehensive search across databases, including MEDLINE, CINAHL (EBSCOhost), ScienceDirect, Web of Science, and SCOPUS. Our search encompassed all publication years in English. RESULTS After evaluating 54,173 records, 45 studies with a low risk of bias were selected for inclusion. This systematic review has underscored the importance of these markers in both physiological and pathological pregnancy states such as preeclampsia, intrauterine growth restrictions, preterm premature rupture of membranes, preterm labour, gestational diabetes mellitus and miscarriages. CONCLUSION This systematic review provides valuable insights into the role of OS in pregnancy and their connection to complications. These selected studies delved deeply into OS markers during pregnancy and their implications for associated complications. The comprehensive findings highlighted the significance of OS markers in both normal and pathological pregnancy conditions, paving the way for further research in this field.
Collapse
Affiliation(s)
- Abubakar Ibrahim
- Department of Obstetrics and Gynaecology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Engku Husna Engku Ismail
- Department of Obstetrics and Gynaecology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nik Hazlina Nik Hussain
- Women's Health Development Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Anani Aila Mat Zin
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Liza Noordin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Sarimah Abdullah
- Biostatistics and Research Methodology Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Zaleha Abdullah Mahdy
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Nik Ahmad Zuky Nik Lah
- Department of Obstetrics and Gynaecology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia.
| |
Collapse
|
5
|
Ni YN, Lei F, Tang X, Liang Z, Thomas RJ. Sleep apnea-related hypoxic burden as a predictor of pregnancy and neonatal outcome. Sleep Med 2024; 119:432-437. [PMID: 38781666 DOI: 10.1016/j.sleep.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
STUDY OBJECTIVES To determine the clinical impact of sleep apnea-related hypoxic burden in pregnant women and neonates. METHODS This is a secondary analysis of the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) study. Hypoxia burden was calculated from the home sleep apnea test (HSAT) and defined as the total area under respiratory events. Logistic regression analysis assessed the relationship between hypoxia burden and pregnancy/neonatal outcomes. RESULTS A total of 3006 subjects in the early term, and 2326 subjects in the middle term of pregnancy, had HSAT. A hypoxic burden greater than 6.8%min was present in 1740 at early term and associated with a higher risk of preeclampsia (odds ratio 1.297, 95 % confidence interval 1.032-1.630, p: 0.026) after adjusted by obstructive sleep apnea (OSA) severity. In the middle term, 1058 subjects had a hypoxia burden more than 11.8%min, which was a predictor for higher incidence of gestational diabetes (OR 1.795, 95 % CI 1.097-2.938, p: 0.020) and an Apgar <7 at 1 min (OR 1.446, 95 % CI 1.079-1.939, p: 0.012) after adjusted by obstructive sleep apnea (OSA) severity. After adjusted by oxygenation disturbance index, HB was not related with Apgar <7 at 1 min (p:0.565). CONCLUSIONS The hypoxic burden is an independent predictor for preeclampsia and gestational diabetes and an Apgar <7 at 1 min.
Collapse
Affiliation(s)
- Yue-Nan Ni
- Department of Respiratory and Critical Care, West China School of Medicine and West China Hospital, Sichuan University, 610041, China; Department of Respiratory Care, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| | - Fei Lei
- Sleep Medicine Center, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| | - Xiangdong Tang
- Sleep Medicine Center, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| | - Zongan Liang
- Department of Respiratory Care, West China School of Medicine and West China Hospital, Sichuan University, 610041, China.
| | - Robert Joseph Thomas
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
6
|
Di Berardino C, Barceviciute U, Camerano Spelta Rapini C, Peserico A, Capacchietti G, Bernabò N, Russo V, Gatta V, Konstantinidou F, Donato M, Barboni B. High-fat diet-negative impact on female fertility: from mechanisms to protective actions of antioxidant matrices. Front Nutr 2024; 11:1415455. [PMID: 38915855 PMCID: PMC11194403 DOI: 10.3389/fnut.2024.1415455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Excessive calorie intake poses a significant threat to female fertility, leading to hormonal imbalances and reproductive challenges. Overconsumption of unhealthy fats exacerbates ovarian dysfunction, with an overproduction of reactive oxygen species causing oxidative stress, impairing ovarian follicle development and leading to irregular ovulation and premature ovarian failure. Interest in biological matrices with high antioxidant properties to combat diet-related oxidative stress has grown, as they contain various bioactive factors crucial for neutralizing free radicals potentially preventing female reproductive health. This systematic review evaluates the female reproductive impact of biological matrices in mitigating oxidative damages induced by over calory habits and, in particular, high fat diets. Methods A comparative approach among mammalian models was utilized to interpret literature available data. This approach specifically investigates the antioxidant mechanisms of biological matrices on early and late ovarian folliculogenesis, under physiological and hormone-induced female reproductive cycle. Adhering to the PRISMA 2020 guidelines, only English-language publications from peer-reviewed international indexes were considered. Results The analysis of 121 publications meeting the inclusion criteria facilitated the identification of crucial components of biological matrices. These components, including carbocyclic sugars, phytonutrients, organosulfur compounds, and vitamins, were evaluated for their impact on ovarian follicle resilience, oocyte quality, and reproductive lifespan. The detrimental effects of oxidative stress on female fertility, particularly exacerbated by high saturated fat diets, are well-documented. In vivo studies across mammalian preclinical models have underscored the potential of antioxidants derived from biological matrices to mitigate diet-induced conditions. These antioxidants enhance steroidogenesis and ovarian follicle development, thereby improving oocyte quality. Additionally, discussions within these publications emphasized the clinical significance of these biological matrices, translating research findings into practical applications for female health. Conclusion Further research is essential to fully exploit the potential of these matrices in enhancing female reproduction and mitigating the effects of diets rich in fatty acids. This requires intensified in vitro studies and comprehensive collection of in vivo data before clinical trials. The promotion of ovarian resilience offers promising avenues for enhancing understanding and advancing female reproductive health world-wide.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Urte Barceviciute
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Rome, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marisa Donato
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
7
|
Aslanian-Kalkhoran L, Mehdizadeh A, Aghebati-Maleki L, Danaii S, Shahmohammadi-Farid S, Yousefi M. The role of neutrophils and neutrophil extracellular traps (NETs) in stages, outcomes and pregnancy complications. J Reprod Immunol 2024; 163:104237. [PMID: 38503075 DOI: 10.1016/j.jri.2024.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Neutrophils are the main components of innate immunity to eliminate infectious pathogens. Neutrophils play a role in several stages of the reproductive cycle, and their presence in the female reproductive system is highly regulated, so their function may change during pregnancy. Emerging evidence suggests that neutrophils are important at all stages of pregnancy, from implantation, placentation, and connective tissue regeneration to birth, as well as birth itself. Neutrophil extracellular traps (NETs) are defined as extracellular strands of unfolded DNA together with histone complexes and neutrophil granule proteins. NET formation is a new mechanism of these cells for their defense function. These strands containing DNA and antimicrobial peptides were initially recognized as one of the defense mechanisms of neutrophils, but later it was explained that they are involved in a variety of non-infectious diseases. Since the source of inflammation and tissue damage is the irregular activity of neutrophils, it is not surprising that NETosis are associated with a number of inflammatory conditions and diseases. The overexpression of NET components or non-principled NET clearance is associated with the risk of production and activation of autoantibodies, which results in participation in autoinflammatory and autoimmune disorders (SLE, RA), fibrosis, sepsis and other disorders such as vascular diseases, for example, thrombosis and atherosclerosis. Recent published articles have shown the role of neutrophils and extracellular traps (NETs) in pregnancy, childbirth and pregnancy-related diseases. The aim of this study was to identify and investigate the role of neutrophils and neutrophil extracellular traps (NETs) in the stages of pregnancy, as well as the complications caused by these cells.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Psefteli PM, Morris JK, Ehler E, Smith L, Bowe J, Mann GE, Taylor PD, Chapple SJ. Sulforaphane induced NRF2 activation in obese pregnancy attenuates developmental redox imbalance and improves early-life cardiovascular function in offspring. Redox Biol 2023; 67:102883. [PMID: 37774548 PMCID: PMC10534264 DOI: 10.1016/j.redox.2023.102883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023] Open
Abstract
In adverse pregnancy a perturbed redox environment is associated with abnormal early-life cardiovascular development and function. Previous studies have noted alterations in the expression and/or activity of Nuclear Factor E2 Related Factor 2 (NRF2) and its antioxidant targets during human gestational diabetic (GDM) pregnancy, however to our knowledge the functional role of NRF2 in fetal 'priming' of cardiovascular dysfunction in obese and GDM pregnancy has not been investigated. Using a murine model of obesity-induced glucose dysregulated pregnancy, we demonstrate that NRF2 activation by maternal sulforaphane (SFN) supplementation normalizes NRF2-linked NQO1, GCL and CuZnSOD expression in maternal and fetal liver placental and fetal heart tissue by gestational day 17.5. Activation of NRF2 in utero in wild type but not NRF2 deficient mice improved markers of placental efficiency and partially restored fetal growth. SFN supplementation was associated with reduced markers of fetal cardiac oxidative stress, including Nox2 and 3-nitrotyrosine, as well as attenuation of cardiac mass and cardiomyocyte area in male offspring by postnatal day 52 and improved vascular function in male and female offspring by postnatal day 98. Our findings are the first to highlight the functional consequences of NRF2 modulation in utero on early-life cardiovascular function in offspring, demonstrating that activation of NRF2 affords cardiovascular protection in offspring of pregnancies affected by redox dysregulation.
Collapse
Affiliation(s)
- Paraskevi-Maria Psefteli
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jessica K Morris
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Elisabeth Ehler
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Lorna Smith
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - James Bowe
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Paul D Taylor
- School of Life Course Sciences and Population Health, Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Sarah J Chapple
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
9
|
García-Montero C, Fraile-Martinez O, De Leon-Oliva D, Boaru DL, Garcia-Puente LM, De León-Luis JA, Bravo C, Diaz-Pedrero R, Lopez-Gonzalez L, Álvarez-Mon M, García-Honduvilla N, Saez MA, Ortega MA. Exploring the Role of Mediterranean and Westernized Diets and Their Main Nutrients in the Modulation of Oxidative Stress in the Placenta: A Narrative Review. Antioxidants (Basel) 2023; 12:1918. [PMID: 38001771 PMCID: PMC10669105 DOI: 10.3390/antiox12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is a major cellular event that occurs in the placenta, fulfilling critical physiological roles in non-pathological pregnancies. However, exacerbated oxidative stress is a pivotal feature of different obstetric complications, like pre-eclampsia, fetal growth restriction, and other diseases. Compelling evidence supports the relevant role of diet during pregnancy, with pleiotropic consequences for maternal well-being. The present review aims to examine the complex background between oxidative stress and placental development and function in physiological conditions, also intending to understand the relationship between different dietary patterns and the human placenta, particularly how this could influence oxidative stress processes. The effects of Westernized diets (WDs) and high-fat diets (HFDs) rich in ultra-processed foods and different additives are compared with healthy patterns such as a Mediterranean diet (MedDiet) abundant in omega 3 polyunsaturated fatty acids, monounsaturated fatty acids, polyphenols, dietary fiber, and vitamins. Although multiple studies have focused on the role of specific nutrients, mostly in animal models and in vitro, further observational and intervention studies focusing on the placental structure and function in women with different dietary patterns should be conducted to understand the precise influence of diet on this organ.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Luis M. Garcia-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcalá de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.D.L.-O.); (D.L.B.); (L.M.G.-P.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.-P.); (L.L.-G.)
| |
Collapse
|
10
|
Joó JG, Sulyok E, Bódis J, Kornya L. Disrupted Balance of the Oxidant-Antioxidant System in the Pathophysiology of Female Reproduction: Oxidative Stress and Adverse Pregnancy Outcomes. Curr Issues Mol Biol 2023; 45:8091-8111. [PMID: 37886954 PMCID: PMC10605220 DOI: 10.3390/cimb45100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The significance of oxidative stress in the pathophysiology of male reproductive processes has been closely studied in the last two decades. Recently, it has become clear that oxidative stress can lead to numerous pathological conditions during female reproductive processes as well, contributing to the development of endometriosis, polycystic ovary syndrome and various forms of infertility. During pregnancy, physiological generation of reactive oxygen species (ROS) occurs in association with several developmental processes including oocyte maturation and implantation. An overproduction of ROS can lead to disturbances in fetal development and increases the risk for missed abortion, intrauterine growth restriction, pre-eclampsia, premature delivery and gestational diabetes. Our review focuses on the etiological role of the disrupted oxidant-antioxidant system during human gestation as it relates to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- József Gábor Joó
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary
| | - Endre Sulyok
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - József Bódis
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - László Kornya
- Central Hospital of South Pest National Institute of Hematology and Infectious Diseases, 1476 Budapest, Hungary
| |
Collapse
|
11
|
Zulueta M, Gallardo-Rincón H, Martinez-Juarez LA, Lomelin-Gascon J, Ortega-Montiel J, Montoya A, Mendizabal L, Arregi M, Martinez-Martinez MDLA, Camarillo Romero EDS, Mendieta Zerón H, Garduño García JDJ, Simón L, Tapia-Conyer R. Development and validation of a multivariable genotype-informed gestational diabetes prediction algorithm for clinical use in the Mexican population: insights into susceptibility mechanisms. BMJ Open Diabetes Res Care 2023; 11:11/2/e003046. [PMID: 37085278 PMCID: PMC10124192 DOI: 10.1136/bmjdrc-2022-003046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/01/2023] [Indexed: 04/23/2023] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is underdiagnosed in Mexico. Early GDM risk stratification through prediction modeling is expected to improve preventative care. We developed a GDM risk assessment model that integrates both genetic and clinical variables. RESEARCH DESIGN AND METHODS Data from pregnant Mexican women enrolled in the 'Cuido mi Embarazo' (CME) cohort were used for development (107 cases, 469 controls) and data from the 'Mónica Pretelini Sáenz' Maternal Perinatal Hospital (HMPMPS) cohort were used for external validation (32 cases, 199 controls). A 2-hour oral glucose tolerance test (OGTT) with 75 g glucose performed at 24-28 gestational weeks was used to diagnose GDM. A total of 114 single-nucleotide polymorphisms (SNPs) with reported predictive power were selected for evaluation. Blood samples collected during the OGTT were used for SNP analysis. The CME cohort was randomly divided into training (70% of the cohort) and testing datasets (30% of the cohort). The training dataset was divided into 10 groups, 9 to build the predictive model and 1 for validation. The model was further validated using the testing dataset and the HMPMPS cohort. RESULTS Nineteen attributes (14 SNPs and 5 clinical variables) were significantly associated with the outcome; 11 SNPs and 4 clinical variables were included in the GDM prediction regression model and applied to the training dataset. The algorithm was highly predictive, with an area under the curve (AUC) of 0.7507, 79% sensitivity, and 71% specificity and adequately powered to discriminate between cases and controls. On further validation, the training dataset and HMPMPS cohort had AUCs of 0.8256 and 0.8001, respectively. CONCLUSIONS We developed a predictive model using both genetic and clinical factors to identify Mexican women at risk of developing GDM. These findings may contribute to a greater understanding of metabolic functions that underlie elevated GDM risk and support personalized patient recommendations.
Collapse
Affiliation(s)
- Mirella Zulueta
- Research and Development Department, Patia Europe, San Sebastian, Spain
| | - Héctor Gallardo-Rincón
- Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
- Operative Solutions, Carlos Slim Foundation, Mexico City, Mexico
| | | | | | | | | | - Leire Mendizabal
- Research and Development Department, Patia Europe, San Sebastian, Spain
| | - Maddi Arregi
- Research and Development Department, Patia Europe, San Sebastian, Spain
| | | | | | - Hugo Mendieta Zerón
- Faculty of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | | | - Laureano Simón
- Research and Development Department, Patia Europe, San Sebastian, Spain
| | - Roberto Tapia-Conyer
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
12
|
Antenatal and Postnatal Sequelae of Oxidative Stress in Preterm Infants: A Narrative Review Targeting Pathophysiological Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020422. [PMID: 36829980 PMCID: PMC9952227 DOI: 10.3390/antiox12020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The detrimental effects of oxidative stress (OS) can start as early as after conception. A growing body of evidence has shown the pivotal role of OS in the development of several pathological conditions during the neonatal period, which have been therefore defined as OS-related neonatal diseases. Due to the physiological immaturity of their antioxidant defenses and to the enhanced antenatal and postnatal exposure to free radicals, preterm infants are particularly susceptible to oxidative damage, and several pathophysiological cascades involved in the development of prematurity-related complications are tightly related to OS. This narrative review aims to provide a detailed overview of the OS-related pathophysiological mechanisms that contribute to the main OS-related diseases during pregnancy and in the early postnatal period in the preterm population. Particularly, focus has been placed on pregnancy disorders typically associated with iatrogenic or spontaneous preterm birth, such as intrauterine growth restriction, pre-eclampsia, gestational diabetes, chorioamnionitis, and on specific postnatal complications for which the role of OS has been largely ascertained (e.g., respiratory distress, bronchopulmonary dysplasia, retinopathy of prematurity, periventricular leukomalacia, necrotizing enterocolitis, neonatal sepsis). Knowledge of the underlying pathophysiological mechanisms may increase awareness on potential strategies aimed at preventing the development of these conditions or at reducing the ensuing clinical burden.
Collapse
|
13
|
Nigericin Abrogates Maternal and Embryonic Oxidative Stress in the Streptozotocin-Induced Diabetic Pregnant Rats. Appl Biochem Biotechnol 2023; 195:801-815. [PMID: 36190644 DOI: 10.1007/s12010-022-04100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Hyperglycemic exposure in diabetic pregnancy can lead to many developmental changes, such as delayed development, fetal malformations, and fetal/embryo death. These detrimental complications are collectively known as diabetic embryopathy or teratogenesis. The current study focuses to discover the therapeutic properties of the nigericin against the STZ-stimulated diabetic embryopathy via alleviation of maternal and embryonic oxidative stress. The male and female rats at a 1:1 ratio were permitted to mate overnight to establish the course of pregnancy. The pregnant rats were distributed into four groups control, diabetic pregnant (via administering 40 mg/kg of STZ), and diabetic + 10 and 20 mg/kg of nigericin-administered (via oral gavage from days 5 to 12) groups, respectively. The glucose level, urine output, diet intake, and body weight were determined carefully. The embryo and placenta weight and implantation rates were examined, and data were tabulated. The total protein and lipid profiles were assessed using respective kits. The oxidative stress markers and antioxidant enzymes were examined using respective assay kits. The 10 and 20 mg/kg of nigericin treatment decreased the glucose level and urine output and improved the diet intake and body weight gain in diabetic pregnant rats. The nigericin also decreased the total protein, cholesterol, triglycerides, and very-low-density lipoprotein (VLDL) and improved the high-density lipoprotein (HDL) in the serum of pregnant rats. The levels of malondialdehyde (MDA), reactive oxygen species (ROS), and protein carbonyls were decreased by the nigericin in both liver and embryos of the pregnant rats. The levels of glutathione (GSH), total thiols, and activities of catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione S-transferase (GST) were improved by the nigericin in the diabetic pregnant rats. Altogether, these results provide evidence that nigericin treatment remarkably attenuates the diabetes-stimulated embryopathy in rats. The nigericin effectively decreased embryo lethality, reduced glucose and dyslipidemia, and relieves oxidative stress via upregulating the antioxidant enzyme activities. Hence, it can be a talented therapeutic agent to treat diabetic pregnancy-associated complications.
Collapse
|
14
|
Ferreira CS, Pinto GDA, Reis DL, Vigor C, Goes VA, Guimarães DDAB, Mucci DB, Belcastro L, Saraiva MA, Oger C, Galano JM, Sardinha FLC, Torres AG, Durand T, Burton GJ, El-Bacha T. Placental F 4-Neuroprostanes and F 2-Isoprostanes are altered in gestational diabetes mellitus and maternal obesity. Prostaglandins Leukot Essent Fatty Acids 2023; 189:102529. [PMID: 36608621 DOI: 10.1016/j.plefa.2022.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
We investigated whether gestational diabetes mellitus (GDM) associated with maternal obesity modifies the placental profile of F4-Neuroprostanes and F2-Isoprostanes, metabolites of non-enzymatic oxidation of docosahexaenoic acid (DHA) and arachidonic acid (AA), respectively. Twenty-five placental samples were divided into lean (n=11), obesity (n=7) and overweight/obesity+GDM (n=7) groups. F4-Neuroprostanes and F2-Isoprostanes were higher in obesity compared to lean controls, but reduced to levels similar to lean women when obesity is further complicated with GDM. Lower content of F2-Isoprostanes suggests adaptive placental responses in GDM attenuating oxidative stress. However, low levels of placental F4-Neuroprostanes may indicate impaired DHA metabolism in GDM, affecting fetal development and offspring health. These results were not related to differences in placental content of DHA, AA and polyunsaturated fatty acids status nor to maternal diet or gestational weight gain. Placental DHA and AA metabolism differs in obesity and GDM, highlighting the importance of investigating the signalling roles of F4-Neuroprostanes and F2-Isoprostanes in the human term placenta.
Collapse
Affiliation(s)
- Carolina S Ferreira
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Gabriela D A Pinto
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Desirée L Reis
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Vanessa A Goes
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Deborah de A B Guimarães
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Daniela B Mucci
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Livia Belcastro
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Marcelle A Saraiva
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Fátima L C Sardinha
- Laboratory of Nutritional Biochemistry, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Alexandre G Torres
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; Laboratory of Biochemistry and Chemistry of Lipids, Department of Chemistry, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Bâtiment Balard, 1919 route de Mende, CEDEX 5, 34293 Montpellier, France
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB23EG, United Kingdom
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB23EG, United Kingdom.
| |
Collapse
|
15
|
Gestational Diabetes Mellitus and Small-for-Gestational-Age: An Insight into the Placental Molecular Biomarkers. Int J Mol Sci 2023; 24:ijms24032240. [PMID: 36768564 PMCID: PMC9916826 DOI: 10.3390/ijms24032240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Gestational diabetes mellitus (GDM) and small-for-gestational-age (SGA) are two metabolic-related diseases that could affect women during pregnancy. Considering that the chorionic villi (CVs) are crucial structures for the feto-maternal exchange, the alterations in their conformation have been linked to an imbalanced metabolic environment of placenta. In this study, a multidisciplinary approach has been carried out to describe the changes occurring in the placental CVs of GDM and SGA patients. The results revealed higher levels of superoxide dismutase 1 (SOD-1) and catalase (CAT), especially in the GDM placentae, which could be correlated with the hyperglycemic environment characteristic of this pathology. Furthermore, spectroscopy and histologic analyses revealed that both pathologies modify the placental lipid composition altering its structure. However, SGA induces lipid peroxidation and reduces collagen deposition within the CVs. Since the endocannabinoid system (ECS) is involved in placentation and different metabolic activities, the cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV-1) were analyzed. No changes have been observed either at general or specific levels in the CVs comparing control and pathological samples, suggesting the non-involvement of the cannabinoid system in these two pathologies.
Collapse
|
16
|
Stanhewicz AE, Schlarmann RL, Brustkern KM, Jalal D. Oxidative stress contributes to reductions in microvascular endothelial- and nitric oxide-dependent dilation in women with a history of gestational diabetes. J Appl Physiol (1985) 2022; 133:361-370. [PMID: 35796611 PMCID: PMC9359638 DOI: 10.1152/japplphysiol.00189.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Women with a history of gestational diabetes mellitus (GDM) are twice as likely to develop cardiovascular disease and ~7x as likely to develop type II diabetes as their age-matched counterparts. However, the mechanism(s) mediating these associations remain unclear. We hypothesized that endothelium- and NO-dependent dilation would be attenuated through oxidant stress mechanisms in the microvasculature of women with a history of GDM compared to control women with a history of uncomplicated pregnancy (HC). Ten HC (35±4yrs) and 10 GDM (34±4yrs) underwent a standard local heating protocol (42°C; 0.1°C·s-1). Two intradermal microdialysis fibers were placed in the ventral forearm for local delivery of lactated Ringer's (control), or 5mM L-ascorbate. After full expression of the local heating response, 15mM NG-nitro-L-arginine methyl ester NO synthase-inhibition) was perfused. Red cell flux was measured continuously by laser-Doppler flowmetry and cutaneous vascular conductance (CVC=flux/MAP) was standardized to maximum (%CVCmax; 28mM SNP + 43°C). Urine albumin:creatinine ratio (ACR) was measured. GDM had attenuated endothelium-dependent (GDM: 67±7 vs. HC: 90±4%CVCmax; p<0.001) and NO-dependent (GDM: 54±7 vs. HC: 71±3%; p=0.001) dilation at the control site and tended to have higher urine ACR (p=0.06). Both endothelium-dependent (r2=0.53, p=0.02) and NO-dependent (r2=0.56, p=0.01) dilation were related to urine ACR in GDM. L-ascorbate perfusion improved endothelium-dependent (82±5%CVCmax; p=0.03 vs. control) and NO-dependent (68±5%; p=0.02 vs. control) dilation in GDM but had no effect in HC (p>0.05). Otherwise healthy women with a history of GDM have attenuated microvascular endothelial function and this dysfunction is mediated, in part, by oxidative stress.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Rowan L Schlarmann
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Kaila M Brustkern
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, United States
| | - Diana Jalal
- The Iowa City VA HCS, Iowa City, IA, United States.,Department of Internal Medicine, Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
17
|
Erdoğan F, Şenkal E, Özer ÖF, İpek İÖ, Altuntaş ŞL, Özde Ş. Oxidative stress in maternal milk and cord blood in gestational diabetes mellitus: a prospective study. SAO PAULO MED J 2022; 140:390-397. [PMID: 35508001 PMCID: PMC9671259 DOI: 10.1590/1516-3180.2021.0209.r1.25082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Reduced antioxidant defenses may reflect a poor protective response against oxidative stress and this may be implicated in progression of gestational diabetes mellitus (GDM). Oxidative stress induced by hyperglycemia plays a major role in micro and macrovascular complications, which imply endothelial dysfunction. OBJECTIVE Our aim in this study was to investigate the association between GDM and oxidative stress markers measured in plasma, with regard to revealing changes to total antioxidant capacity (TAC) and total oxidant status (TOS) among mothers showing impairments in oral glucose tolerance tests (OGTTs). DESIGN AND SETTING Prospective study at a university hospital in Turkey. METHODS The study group consisted of 50 mothers with GDM, and 59 healthy mothers served as controls. Umbilical cord blood samples were taken from all mothers during delivery and breast milk samples on the fifth day after delivery. TAC, TOS, thiol and disulfide levels were measured. RESULTS No statistically significant relationship between the blood and milk samples could be found. An analysis on correlations between TAC, TOS and certain parameters revealed that there were negative correlations between TOS and total thiol (r = -0.386; P < 0.001) and between TOS and disulfide (r = -0.388; P < 0.001) in milk in the control group. However, these findings were not observed in the study group. CONCLUSION Our findings suggested that a compensatory mechanism of oxidative stress was expected to be present in gestational diabetes mellitus and that this might be ameliorated through good glycemic regulation and antioxidant supplementation.
Collapse
Affiliation(s)
- Fırat Erdoğan
- MD. Associate Professor, Department of Pediatrics, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| | - Evrim Şenkal
- MD. Physician, Department of Pediatrics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Ömer Faruk Özer
- MD. Physician, Department of Biochemistry, School of Medicine, Bezmiâlem Foundation University, Istanbul, Turkey.
| | - İlke Özahi İpek
- MD. Professor, Department of Pediatrics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Şükriye Leyla Altuntaş
- MD. Physician, Department of Obstetrics and Gynecology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Şükriye Özde
- MD. Physician, Department of Pediatrics, School of Medicine, Düzce University, Düzce, Turkey.
| |
Collapse
|
18
|
Bunpeng N, Boriboonhirunsarn D, Boriboonhirunsarn C, Sawangpanyangkura T, Tansriratanawong K. Association between gestational diabetes mellitus and periodontitis via the effect of reactive oxygen species in peripheral blood cells. J Periodontol 2022; 93:758-769. [PMID: 34787908 DOI: 10.1002/jper.21-0455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Periodontitis (P) has emerged as a risk factor for gestational diabetes mellitus (GDM) through immune cell function alterations, elevated proinflammatory mediators, and increased reactive oxygen species (ROS). The main objective of present study was to determine associations between pregnancy with and without GDM and P. The secondary objective was to compare ROS production in peripheral blood cells (PBCs) of pregnant women with and without GDM. METHODS This cross-sectional case-control study included 128 pregnant women: 64 with and 64 without GDM. All participants were examined for clinical parameters of GDM and periodontal conditions. Associations between GDM-related periodontal data and GDM risk were evaluated by multiple logistic regression. PBCs were isolated and cultured. ROS productions in each PBCs types was investigated by flow cytometry with ROS antibodies. RESULTS P was significantly more prevalent in pregnant women with GDM than in those without GDM (57.8% versus 37.5%), with an odds ratio (OR) of 2.28, and a 95% confidence interval (CI) of 1.12 to 4.64 (P = 0.022). The OR (95% CI) was 2.59 (1.19 to 5.65) (P = 0.017) after adjusting for potential confounding factors, including diabetes mellitus (DM) family history, age ≥30 years, body mass index, and maternal age. ROS levels in all PBCs types were significantly higher in the GDM than in the non-GDM group (P < 0.05). CONCLUSION This study supported the association between P and GDM and indicated that P may be a risk factor for GDM. High levels of ROS production in the PBCs of pregnant women with GDM emphasized the association with GDM.
Collapse
Affiliation(s)
- Nattawan Bunpeng
- Department of Oral Medicine and Periodontology, Mahidol University, Bangkok, Thailand
| | - Dittakarn Boriboonhirunsarn
- Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Teerat Sawangpanyangkura
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
19
|
Yang Y, Wu N. Gestational Diabetes Mellitus and Preeclampsia: Correlation and Influencing Factors. Front Cardiovasc Med 2022; 9:831297. [PMID: 35252402 PMCID: PMC8889031 DOI: 10.3389/fcvm.2022.831297] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) and preeclampsia (PE) are common pregnancy complications with similar risk factors and pathophysiological changes. Evidence from previous studies suggests that the incidence of PE is significantly increased in women with GDM, but whether GDM is independently related to the occurrence of PE has remained controversial. GDM complicated by PE further increases perinatal adverse events with greater impact on the future maternal and offspring health. Identify factors associated with PE in women with GDM women, specifically those that are controllable, is important for improving pregnancy outcomes. This paper provides the findings of a review on the correlation between GDM and PE, factors associated with PE in women with GDM, possible mechanisms, and predictive markers. Most studies concluded that GDM is independently associated with PE in singleton pregnancy, and optimizing the treatment and management of GDM can reduce the incidence of PE, which is very helpful to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Ying Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Na Wu
| |
Collapse
|
20
|
Morales-Suárez-Varela M, Peraita-Costa I, Perales-Marín A, Llopis-Morales A, Llopis-González A. Risk of Gestational Diabetes Due to Maternal and Partner Smoking. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020925. [PMID: 35055745 PMCID: PMC8775944 DOI: 10.3390/ijerph19020925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
Pregnant women are among the most vulnerable to environmental exposure to tobacco smoke (EET); which has been linked to problems in the mothers’ health; one of the most frequent is gestational diabetes (GD). For this reason, there are specific interventions and prevention strategies designed to reduce this exposure risk. However, currently, they are mostly aimed only at aiding the pregnant women with smoking cessation during pregnancy and do not assess or address the risk from passive exposure due to partner smoking. The aim of this work is to study the exposure to EET of pregnant women considering active and passive smoking and to evaluate its effect on the development of GD. This is an observational case-control study within a retrospective cohort of pregnant women. Information on smoking habits was obtained from both personal interviews and recorded medical history. In total, 16.2% of mothers and 28.3% of partners declared having been active smokers during pregnancy; 36.5% of the women presented EET during pregnancy when both active and passive smoking were considered. After adjustments, the association with the EET and GD of the mother was (aOR 1.10 95% CI: 0.64–1.92); for the EET of the partner, it was (aOR 1.66 95% CI: 1.01–2.77); for both partners, it was (aOR 1.82 95% CI: 1.15–2.89), adjusted by the mother’s age and body mass index. There is a lack of education regarding the effects of passive exposure to tobacco smoke. It is essential that pregnant women and their partners are educated on the risks of active and passive smoking; this could improve the effectiveness of other GD prevention strategies.
Collapse
Affiliation(s)
- María Morales-Suárez-Varela
- Unit of Public Health and Environmental Care, Department of Preventive Medicine, University of Valencia, 46100 Burjassot, Spain; (I.P.-C.); (A.L.-M.); (A.L.-G.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-96-3544951
| | - Isabel Peraita-Costa
- Unit of Public Health and Environmental Care, Department of Preventive Medicine, University of Valencia, 46100 Burjassot, Spain; (I.P.-C.); (A.L.-M.); (A.L.-G.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Alfredo Perales-Marín
- Department of Obstetrics, La Fe University Polytechnic Hospital, 46026 Valencia, Spain;
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Agustín Llopis-Morales
- Unit of Public Health and Environmental Care, Department of Preventive Medicine, University of Valencia, 46100 Burjassot, Spain; (I.P.-C.); (A.L.-M.); (A.L.-G.)
| | - Agustín Llopis-González
- Unit of Public Health and Environmental Care, Department of Preventive Medicine, University of Valencia, 46100 Burjassot, Spain; (I.P.-C.); (A.L.-M.); (A.L.-G.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
21
|
Wu Q, Gai S, Zhang H. Asperulosidic Acid, a Bioactive Iridoid, Alleviates Placental Oxidative Stress and Inflammatory Responses in Gestational Diabetes Mellitus by Suppressing NF-κB and MAPK Signaling Pathways. Pharmacology 2022; 107:197-205. [PMID: 35008094 DOI: 10.1159/000521080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Asperulosidic acid (ASP) is a bioactive iridoid exerting broad pharmacological and medicinal properties. However, it is still unknown if ASP has therapeutical effects on gestational diabetes mellitus (GDM). This study aims to evaluate the effects of ASP on GDM as well as its underlying mechanism. METHODS A mouse model of GDM was established and orally administrated ASP (10, 20, and 40 mg/kg) on gestation day (GD) 0. The mice were sacrificed on GD 18. RESULTS Blood glucose and serum insulin were then determined. The inflammatory cytokines including IL-6 and TNF-α and oxidative stress biomarkers including MDA, SOD, GSH, and GPx were determined by using specific ELISAs. In addition, the expressions of NF-κB and MAPK signaling pathway-related proteins were determined by using Western blotting. Treatment with ASP decreased blood glucose in the mouse model of GDM. Besides, ASP also increased serum insulin and attenuated β-cell function. Treatment with ASP suppressed IL-6 and TNF-α and regulated oxidative stress-related biomarkers. Western blotting analysis showed that treatment with ASP suppressed phosphorylation of NF-κB p65, ERK1/2, and p38 in placental tissues. CONCLUSION ASP alleviates placental oxidative stress and inflammatory responses in GDM by the inhibition of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Qian Wu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shukun Gai
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Huijie Zhang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
22
|
Tesarik J. Towards Personalized Antioxidant Use in Female Infertility: Need for More Molecular and Clinical Studies. Biomedicines 2021; 9:1933. [PMID: 34944748 PMCID: PMC8698668 DOI: 10.3390/biomedicines9121933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment with antioxidants is increasingly used to slow down aging processes in different organs of the human body, including those implicated in female fertility. There is a plethora of different natural, synthetic or semi-synthetic medicines available on the market; most of them can be purchased without medical prescription. Even though the use of antioxidants, even under conditions of auto-medication, was shown to improve many functions related to female infertility related to oxidative stress, the lack of medical control and supervision can lead to an overmedication resulting in an opposite extreme, reductive stress, which can be counterproductive with regard to reproductive function and produce various adverse health effects in general. This paper reviews the current knowledge relative to the effects of different antioxidants on female reproductive function. The persisting gaps in this knowledge are also highlighted, and the need for medical supervision and personalization of antioxidant prescription is underscored.
Collapse
Affiliation(s)
- Jan Tesarik
- MARGen Clinic, Camino de Ronda 2, 18006 Granada, Spain
| |
Collapse
|
23
|
Espinoza C, Fuenzalida B, Leiva A. Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia. Curr Vasc Pharmacol 2021; 19:601-623. [PMID: 33902412 DOI: 10.2174/1570161119666210423085407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.
Collapse
Affiliation(s)
- Cristian Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Providencia 7510157, Chile
| |
Collapse
|
24
|
Hussain T, Murtaza G, Metwally E, Kalhoro DH, Kalhoro MS, Rahu BA, Sahito RGA, Yin Y, Yang H, Chughtai MI, Tan B. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm 2021; 2021:9962860. [PMID: 34616234 PMCID: PMC8490076 DOI: 10.1155/2021/9962860] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
It has been widely known that oxidative stress disrupts the balance between reactive oxygen species (ROS) and the antioxidant system in the body. During pregnancy, the physiological generation of ROS is involved in a variety of developmental processes ranging from oocyte maturation to luteolysis and embryo implantation. While abnormal overproduction of ROS disrupts these processes resulting in reproductive failure. In addition, excessive oxidative stress impairs maternal and placental functions and eventually results in fetal loss, IUGR, and gestational diabetes mellitus. Although some oxidative stress is inevitable during pregnancy, a balancing act between oxidant and antioxidant production is necessary at different stages of the pregnancy. The review aims to highlight the importance of maintaining oxidative and antioxidant balance throughout pregnancy. Furthermore, we highlight the role of oxidative stress in pregnancy-related diseases.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Baban Ali Rahu
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | | | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| |
Collapse
|
25
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
26
|
Bedell S, Hutson J, de Vrijer B, Eastabrook G. Effects of Maternal Obesity and Gestational Diabetes Mellitus on the Placenta: Current Knowledge and Targets for Therapeutic Interventions. Curr Vasc Pharmacol 2021; 19:176-192. [PMID: 32543363 DOI: 10.2174/1570161118666200616144512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023]
Abstract
Obesity and gestational diabetes mellitus (GDM) are becoming more common among pregnant women worldwide and are individually associated with a number of placenta-mediated obstetric complications, including preeclampsia, macrosomia, intrauterine growth restriction and stillbirth. The placenta serves several functions throughout pregnancy and is the main exchange site for the transfer of nutrients and gas from mother to fetus. In pregnancies complicated by maternal obesity or GDM, the placenta is exposed to environmental changes, such as increased inflammation and oxidative stress, dyslipidemia, and altered hormone levels. These changes can affect placental development and function and lead to abnormal fetal growth and development as well as metabolic and cardiovascular abnormalities in the offspring. This review aims to summarize current knowledge on the effects of obesity and GDM on placental development and function. Understanding these processes is key in developing therapeutic interventions with the goal of mitigating these effects and preventing future cardiovascular and metabolic pathology in subsequent generations.
Collapse
Affiliation(s)
- Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Janine Hutson
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| |
Collapse
|
27
|
Phoswa WN, Khaliq OP. The Role of Oxidative Stress in Hypertensive Disorders of Pregnancy (Preeclampsia, Gestational Hypertension) and Metabolic Disorder of Pregnancy (Gestational Diabetes Mellitus). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5581570. [PMID: 34194606 PMCID: PMC8184326 DOI: 10.1155/2021/5581570] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022]
Abstract
Purpose of the Review.To highlight the role of oxidative stress in hypertensive disorders of pregnancy (HDP) and metabolic disorders of pregnancy (gestational diabetes mellitus). Recent Findings. In both preeclampsia (PE) and gestational hypertension (GH), oxidative stress leads to inadequate placental perfusion thus resulting in a hypoxic placenta, which generally leads to the activation of maternal systemic inflammatory response. In PE, this causes inflammation in the kidneys and leads to proteinuria. A proteinuria marker known as urinary 8-oxoGuo excretion is expressed in preeclampsia. In GDM, oxidative stress plays a role in the pathogenesis of the disease, as a result of over secretion of insulin during pregnancy. This uncontrolled secretion of insulin results in the production of lipid peroxidation factors that also mask the secretion of antioxidants. Therefore, ROS becomes abundant at cellular level and prevents the cells from transporting glucose to body tissues. Summary. There is a need for more research investigating the role of oxidative stress, especially in obstetrics-related conditions. More studies are required in order to understand the difference between the pathogenesis and pathophysiology of PE versus GH since investigations on the differences in genetic aspects of each condition are lacking. Furthermore, research to improve diagnostic procedures for GDM in pregnancy is needed.
Collapse
Affiliation(s)
- Wendy N. Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa
| | - Olive P. Khaliq
- Department of Obstetrics and Gynaecology and Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
28
|
Erbağcı MO, Tuna G, Köse S, Dal-Bekar NE, Akış M, Kant M, Altunyurt S, İşlekel GH. Association between early oxidative DNA damage and iron status in women with gestational diabetes mellitus. Reprod Toxicol 2021; 103:171-180. [PMID: 34051274 DOI: 10.1016/j.reprotox.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
This study aims to assess the relationship between oxidative DNA damage and iron status in women with gestational diabetes mellitus (GDM) compared to those with normal glucose tolerance in the first and the second trimesters of pregnancy. Maternal serum and urine samples were collected in the 11th-14th weeks and the 24th-28th weeks of gestation. In addition to oral glucose tolerance test in the second trimester, fasting blood glucose, HbA1c, ferritin and hemoglobin levels were measured in blood samples. Urinary levels of oxidative DNA damage products 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and 8,5'-cyclo-2'-deoxyadenosines (S-cdA, R-cdA) were determined using liquid chromatography-tandem mass spectrometry with isotope-dilution. In the first trimester, urinary 8-OH-dG levels were found higher in the GDM group (n = 33) than in the control group (n = 84) (p = 0.006). R-cdA and S-cdA levels were not significantly different between the two groups (p = 0.794 and p = 0.792 respectively). When the cases were stratified according to their first trimester ferritin levels, women with ≥50th centile (≥130 ng/mL) demonstrated higher levels of 8-OH-dG and R-cdA than those under <50th centile (p = 0.034, p = 0.009). In the GDM group, there was a positive correlation between the second trimester 8-OH-dG and ferritin and 1st-hour glucose levels (p = 0.014, p = 0.020). This is the first study where oxidative DNA damage is evaluated in both early and late periods of pregnancy. Our findings reveal an association between GDM and iron status and oxidative DNA damage.
Collapse
Affiliation(s)
- Mehmet Oğuz Erbağcı
- Department of Medical Biochemistry, Sanliurfa Suruc State Hospital, Sanliurfa, Turkey
| | - Gamze Tuna
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
| | - Semir Köse
- Division of Perinatology, Department of Obstetrics and Gynecology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Nazlı Ecem Dal-Bekar
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Merve Akış
- Department of Medical Biochemistry, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | - Melis Kant
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sabahattin Altunyurt
- Division of Perinatology, Department of Obstetrics and Gynecology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Gül Hüray İşlekel
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
29
|
Neven KY, Cox B, Cosemans C, Gyselaers W, Penders J, Plusquin M, Roels HA, Vrijens K, Ruttens A, Nawrot TS. Lower iodine storage in the placenta is associated with gestational diabetes mellitus. BMC Med 2021; 19:47. [PMID: 33602219 PMCID: PMC7893873 DOI: 10.1186/s12916-021-01919-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The micronutrient iodine is essential for a healthy intrauterine environment and is required for optimal fetal growth and neurodevelopment. Evidence linking urinary iodine concentrations, which mainly reflects short-term iodine intake, to gestational diabetes mellitus (GDM) is inconclusive. Although the placental concentrations would better reflect the long-term gestational iodine status, no studies to date have investigated the association between the placental iodine load and the risk at GDM. Moreover, evidence is lacking whether placental iodine could play a role in biomarkers of insulin resistance and β-cell activity. METHODS We assessed the incidence of GDM between weeks 24 and 28 of gestation for 471 mother-neonate pairs from the ENVIRONAGE birth cohort. In placentas, we determined the iodine concentrations. In maternal and cord blood, we measured the insulin concentrations, the Homeostasis Model Assessment (HOMA) for insulin resistance (IR) index, and β-cell activity. Logistic regression was used to estimate the odds ratios (OR) of GDM, and the population attributable factor (PAF) was calculated. Generalized linear models estimated the changes in insulin, HOMA-IR, and β-cell activity for a 5 μg/kg increase in placental iodine. RESULTS Higher placental iodine concentrations decreased the risk at GDM (OR = 0.82; 95%CI 0.72 to 0.93; p = 0.003). According to the PAF, 54.2% (95%CI 11.4 to 82.3%; p = 0.0006) of the GDM cases could be prevented if the mothers of the lowest tertile of placental iodine would have placental iodine levels as those belonging to the highest tertile. In cord blood, the plasma insulin concentration was inversely associated with the placental iodine load (β = - 4.8%; 95%CI - 8.9 to - 0.6%; p = 0.026). CONCLUSIONS Higher concentrations of placental iodine are linked with a lower incidence of GDM. Moreover, a lower placental iodine load is associated with an altered plasma insulin concentration, HOMA-IR index, and β-cell activity. These findings postulate that a mild-to-moderate iodine deficiency could be linked with subclinical and early-onset alterations in the normal insulin homeostasis in healthy pregnant women. Nevertheless, the functional link between gestational iodine status and GDM warrants further research.
Collapse
Affiliation(s)
- Kristof Y Neven
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Joris Penders
- Laboratory of Clinical Biology, East-Limburg Hospital, Genk, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ann Ruttens
- Sciensano, SD Chemical and Physical Health Risks, Tervuren, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium. .,Department of Public Health & Primary Care, Leuven University, Leuven, Belgium.
| |
Collapse
|
30
|
Hou X, Zhang J, Ma H, Li M, Wang P. Hypoxia-reoxygenation treatment attenuates gestational diabetes mellitus. Endocr Connect 2021; 10:84-91. [PMID: 33320105 PMCID: PMC7923137 DOI: 10.1530/ec-20-0555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oxidative stress leads to insulin resistance and gestational diabetes mellitus (GDM). The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling is an important anti-oxidative stress pathway, which can be activated by hypoxia-reoxygenation (H/R) treatment. We aimed to demonstrate the effects of H/R treatment on GDM symptoms as well as reproductive outcomes. METHODS Pregnant C57BL/KsJ db/+ mice were used as a genetic GDM model. Plasma insulin and other biochemical indexes of plasma, insulin sensitivity, glucose intolerance, blood glucose and liver biochemical indexes were evaluated. Protein abundance of HO-1 and Nrf2 were assessed with Western blot. RESULTS H/R treatment markedly ameliorated β-cell insufficiency and glucose intolerance, suppressed oxidative stress in vivo, stimulated the activities of anti-oxidant enzymes, and led to improved reproductive outcomes. The beneficial effects of H/R treatment were mechanistically mediated via the restoration of Nrf2/HO-1 anti-oxidant signaling pathway in the liver of GDM mice. CONCLUSION Our study, for the first time, suggests that H/R treatment is a potentially novel therapeutic approach against GDM symptoms, by activating the Nrf2/HO-1 signaling pathway and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Xiuzhen Hou
- Division 1 of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Junfeng Zhang
- Division 1 of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
- Correspondence should be addressed to J Zhang:
| | - Hehong Ma
- Division 1 of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ming Li
- Division 1 of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Pei Wang
- Division 1 of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
31
|
Hussain T, Tan B, Murtaza G, Metwally E, Yang H, Kalhoro MS, Kalhoro DH, Chughtai MI, Yin Y. Role of Dietary Amino Acids and Nutrient Sensing System in Pregnancy Associated Disorders. Front Pharmacol 2020; 11:586979. [PMID: 33414718 PMCID: PMC7783402 DOI: 10.3389/fphar.2020.586979] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Defective implantation is related to pregnancy-associated disorders such as spontaneous miscarriage, intrauterine fetal growth restriction and others. Several factors proclaimed to be involved such as physiological, nutritional, environmental and managemental that leads to cause oxidative stress. Overloading of free radicals promotes oxidative stress, and the internal body system could not combat its ability to encounter the damaging effects and subsequently leading to pregnancy-related disorders. During pregnancy, essential amino acids display important role for optimum fetal growth and other necessary functions for continuing fruitful pregnancy. In this context, dietary amino acids have received much attention regarding the nutritional concerns during pregnancy. Arginine, glutamine, tryptophan and taurine play a crucial role in fetal growth, development and survival while ornithine and proline are important players for the regulation of gene expression, protein synthesis and angiogenesis. Moreover, amino acids also stimulate the mammalian target of rapamycin (mTOR) signaling pathway which plays a central role in the synthesis of proteins in placenta, uterus and fetus. This review article explores the significances of dietary amino acids in pregnancy development, regulation of nutrient-sensing pathways such as mTOR, peroxisome proliferator-activated receptors (PPARs), insulin/insulin-like growth factor signaling pathway (IIS) and 5' adenosine monophosphate-activated protein kinase (AMPK) which exhibit important role in reproduction and its related problems. In addition, the antioxidant function of dietary amino acids against oxidative stress triggering pregnancy disorders and their possible outcomes will also be enlightened. Dietary supplementation of amino acids during pregnancy could help mitigate reproductive disorders and thereby improving fertility in animals as well as humans.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
32
|
Chen Y, Tang J, Zhang Y, Du J, Wang Y, Yu H, He Y. Astaxanthin alleviates gestational diabetes mellitus in mice through suppression of oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2517-2527. [PMID: 32279084 DOI: 10.1007/s00210-020-01861-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus (GDM) affects 7% of pregnant women worldwide, which increases the risk of diabetes and cardiovascular disease for both the mother and the fetus. Natural compound Astaxanthin has been reported to have benefits in obesity and diabetes. A pregnant C57BL/KsJ db/+ mouse was used as a genetic GDM model to investigate the effect of Astaxanthin on GDM symptoms and reproductive outcomes. Blood glucose, plasma insulin, glucose intolerance, insulin sensitivity, biochemical indexes of plasma, and the liver were measured; Nrf2 and HO-1 protein levels were detected by Western blotting. Astaxanthin significantly alleviated the glucose intolerance and β cell insufficiency, inhibited in vivo oxidative stress, enhanced the activity of antioxidant enzymes, and improved reproductive outcomes. Mechanistically, the effect of Astaxanthin was mediated by restoring the Nrf2/HO-1 antioxidant pathway in the liver of GDM mice. Our findings supported that Astaxanthin was a potential therapeutic reagent for not only diabetes but also GDM symptomology.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Jichun Tang
- Department of Obstetrics, Penglai Traditional Chinese Medicine Hospital, Penglai, 265600, Shandong, China
| | - Yinghong Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Juan Du
- Department of Obstetrics, Yantai Zhifu District Maternal and Child Health Hospital, No. 78 Huanshan Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Yuanli Wang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Hui Yu
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Yanling He
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
33
|
Fisher JJ, Vanderpeet CL, Bartho LA, McKeating DR, Cuffe JSM, Holland OJ, Perkins AV. Mitochondrial dysfunction in placental trophoblast cells experiencing gestational diabetes mellitus. J Physiol 2020; 599:1291-1305. [PMID: 33135816 DOI: 10.1113/jp280593] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Mitochondrial dysfunction is known to occur in diabetic phenotypes including type 1 and 2 diabetes mellitus. The incidence of gestational diabetes mellitus (GDM) is increasing and defined as the onset of a diabetic phenotype during pregnancy. The role of placental mitochondria in the aetiology of GDM remains unclear and is an emerging area of research. Differing mitochondrial morphologies within the placenta may influence the pathogenesis of the disorder. This study observed mitochondrial dysfunction in GDM placenta when assessing whole tissue. Upon further investigation into mitochondrial isolates from the cytotrophoblast and syncytiotrophoblast, mitochondrial dysfunction appears exaggerated in syncytiotrophoblast. Assessing mitochondrial populations individually enabled the determination of differences between cell lineages of the placenta and established varying levels of mitochondrial dysfunction in GDM, in some instances establishing significance in pathways previously inconclusive or confounded when assessing whole tissue. This research lays the foundation for future work into mitochondrial dysfunction in the placenta and the role it may play in the aetiology of GDM. ABSTRACT Mitochondrial dysfunction has been associated with diabetic phenotypes, yet the involvement of placental mitochondria in gestational diabetes mellitus (GDM) remains inconclusive. This is in part complicated by the different mitochondrial subpopulations present in the two major trophoblast cell lineages of the placenta. To better elucidate the role of mitochondria in this pathology, this study examined key aspects of mitochondrial function in placentas from healthy pregnancies and those complicated by GDM in both whole tissue and isolated mitochondria. Mitochondrial content, citrate synthase activity, reactive oxygen species production and gene expression regulating metabolic, hormonal and antioxidant control was examined in placental tissue, before examining functional differences between mitochondrial isolates from cytotrophoblast (Cyto-Mito) and syncytiotrophoblast (Syncytio-Mito). Our study observed evidence of mitochondrial dysfunction across multiple pathways when assessing whole placental tissue from GDM pregnancies compared with healthy controls. Furthermore, by examining isolated mitochondria from the cytotrophoblast and syncytiotrophoblast cell lineages of the placenta we established that although both mitochondrial populations were dysfunctional, they were differentially impacted. These data highlight the need to consider changes in mitochondrial subpopulations at the feto-maternal interface when studying pregnancy pathologies.
Collapse
Affiliation(s)
- Joshua J Fisher
- School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Chelsea L Vanderpeet
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Lucy A Bartho
- School of Medical Science, Griffith Health, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Daniel R McKeating
- School of Medical Science, Griffith Health, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - James S M Cuffe
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith Health, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith Health, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
34
|
Zhou L, Zhang R, Yang S, Zhang Y, Shi D. Astragaloside IV alleviates placental oxidative stress and inflammation in GDM mice. Endocr Connect 2020; 9:939-945. [PMID: 33006955 PMCID: PMC7583135 DOI: 10.1530/ec-20-0295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Our previous study revealed that astragaloside IV (AS-IV) effectively improved gestational diabetes mellitus (GDM) by reducing hepatic gluconeogenesis. Due to the importance of placental oxidative stress, we further explored the protective role of AS-IV on placental oxidative stress in GDM. METHODS First, non-pregnant mice were orally administrated with AS-IV to evaluate its safety and effect. Then GDM mice were orally administered with AS-IV for 20 days and its effect on the symptoms of GDM, placental oxidative stress, secretions of inflammatory cytokines, as well as toll-like receptor 4 (TLR4)/NF-κB signaling pathway, were evaluated. RESULTS AS-IV had no adverse effect on non-pregnant mice. On the other hand, AS-IV significantly attenuated the GDM-induced hyperglycemia, glucose intolerance, insulin resistance, placental oxidative stress, productions of inflammatory cytokines and the activation of TLR4/NF-κB pathway. CONCLUSION AS-IV effectively protected against GDM by alleviating placental oxidative stress and inflammation, in which TLR4/NF-κB might be involved.
Collapse
Affiliation(s)
- Ling Zhou
- Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ruixue Zhang
- Cangzhou Central Hospital, Cangzhou, Hebei, China
- Correspondence should be addressed to R Zhang:
| | | | | | - Dandan Shi
- Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
35
|
Placental Adaptive Changes to Protect Function and Decrease Oxidative Damage in Metabolically Healthy Maternal Obesity. Antioxidants (Basel) 2020; 9:antiox9090794. [PMID: 32859037 PMCID: PMC7555720 DOI: 10.3390/antiox9090794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnancy-related disorders, including preeclampsia and gestational diabetes, are characterized by the presence of an adverse intrauterine milieu that may ultimately result in oxidative and nitrosative stress. This scenario may trigger uncontrolled production of reactive oxygen species (ROS) such as superoxide anion (O●−) and reactive nitrogen species (RNS) such as nitric oxide (NO), along with an inactivation of antioxidant systems, which are associated with the occurrence of relevant changes in placental function through recognized redox post-translational modifications in key proteins. The general objective of this study was to assess the impact of a maternal obesogenic enviroment on the regulation of the placental nitroso-redox balance at the end of pregnancy. We measured oxidative damage markers—thiobarbituric acid-reacting substances (TBARS) and carbonyl groups (C=O) levels; nitrosative stress markers—inducible nitric oxide synthase, nitrosothiol groups, and nitrotyrosine residues levels; and the antioxidant biomarkers—catalase and superoxide dismutase (SOD) activity and expression, and total antioxidant capacity (TAC), in full-term placental villous from both pre-pregnancy normal weight and obese women, and with absence of metabolic complications throughout gestation. The results showed a decrease in C=O and TBARS levels in obese pregnancies. Although total SOD and catalase concentrations were shown to be increased, both activities were significantly downregulated in obese pregnancies, along with total antioxidant capacity. Inducible nitric oxide sintase levels were increased in the obese group compared to the lean group, accompanied by an increase in nitrotyrosine residues levels and lower levels of nitrosothiol groups in proteins such as ERK1/2. These findings reveal a reduction in oxidative damage, accompanied by a decline in antioxidant response, and an increase via NO-mediated nitrative stress in placental tissue from metabolically healthy pregnancies with obesity. All this plausibly points to a placental adaptation of the affected antioxidant response towards a NO-induced alternative pathway, through changes in the ROS/RNS balance, in order to reduce oxidative damage and preserve placental function in pregnancy.
Collapse
|
36
|
Jadhav A, Khaire A, Joshi S. Exploring the role of oxidative stress, fatty acids and neurotrophins in gestational diabetes mellitus. Growth Factors 2020; 38:226-234. [PMID: 33703982 DOI: 10.1080/08977194.2021.1895143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gestational diabetes mellitus (GDM) constitutes an unfavorable intrauterine environment for embryonic and feto-placental development. Women with GDM are at higher risk for materno-fetal complications and placental abnormalities. The placenta acts as an interface between the maternal and fetal circulations and also plays an important role in protecting the fetus from adverse effects of maternal metabolic conditions. One of the earliest abnormalities observed in GDM pregnancies is increased oxidative stress in the placenta which affects fetal development. Imbalances in maternal nutrition particularly long-chain polyunsaturated fatty acid (LCPUFA) intake and/or metabolism lead to increased oxidative stress. Reports indicate that oxidative stress and LCPUFA such as docosahexaenoic acid affect the levels of neurotrophins. The present review aims to provide insights into a mechanistic link between oxidative stress, LCPUFA and neurotrophin in the placenta in women with GDM and its implications for neurodevelopmental outcomes in children.
Collapse
Affiliation(s)
- Anjali Jadhav
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Amrita Khaire
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
37
|
Perrone S, Laschi E, Buonocore G. Oxidative stress biomarkers in the perinatal period: Diagnostic and prognostic value. Semin Fetal Neonatal Med 2020; 25:101087. [PMID: 32008959 DOI: 10.1016/j.siny.2020.101087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perinatal oxidative stress (OS) is involved in the physiopathology of many pregnancy-related disorders and is largely responsible for cellular, tissue and organ damage that occur in the perinatal period especially in preterm infants, leading to the so-called "free-radicals related diseases of the newborn". Reliable biomarkers of lipid, protein, DNA oxidation and antioxidant power in the perinatal period have been demonstrated to show specificity for the disease, to have prognostic power or to correlate with disease activity. Yet potential clinical applications of oxidative stress biomarkers in neonatology are still under study. Overcoming the technical and economic difficulties that preclude the use of OS biomarkers in the clinical practice is a challenge that needs to be overcome to identify high-risk subjects and to predict their short- and long-term outcome. Cord blood, urine and saliva represent valid and ethically acceptable biological samples for investigations in the perinatal period.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Elisa Laschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
38
|
Zhang R, Xing B, Zhao J, Zhang X, Zhou L, Yang S, Wang Y, Yang F. Astragaloside IV relieves gestational diabetes mellitus in genetic mice through reducing hepatic gluconeogenesis. Can J Physiol Pharmacol 2020; 98:466-472. [PMID: 32160476 DOI: 10.1139/cjpp-2019-0548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The glucose intolerance developed during pregnancy is called gestational diabetes mellitus (GDM). GDM has become a severe risk for the health of both mother and baby. Astragaloside IV (AS-IV) is the dominant active component in Astragalus membranaceus and has been reported to have anti-inflammation and immune-regulation function. We aimed to demonstrate the function of AS-IV in the therapy of GDM and the molecular mechanism in this process. C57BL/KsJ-Lepdb/+ female mice were used as the GDM model. The mRNA levels of relative genes in this research were detected by quantitative real-time PCR. The protein levels of relative genes were analyzed by Western blot. Serum lipid level was measured with an ILab Chemistry Analyzer 300 PLUS. Glucose, insulin, and lipid profile levels in the GDM mice model were decreased by AS-IV treatment. AS-IV downregulated the expression of inflammatory genes and upregulated the expressions of anti-oxidant genes in the GDM mice model. AS-IV treatment reduced cAMP accumulation in liver and reduced hepatic gluconeogenesis in GDM mice. This study demonstrated that AS-IV treatment has an effective therapeutic function of GDM in a mice model through the regulation of cAMP accumulation and hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Ruixue Zhang
- Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Baoheng Xing
- Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Jianyong Zhao
- Cangzhou Hospital of Integrated TCM-WM·HEBEI, No. 31 Huanghe Road, Cangzhou 061000, Hebei, China
| | - Xuelei Zhang
- Cangzhou Hospital of Integrated TCM-WM·HEBEI, No. 31 Huanghe Road, Cangzhou 061000, Hebei, China
| | - Ling Zhou
- Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Shuangyan Yang
- Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Yong Wang
- Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Fengzhen Yang
- Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou 061000, Hebei, China
| |
Collapse
|
39
|
Ortega MA, Romero B, Asúnsolo Á, Martínez-Vivero C, Sainz F, Bravo C, De León-Luis J, Álvarez-Mon M, Buján J, García-Honduvilla N. Pregnancy-associated venous insufficiency course with placental and systemic oxidative stress. J Cell Mol Med 2020; 24:4157-4170. [PMID: 32141705 PMCID: PMC7171392 DOI: 10.1111/jcmm.15077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
The development of lower extremity venous insufficiency (VI) during pregnancy has been associated with placental damage. VI is associated with increased oxidative stress in venous wall. We have investigated potential disturbance/dysregulation of the production of reactive oxygen species (ROS) in placenta and its eventual systemic effects through the measurement of malondialdehyde (MDA) plasma levels in women with VI. A total of 62 women with VI and 52 healthy controls (HCs) were studied. Levels of nicotinamide adenine dinucleotide phosphate-oxidase 1 (NOX1), 2 (NOX2), inducible nitric oxide synthase (iNOS), endothelial (eNOS), poly(ADP-ribose) polymerase PARP (PARP) and ERK were measured in placental tissue with immunohistochemistry and RT-qPCR. Plasma and placental levels of MDA were determined by colorimetry at the two study times of 32 weeks of gestation and post-partum. Protein and gene expression levels of NOX1, NOX2, iNOS, PARP and ERK were significantly increased in placentas of VI. eNOS activity was low in both study groups, and there were no significant differences in gene or protein expression levels. Women with VI showed a significant elevation of plasma MDA levels at 32 weeks of gestation, and these levels remained elevated at 32 weeks post-partum. The MDA levels were significantly higher in placentas of women with VI. Placental damage that was found in the women with VI was characterized by overexpression of oxidative stress markers NOX1, NOX2, and iNOS, as well as PARP and ERK. Pregnant women with VI showed systemic increases in oxidative stress markers such as plasma MDA levels. The foetuses of women with VI had a significant decrease in their venous pH as compared to those from HC women. The situation of oxidative stress and cellular damage created in the placenta is in coexpression with the production of a pH acidification.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Beatriz Romero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Ángel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Clara Martínez-Vivero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Felipe Sainz
- Angiology and Vascular Surgery Unit, Central University Hospital of Defense-UAH, Madrid, Spain
| | - Coral Bravo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Service of Gynecology and Obstetrics, Central University Hospital of Defense-UAH, Madrid, Spain
| | - Juan De León-Luis
- Service of Gynecology and Obstetrics, Section of Fetal Maternal Medicine, University Hospital Gregorio Marañón, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain.,Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| |
Collapse
|
40
|
Song W, Chang WL, Shan D, Gu Y, Gao L, Liang S, Guo H, Yu J, Liu X. Intermittent Hypoxia Impairs Trophoblast Cell Viability by Triggering the Endoplasmic Reticulum Stress Pathway. Reprod Sci 2020; 27:477-487. [PMID: 32016801 DOI: 10.1007/s43032-019-00039-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/31/2019] [Indexed: 01/24/2023]
Abstract
Intermittent hypoxia (IH) is a prominent characteristic of many clinical complications such as obstructive sleep apnea syndrome (OSAS). OSAS is related to a higher incidence of adverse pregnancy outcomes, and IH has been suggested as the preliminary physiological etiology. However, further studies remain to be performed on the underlying cellular and molecular pathogenic mechanisms of OSAS-related IH on adverse pregnancy outcomes. Here, we used a trophoblast cell line (HTR8/SVneo), primary extravillous trophoblast cells (EVTs), and a normal-term placenta villi explant culture model in vitro in this research. The effects and possible molecular mechanisms of IH on trophoblast motility, cell cycle progression, and apoptosis were investigated. IH reduced HTR8/SVneo cell and EVT motility significantly, which could be partially attributed to the reduced secretion of matrix metalloproteinase 2. IH treatment blocked HTR8/SVneo cell proliferation significantly by modulating the expression of D-type Cyclins. IH also induced significant trophoblast cell apoptosis. Moreover, our study supports the premise that IH attenuates trophoblast cell motility and proliferation and induces excessive trophoblast cell apoptosis by specifically triggering the endoplasmic reticulum (ER) stress signaling pathway. Briefly, differing from the mechanism of trophoblast motility and proliferation inhibition, and apoptosis induction by hypoxia, IH is apt to weaken trophoblast viability mainly by activating the ER stress signaling pathway with a time-dependent pattern, which is further implicated in OSAS-associated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Wei Song
- Department of Beijing Obstetric and Gyneocology Hospital, Capital Medical University, Beijing, 100026, China
| | - Wen-Lin Chang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Department of Obstetrics, the People' Hospital of Longhua, Shenzhen, 518109, China
| | - Dan Shan
- Department of Beijing Obstetric and Gyneocology Hospital, Capital Medical University, Beijing, 100026, China
| | - Yanli Gu
- Central Laboratory, the People' Hospital of Longhua, Shenzhen, 518109, China
| | - Lei Gao
- Department of Beijing Obstetric and Gyneocology Hospital, Capital Medical University, Beijing, 100026, China
| | - Shengnan Liang
- Department of Beijing Obstetric and Gyneocology Hospital, Capital Medical University, Beijing, 100026, China
| | - Huan Guo
- Department of Urology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, 518000, China
| | - Jing Yu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, 1120 Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
| | - Xiaowei Liu
- Department of Beijing Obstetric and Gyneocology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
41
|
Urbaniak SK, Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. 8-Oxo-7,8-Dihydro-2'-Deoxyguanosine (8-oxodG) and 8-Hydroxy-2'-Deoxyguanosine (8-OHdG) as a Potential Biomarker for Gestational Diabetes Mellitus (GDM) Development. Molecules 2020; 25:molecules25010202. [PMID: 31947819 PMCID: PMC6982778 DOI: 10.3390/molecules25010202] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022] Open
Abstract
The growing clinical and epidemiological significance of gestational diabetes mellitus results from its constantly increasing worldwide prevalence, obesity, and overall unhealthy lifestyle among women of childbearing age. Oxidative stress seems to be the most important predictor of gestational diabetes mellitus development. Disturbances in the cell caused by oxidative stress lead to different changes in biomolecules, including DNA. The nucleobase which is most susceptible to oxidative stress is guanine. Its damage results in two main modifications: 8-hydroxy-2′-deoxyguanosineor 8-oxo-7,8-dihydro-2′-deoxyguanosine. Their significant level can indicate pathological processes during pregnancy, like gestational diabetes mellitus and probably, type 2 diabetes mellitus after pregnancy. This review provides an overview of current knowledge on the use of 8-hydroxy-2′-deoxyguanosineand/or 8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker in gestational diabetes mellitus and allows us to understand the mechanism of 8-hydroxy-2′-deoxyguanosineand/or 8-oxo-7,8-dihydro-2′-deoxyguanosine generation during this disease.
Collapse
|
42
|
Kapustin R, Chepanov S, Kopteeva E, Arzhanova O. Maternal serum nitrotyrosine, 8-isoprostane and total antioxidant capacity levels in pre-gestational or gestational diabetes mellitus. Gynecol Endocrinol 2020; 36:36-42. [PMID: 33305672 DOI: 10.1080/09513590.2020.1816727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE To evaluate serum concentration of 8-isoprostane, nitrotyrosine (NT), and total antioxidant capacity (TAC) in pregnant women with diabetes mellitus (DM) considering preconception planning and method of diabetes correction in 11-14 and 30-34 weeks. MATERIALS AND METHODS The study included 130 women: T1DM (n = 40), T2DM (n = 35), gestational diabetes (GDM, n = 40) and the control group (n = 15). The serum concentrations of NT, 8-isoprostane, and TAC were measured by ELISA methods. RESULTS Elevated 8-isoprostane levels were observed in all patients with DM, but this biomarker's maximum values have been seen in T1DM and T2DM on insulin groups. A similar tendency was observed for the concentration of NT in both the 1st and 3rd trimesters. TAC levels showed a statistically relevant decrease in all DM groups compared to the control. The correlation analysis showed a direct correlation between HbA1c and serum 8-isoprostane levels in the 1st (r = .27) and 3rd (r = .3) pregnancy trimesters as well as inverse correlation with TAC level (r = -.48). Direct (NT, 8-isoprostane) and inverse correlations (TAC) were fixated for this biomarker concentration and preeclampsia rates. CONCLUSION DM in pregnancy is related to oxidative stress activation, which might lead to the development of adverse perinatal outcomes.
Collapse
Affiliation(s)
- Roman Kapustin
- Department of Obstetrics, Division of Maternal-Fetal Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, St. Petersburg State University, St. Petersburg, Russia
| | - Sergey Chepanov
- Department of Immunology and Intercellular interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Ekaterina Kopteeva
- Department of Immunology and Intercellular interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Olga Arzhanova
- Department of Obstetrics, Division of Maternal-Fetal Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
43
|
Abstract
The placenta is exposed to metabolic derangements in the maternal and fetal circulation. The effects of the early placental "exposome" determine further trajectories. Overstimulation of the fetal pancreas in early gestation results in fetal hyperinsulinemia, augmenting glucose transfer with adverse effects on the fetus. The manifold placental changes at the end of pregnancy can be regarded as adaptive responses to protect the fetus from diabetes and obesity. The causal role of the placenta, if any, in mediating long-term effects on offspring development is an important area of current and future research.
Collapse
Affiliation(s)
- Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria.
| | - Mila Cervar-Zivkovic
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| |
Collapse
|
44
|
Jiao Y, Zhang S, Zhang J, Du J. Tetramethylpyrazine attenuates placental oxidative stress, inflammatory responses and endoplasmic reticulum stress in a mouse model of gestational diabetes mellitus. Arch Pharm Res 2019; 42:1092-1100. [DOI: 10.1007/s12272-019-01197-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
|
45
|
Leng J, Li W, Wang L, Zhang S, Liu H, Li W, Wang S, Shao P, Pan L, Wang S, Liu E. Higher thyroid-stimulating hormone levels in the first trimester are associated with gestational diabetes in a Chinese population. Diabet Med 2019; 36:1679-1685. [PMID: 31407386 DOI: 10.1111/dme.14106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 01/11/2023]
Abstract
AIM To evaluate the relationship between maternal thyroid-stimulating hormone levels during the first trimester and gestational diabetes risk. METHODS In Tianjin, China, 7258 women underwent a thyroid-stimulating hormone screening test within 12 gestational weeks and then had a glucose challenge test at 24-28 weeks of gestational age. The women with a glucose challenge test ≥7.8 mmol/l underwent a 75 g oral glucose tolerance test. Gestational diabetes was diagnosed following International Association of Diabetes and Pregnancy Study Group criteria. Restricted cubic spline analysis was performed to explore full-range risk associations of thyroid-stimulating hormone levels with gestational diabetes. Logistic regression was performed to obtain odds ratios and 95% confidence intervals. RESULTS In all, 594 women (8.2%) had gestational diabetes. Among women with thyroid-stimulating hormone ≤3.2 mIU/l, a positive association between thyroid-stimulating hormone levels and gestational diabetes risk was found (adjusted OR: 1.13, 95% CI: 1.00-1.27). There was no relationship between thyroid-stimulating hormone levels and gestational diabetes risk in univariable and multivariable analyses among women with thyroid-stimulating hormone >3.2 mIU/l. In subgroup analyses, among women with thyroid-stimulating hormone ≤3.2 mIU/l and BMI ≥25 kg/m2 , the adjusted odds ratio for thyroid-stimulating hormone levels with gestational diabetes was enhanced to 1.25 (95% CI: 1.02-1.53). CONCLUSIONS In pregnant Chinese women, thyroid-stimulating hormone levels even within normal range in the first trimester were positively related to gestational diabetes risk, especially for pre-pregnancy overweight/obese women.
Collapse
Affiliation(s)
- J Leng
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - W Li
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - L Wang
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - S Zhang
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - H Liu
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - W Li
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - S Wang
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - P Shao
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - L Pan
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - S Wang
- Tianjin Women and Children's Health Centre, Tianjin, China
| | - E Liu
- Tianjin Women and Children's Health Centre, Tianjin, China
| |
Collapse
|
46
|
Almada M, Alves P, Fonseca BM, Carvalho F, Queirós CR, Gaspar H, Amaral C, Teixeira NA, Correia-da-Silva G. Synthetic cannabinoids JWH-018, JWH-122, UR-144 and the phytocannabinoid THC activate apoptosis in placental cells. Toxicol Lett 2019; 319:129-137. [PMID: 31730886 DOI: 10.1016/j.toxlet.2019.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/25/2023]
Abstract
The increasing use of synthetic cannabinoids (SCBs) in recreational settings is becoming a new paradigm of drug abuse. Although SCBs effects mimic those of the Cannabis sativa plant, these drugs are frequently more potent and hazardous. It is known that endocannabinoid signalling plays a crucial role in diverse reproductive events such as placental development. Moreover, the negative impact of the phytocannabinoid Δ9-tetrahydrocannabinol (THC) in pregnancy outcome, leading to prematurity, intrauterine growth restriction and low birth weight is well recognized, which makes women of childbearing age a sensitive group to developmental adverse effects of cannabinoids. Placental trophoblast turnover relies on regulated processes of proliferation and apoptosis for normal placental development. Here, we explored the impact of the SCBs JWH-018, JWH-122 and UR-144 and of the phytocannabinoid THC in BeWo cell line, a human placental cytotrophoblast cell model. All the cannabinoids caused a significant decrease in cell viability without LDH release, though this effect was only detected for the highest concentrations of THC. Moreover, a cell cycle arrest at the G2/M phase was also observed. JWH-018 and JWH-122 increased reactive oxygen species (ROS) production and THC, UR-144 and JWH-122 caused loss of mitochondrial membrane potential. All the compounds were able to induce caspase-9 activation. The involvement of apoptotic pathways was further confirmed through the significant increase in caspase -3/-7 activities. For UR-144, this effect was reversed by the CB1 antagonist AM281, for JWH-018 and THC this effect was mediated by both cannabinoid receptors CB1 and CB2 while for JWH-122 it was cannabinoid receptor-independent. This work demonstrates that THC and SCBs are able to induce apoptotic cell death. Although they may act through different mechanisms and potencies, the studied cannabinoids have the potential to disrupt gestational fundamental events.
Collapse
Affiliation(s)
- Marta Almada
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Patrícia Alves
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Cláudio R Queirós
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016, Lisboa, Portugal
| | - Helena Gaspar
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Cristina Amaral
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Natércia A Teixeira
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no 228, Porto, Portugal.
| |
Collapse
|
47
|
Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clin Sci (Lond) 2019; 133:2121-2141. [DOI: 10.1042/cs20190067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
AbstractDiabetes mellitus (DM) is an important metabolic disorder characterized by persistent hyperglycemia resulting from inadequate production and secretion of insulin, impaired insulin action, or a combination of both. Genetic disorders and insulin receptor disorders, environmental factors, lifestyle choices and toxins are key factors that contribute to DM. While it is often referred to as a metabolic disorder, modern lifestyle choices and nutrient excess induce a state of systemic chronic inflammation that results in the increased production and secretion of inflammatory cytokines that contribute to DM. It is chronic hyperglycemia and the low-grade chronic-inflammation that underlies the development of microvascular and macrovascular complications leading to damage in a number of tissues and organs, including eyes, vasculature, heart, nerves, and kidneys. Improvements in the management of risk factors have been beneficial, including focus on intensified glycemic control, but most current approaches only slow disease progression. Even with recent studies employing SGLT2 inhibitors demonstrating protection against cardiovascular and kidney diseases, kidney function continues to decline in people with established diabetic kidney disease (DKD). Despite the many advances and a greatly improved understanding of the pathobiology of diabetes and its complications, there remains a major unmet need for more effective therapeutics to prevent and reverse the chronic complications of diabetes. More recently, there has been growing interest in the use of specialised pro-resolving mediators (SPMs) as an exciting therapeutic strategy to target diabetes and the chronic complications of diabetes.
Collapse
|
48
|
Steyn A, Crowther NJ, Norris SA, Rabionet R, Estivill X, Ramsay M. Epigenetic modification of the pentose phosphate pathway and the IGF-axis in women with gestational diabetes mellitus. Epigenomics 2019; 11:1371-1385. [PMID: 31583916 DOI: 10.2217/epi-2018-0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Gestational diabetes mellitus (GDM) has been linked with adverse long-term health outcomes for the fetus and mother. These effects may be mediated by epigenetic modifications. Materials & methods: Genome-wide RNA sequencing was performed in placental tissue and maternal blood in six GDM and six non-GDM pregnancies. Promoter region DNA methylation was examined for selected genes and correlated with gene expression to examine an epigenetic modulator mechanism. Results: Reductions of mRNA expression and increases in promoter methylation were observed for G6PD in GDM women, and for genes encoding IGF-binding proteins in GDM-exposed placenta. Conclusion: GDM involves epigenetic attenuation of G6PD, which may lead to hyperglycemia and oxidative stress, and the IGF-axis, which may modulate fetal macrosomia.
Collapse
Affiliation(s)
- Angela Steyn
- Division of Human Genetics, National Health Laboratory Service and the School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Nigel J Crowther
- Division of Human Genetics, National Health Laboratory Service and the School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,The Department of Chemical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Shane A Norris
- Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Raquel Rabionet
- The Centre for Genomic Regulation, Genes and Diseases Program, Barcelona, Spain
| | - Xavier Estivill
- The Centre for Genomic Regulation, Genes and Diseases Program, Barcelona, Spain
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and the School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.,The Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
49
|
Perrone S, Laschi E, Buonocore G. Biomarkers of oxidative stress in the fetus and in the newborn. Free Radic Biol Med 2019; 142:23-31. [PMID: 30954545 DOI: 10.1016/j.freeradbiomed.2019.03.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
The dynamic field of perinatology entails ever-increasing search for molecular mechanisms of neonatal diseases, especially in the domain of fetal growth and neurodevelopmental outcome. There is an urgent need for new molecular biomarkers, to early identify newborn at high risk for developing diseases and to provide new treatment targets. The interest in biomarkers of oxidative stress in perinatal period have begun to grow in the last century, when it was evidenced the importance of the free radicals generation underlying the various disease conditions. To date, interesting researches have been carried out, representing milestones for implementation of oxidative stress biomarkers in perinatal medicine. Use of a panel of "oxidative stress biomarkers", particularly non protein bound iron, advanced oxidative protein products and isoprostanes, may provide valuable information regarding functional pathways underlying free radical mediated diseases of newborns and their early identification and prevention. Here, we will review recent advances and the current knowledge on the application of biomarkers of oxidative stress in neonatal/perinatal medicine including novel biomarker discovery, defining yet unrecognized biologic therapeutic targets, and linking of oxidative stress biomarkers to relevant standard indices and long-term outcomes.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Elisa Laschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
50
|
Ozler S, Oztas E, Gumus Guler B, Erel O, Turhan Caglar A, Ergin M, Uygur D, Danisman N. Are serum levels of ADAMTS5, TAS and TOS at 24-28 gestational weeks associated with adverse perinatal outcomes in gestational diabetic women? J OBSTET GYNAECOL 2019; 40:619-625. [PMID: 31526197 DOI: 10.1080/01443615.2019.1634025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We aimed to determine the role of placental A Disintegrin and Metalloproteinase with thrombospondin motifs 5 (ADAMTS5), and maternal serum ADAMTS5, total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) levels at 24-28th gestational weeks in GDM. This study included 57 patients, who had been diagnosed as having GDM at their 24-28th gestational week, and 29 controls. The maternal blood samples were collected at the 24-28th gestational week and ADAMTS5 was studied with the enzyme-linked immunosorbent assay (ELISA) method, whereas an automated colorimetric method was used to study TAS, TOS, and OSI. The level of ADAMTS5 in maternal serum of patients with GDM were significantly lower than the controls (p = .017); whereas TOS and OSI levels were significantly higher (p = .003 and p = .008). Multivariable logistic regression analysis revealed ADAMTS5 and TOS levels were independently associated with adverse perinatal outcomes (p = .004 and p = .018). We found that serum ADAMTS5 levels decreased and TOS level increased in GDM pregnant at 24-28th gestational weeks. In addition, we found that increased levels of serum ADAMTS5 and decreased TOS levels at 24-28th weeks were associated with adverse perinatal outcomes independent of the mode of treatment in GDM.Impact statementWhat is already known on this subject? Gestational diabetes mellitus (GDM) is one of the most common medical complications of pregnancy. The insulin resistance, which starts at the 24-28th gestational weeks, increases during gestation. GDM increases maternal complications like preeclampsia, cesarean rate, cardiovascular disease, obesity, and diabetes after pregnancy; and neonatal complications like macrosomia, hypoglycemia, hyperbilirubinemia, delivery trauma, shoulder dystocia, and adult-onset obesity, and diabetes.What the results of this study add? A significant relationship between ADAMTS5, TOS levels and adverse perinatal outcome. insulin resistance and was observed.What the implications are of these findings for clinical practice and/or further research? Based on this finding, we concluded that increased levels of oxidative stress and decreased ADAMTS5 levels are associated with GDM and predictive for adverse perinatal outcomes. The results of the present study were consistent with the previous reports and indicated that increased oxidative stress in GDM patients are related to adverse perinatal outcomes.
Collapse
Affiliation(s)
- Sibel Ozler
- Department of Perinatology, Selcuk University Medical School, Konya, Turkey
| | - Efser Oztas
- Department of Perinatology, Eskisehir City Hospital, Eskisehir, Turkey
| | | | - Ozcan Erel
- Department of Clinical Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Ali Turhan Caglar
- Department of Clinical Biochemistry, Aralik State Hospital, Gaziantep, Turkey
| | - Merve Ergin
- Department of Pathology, Etlik Zübeyde Haním Women's Health Education and Research Hospital, Ankara, Turkey
| | - Dilek Uygur
- Department of Clinical Biochemistry, Aralik State Hospital, Gaziantep, Turkey
| | - Nuri Danisman
- Department of Perinatology, Acıbadem Acıbadem University Medical School, Istanbul, Turkey
| |
Collapse
|