1
|
Hu Q, Tuluhong M, Han P. Odor awareness modulates the association between perceived stress and chemosensory anhedonia in women. Psych J 2024; 13:870-879. [PMID: 38757253 PMCID: PMC11444723 DOI: 10.1002/pchj.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
Chronic stress alters reward sensitivity and contributes to anhedonia. Chemosensation is dominated by a hedonic dimension, but little is known about the association between chronic perceived stress and hedonic chemosensation in non-clinical populations. In the current study, 325 participants (201 females) completed a questionnaire-based survey measuring their chronic perceived stress (Perceived Stress Scale; PSS), chemosensory pleasure (Chemosensory Pleasure Scale; CPS), and olfactory metacognitive abilities (odor awareness, affective impact of odor, importance of olfaction). For females, higher PSS scores significantly predicted lower CPS scores, which is mediated by the positive odor awareness. Moreover, negative odor awareness was identified as a moderator underlying the relationship between PSS and CPS scores in females but not in males. For females, higher PSS predicted lower CPS for those with lower, but not for those with higher levels of negative odor awareness. These results show that the link between chronic perceived stress and chemosensory anhedonia is pronounced in females, with olfactory perception playing a key role. The current study provides insights into the understanding of stress-related anhedonia and into the development of effective treatments.
Collapse
Affiliation(s)
- Qian Hu
- Faculty of PsychologySouthwest UniversityChongqingChina
| | | | - Pengfei Han
- Faculty of PsychologySouthwest UniversityChongqingChina
- MOE Key Laboratory of Cognition and PersonalitySouthwest UniversityChongqingChina
| |
Collapse
|
2
|
Mohamed ZI, Sivalingam M, Radhakrishnan AK, Jaafar F, Zainal Abidin SA. Chronic unpredictable stress (CUS) reduced phoenixin expression, induced abnormal sperm and testis morphology in male rats. Neuropeptides 2024; 107:102447. [PMID: 38870753 DOI: 10.1016/j.npep.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Chronic stress caused by prolonged emotional pressure can lead to various physiological issues, including reproductive dysfunction. Although reproductive problems can also induce chronic stress, the impact of chronic stress-induced reproductive dysfunction remains contentious. This study investigates the effects of chronic unpredictable stress (CUS) on reproductive neuropeptides, sperm quality, and testicular morphology. Sixteen twelve-week-old Sprague Dawley rats were divided into two groups: a non-stress control group and a CUS-induced group. The CUS regimen involved various stressors over 28 days, with both groups undergoing behavioural assessments through sucrose-preference and forced-swim tests. Hypothalamic gene expression levels of CRH, PNX, GPR173, kisspeptin, GnRH, GnIH, and spexin neuropeptides were measured via qPCR, while plasma cortisol, luteinizing hormone (LH), and testosterone concentrations were quantified using ELISA. Seminal fluid and testis samples were collected for sperm analysis and histopathological evaluation, respectively. Results showed altered behaviours in CUS-induced rats, reflecting stress impacts. Hypothalamic corticotropin-releasing hormone (CRH) expression and plasma cortisol levels were significantly higher in CUS-induced rats compared to controls (p < 0.05). Conversely, phoenixin (PNX) expression decreased in the CUS group (p < 0.05), while kisspeptin, spexin, and gonadotropin-inhibitory hormone (GnIH) levels showed no significant differences between groups. Despite a significant increase in GnRH expression (p < 0.05), plasma LH and testosterone concentrations were significantly lower (p < 0.05) in CUS-induced rats. Histopathological analysis revealed abnormal testis morphology in CUS-induced rats, including disrupted architecture, visible interstitial spaces between seminiferous tubules, and absence of spermatogenesis. In conclusion, CUS affects reproductive function by modulating PNX and GnRH expression, influencing cortisol levels, and subsequently reducing plasma LH and testosterone concentrations. This study highlights the complex interplay between chronic stress and reproductive health, emphasizing the significant impact of stress on reproductive functions.
Collapse
Affiliation(s)
- Zahra Isnaini Mohamed
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
3
|
Boyle CC, Bower JE, Eisenberger NI, Irwin MR. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models. Neurosci Biobehav Rev 2023; 152:105307. [PMID: 37419230 DOI: 10.1016/j.neubiorev.2023.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Anhedonia, as evidenced by impaired pleasurable response to reward, reduced reward motivation, and/or deficits in reward-related learning, is a common feature of depression. Such deficits in reward processing are also an important clinical target as a risk factor for depression onset. Unfortunately, reward-related deficits remain difficult to treat. To address this gap and inform the development of effective prevention and treatment strategies, it is critical to understand the mechanisms that drive impairments in reward function. Stress-induced inflammation is a plausible mechanism of reward deficits. The purpose of this paper is to review evidence for two components of this psychobiological pathway: 1) the effects of stress on reward function; and 2) the effects of inflammation on reward function. Within these two areas, we draw upon preclinical and clinical models, distinguish between acute and chronic effects of stress and inflammation, and address specific domains of reward dysregulation. By addressing these contextual factors, the review reveals a nuanced literature which might be targeted for additional scientific inquiry to inform the development of precise interventions.
Collapse
Affiliation(s)
- Chloe C Boyle
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | - Michael R Irwin
- Norman Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
4
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Novak J, Jaric I, Rosso M, Rufener R, Touma C, Würbel H. Handling method affects measures of anxiety, but not chronic stress in mice. Sci Rep 2022; 12:20938. [PMID: 36463282 PMCID: PMC9719500 DOI: 10.1038/s41598-022-25090-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Studies in mice have shown that less aversive handling methods (e.g. tunnel or cup handling) can reduce behavioural measures of anxiety in comparison to picking mice up by their tail. Despite such evidence, tail handling continues to be used routinely. Besides resistance to change accustomed procedures, this may also be due to the fact that current evidence in support of less aversive handling is mostly restricted to effects of extensive daily handling, which may not apply to routine husbandry practices. The aim of our study was to assess whether, and to what extent, different handling methods during routine husbandry induce differences in behavioural and physiological measures of stress in laboratory mice. To put the effects of handling method in perspective with chronic stress, we compared handling methods to a validated paradigm of unpredictable chronic mild stress (UCMS). We housed mice of two strains (Balb/c and C57BL/6) and both sexes either under standard laboratory conditions (CTRL) or under UCMS. Half of the animals from each housing condition were tail handled and half were tunnel handled twice per week, once during a cage change and once for a routine health check. We found strain dependent effects of handling method on behavioural measures of anxiety: tunnel handled Balb/c mice interacted with the handler more than tail handled conspecifics, and tunnel handled CTRL mice showed increased open arm exploration in the elevated plus-maze. Mice undergoing UCMS showed increased plasma corticosterone levels and reduced sucrose preference. However, we found no effect of handling method on these stress-associated measures. Our results therefore indicate that routine tail handling can affect behavioural measures of anxiety, but may not be a significant source of chronic husbandry stress. Our results also highlight strain dependent responses to handling methods.
Collapse
Affiliation(s)
- Janja Novak
- grid.5734.50000 0001 0726 5157Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ivana Jaric
- grid.5734.50000 0001 0726 5157Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marianna Rosso
- grid.5734.50000 0001 0726 5157Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- grid.5734.50000 0001 0726 5157Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Chadi Touma
- grid.10854.380000 0001 0672 4366Department of Behavioural Biology, Osnabrück University, Osnabrück, Germany
| | - Hanno Würbel
- grid.5734.50000 0001 0726 5157Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Sucrose Preference Test as a Measure of Anhedonic Behavior in a Chronic Unpredictable Mild Stress Model of Depression: Outstanding Issues. Brain Sci 2022; 12:brainsci12101287. [PMID: 36291221 PMCID: PMC9599556 DOI: 10.3390/brainsci12101287] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022] Open
Abstract
Despite numerous studies on the neurobiology of depression, the etiological and pathophysiological mechanisms of this disorder remain poorly understood. A large number of animal models and tests to evaluate depressive-like behavior have been developed. Chronic unpredictable mild stress (CUMS) is the most common and frequently used model of depression, and the sucrose preference test (SPT) is one of the most common tests for assessing anhedonia. However, not all laboratories can reproduce the main effects of CUMS, especially when this refers to a decrease in sucrose preference. It is also unknown how the state of anhedonia, assessed by the SPT, relates to the state of anhedonia in patients with depression. We analyzed the literature available in the PubMed database using keywords relevant to the topic of this narrative review. We hypothesize that the poor reproducibility of the CUMS model may be due to differences in sucrose consumption, which may be influenced by such factors as differences in sucrose preference concentration threshold, water and food deprivation, and differences in animals’ susceptibility to stress. We also believe that comparisons between animal and human states of anhedonia should be made with caution because there are many inconsistencies between the two, including in assessment methods. We also tried to offer some recommendations that should improve the reproducibility of the CUMS model and provide a framework for future research.
Collapse
|
7
|
Fu Y, Liu H, He L, Ma S, Chen X, Wang K, Zhao F, Qi F, Guan S, Liu Z. Prenatal chronic stress impairs the learning and memory ability via inhibition of the NO/cGMP/PKG pathway in the Hippocampus of offspring. Behav Brain Res 2022; 433:114009. [PMID: 35850398 DOI: 10.1016/j.bbr.2022.114009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
Numerous clinical and animal studies have found that antenatal chronic stress can lead to pathological changes the hippocampal development from embryos to adult, but the mechanisms are not well understood. Proteomic analyses provide a new insight to explore the potential mechanisms of this impairment. In this study, gestating rats were subjected to chronic unpredictable mild stress (CUMS) during pregnant days using nine different stimulations, and the changes of the learning and memory performance and the expression of proteins in the hippocampus of offspring were measured. It was found that prenatal chronic stress led to growth retardation, impaired spatial learning and memory ability in the offspring. Furthermore, prenatal stress caused various degrees of damage to neurons, Nissl body, mitochondria and synaptic structures in hippocampal CA3 region of offspring. In addition, 26 significantly different expressed proteins (DEPs) were found between the two groups by using isoquantitative tag-based relative and absolute quantification (iTRAQ) proteomics analysis. Further analyses of these DEPs showed that involved with different molecular functions and several biological processes, such as biological regulation and metabolic processes. Among these, the KEGG pathway enrichment showed that learning and memory impairment was mainly associated with the cyclic guanosine monophosphate protein kinase G (cGMP-PKG) pathway. At the same time, compared with OPC group, the NO, nNOS and cGMP level were significantly decreased, and the expression of PKG protein was also dropped. All of these results suggested that pregnant rats exposed to chronic psychological stress might impair spatial learning and memory ability of offspring, by disturbing the NO/cGMP/PKG signaling pathway.
Collapse
Affiliation(s)
- Youjuan Fu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Hongya Liu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ling He
- Obstetrics and Gynecology Center, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Shuqin Ma
- Obstetrics and Gynecology Center, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Xiaohui Chen
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kai Wang
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Feng Zhao
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Faqiu Qi
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Suzhen Guan
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Zhihong Liu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
8
|
Csabai D, Sebők-Tornai A, Wiborg O, Czéh B. A Preliminary Quantitative Electron Microscopic Analysis Reveals Reduced Number of Mitochondria in the Infralimbic Cortex of Rats Exposed to Chronic Mild Stress. Front Behav Neurosci 2022; 16:885849. [PMID: 35600987 PMCID: PMC9115382 DOI: 10.3389/fnbeh.2022.885849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Exposure to severe, uncontrollable and long-lasting stress is a strong risk factor for the development of numerous mental and somatic disorders. Animal studies document that chronic stress can alter neuronal morphology and functioning in limbic brain structures such as the prefrontal cortex. Mitochondria are intracellular powerhouses generating chemical energy for biochemical reactions of the cell. Recent findings document that chronic stress can lead to changes in mitochondrial function and metabolism. Here, we studied putative mitochondrial damage in response to chronic stress in neurons of the medial prefrontal cortex. We performed a systematic quantitative ultrastructural analysis to examine the consequences of 9-weeks of chronic mild stress on mitochondria number and morphology in the infralimbic cortex of adult male rats. In this preliminary study, we analyzed 4,250 electron microscopic images and 67000 mitochondria were counted and examined in the brains of 4 control and 4 stressed rats. We found significantly reduced number of mitochondria in the infralimbic cortex of the stressed animals, but we could not detect any significant alteration in mitochondrial morphology. These data support the concept that prolonged stress can lead to mitochondrial loss. This in turn may result in impaired energy production. Reduced cellular energy may sensitize the neurons to additional injuries and may eventually trigger the development of psychopathologies.
Collapse
Affiliation(s)
- Dávid Csabai
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Abigél Sebők-Tornai
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Hylin MJ, Watanasriyakul WT, Hite N, McNeal N, Grippo AJ. Morphological changes in the basolateral amygdala and behavioral disruptions associated with social isolation. Behav Brain Res 2022; 416:113572. [PMID: 34499940 PMCID: PMC8492539 DOI: 10.1016/j.bbr.2021.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Social isolation and the disruption of established social bonds contribute to several physical and psychological health issues. Animal models are a useful tool for investigating consequences of social stress, including social isolation. The current study examined morphological changes in the basolateral amygdala (BLA) and affect-related behavioral and endocrine changes due to prolonged social isolation, using the translational prairie vole model (Microtus ochrogaster). Adult male prairie voles were either socially paired (control) or isolated from a same-sex sibling for 4 weeks. Following this 4-week period, a subset of animals (n = 6 per condition) underwent a series of behavioral tasks to assess affective, social, and stress-coping behaviors. Plasma was collected following the last behavioral task for stressor-induced endocrine assays. Brains were collected from a separate subset of animals (n = 10 per condition) following the 4-week social housing period for dendritic structure analyses in the BLA. Social isolation was associated with depressive- and anxiety-like behaviors, as well as elevated oxytocin reactivity following a social stressor. Social isolation was also associated with altered amount of dendritic material in the BLA, with an increase in spine density. These results provide further evidence that social isolation may lead to the development of affective disorders. Dysfunction in the oxytocin system and BLA remodeling may mediate these behavioral changes. Further research will promote an understanding of the connections between oxytocin function and structural changes in the BLA in the context of social stress. This research can facilitate novel treatments for alleviating or preventing behavioral and physiological consequences of social stressors in humans.
Collapse
Affiliation(s)
- Michael J. Hylin
- Department of Psychology, Southern Illinois University, Carbondale, IL, 62901
| | | | - Natalee Hite
- Department of Physiology, Southern Illinois University, Carbondale, IL, 62901
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL, 60115,Author for Correspondence: Angela J. Grippo, Ph.D.Department of PsychologyNorthern Illinois University1425 W. Lincoln HighwayDeKalb, IL, 60115 815-753-0372
| |
Collapse
|
10
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
11
|
Minhoto GB, Khoury RD, Orozco EIF, Prado RF, Valera MC. Effect of chronic unpredictable stress on the progression of experimental apical periodontitis in rats. Int Endod J 2021; 54:1342-1352. [PMID: 33724486 DOI: 10.1111/iej.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
AIM To establish an experimental model combining chronic stress and apical periodontitis by assessing the development of periapical lesions in rats in three different time points. METHODOLOGY Forty-eight male Wistar rats were randomly assigned into two equal groups: Apical periodontitis (AP) and AP + Stress (AP + S). The animals of the AP group were not exposed to stressful conditions whereas the AP + S group were exposed to a variety of stressors on a daily basis until the end of the experiment. After three weeks of chronic unpredictable stress, apical periodontitis was induced in both groups by exposing the pulpal tissue of the mandibular first molar to the oral environment. Each group was further subdivided into three subgroups according to the euthanasia period: 14, 21 and 28 days after pulp exposure. The animals were weighed, and the blood was collected for corticosterone serum dosage by radioimmunoassay. The mandibles were removed and submitted to histopathological and microtomography analyses to assess the inflammatory response and the progression of periapical lesions. Comparisons between the AP and AP + S groups were performed using Student's t-test and Mann-Whitney U-test for parametric and nonparametric data, respectively. The one-way anova test followed by Tukey's test (parametric data) and Kruskal-Wallis followed by Dunn's test (nonparametric data) were used for comparisons between the three time points within the same group (P < 0.05). RESULTS The AP + S group had a significantly lower average percentage of weight gain at 14 days and 21 days after AP induction (P < 0.05). Significantly higher levels of corticosterone were found in the AP + S group at 21 days (P < 0.05). The AP + S group had a significantly greater intensity and extension of inflammatory infiltrate with larger areas of bone loss compared to the AP groups at 21 days (P < 0.05). The volume of the periapical lesions in the AP + S group was significantly larger than that of the AP group 21 days following pulp exposure (P < 0.05). CONCLUSIONS The chronic unpredictable stress model applied for 6 weeks exacerbated the inflammatory response and increased bone loss associated with AP, especially 21 days after its induction. This model appears to be suitable for investigating the bidirectional relationship between apical periodontitis and chronic stress.
Collapse
Affiliation(s)
- G B Minhoto
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - R D Khoury
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - E I F Orozco
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - R F Prado
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - M C Valera
- Endodontic Division, Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
12
|
Effects of handling on the behavioural phenotype of the neuregulin 1 type III transgenic mouse model for schizophrenia. Behav Brain Res 2021; 405:113166. [PMID: 33588020 DOI: 10.1016/j.bbr.2021.113166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Handling of laboratory mice affects animal wellbeing and behavioural test outcomes. However, present research has focused on handling effects in common strains of laboratory mice despite the knowledge that environmental factors can modify established phenotypes of genetic mouse models. Thus, we examined the impact of handling on the face validity of a transgenic mouse model for the schizophrenia risk gene neuregulin 1 (i.e. Nrg1 type III overexpression). Nrg1 III tg and wild type-like (WT) control mice of both sexes underwent tail or tunnel handling before being assessed in the open field (OF), elevated plus maze (EPM), social preference/novelty, prepulse inhibition, and fear conditioning tests. Tunnel-handling reduced the startle response in all mice, increased OF locomotion and exploration in males and reduced anxiety in males (OF) and females (EPM) compared to tail-handling. Importantly, tunnel handling induced a more pronounced startle response to increasing startle stimuli in Nrg1 III tg females compared to respective controls, a phenomenon absent in tail-handled females. Finally, Nrg1 III tg males displayed reduced OF exploration and centre locomotion and Nrg1 III tg females displayed increased cue freezing over time compared to controls. In conclusion, handling methods have a significant impact on a variety of behavioural domains thus the impact of routine handling procedures need be considered when testing behavioural phenotypes. Handling did not change the main schizophrenia-relevant characteristics of Nrg1 III tg mice but affected the acoustic startle-response in a genotype- and sex-specific manner. Future research should evaluate the effect of handling on other genetic models.
Collapse
|
13
|
Microstructure analysis of sucrose ingestion in the course of chronic treatment with imipramine. Physiol Behav 2020; 224:113032. [PMID: 32598942 DOI: 10.1016/j.physbeh.2020.113032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
The analysis of licking microstructure provides measures which might be interpreted in terms of psychological constructs, such as pleasure and motivation, relevant for the interpretation of the effects of antidepressant drugs. The aim of this study was to characterise the effect of the prototypical antidepressant imipramine on the microstructure of licking for a 10% sucrose solution. In particular, ten 30-min sessions were performed in the course of a daily 21 day treatment with imipramine - 5, 10 and 20 mg/kg/die administered intraperitoneally. To interpret drug effects in relation to the presumed concentration of imipramine and its active metabolite desipramine, the experimental sessions were performed in an alternate order either 1-h or 24-h after imipramine administration. In the sessions performed 1-h after drug administration, the results showed a dose-dependent reduction of sucrose ingestion, accounted for by a reduction of the licking burst number. Moreover, reduced intra-burst lick rate and increased latency to lick were observed with the highest doses. Imipramine effect in the sessions performed 24-h after drug administration was similar but less pronounced. These results are consistent with the hypothesis that the reduction of sucrose ingestion might be due to reduced motivation and/or to a potentiation of satiety signals. These effects appear to be related, at least in part, to brain drug levels at testing time, and do not seem related to the mechanisms underlying the antidepressant therapeutic effect. However, these results might be relevant in explaining the effects of imipramine in models of drug-seeking and on body weight.
Collapse
|
14
|
Hagar M, Roman G, Eitan O, Noam BY, Abrham Z, Benjamin S. A Tellurium-Based Small Immunomodulatory Molecule Ameliorates Depression-Like Behavior in Two Distinct Rat Models. Neuromolecular Med 2020; 22:437-446. [PMID: 32638207 DOI: 10.1007/s12017-020-08603-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 01/29/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of morbidity, and the fourth leading cause of disease burden worldwide. While MDD is a treatable condition for many individuals, others suffer from treatment-resistant depression (TRD). Here, we suggest the immunomodulatory compound AS101 as novel therapeutic alternative. We previously showed in animal models that AS101 reduces anxiety-like behavior and elevates levels of the brain-derived neurotrophic factor (BDNF), a protein that has a key role in the pathophysiology of depression. To explore the potential antidepressant properties of AS101, we used the extensively characterized chronic mild stress (CMS) model, and the depressive rat line (DRL Finally, in Exp. 3 to attain insight into the mechanism we knocked down BDNF in the hippocampus, and demonstrated that the beneficial effect of AS101 was abrogated. Together with the previously established safety profile of AS101 in humans, these results may represent the first step towards the development of a novel treatment option for MDD and TRD.
Collapse
Affiliation(s)
- Moshe Hagar
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Bar-Ilan University, Ramat Gan, Israel.,Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Gersner Roman
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Okun Eitan
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Barnea-Ygael Noam
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Zangen Abrham
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Sredni Benjamin
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
15
|
Wright RL, Gilmour G, Dwyer DM. Wistar Kyoto Rats Display Anhedonia In Consumption but Retain Some Sensitivity to the Anticipation of Palatable Solutions. Front Behav Neurosci 2020; 14:70. [PMID: 32581735 PMCID: PMC7283460 DOI: 10.3389/fnbeh.2020.00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
The Wistar Kyoto (WKY) rat has been proposed as a model of depression-like symptoms. However, anhedonia-a reduction in the response to normatively rewarding events-as a central depression symptom has yet to be fully assessed in this model. We compared WKY rats and Wistar controls, with stress-susceptibility examined by applying mild unpredictable stress to a subset of each group. Anhedonia-like behavior was assessed using microstructural analysis of licking behavior, where mean lick cluster size reflects hedonic responses. This was combined with tests of anticipatory contrast, where the consumption of a moderately palatable solution (4% sucrose) is suppressed in anticipation of a more palatable solution (32% sucrose). WKY rats displayed greatly attenuated hedonic reactions to sucrose overall, although their reactions retained some sensitivity to differences in sucrose concentration. They displayed normal reductions in consumption in anticipatory contrast, although the effect of contrast on hedonic reactions was greatly blunted. Mild stress produced overall reductions in sucrose consumption, but this was not exacerbated in WKY rats. Moreover, mild stress did not affect hedonic reactions or the effects of contrast. These results confirm that the WKY substrain expresses a direct behavioral analog of anhedonia, which may have utility for increasing mechanistic understanding of depression symptoms.
Collapse
Affiliation(s)
- Rebecca L Wright
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly & Co. Ltd., Erl Wood Manor, United Kingdom
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
16
|
Jiménez Vásquez FDJ, Guerrero DM, Osornio MR, Rubio Osornio MDC, Suárez SO, Retana-Márquez S. Decreased serotonin content and release in the ventral hippocampus of prenatally stressed male rats in response to forced swim test. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Behavioural characterisation of chronic unpredictable stress based on ethologically relevant paradigms in rats. Sci Rep 2019; 9:17403. [PMID: 31758000 PMCID: PMC6874551 DOI: 10.1038/s41598-019-53624-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
The chronic unpredictable stress (CUS) paradigm is extensively used in preclinical research. However, CUS exhibits translational inconsistencies, some of them resulting from the use of adult rodents, despite the evidence that vulnerability for many psychiatric disorders accumulates during early life. Here, we assessed the validity of the CUS model by including ethologically-relevant paradigms in juvenile rats. Thus, socially-isolated (SI) rats were submitted to CUS and compared with SI (experiment 1) and group-housed controls (experiment 1 and 2). We found that lower body-weight gain and hyperlocomotion, instead of sucrose consumption and preference, were the best parameters to monitor the progression of CUS, which also affected gene expression and neurotransmitter contents associated with that CUS-related phenotype. The behavioural characterisation after CUS placed locomotion and exploratory activity as the best stress predictors. By employing the exploratory factor analysis, we reduced each behavioural paradigm to few latent variables which clustered into two general domains that strongly predicted the CUS condition: (1) hyper-responsivity to novelty and mild threats, and (2) anxiety/depressive-like response. Altogether, the analyses of observable and latent variables indicate that early-life stress impairs the arousal-inhibition system leading to augmented and persistent responses towards novel, rewarding, and mildly-threatening stimuli, accompanied by lower body-weight gain.
Collapse
|
18
|
Khedr LH, Nassar NN, Rashed L, El-Denshary ED, Abdel-Tawab AM. TLR4 signaling modulation of PGC1-α mediated mitochondrial biogenesis in the LPS-Chronic mild stress model: Effect of fluoxetine and pentoxiyfylline. Life Sci 2019; 239:116869. [PMID: 31678277 DOI: 10.1016/j.lfs.2019.116869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 11/15/2022]
Abstract
AIM The addition of repeated lipopolysaccharide (LPS) to chronic mild stress was recently proposed in our lab as an alternative model of depression, highlighting the possible interaction between stress and immune-inflammatory pathways in predisposing depression. Given that CMS-induced depressive behavior was previously related to impaired hippocampal energy metabolism and mitochondrial dysfunction, our current study aimed to investigate the interplay between toll-like receptor 4 (TLR4) signaling and peroxisome proliferator-activated receptor gamma coactivators-1-alpha (PGC1-α) as a physiological regulator of energy metabolism and mitochondrial biogenesis in the combined LPS/CMS model. MAIN METHODS Male Wistar rats were exposed to either LPS (50 μg/kg i.p.) over 2 weeks, CMS protocol for 4 weeks or LPS over 2 weeks followed by 4 weeks of CMS (LPS/CMS). Three additional groups of rats were exposed to LPS/CMS protocol and treated with either pentoxifylline (PTX), fluoxetine (FLX) or a combination of both. Rats were examined for behavioral, neurochemical, gene expression and mitochondrial ultra-structural changes. KEY FINDINGS LPS/CMS increased the expression of TLR4 and its downstream players; MyD88, NFκB and TNF-α along with an escalation in hippocampal-energy metabolism and p-AMPK. Simultaneously LPS/CMS attenuated the expression of PGC1-α/NRF1/Tfam and mt-DNA. The antidepressant (AD) 'FLX', the TNF-α inhibitor 'PTX' and their combination ameliorated the LPS/CMS-induced changes. Interestingly, all the aforementioned changes induced by the LPS/CMS combined model were significantly less than those induced by CMS alone. SIGNIFICANCE Blocking the TLR4/NFκB signaling enhanced the activation of the PGC1-α/NRF1/Tfam and mt-DNA content independent on the activation of the energy-sensing kinase AMPK.
Collapse
Affiliation(s)
- L H Khedr
- Departmment of Pharmacology, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - N N Nassar
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - E D El-Denshary
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - A M Abdel-Tawab
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Manners MT, Brynildsen JK, Schechter M, Liu X, Eacret D, Blendy JA. CREB deletion increases resilience to stress and downregulates inflammatory gene expression in the hippocampus. Brain Behav Immun 2019; 81:388-398. [PMID: 31255680 PMCID: PMC6754757 DOI: 10.1016/j.bbi.2019.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/05/2019] [Accepted: 06/22/2019] [Indexed: 01/22/2023] Open
Abstract
The transcription factor CREB (cyclic AMP response element (CRE)-binding protein) is implicated in the pathophysiology and treatment of depression. Structural and functional studies in both animals and humans suggest that abnormalities of the hippocampus may play a role in depression. CREB regulates thousands of genes, yet to date, only a handful that mediate depression or antidepressant response have been identified as relevant CREB targets. In order to comprehensively identify genes regulated by CREB in the hippocampus, we employed translating ribosome affinity purification (TRAP) to detect actively translating mRNAs in wild type and CREB-deficient mice. Using CrebloxP/loxP; RosaLSL-GFP-L10a mice, we conducted whole genome sequencing to identify transcripts only in cells that lack CREB, as introduction of Cre-recombinase simultaneously deleted CREB and expressed GFP-tagged L10a ribosomes that enabled TRAP. We identified over 200 downregulated genes predominantly associated with inflammation and the immune system, including toll-like receptor 1 (TLR1). To determine if baseline disruption in gene expression in the hippocampus of CREB-deficient mice can modulate behavior, we used unpredictable chronic mild stress (UCMS) to produce a set of behavioral alterations with strong validity for depression. We found that CREB-deficient mice demonstrated resilience to the physiological effects of UCMS and also showed changes in affective behaviors specifically in the presence of stress. TLR1 expression was increased following UCMS in control but not in CREB-deficient mice. The results suggest that CREB-mediated regulation of immune system and inflammatory factors may provide additional targets for the treatment of depression.
Collapse
Affiliation(s)
- Melissa T. Manners
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia K. Brynildsen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Schechter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xin Liu
- Biological Basis of Behavior, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Darrell Eacret
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Corresponding author at: Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Translational Research Laboratory, 125 South 31 Street, Philadelphia, PA 19104, United States.,
| |
Collapse
|
20
|
Hypothalamic-pituitary-adrenal axis responsivity to an acute novel stress in female rats subjected to the chronic mild stress paradigm. Brain Res 2019; 1723:146402. [PMID: 31446015 DOI: 10.1016/j.brainres.2019.146402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/29/2022]
Abstract
The chronic mild stress (CMS) paradigm is the most frequently investigated animal model for major depression. The hypothalamic-pituitary-adrenal (HPA) axis participates in the generation of depressive symptomatology. We examined whether the depression-like state induced by CMS is associated with immediate changes in HPA axis activation in response to a novel acute stress and whether this response could be modified by hormonal status. Adult female Wistar rats were ovariectomized and received estrogen or vehicle pellets. After 2 weeks, rats were subjected to CMS (or control) conditions for 2.5 or 4.5 weeks. Rats were subsequently subjected to restraint stress for 1 h, and plasma corticosterone (CT) levels were determined before (2:00 p.m.) and after acute stress induction (3:00 and 4:00 p.m.). CT levels and FOS expression were measured in the medial parvocellular subdivision of the PVN (PaMP), central (CeA) and medial amygdala (MeA) and ventral subiculum of the hippocampus (vSub). Plasma CT levels in animals treated with 6.5 weeks of estrogen were elevated before and 1 h after restraint stress induction. Results indicate that the estrogen chronicity and CMS exposure impacted CT secretion. Neuronal PaMP, CeA, MeA and vSub activity decreased after 4.5 weeks of CMS in all groups. No differences were detected between CMS and non-CMS groups. These data suggest that the HPA central hyporesponsiveness observed in the experimental groups subjected to a longer protocol period was independent to CMS paradigm and estrogen treatment restored partially its activity. These data suggest that additional stressors could be responsible for the observed alterations of the HPA axis.
Collapse
|
21
|
Aguiniga LM, Yang W, Yaggie RE, Schaeffer AJ, Klumpp DJ. Acyloxyacyl hydrolase modulates depressive-like behaviors through aryl hydrocarbon receptor. Am J Physiol Regul Integr Comp Physiol 2019; 317:R289-R300. [PMID: 31017816 PMCID: PMC6732428 DOI: 10.1152/ajpregu.00029.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023]
Abstract
Corticotropin-releasing factor (CRF) regulates stress responses, and aberrant CRF signals are associated with depressive disorders. Crf expression is responsive to arachidonic acid (AA), where CRF is released from the hypothalamic paraventricular nucleus (PVN) to initiate the hypothalamic-pituitary-adrenal axis, culminating in glucocorticoid stress hormone release. Despite this biological and clinical significance, Crf regulation is unclear. Here, we report that acyloxyacyl hydrolase, encoded by Aoah, is expressed in the PVN, and Aoah regulates Crf through the aryl hydrocarbon receptor (AhR). We previously showed that AOAH-deficient mice mimicked interstitial cystitis/bladder pain syndrome, a condition frequently associated with comorbid anxiety and depression. With the use of novelty-suppressed feeding and sucrose preference assays to quantify rodent correlates of anxiety/depression, AOAH-deficient mice exhibited depressive behaviors. AOAH-deficient mice also had increased CNS AA, increased Crf expression in the PVN, and elevated serum corticosterone, consistent with dysfunction of the hypothalamic-pituitary-adrenal axis. The human Crf promoter has putative binding sites for AhR and peroxisome proliferator-activated receptor (PPARγ). PPARγ did not affect AA-dependent Crf expression in vitro, and conditional Pparγ knockout did not alter the AOAH-deficient depressive phenotype, despite previous studies implicating PPARγ as a therapeutic target for depression. In contrast, Crf induction was mediated by AhR binding sites in vitro and increased by AhR overexpression. Furthermore, conditional Ahr knockout rescued the depressive phenotype of AOAH-deficient mice. Finally, an AhR antagonist rescued the AOAH-deficient depressive phenotype. Together, our results demonstrate that Aoah is a novel genetic regulator of Crf mediated through AhR, and AhR is a therapeutic target for depression.
Collapse
Affiliation(s)
- Lizath M Aguiniga
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Wenbin Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ryan E Yaggie
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David J Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
22
|
Camilleri C, Beiter RM, Puentes L, Aracena-Sherck P, Sammut S. Biological, Behavioral and Physiological Consequences of Drug-Induced Pregnancy Termination at First-Trimester Human Equivalent in an Animal Model. Front Neurosci 2019; 13:544. [PMID: 31191234 PMCID: PMC6549702 DOI: 10.3389/fnins.2019.00544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022] Open
Abstract
Given the significant physiological changes that take place during and resulting from pregnancy, as well as the relative absence of such information in relation to pregnancy termination, this study investigated the potential for developing a valid animal model to objectively assess the biological, physiological and behavioral consequences of drug-induced pregnancy termination. Female Long-Evans rats were divided into four groups (n = 19-21/group), controlling for drug [mifepristone (50 mg/kg/3 ml, i.g.)/misoprostol (0.3 mg/kg/ml, i.g.) or vehicle (1% Carboxymethylcellulose Sodium/0.2% Tween® 80 suspension, i.g.)] and pregnancy. Drug administration took place on days 12-14 of gestation (days 28-40 human gestational equivalent). Vehicle was administered to the controls on the same days. Parameters measured included rat body weight, food intake, vaginal impedance, sucrose consumption/preference, locomotor activity, forced swim test, and home-cage activity. At the termination of the study, rats were deeply anesthetized using urethane, and blood, brain, and liver were collected for biochemical analysis. Following drug/vehicle administration, only the pregnancy termination group (pregnant, drug) displayed a significant decrease in body weight, food intake, locomotor activity-related behaviors and home-cage activity relative to the control group (non-pregnant, vehicle). Additionally, the pregnancy termination group was the only group that displayed a significant reduction in sucrose consumption/preference during Treatment Week relative to Pre-Treatment Week. Vaginal impedance did not significantly decrease over time in parous rats in contrast to all other groups, including the rats in the pregnancy termination group. Biochemical analysis indicated putative drug- and pregnancy-specific influences on oxidative balance. Regression analysis indicated that pregnancy termination was a predictor variable for body weight, food intake and all locomotor activity parameters measured. Moreover, pertaining to body weight and food intake, the pregnancy termination group displayed significant changes, which were not present in a group of naturally miscarrying rats following pregnancy loss. Overall, our results appear to suggest negative biological and behavioral effects following pregnancy termination, that appear to also be distinct from natural miscarriage, and potential benefits of parity pertaining to fecundity. Thus, our findings indicate the importance for further objective investigation of the physiological and behavioral consequences of medical abortion, in order to provide further insight into the potential implications in humans.
Collapse
Affiliation(s)
- Christina Camilleri
- Department of Psychology, Franciscan University of Steubenville, Steubenville, OH, United States
| | - Rebecca M. Beiter
- Department of Psychology, Franciscan University of Steubenville, Steubenville, OH, United States
| | - Lisett Puentes
- School of Medicine, Universidad San Sebastián, Conceptión, Chile
| | | | - Stephen Sammut
- Department of Psychology, Franciscan University of Steubenville, Steubenville, OH, United States
| |
Collapse
|
23
|
Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 2019; 99:101-116. [DOI: 10.1016/j.neubiorev.2018.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
|
24
|
Harro J. Animal models of depression: pros and cons. Cell Tissue Res 2018; 377:5-20. [PMID: 30560458 DOI: 10.1007/s00441-018-2973-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Animal models of depression are certainly needed but the question in the title has been raised owing to the controversies in the interpretation of the readout in a number of tests, to the perceived lack of progress in the development of novel treatments and to the expressed doubts in whether animal models can offer anything to make a true breakthrough in understanding the neurobiology of depression and producing novel drugs against depression. Herewith, it is argued that if anything is wrong with animal models, including those for depression, it is not about the principle of modelling complex human disorder in animals but in the way the tests are selected, conducted and interpreted. Further progress in the study of depression and in developing new treatments, will be supported by animal models of depression if these were more critically targeted to drug screening vs. studies of underlying neurobiology, clearly stratified to vulnerability and pathogenetic models, focused on well-defined endophenotypes and validated for each setting while bearing the existing limits to validation in mind. Animal models of depression need not to rely merely on behavioural readouts but increasingly incorporate neurobiological measures as the understanding of depression as human brain disorder advances. Further developments would be fostered by cross-fertilizinga translational approach that is bidirectional, research on humans making more use of neurobiological findings in animals.
Collapse
Affiliation(s)
- Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia.
| |
Collapse
|
25
|
Wei S, Li Z, Ren M, Wang J, Gao J, Guo Y, Xu K, Li F, Zhu D, Zhang H, Lv R, Qiao M. Social defeat stress before pregnancy induces depressive-like behaviours and cognitive deficits in adult male offspring: correlation with neurobiological changes. BMC Neurosci 2018; 19:61. [PMID: 30326843 PMCID: PMC6192280 DOI: 10.1186/s12868-018-0463-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Epidemiological surveys and studies with animal models have established a relationship between maternal stress and affective disorders in their offspring. However, whether maternal depression before pregnancy influences behaviour and related neurobiological mechanisms in the offspring has not been studied. RESULTS A social defeat stress (SDS) maternal rat model was established using the resident-intruder paradigm with female specific pathogen-free Wistar rats and evaluated with behavioural tests. SDS maternal rats showed a significant reduction in sucrose preference and locomotor and exploratory activities after 4 weeks of stress. In the third week of the experiment, a reduction in body weight gain was observed in SDS animals. Sucrose preference, open field, the elevated-plus maze, light-dark box, object recognition, the Morris water maze, and forced swimming tests were performed using the 2-month-old male offspring of the female SDS rats. Offspring subjected to pre-gestational SDS displayed enhanced anxiety-like behaviours, reduced exploratory behaviours, reduced sucrose preference, and atypical despair behaviours. With regard to cognition, the offspring showed significant impairments in the retention phase of the object recognition test, but no effect was observed in the acquisition phase. These animals also showed impairments in recognition memory, as the discrimination index in the Morris water maze test in this group was significantly lower for both 1 h and 24 h memory retention compared to controls. Corticosterone, adrenocorticotropic hormone, and monoamine neurotransmitters levels were determined using enzyme immunoassays or radioimmunoassays in plasma, hypothalamus, left hippocampus, and left prefrontal cortex samples from the offspring of the SDS rats. These markers of hypothalamic-pituitary-adrenal axis responsiveness and the monoaminergic system were significantly altered in pre-gestationally stressed offspring. Brain-derived neurotrophic factor (BDNF), cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and serotonin transporter (SERT) protein levels were evaluated using western blotting with right hippocampus and right prefrontal cortex samples. Expression levels of BDNF, pCREB, and SERT in the offspring were also altered in the hippocampus and in the prefrontal cortex; however, there was no effect on CREB. CONCLUSION We conclude that SDS before pregnancy might induce depressive-like behaviours, cognitive deficits, and neurobiological alterations in the offspring.
Collapse
Affiliation(s)
- Sheng Wei
- Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, #4655 University Road, University Science Park, Changqing District, Jinan, 250355 China
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012 China
- Laboratory of Behavioural Brain Analysis, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Zifa Li
- Laboratory of Behavioural Brain Analysis, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Meng Ren
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Jieqiong Wang
- Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, #4655 University Road, University Science Park, Changqing District, Jinan, 250355 China
| | - Jie Gao
- Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, #4655 University Road, University Science Park, Changqing District, Jinan, 250355 China
| | - Yinghui Guo
- Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, #4655 University Road, University Science Park, Changqing District, Jinan, 250355 China
| | - Kaiyong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Fang Li
- Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, #4655 University Road, University Science Park, Changqing District, Jinan, 250355 China
- Fengtai Maternal and Children’s Health Hospital of Beijing, Beijing, 100069 China
| | - Dehao Zhu
- Laboratory of Behavioural Brain Analysis, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Hao Zhang
- Laboratory of Behavioural Brain Analysis, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Rongju Lv
- Laboratory of Behavioural Brain Analysis, Shandong University of Traditional Chinese Medicine, Jinan, 250355 China
| | - Mingqi Qiao
- Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, #4655 University Road, University Science Park, Changqing District, Jinan, 250355 China
| |
Collapse
|
26
|
Martis LS, Brision C, Holmes MC, Wiborg O. Resilient and depressive-like rats show distinct cognitive impairments in the touchscreen paired-associates learning (PAL) task. Neurobiol Learn Mem 2018; 155:287-296. [PMID: 30138691 DOI: 10.1016/j.nlm.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 01/17/2023]
Abstract
Depression-associated cognitive impairments persist after remission from affective symptoms of major depressive disorder (MDD), decreasing quality of life and increasing risk of relapse in patients. Conventional antidepressants are ineffective in restoring cognitive functions. Therefore, novel antidepressants with improved efficacy for ameliorating cognitive symptoms are required. For tailoring such antidepressants, translational animal models are in demand. The chronic mild stress (CMS) model is a well-validated preclinical model of depression and known for eliciting the MDD core symptom "anhedonia" in stress-susceptible rats. Thus, cognitive performance was assessed in rats susceptible (depressive-like) or resilient to CMS and in unchallenged controls. The rodent analogue of the human touchscreen Paired-Associates Learning (PAL) task was used for cognitive assessment. Both stress groups exhibited a lack of response inhibition compared to controls while only the depressive-like group was impaired in task acquisition. The results indicate that cognitive deficits specifically associate with the anhedonic-like state rather than being a general consequence of stress exposure. Hence, we propose that the application of a translational touchscreen task on the etiologically valid CMS model, displaying depression-associated cognitive impairments, provides a novel platform for pro-cognitive and clinically pertinent antidepressant drug screening.
Collapse
Affiliation(s)
- Lena-Sophie Martis
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, United Kingdom
| | - Claudia Brision
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Megan C Holmes
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, United Kingdom
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
27
|
The Effect of Prenatal Stress on Auditory Brainstem Responses in Rat Pups. HEALTH SCOPE 2018. [DOI: 10.5812/jhealthscope.55019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Corticosterone impairs flexible adjustment of spatial navigation in an associative place–reward learning task. Behav Pharmacol 2018; 29:351-364. [DOI: 10.1097/fbp.0000000000000370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
An alcohol withdrawal test battery measuring multiple behavioral symptoms in mice. Alcohol 2018; 68:19-35. [PMID: 29427828 DOI: 10.1016/j.alcohol.2017.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/30/2022]
Abstract
Despite acceptance that risk for alcohol-use disorder (AUD) has a large genetic component, the identification of genes underlying various components of risk for AUD has been hampered in humans, in part by the heterogeneity of expression of the phenotype. One aspect of AUD is physical dependence. Alcohol withdrawal is a serious consequence of alcohol dependence with multiple symptoms, many of which are seen in multiple species, and can be experienced over a wide-ranging time course. In the present three studies, we developed a battery of withdrawal tests in mice, examining behavioral symptoms from multiple domains that could be measured over time. To permit eventual use of the battery in different strains of mice, we used male and female mice of a genetically heterogeneous stock developed from intercrossing eight inbred strains. Withdrawal symptoms were assessed using commonly used tests after administration of ethanol in vapor for 72 continuous hours. We found significant effects of ethanol withdrawal versus air-breathing controls on nearly all symptoms, spanning 4 days following ethanol vapor inhalation. Withdrawal produced hypothermia, greater neurohyperexcitability (seizures and tremor), anxiety-like behaviors using an apparatus (such as reduced transitions between light and dark compartments), anhedonia (reduced sucrose preference), Straub tail, backward walking, and reductions in activity; however, there were no changes in thermal pain sensitivity, hyper-reactivity to handling, or anxiety-like emergence behaviors in other apparatus. Using these data, we constructed a refined battery of withdrawal tests. Individual differences in severity of withdrawal among different tests were weakly correlated at best. This battery should be useful for identifying genetic influences on particular withdrawal behaviors, which should reflect the influences of different constellations of genes.
Collapse
|
30
|
Clarkson JM, Dwyer DM, Flecknell PA, Leach MC, Rowe C. Handling method alters the hedonic value of reward in laboratory mice. Sci Rep 2018; 8:2448. [PMID: 29402923 PMCID: PMC5799408 DOI: 10.1038/s41598-018-20716-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/23/2018] [Indexed: 12/26/2022] Open
Abstract
Mice are the most widely used model species for drug discovery and scientific research. Consequently, it is important to refine laboratory procedures and practices to ensure high standards of welfare and scientific data quality. Recent studies have identified that the standard practice of handling laboratory mice by their tails increases behaviours indicative of anxiety, which can be overcome by handling mice using a tunnel. However, despite clear negative effects on mice’s behaviour, tunnel handling has yet to be widely implemented. In this study, we provide the first evidence that tail handling also reduces mice’s responses to reward. Anhedonia is a core symptom of clinical depression, and is measured in rodents by assessing how they consume a sucrose solution: depressed mice consume less sucrose and the size of their licking bouts when drinking (their ‘lick cluster sizes’) also tend to be smaller. We found that tail handled mice showed more anhedonic responses in both measures compared to tunnel handled mice, indicative of a decreased responsiveness to reward and potentially a more depressive-like state. Our findings have significant implications for the welfare of laboratory mice as well as the design and interpretation of scientific studies, particularly those investigating or involving reward.
Collapse
Affiliation(s)
- Jasmine M Clarkson
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Dominic M Dwyer
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Paul A Flecknell
- Comparative Biology Centre, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Matthew C Leach
- School of Natural and Environmental Sciences, Agriculture Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Candy Rowe
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
31
|
Vaz RP, Cardoso A, Serrão P, Pereira PA, Madeira MD. Chronic stress leads to long-lasting deficits in olfactory-guided behaviors, and to neuroplastic changes in the nucleus of the lateral olfactory tract. Horm Behav 2018; 98:130-144. [PMID: 29277699 DOI: 10.1016/j.yhbeh.2017.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
A recent study reported that the integrity of the nucleus of the lateral olfactory tract (nLOT) is required for normal olfaction and for the display of odor-driven behaviors that are critical for species survival and reproduction. In addition to being bi-directionally connected with a key element of the neural circuitry that mediates stress response, the basolateral nucleus of the amygdala, the nLOT is a potential target for glucocorticoids as its cells express glucocorticoid receptors. Herein, we have addressed this hypothesis by exploring, first, if chronic variable stress (CVS) disrupts odor detection and discrimination, and innate olfactory-driven behaviors, namely predator avoidance, sexual behavior and aggression in male rats. Next, we examined if CVS alters the nLOT structure and if such changes can be ascribed to stress-induced effects on the activity of the main output neurons, which are glutamatergic, and/or of local GABAergic interneurons. Finally, we analyzed if the stress-induced changes are transient or, conversely, persist after cessation of CVS exposure. Our data demonstrate that CVS leads to severe olfactory deficits with inability to detect and discriminate between odors and to innately avoid predator odors. No effects of CVS on sexual and aggressive behaviors were observed. Results also showed that CVS leads to somatic hypertrophy of pyramidal glutamatergic neurons, which likely results from neuronal disinhibition consequent to the loss of inhibitory inputs mediated by GABAergic interneurons. Most of the CVS-induced effects persist beyond a 4-week stress-free period, suggesting long-lasting effects of chronic stress on the structure and function of the olfactory system.
Collapse
Affiliation(s)
- Ricardo P Vaz
- Unit of Anatomy - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Otorhinolaryngology Department, Centro Hospitalar S. João, EPE, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Armando Cardoso
- Unit of Anatomy - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - Paula Serrão
- Unit of Pharmacology and Therapeutics - Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal.
| | - Pedro A Pereira
- Unit of Anatomy - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| | - M Dulce Madeira
- Unit of Anatomy - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
32
|
Wang XL, Gao J, Wang XY, Mu XF, Wei S, Xue L, Qiao MQ. Treatment with Shuyu capsule increases 5-HT1AR level and activation of cAMP-PKA-CREB pathway in hippocampal neurons treated with serum from a rat model of depression. Mol Med Rep 2017; 17:3575-3582. [PMID: 29286104 PMCID: PMC5802157 DOI: 10.3892/mmr.2017.8339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/10/2017] [Indexed: 11/13/2022] Open
Abstract
Depressive disorder (DD) is one of the typical affective disorders with a high morbidity, high suicide rate and high recurrence rate. Dysfunction of the 5-hydroxytryptamine 1A receptor (5-HT1AR) in the brain may serve an important role in the pathogenesis of DD. Currently, selective serotonin reuptake inhibitors are the first line antidepressants with 60–70% efficacy and severe adverse effects. Previous studies have demonstrated that Chinese herbal medicines, including the Shuyu capsule (SYC), are effective antidepressants with few side effects. However, the mechanism remains unclear. In the present study, the effects of the SYC on the 5-HT1AR level and the activation of adenylyl cyclase-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element-binding (CREB) signaling pathway that 5-HT1AR mediates in the cells of hippocampal neurons were investigated in vitro. The SYC demonstrated an antidepressant effect similar to that of fluoxetine in a rat depression model. Treatment of hippocampal neurons with the serum of depressive rats resulted in a decrease in the 5-HT1AR protein level and the activation of the cAMP-PKA-CREB signaling pathway in hippocampal neurons. Exposure to the serum of rats that received chronic mild stress plus SYC treatment led to no alterations in the 5-HT1AR level or the activation of the cAMP-PKA-CREB signaling pathway compared with those of cells exposed to normal rat serum. This effect is similar to the effects of 5-HT1AR antagonist WAY-100635. In addition, the 5-HT1A agonist 8-hydroxy-(dipropylamino) tetralin did not antagonize the effects of the SYC. Furthermore, the SYC exhibited an increased effect compared with fluoxetine on 5-HT1AR levels and CREB activation. The present study suggested that the SYC functions by increasing 5-HT1AR protein levels and the activation of the 5-HT1AR-mediated cAMP-PKA-CREB signaling pathway in hippocampal neurons.
Collapse
Affiliation(s)
- Xiao-Long Wang
- School of Pharmacy, School of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Jie Gao
- Institute of Traditional Chinese Medicine Basic Theory, School of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Xiao-Yu Wang
- Institute of Traditional Chinese Medicine Basic Theory, School of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Xiao-Fei Mu
- School of Pharmacy, School of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Sheng Wei
- Laboratory Animal Center, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Ling Xue
- School of Pharmacy, School of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| | - Ming-Qi Qiao
- Institute of Traditional Chinese Medicine Basic Theory, School of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong 250355, P.R. China
| |
Collapse
|
33
|
Telmisartan Activates PPARδ to Improve Symptoms of Unpredictable Chronic Mild Stress-Induced Depression in Mice. Sci Rep 2017; 7:14021. [PMID: 29070884 PMCID: PMC5656622 DOI: 10.1038/s41598-017-14265-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/09/2017] [Indexed: 11/09/2022] Open
Abstract
Major depression is a common mental disorder that has been established to be associated with a decrease in serotonin and/or serotonin transporters in the brain. Peroxisome proliferator-activated receptor δ (PPARδ) has been introduced as a potential target for depression treatment. Telmisartan was recently shown to activate PPARδ expression; therefore, the effectiveness of telmisartan in treating depression was investigated. In unpredictable chronic mild stress (UCMS) model, treatment with telmisartan for five weeks notably decrease in the time spent in the central and the reduced frequency of grooming and rearing in open filed test (OFT) and the decreased sucrose consumption in sucrose preference test (SPT) compared with the paradigms. Telmisartan also reversed the decrease in PPARδ and 5-HTT levels in the hippocampus of depression-like mice. Administration of PPARδ antagonist GSK0660 and direct infusion of sh-PPARδ into the brain blocked the effects of telmisartan on the improvement of depression-like behavior in these mice. Moreover, telmisartan enhanced the expression of PPARδ and 5HTT in H19-7 cells. In conclusion, the obtained results suggest that telmisartan improves symptoms of stress-induced depression in animals under chronic stress through activation of PPARδ. Therefore, telmisartan may be developed as a potential anti-depressant in the future.
Collapse
|
34
|
Vázquez-León P, Martínez-Mota L, Quevedo-Corona L, Miranda-Páez A. Isolation stress and chronic mild stress induced immobility in the defensive burying behavior and a transient increased ethanol intake in Wistar rats. Alcohol 2017; 63:43-51. [PMID: 28847381 DOI: 10.1016/j.alcohol.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/31/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
Stress can be experienced with or without adverse effects, of which anxiety and depression are two of the most important due to the frequent comorbidity with alcohol abuse in humans. Historically, stress has been considered a cause of drug use, particularly alcohol abuse due to its anxiolytic effects. In the present work we exposed male Wistar rats to two different stress conditions: single housing (social isolation, SI), and chronic mild stress (CMS). We compared both stressed groups to group-housed rats and rats without CMS (GH) to allow the determination of a clear behavioral response profile related to their respective endocrine stress response and alcohol intake pattern. We found that SI and CMS, to a greater extent, induced short-lasting increased sucrose consumption, a transient increase in serum corticosterone level, high latency/immobility, and low burying behavior in the defensive burying behavior (DBB) test, and a transient increase in alcohol intake. Thus, the main conclusion was that stress caused by both SI and CMS induced immobility in the DBB test and, subsequently, induced a transient increased voluntary ethanol intake in Wistar rats with a free-choice home-cage drinking paradigm.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo Del, CP: 07738, Gustavo A. Madero, Mexico City, Mexico
| | - Lucía Martínez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101 Col. San Lorenzo Huipulco, Tlalpan, CP: 14370, Mexico City, Mexico
| | - Lucía Quevedo-Corona
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo Del, CP: 07738, Gustavo A. Madero, Mexico City, Mexico
| | - Abraham Miranda-Páez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu esq. Manuel Stampa s/n Col. Nueva Industrial Vallejo Del, CP: 07738, Gustavo A. Madero, Mexico City, Mexico.
| |
Collapse
|
35
|
Liu L, Yang J, Qian F, Lu C. Hypothalamic-pituitary-adrenal axis hypersensitivity in female rats on a post-weaning high-fat diet after chronic mild stress. Exp Ther Med 2017; 14:439-446. [PMID: 28672951 PMCID: PMC5488418 DOI: 10.3892/etm.2017.4498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 12/23/2016] [Indexed: 12/28/2022] Open
Abstract
A high-fat diet (HFD) is highly correlated to obesity, metabolic diseases and certain behavioral changes. However, the effects of post-weaning HFD in rats during puberty and the role of the hypothalamic-pituitary-adrenal (HPA) axis in this process have remained elusive. The present study hypothesized that the HPA axis mediates the behavioral alterations induced by a post-weaning HFD. To investigate this, female rats were divided into two groups, one of which was fed a HFD from postnatal weeks (PWs) 4-12, while the other group received standard chow. Rats in each group were then subdivided into two subgroups each, and from PW 9-12, animals from one of the two subgroups were subjected to chronic mild stress (CMS), while the other subgroup received no stress. At PW 12, the body weight of rats receiving a HFD but no DMS was significantly higher than that in the control group. The frequency of crossing and rearing in the open field test and the time in the center of the Y-maze were decreased following CMS. Total time to escape was decreased in rats receiving HFD and after CMS. The serum levels of adrenocorticotropic hormone and corticosterone were increased in rats receiving an HFD and after CMS, and the mRNA levels of corticotropin-releasing hormone and arginine vasopressin in the hypothalamus were increased in the HFD + CMS group compared to that in the control group. The mRNA expression of glucocorticoid receptor (GR) in the hippocampi of rats in the HFD + CMS group was significantly decreased and the mineralocorticoid receptor/GR ratio was increased compared to that in the groups receiving either CMS or a HFD. In conclusion, these results indicated that female rats fed a post-weaning HFD showed HPA axis hypersensitivity under CMS, which may mediate behavioral alterations.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Laboratory of Neuronal and Brain Disease Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Junqiang Yang
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Laboratory of Neuronal and Brain Disease Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Feng Qian
- Laboratory of Neuronal and Brain Disease Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Chengbiao Lu
- Laboratory of Neuronal and Brain Disease Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
36
|
Modeling hypohedonia following repeated social defeat: Individual vulnerability and dopaminergic involvement. Physiol Behav 2017; 177:99-106. [PMID: 28433467 DOI: 10.1016/j.physbeh.2017.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022]
Abstract
Social defeat in rodents putatively can model hypohedonia. The present studies examined models for assessing hypohedonia-like behavior and tested the hypotheses that 1) individual differences in baseline reward sensitivity predict vulnerability, and 2) defeat elicits changes in pharmacological measures of striatal dopaminergic function. Male Wistar rats (n=142) received repeated defeat (3 "triad" blocks of 3 defeats) or control handling. To determine whether defeat influenced consumption of SuperSac (glucose-saccharin) over an isocaloric, less preferred, glucose solution, a 2-choice paradigm was used. To determine repeated defeat effects on the reinforcing efficacy of SuperSac, a progressive-ratio schedule of reinforcement was used. Amphetamine-induced locomotor activity (0.08mg/kg, s.c.) was determined as a measure sensitive to striatal dopaminergic function. Defeat reduced SuperSac consumption during the first two triads-an effect seen in the third triad only in defeated rats with High vs. Low baseline SuperSac intake. The characteristic escalation in PR breakpoint for SuperSac normally seen in controls was absent in defeated rats, leading to a significant difference by the third triad. Defeat-induced blunting of the escalation in PR performance was greater in rats with High antecedent PR breakpoints and persisted 2.5weeks post-defeat. Repeated defeat also blunted amphetamine-induced locomotion 13days post-defeat. Thus, hypohedonic-like effects of social defeat were detected and accompanied by persistently attenuated striatal dopamine function. Early effects were seen for consumption of differentially-palatable solutions, and persistent effects were seen for the "breakpoint" motivational measure. The results implicate initial reward sensitivity as a risk factor for stress-induced hypohedonia.
Collapse
|
37
|
Willner P. Reliability of the chronic mild stress model of depression: A user survey. Neurobiol Stress 2017; 6:68-77. [PMID: 28229110 PMCID: PMC5314419 DOI: 10.1016/j.ynstr.2016.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022] Open
Abstract
The chronic mild stress (CMS) model of depression is considered by many to be the animal model of depression that has the greatest validity and translational potential, but it has often been criticized for a perceived lack of reliability. The aims of this study were to establish the extent to which the procedure is reproducible, and to identify experimental variables relevant to its reliability. Because failures to replicate frequently remain unpublished, a survey methodology was used. A questionnaire was circulated to 170 labs identified from a PubMed search as having published a CMS study in the years 2010 or 2015 (with no selection in respect of the results reported). Responses were returned by 71 (42%) of the recipients, followed by further correspondence with some of them. Most of the respondents (n = 53: 75%) reported that the CMS procedure worked reliably in their hands. Of the others, 15 (21%) reported that the procedure was usually reliable, but not always (n = 9: 13%) or not for all measures (n = 6: 8%). Only three respondents (4%) reported being unable to reproduce the characteristic effects, two of whom may be using an insufficient duration of CMS exposure. A series of analyses compared the 75% of 'reliable' labs with the 25% of 'less reliable' labs on a range of experimenter, subject, stress and outcome variables. Few if any significant differences between these two samples were identified, possibly because of the small size and diversity of the 'less reliable' sample. Two other limitations of the study include the (unavoidable) omission of labs that may have worked with the model but not published their data, and the use of ad hoc measures to compare the severity of different stress regimes. The results are discussed in relation to relevant published observations. It is concluded that CMS is in fact a rather robust model, but the factors that result in a less effective implementation in a minority of laboratories remain to be firmly established.
Collapse
|
38
|
Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress 2017; 6:78-93. [PMID: 28229111 PMCID: PMC5314424 DOI: 10.1016/j.ynstr.2016.08.002] [Citation(s) in RCA: 600] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 12/31/2022] Open
Abstract
Now 30 years old, the chronic mild stress (CMS) model of depression has been used in >1300 published studies, with a year-on-year increase rising to >200 papers in 2015. Data from a survey of users show that while a variety of names are in use (chronic mild/unpredictable/varied stress), these describe essentially the same procedure. This paper provides an update on the validity and reliability of the CMS model, and reviews recent data on the neurobiological basis of CMS effects and the mechanisms of antidepressant action: the volume of this research may be unique in providing a comprehensive account of antidepressant action within a single model. Also discussed is the use of CMS in drug discovery, with particular reference to hippocampal and extra-hippocampal targets. The high translational potential of the CMS model means that the neurobiological mechanisms described may be of particular relevance to human depression and mechanisms of clinical antidepressant action.
Collapse
|
39
|
Yin X, Guven N, Dietis N. Stress-based animal models of depression: Do we actually know what we are doing? Brain Res 2016; 1652:30-42. [DOI: 10.1016/j.brainres.2016.09.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/03/2016] [Accepted: 09/19/2016] [Indexed: 01/10/2023]
|
40
|
Upadhya D, Hattiangady B, Shetty GA, Zanirati G, Kodali M, Shetty AK. Neural Stem Cell or Human Induced Pluripotent Stem Cell-Derived GABA-ergic Progenitor Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2016; 38:2D.7.1-2D.7.47. [PMID: 27532817 PMCID: PMC5313261 DOI: 10.1002/cpsc.9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs. To provide comprehensive methodologies involved in testing the efficacy of transplantation of NSCs and GPCs in a rat model of chronic TLE, NSCs derived from the rat medial ganglionic eminence (MGE) and MGE-like GPCs derived from hiPSCs are taken as examples in this unit. The topics comprise description of the required materials, reagents and equipment, methods for obtaining rat MGE-NSCs and hiPSC-derived MGE-like GPCs in culture, generation of chronically epileptic rats, intrahippocampal grafting procedure, post-grafting evaluation of the effects of grafts on spontaneous recurrent seizures and cognitive and mood impairments, analyses of the yield and the fate of graft-derived cells, and the effects of grafts on the host hippocampus. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Dinesh Upadhya
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Geetha A Shetty
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Gabriele Zanirati
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| |
Collapse
|
41
|
Young-Adult Male Rats' Vulnerability to Chronic Mild Stress Is Reflected by Anxious-Like instead of Depressive-Like Behaviors. NEUROSCIENCE JOURNAL 2016; 2016:5317242. [PMID: 27433469 PMCID: PMC4940564 DOI: 10.1155/2016/5317242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022]
Abstract
In a previous study, we found that chronic mild stress (CMS) paradigm did not induce anhedonia in young-adult male rats but it reduced their body weight gain. These contrasting results encouraged us to explore other indicators of animal's vulnerability to stress such as anxious-like behaviors, since stress is an etiologic factor also for anxiety. Thus, in this study, we evaluated the vulnerability of these animals to CMS using behavioral tests of depression or anxiety and measuring serum corticosterone. Male Wistar rats were exposed to four weeks of CMS; the animals' body weight and sucrose preference (indicator of anhedonia) were assessed after three weeks, and, after the fourth week, some animals were evaluated in a behavioral battery (elevated plus maze, defensive burying behavior, and forced swimming tests); meanwhile, others were used to measure serum corticosterone. We found that CMS (1) did not affect sucrose preference, immobility behavior in the forced swimming test, or serum corticosterone; (2) decreased body weight gain; and (3) increased the rat's entries into closed arms of the plus maze and the cumulative burying behavior. These data indicate that young male rats' vulnerability to CMS is reflected as poor body weight gain and anxious-like instead of depressive-like behaviors.
Collapse
|
42
|
Abstract
For many individuals, stress promotes the consumption of sweet, high-sugar foods relative to healthier alternatives. Daily life stressors stimulate the overeating of highly-palatable foods through multiple mechanisms, including altered glucocorticoid, relaxin-3, ghrelin and serotonin signaling in brain. In turn, a history of consuming high-sugar foods attenuates the psychological (anxiety and depressed mood) and physiological (HPA axis) effects of stress. Together the metabolic and hedonic properties of sucrose contribute to its stress relief, possibly via actions in both the periphery (e.g., glucocorticoid receptor signaling in adipose tissue) and in the brain (e.g., plasticity in brain reward regions). Emerging work continues to reveal the bidirectional mechanisms that underlie the use of high-sugar foods as 'self-medication' for stress relief.
Collapse
|
43
|
Roques BP. Contribution of Delta-Opioid Receptors to Pathophysiological Events Explored by Endogenous Enkephalins. Handb Exp Pharmacol 2016; 247:53-70. [PMID: 27417433 DOI: 10.1007/164_2016_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Very few discoveries in the neurosciences have triggered clinical speculation and experimentation regarding the etiology of psychiatric illness to the same extent as that following identification of the opiate receptor(s) and subsequent isolation of endogenous morphine-like peptides. There is overwhelming evidence in animals and in human that opioids are involved in behaviorally relevant issues such as the modulation of pain, the response to stress, motivation, addiction, sexuality, food intake, etc., but our knowledge on the possible relation between opioids and mental illness is still very limited.These responses could be explored eitheir by using higlhy selective delta agonist or by emphasizing the effects of phasically secreted endogenous opioid peptides, enkephalin. Both approaches were investigated in particular through protection of enkephalin degradation by dual enkephalinase ihibitors DENKIs such as RB101, PL37 or PL265.
Collapse
Affiliation(s)
- Bernard P Roques
- Membre de l'Académie des Sciences (France et Europe), U1022 INSERM/UMR 8258 CNRS, Université Paris-Descartes (Paris V), CSO Pharmaleads SAS, 4 Avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
44
|
Peterlik D, Flor PJ, Uschold-Schmidt N. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders. Curr Neuropharmacol 2016; 14:514-39. [PMID: 27296643 PMCID: PMC4983752 DOI: 10.2174/1570159x13666150515234920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/04/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders.
Collapse
Affiliation(s)
| | - Peter J Flor
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| | - Nicole Uschold-Schmidt
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
45
|
Defeat stress in rodents: From behavior to molecules. Neurosci Biobehav Rev 2015; 59:111-40. [DOI: 10.1016/j.neubiorev.2015.10.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
|
46
|
Muhammad Farhan, Hira Rafi, Hamna Rafiq. Dapoxetine Treatment Leads to Attenuation of Chronic Unpredictable Stress Induced Behavioral Deficits in Rats Model of Depression. JOURNAL OF PHARMACY AND NUTRITION SCIENCES 2015; 5:222-228. [DOI: 10.6000/1927-5951.2015.05.04.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
Stressful conditions possess a complex relationship with brain and body’s reaction to stress and beginning of depression. The hypofunctioning of Serotonin (5-Hydroxytryptamine; 5-HT) is known to be established in unpredictable chronic mild stress exposure. UCMS is broadly taken as the most promising and favorable model to study depression in various animals, imitating many human depressive symptoms. With the class of selective serotonin [5-hydroxytryptamine (5-HT)] reuptake inhibitors (SSRIs) is now considered as the most prescribed antidepressant that can reverse petrochemical and behavioral effects of stresses. The aim of the present study was to investigate whether repeated administration of dapoxetine at dose 1.0 mg/kg could reversed the behavioral deficits induced by UCMS in rat model of depression. Rats exposed to UCMS revealed a significant reduction in food intake as well as growth rate. Locomotive activity in home cage and anxiolytic behavior in light/dark activity box were greater in animals of unstressed group as compared to animals of stressed group. The mechanism involved in the inhibition of serotonin reuptake at pre-synaptic receptors by repeated dapoxetine administration is discussed. The knowledge accumulated may facilitate an innovative approach for extending the therapeutic use of dapoxetine and the interaction between stress and behavioral functions.
Collapse
|
47
|
Remus JL, Stewart LT, Camp RM, Novak CM, Johnson JD. Interaction of metabolic stress with chronic mild stress in altering brain cytokines and sucrose preference. Behav Neurosci 2015; 129:321-30. [PMID: 25914924 DOI: 10.1037/bne0000056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is growing evidence that metabolic stressors increase an organism's risk of depression. Chronic mild stress is a popular animal model of depression and several serendipitous findings have suggested that food deprivation prior to sucrose testing in this model is necessary to observe anhedonic behaviors. Here, we directly tested this hypothesis by exposing animals to chronic mild stress and used an overnight 2-bottle sucrose test (food ad libitum) on Day 5 and 10, then food and water deprive animals overnight and tested their sucrose consumption and preference in a 1-hr sucrose test the following morning. Approximately 65% of stressed animals consumed sucrose and showed a sucrose preference similar to nonstressed controls in an overnight sucrose test, and 35% showed a decrease in sucrose intake and preference. Following overnight food and water deprivation the previously "resilient" animals showed a significant decrease in sucrose preference and greatly reduced sucrose intake. In addition, we evaluated whether the onset of anhedonia following food and water deprivation corresponds to alterations in corticosterone, epinephrine, circulating glucose, or interleukin-1 beta (IL-1β) expression in limbic brain areas. Although all stressed animals showed adrenal hypertrophy and elevated circulating epinephrine, only stressed animals that were food deprived were hypoglycemic compared with food-deprived controls. Additionally, food and water deprivation significantly increased hippocampus IL-1β while food and water deprivation only increased hypothalamus IL-1β in stress-susceptible animals. These data demonstrate that metabolic stress of food and water deprivation interacts with chronic stressor exposure to induce physiological and anhedonic responses.
Collapse
|
48
|
Kalueff AV, Stewart AM, Song C, Gottesman II. Targeting dynamic interplay among disordered domains or endophenotypes to understand complex neuropsychiatric disorders: Translational lessons from preclinical models. Neurosci Biobehav Rev 2015; 53:25-36. [PMID: 25813308 DOI: 10.1016/j.neubiorev.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
Contemporary biological psychiatry uses clinical and experimental (animal) models to increase our understanding of brain pathogenesis. Modeling psychiatric disorders is currently performed by targeting various key neurobehavioral clusters of phenotypic traits (domains), including affective, cognitive, social, motor and reward. Analyses of such domains and their 'smaller units' - individual endophenotypes - are critical for the study of complex brain disorders and their neural underpinnings. The spectrum nature of brain disorders and the importance of pathogenetic linkage among various disordered domains or endophenotypes have also been recognized as an important strategic direction of translational research. Here, we discuss cross-domain analyses of animal models, and focus on their value for mimicking the clinical overlap between disordered neurobehavioral domains in humans. Based on recent experimental evidence, we argue that understanding of brain pathogenesis requires modeling the clinically relevant inter-relationships between various individual endophenotypes (or their domains).
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA.
| | - Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524025, Guangdong, China; Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford St, Halifax, NS B3H 4R2, Canada
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, Elliot Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
49
|
Gray JM, Chaouloff F, Hill MN. To stress or not to stress: a question of models. ACTA ACUST UNITED AC 2015; 70:8.33.1-8.33.22. [PMID: 25559007 DOI: 10.1002/0471142301.ns0833s70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stress research is a rapidly evolving field that encompasses numerous disciplines ranging from neuroscience to metabolism. With many new researchers migrating into the field, navigating the hows and whys of specific research questions can sometimes be enigmatic given the availability of so many models in the stress field. Additionally, as with every field, there are many seemingly minor experimental details that can have dramatic influences on data interpretation, although many of these are unknown to those not familiar with the field. The aim of this overview is to provide some suggestions and points to guide researchers moving into the stress field and highlight relevant methodological points that they should consider when choosing a model for stress and deciding how to structure a study. We briefly provide a primer on the basics of endpoint measurements in the stress field, factors to consider when choosing a model for acute stress, the difference between repeated and chronic stress, and importantly, influencing variables that modulate endpoints of analysis in stress work.
Collapse
Affiliation(s)
- J Megan Gray
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research, University of Calgary, Alberta, Canada
| | - Francis Chaouloff
- Endocannabinoids and NeuroAdaptation, Neurocentre INSERM U862, University Bordeaux 2, Bordeaux, France
| | - Matthew N Hill
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research, University of Calgary, Alberta, Canada
| |
Collapse
|
50
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|