1
|
Gao T, Huang X, Chen X, Cai X, Huang J, Vincent G, Wang S. Advances in flavor peptides with sodium-reducing ability: A review. Crit Rev Food Sci Nutr 2024; 64:9568-9584. [PMID: 37218684 DOI: 10.1080/10408398.2023.2214613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Condiments (such as sodium chloride and glutamate sodium) cause consumers to ingest too much sodium and may lead to a variety of diseases, thus decreasing their quality of life. Recently, a salt reduction strategy using flavor peptides has been established. However, the development of this strategy has not been well adopted by the food industry. There is an acute need to screen for peptides with salty and umami taste, and to understand their taste characteristic and taste mechanism. This review provides a thorough analysis of the literature on flavor peptides with sodium-reducing ability, involving their preparation, taste characteristic, taste mechanism and applications in the food industry. Flavor peptides come from a wide range of sources and can be sourced abundantly from natural foods. Flavor peptides with salty and umami tastes are mainly composed of umami amino acids. Differences in amino acid sequences, spatial structures and food matrices will cause different tastes in flavor peptides, mostly attributed to the interaction between peptides and taste receptors. In addition to being used in condiments, flavor peptides have also anti-hypertensive, anti-inflammatory and anti-oxidant abilities, offering the potential to be used as functional ingredients, thus making their future in the food industry extremely promising.
Collapse
Affiliation(s)
- Tingting Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xincheng Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, Xiamen, China
- Anjoy Food Group Co. Ltd, Xiamen, China
| | | | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
2
|
Landon SM, Baker K, Macpherson LJ. Give-and-take of gustation: the interplay between gustatory neurons and taste buds. Chem Senses 2024; 49:bjae029. [PMID: 39078723 PMCID: PMC11315769 DOI: 10.1093/chemse/bjae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
Mammalian taste buds are highly regenerative and can restore themselves after normal wear and tear of the lingual epithelium or following physical and chemical insults, including burns, chemotherapy, and nerve injury. This is due to the continual proliferation, differentiation, and maturation of taste progenitor cells, which then must reconnect with peripheral gustatory neurons to relay taste signals to the brain. The turnover and re-establishment of peripheral taste synapses are vital to maintain this complex sensory system. Over the past several decades, the signal transduction and neurotransmitter release mechanisms within taste cells have been well delineated. However, the complex dynamics between synaptic partners in the tongue (taste cell and gustatory neuron) are only partially understood. In this review, we highlight recent findings that have improved our understanding of the mechanisms governing connectivity and signaling within the taste bud and the still-unresolved questions regarding the complex interactions between taste cells and gustatory neurons.
Collapse
Affiliation(s)
- Shannon M Landon
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, United States
| | - Kimberly Baker
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, United States
- 59th Medical Wing: Surgical and Technological Advancements for Traumatic Injuries in Combat: 204 Wagner Ave, San Antonio, TX 78211, United States
| | - Lindsey J Macpherson
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Bigiani A, Rhyu M. Effect of kokumi taste-active γ-glutamyl peptides on amiloride-sensitive epithelial Na+ channels in rat fungiform taste cells. Biochem Biophys Rep 2023; 33:101400. [DOI: 10.1016/j.bbrep.2022.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
|
4
|
Abstract
Salt taste, the taste of sodium chloride (NaCl), is mechanistically one of the most complex and puzzling among basic tastes. Sodium has essential functions in the body but causes harm in excess. Thus, animals use salt taste to ingest the right amount of salt, which fluctuates by physiological needs: typically, attraction to low salt concentrations and rejection of high salt. This concentration-valence relationship is universally observed in terrestrial animals, and research has revealed complex peripheral codes for NaCl involving multiple taste pathways of opposing valence. Sodium-dependent and -independent pathways mediate attraction and aversion to NaCl, respectively. Gustatory sensors and cells that transduce NaCl have been uncovered, along with downstream signal transduction and neurotransmission mechanisms. However, much remains unknown. This article reviews classical and recent advances in our understanding of the molecular and cellular mechanisms underlying salt taste in mammals and insects and discusses perspectives on human salt taste.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; .,Japan Science and Technology Agency, CREST, Saitama, Japan
| | - Michael D Gordon
- Department of Zoology and Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Alhadyan SK, Sivaraman V, Onyenwoke RU. E-cigarette Flavors, Sensory Perception, and Evoked Responses. Chem Res Toxicol 2022; 35:2194-2209. [PMID: 36480683 DOI: 10.1021/acs.chemrestox.2c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chemosensory experiences evoked by flavors encompass a number of unique sensations that include olfactory stimuli (smell), gustatory stimuli (taste, i.e., salty, sweet, sour, bitter, and umami (also known as "savoriness")), and chemesthesis (touch). As such, the responses evoked by flavors are complex and, as briefly stated above, involve multiple perceptive mechanisms. The practice of adding flavorings to tobacco products dates back to the 17th century but is likely much older. More recently, the electronic cigarette or "e-cigarette" and its accompanying flavored e-liquids emerged on to the global market. These new products contain no combustible tobacco but often contain large concentrations (reported from 0 to more than 50 mg/mL) of nicotine as well as numerous flavorings and/or flavor chemicals. At present, there are more than 400 e-cigarette brands available along with potentially >15,000 different/unique flavored products. However, surprisingly little is known about the flavors/flavor chemicals added to these products, which can account for >1% by weight of some e-liquids, and their resultant chemosensory experiences, and the US FDA has done relatively little, until recently, to regulate these products. This article will discuss e-cigarette flavors and flavor chemicals, their elicited responses, and their sensory effects in some detail.
Collapse
Affiliation(s)
- Shatha K Alhadyan
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Rob U Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina 27707, United States
| |
Collapse
|
6
|
Bigiani A, Tirindelli R, Bigiani L, Mapelli J. Changes of the biophysical properties of voltage-gated Na + currents during maturation of the sodium-taste cells in rat fungiform papillae. J Physiol 2022; 600:5119-5144. [PMID: 36250254 DOI: 10.1113/jp283636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023] Open
Abstract
Taste cells are a heterogeneous population of sensory receptors that undergo continuous turnover. Different chemo-sensitive cell lines rely on action potentials to release the neurotransmitter onto nerve endings. The electrical excitability is due to the presence of a tetrodotoxin-sensitive, voltage-gated sodium current (INa ) similar to that found in neurons. Since the biophysical properties of neuronal INa change during development, we wondered whether the same also occurred in taste cells. Here, we used the patch-clamp recording technique to study INa in salt-sensing cells (sodium cells) of rat fungiform papillae. We identified these cells by exploiting the known blocking effect of amiloride on ENaC, the sodium (salt) receptor. Based on the amplitude of INa , which is known to increase during development, we subdivided sodium cells into two groups: cells with small sodium current (SSC cells; INa < 1 nA) and cells with large sodium current (LSC cells; INa > 1 nA). We found that: the voltage dependence of activation and inactivation significantly differed between these subsets; a slowly inactivating sodium current was more prominent in LSC cells; membrane capacitance in SSC cells was larger than in LSC cells. mRNA expression analysis of the α-subunits of voltage-gated sodium channels in fungiform taste buds supported the functional data. Lucifer Yellow labelling of recorded cells revealed that our electrophysiological criterion for distinguishing two broad groups of taste cells was in good agreement with morphological observations for cell maturity. Thus, all these findings are consistent with developmental changes in the voltage-dependent properties of sodium-taste cells. KEY POINTS: Taste cells are sensory receptors that undergo continuous turnover while they detect food chemicals and communicate with afferent nerve fibres. The voltage-gated sodium current (INa ) is a key ion current for generating action potentials in fully differentiated and chemo-sensitive taste cells, which use electrical signalling to release neurotransmitters. Here we show that, during the maturation of rat taste cells involved in salt detection (sodium cells), the biophysical properties of INa , such as voltage dependence of activation and inactivation, change significantly. Our results help reveal how taste cells gain electrical excitability during turnover, a property critical to their operation as chemical detectors that relay sensory information to nerve fibres.
Collapse
Affiliation(s)
- Albertino Bigiani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Roberto Tirindelli
- Dipartimento di Medicina e Chirurgia, SMart Laboratory, Università di Parma, Parma, Italy
| | | | - Jonathan Mapelli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Pontes G, Latorre-Estivalis JM, Gutiérrez ML, Cano A, Berón de Astrada M, Lorenzo MG, Barrozo RB. Molecular and functional basis of high-salt avoidance in a blood-sucking insect. iScience 2022; 25:104502. [PMID: 35720264 PMCID: PMC9204723 DOI: 10.1016/j.isci.2022.104502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 12/05/2022] Open
Abstract
Salts are essential nutrients required for many physiological processes, and accordingly, their composition and concentration are tightly regulated. Taste is the ultimate sensory modality involved in resource quality assessment, resulting in acceptance or rejection. Here we found that high salt concentrations elicit feeding avoidance in the blood-sucking bug Rhodnius prolixus and elucidate the molecular and neurophysiological mechanisms involved. We found that high-salt avoidance is mediated by a salt-sensitive antennal gustatory receptor neuron (GRN). Using RNAi, we demonstrate that this process requires two amiloride-sensitive pickpocket channels (PPKs; Rpro PPK014276 and Rpro PPK28) expressed within these cells. We found that antennal GRNs project to the insect primary olfactory center, the antennal lobes, revealing these centers as potential sites for the integration of taste and olfactory host-derived cues. Moreover, the identification of the gustatory basis of high-salt detection in a hematophagous insect suggests novel targets for the prevention of biting and feeding.
Collapse
Affiliation(s)
- Gina Pontes
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto de Biodiversidad, Biología Experimental y Aplicada, CONICET - UBA, Departamento Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Manuel Latorre-Estivalis
- Grupo de Comportamento de Vetores e Interação com Patógenos-CNPq, Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Brazil
| | - María Laura Gutiérrez
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto de Biodiversidad, Biología Experimental y Aplicada, CONICET - UBA, Departamento Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Cano
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto de Biodiversidad, Biología Experimental y Aplicada, CONICET - UBA, Departamento Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin Berón de Astrada
- Laboratorio de Fisiología de la Visión, Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología, Biología Molecular y Celular, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Marcelo G. Lorenzo
- Grupo de Comportamento de Vetores e Interação com Patógenos-CNPq, Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Brazil
| | - Romina B. Barrozo
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto de Biodiversidad, Biología Experimental y Aplicada, CONICET - UBA, Departamento Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Komarov N, Sprecher SG. The chemosensory system of the Drosophila larva: an overview of current understanding. Fly (Austin) 2021; 16:1-12. [PMID: 34612150 PMCID: PMC8496535 DOI: 10.1080/19336934.2021.1953364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals must sense their surroundings and be able to distinguish between relevant and irrelevant cues. An enticing area of research aims to uncover the mechanisms by which animals respond to chemical signals that constitute critical sensory input. In this review, we describe the principles of a model chemosensory system: the Drosophila larva. While distinct in many ways, larval behaviour is reminiscent of the dogmatic goals of life: to reach a stage of reproductive potential. It takes into account a number of distinct and identifiable parameters to ultimately provoke or modulate appropriate behavioural output. In this light, we describe current knowledge of chemosensory anatomy, genetic components, and the processing logic of chemical cues. We outline recent advancements and summarize the hypothesized neural circuits of sensory systems. Furthermore, we note yet-unanswered questions to create a basis for further investigation of molecular and systemic mechanisms of chemosensation in Drosophila and beyond.
Collapse
Affiliation(s)
- Nikita Komarov
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
On the human taste perception: Molecular-level understanding empowered by computational methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Lossow K, Hermans-Borgmeyer I, Meyerhof W, Behrens M. Segregated Expression of ENaC Subunits in Taste Cells. Chem Senses 2021; 45:235-248. [PMID: 32006019 DOI: 10.1093/chemse/bjaa004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salt taste is one of the 5 basic taste qualities. Depending on the concentration, table salt is perceived either as appetitive or aversive, suggesting the contribution of several mechanisms to salt taste, distinguishable by their sensitivity to the epithelial sodium channel (ENaC) blocker amiloride. A taste-specific knockout of the α-subunit of the ENaC revealed the relevance of this polypeptide for low-salt transduction, whereas the response to other taste qualities remained normal. The fully functional ENaC is composed of α-, β-, and γ-subunits. In taste tissue, however, the precise constitution of the channel and the cell population responsible for detecting table salt remain uncertain. In order to examine the cells and subunits building the ENaC, we generated mice carrying modified alleles allowing the synthesis of green and red fluorescent proteins in cells expressing the α- and β-subunit, respectively. Fluorescence signals were detected in all types of taste papillae and in taste buds of the soft palate and naso-incisor duct. However, the lingual expression patterns of the reporters differed depending on tongue topography. Additionally, immunohistochemistry for the γ-subunit of the ENaC revealed a lack of overlap between all potential subunits. The data suggest that amiloride-sensitive recognition of table salt is unlikely to depend on the classical ENaCs formed by α-, β-, and γ-subunits and ask for a careful investigation of the channel composition.
Collapse
Affiliation(s)
- Kristina Lossow
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, University Medical Center Hamburg-Eppendorf (ZMNH), Hamburg, Germany
| | - Wolfgang Meyerhof
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Maik Behrens
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| |
Collapse
|
11
|
Taruno A, Nomura K, Kusakizako T, Ma Z, Nureki O, Foskett JK. Taste transduction and channel synapses in taste buds. Pflugers Arch 2020; 473:3-13. [PMID: 32936320 DOI: 10.1007/s00424-020-02464-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/29/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The variety of taste sensations, including sweet, umami, bitter, sour, and salty, arises from diverse taste cells, each of which expresses specific taste sensor molecules and associated components for downstream signal transduction cascades. Recent years have witnessed major advances in our understanding of the molecular mechanisms underlying transduction of basic tastes in taste buds, including the identification of the bona fide sour sensor H+ channel OTOP1, and elucidation of transduction of the amiloride-sensitive component of salty taste (the taste of sodium) and the TAS1R-independent component of sweet taste (the taste of sugar). Studies have also discovered an unconventional chemical synapse termed "channel synapse" which employs an action potential-activated CALHM1/3 ion channel instead of exocytosis of synaptic vesicles as the conduit for neurotransmitter release that links taste cells to afferent neurons. New images of the channel synapse and determinations of the structures of CALHM channels have provided structural and functional insights into this unique synapse. In this review, we discuss the current view of taste transduction and neurotransmission with emphasis on recent advances in the field.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan.
| | - Kengo Nomura
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Zhang N, Wei X, Fan Y, Zhou X, Liu Y. Recent advances in development of biosensors for taste-related analyses. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Jiang E, Blonde GD, Garcea M, Spector AC. ENaC-Dependent Sodium Chloride Taste Responses in the Regenerated Rat Chorda Tympani Nerve After Lingual Gustatory Deafferentation Depend on the Taste Bud Field Reinnervated. Chem Senses 2020; 45:249-259. [PMID: 32154568 DOI: 10.1093/chemse/bjaa015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chorda tympani (CT) nerve is exceptionally responsive to NaCl. Amiloride, an epithelial Na+ channel (ENaC) blocker, consistently and significantly decreases the NaCl responsiveness of the CT but not the glossopharyngeal (GL) nerve in the rat. Here, we examined whether amiloride would suppress the NaCl responsiveness of the CT when it cross-reinnervated the posterior tongue (PT). Whole-nerve electrophysiological recording was performed to investigate the response properties of the intact (CTsham), regenerated (CTr), and cross-regenerated (CT-PT) CT in male rats to NaCl mixed with and without amiloride and common taste stimuli. The intact (GLsham) and regenerated (GLr) GL were also examined. The CT responses of the CT-PT group did not differ from those of the GLr and GLsham groups, but did differ from those of the CTr and CTsham groups for some stimuli. Importantly, the responsiveness of the cross-regenerated CT to a series of NaCl concentrations was not suppressed by amiloride treatment, which significantly decreased the response to NaCl in the CTr and CTsham groups and had no effect in the GLr and GLsham groups. This suggests that the cross-regenerated CT adopts the taste response properties of the GL as opposed to those of the regenerated CT or intact CT. This work replicates the 5 decade-old findings of Oakley and importantly extends them by providing compelling evidence that the presence of functional ENaCs, essential for sodium taste recognition in regenerated taste receptor cells, depends on the reinnervated lingual region and not on the reinnervating gustatory nerve, at least in the rat.
Collapse
Affiliation(s)
- Enshe Jiang
- Institutes of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, Henan University, Kaifeng, China.,Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Ginger D Blonde
- Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Mircea Garcea
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Alan C Spector
- Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
14
|
Sodium Imbalance in Mice Results Primarily in Compensatory Gene Regulatory Responses in Kidney and Colon, but Not in Taste Tissue. Nutrients 2020; 12:nu12040995. [PMID: 32260115 PMCID: PMC7230584 DOI: 10.3390/nu12040995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Renal excretion and sodium appetite provide the basis for sodium homeostasis. In both the kidney and tongue, the epithelial sodium channel (ENaC) is involved in sodium uptake and sensing. The diuretic drug amiloride is known to block ENaC, producing a mild natriuresis. However, amiloride is further reported to induce salt appetite in rodents after prolonged exposure as well as bitter taste impressions in humans. To examine how dietary sodium content and amiloride impact on sodium appetite, mice were subjected to dietary salt and amiloride intervention and subsequently analyzed for ENaC expression and taste reactivity. We observed substantial changes of ENaC expression in the colon and kidney confirming the role of these tissues for sodium homeostasis, whereas effects on lingual ENaC expression and taste preferences were negligible. In comparison, prolonged exposure to amiloride-containing drinking water affected β- and αENaC expression in fungiform and posterior taste papillae, respectively, next to changes in salt taste. However, amiloride did not only change salt taste sensation but also perception of sucrose, glutamate, and citric acid, which might be explained by the fact that amiloride itself activates bitter taste receptors in mice. Accordingly, exposure to amiloride generally affects taste impression and should be evaluated with care.
Collapse
|
15
|
Nomura K, Nakanishi M, Ishidate F, Iwata K, Taruno A. All-Electrical Ca 2+-Independent Signal Transduction Mediates Attractive Sodium Taste in Taste Buds. Neuron 2020; 106:816-829.e6. [PMID: 32229307 DOI: 10.1016/j.neuron.2020.03.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
Sodium taste regulates salt intake. The amiloride-sensitive epithelial sodium channel (ENaC) is the Na+ sensor in taste cells mediating attraction to sodium salts. However, cells and intracellular signaling underlying sodium taste in taste buds remain long-standing enigmas. Here, we show that a subset of taste cells with ENaC activity fire action potentials in response to ENaC-mediated Na+ influx without changing the intracellular Ca2+ concentration and form a channel synapse with afferent neurons involving the voltage-gated neurotransmitter-release channel composed of calcium homeostasis modulator 1 (CALHM1) and CALHM3 (CALHM1/3). Genetic elimination of ENaC in CALHM1-expressing cells as well as global CALHM3 deletion abolished amiloride-sensitive neural responses and attenuated behavioral attraction to NaCl. Together, sodium taste is mediated by cells expressing ENaC and CALHM1/3, where oral Na+ entry elicits suprathreshold depolarization for action potentials driving voltage-dependent neurotransmission via the channel synapse. Thus, all steps in sodium taste signaling are voltage driven and independent of Ca2+ signals. This work also reveals ENaC-independent salt attraction.
Collapse
Affiliation(s)
- Kengo Nomura
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Miho Nakanishi
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Fumiyoshi Ishidate
- Center for Meso-Bio Single-Molecule Imaging, Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
16
|
Abstract
How taste buds detect NaCl remains poorly understood. Among other problems, applying taste-relevant concentrations of NaCl (50-500 mm) onto isolated taste buds or cells exposes them to unphysiological (hypo/hypertonic) conditions. To overcome these limitations, we used the anterior tongue of male and female mice to implement a slice preparation in which fungiform taste buds are in a relatively intact tissue environment and stimuli are limited to the taste pore. Taste-evoked responses were monitored using confocal Ca2+ imaging via GCaMP3 expressed in Type 2 and Type 3 taste bud cells. NaCl evoked intracellular mobilization of Ca2+ in the apical tips of a subset of taste cells. The concentration dependence and rapid adaptation of NaCl-evoked cellular responses closely resembled behavioral and afferent nerve responses to NaCl. Importantly, taste cell responses were not inhibited by the diuretic, amiloride. Post hoc immunostaining revealed that >80% of NaCl-responsive taste bud cells were of Type 2. Many NaCl-responsive cells were also sensitive to stimuli that activate Type 2 cells but never to stimuli for Type 3 cells. Ion substitutions revealed that amiloride-insensitive NaCl responses depended on Cl- rather than Na+ Moreover, choline chloride, an established salt taste enhancer, was equally effective a stimulus as sodium chloride. Although the apical transducer for Cl- remains unknown, blocking known chloride channels and cotransporters had little effect on NaCl responses. Together, our data suggest that chloride, an essential nutrient, is a key determinant of taste transduction for amiloride-insensitive salt taste.SIGNIFICANCE STATEMENT Sodium and chloride are essential nutrients and must be regularly consumed to replace excreted NaCl. Thus, understanding salt taste, which informs salt appetite, is important from a fundamental sensory perspective and forms the basis for interventions to replace/reduce excess Na+ consumption. This study examines responses to NaCl in a semi-intact preparation of mouse taste buds. We identify taste cells that respond to NaCl in the presence of amiloride, which is significant because much of human salt taste also is amiloride-insensitive. Further, we demonstrate that Cl-, not Na+, generates these amiloride-insensitive salt taste responses. Intriguingly, choline chloride, a commercial salt taste enhancer, is also a highly effective stimulus for these cells.
Collapse
|
17
|
Roebber JK, Roper SD, Chaudhari N. The Role of the Anion in Salt (NaCl) Detection by Mouse Taste Buds. J Neurosci 2019; 39:6224-6232. [PMID: 31171579 PMCID: PMC6687907 DOI: 10.1523/jneurosci.2367-18.2019] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 11/21/2022] Open
Abstract
How taste buds detect NaCl remains poorly understood. Among other problems, applying taste-relevant concentrations of NaCl (50-500 mm) onto isolated taste buds or cells exposes them to unphysiological (hypo/hypertonic) conditions. To overcome these limitations, we used the anterior tongue of male and female mice to implement a slice preparation in which fungiform taste buds are in a relatively intact tissue environment and stimuli are limited to the taste pore. Taste-evoked responses were monitored using confocal Ca2+ imaging via GCaMP3 expressed in Type 2 and Type 3 taste bud cells. NaCl evoked intracellular mobilization of Ca2+ in the apical tips of a subset of taste cells. The concentration dependence and rapid adaptation of NaCl-evoked cellular responses closely resembled behavioral and afferent nerve responses to NaCl. Importantly, taste cell responses were not inhibited by the diuretic, amiloride. Post hoc immunostaining revealed that >80% of NaCl-responsive taste bud cells were of Type 2. Many NaCl-responsive cells were also sensitive to stimuli that activate Type 2 cells but never to stimuli for Type 3 cells. Ion substitutions revealed that amiloride-insensitive NaCl responses depended on Cl- rather than Na+ Moreover, choline chloride, an established salt taste enhancer, was equally effective a stimulus as sodium chloride. Although the apical transducer for Cl- remains unknown, blocking known chloride channels and cotransporters had little effect on NaCl responses. Together, our data suggest that chloride, an essential nutrient, is a key determinant of taste transduction for amiloride-insensitive salt taste.SIGNIFICANCE STATEMENT Sodium and chloride are essential nutrients and must be regularly consumed to replace excreted NaCl. Thus, understanding salt taste, which informs salt appetite, is important from a fundamental sensory perspective and forms the basis for interventions to replace/reduce excess Na+ consumption. This study examines responses to NaCl in a semi-intact preparation of mouse taste buds. We identify taste cells that respond to NaCl in the presence of amiloride, which is significant because much of human salt taste also is amiloride-insensitive. Further, we demonstrate that Cl-, not Na+, generates these amiloride-insensitive salt taste responses. Intriguingly, choline chloride, a commercial salt taste enhancer, is also a highly effective stimulus for these cells.
Collapse
Affiliation(s)
| | - Stephen D Roper
- Program in Neurosciences
- Department of Physiology and Biophysics, and
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Nirupa Chaudhari
- Program in Neurosciences,
- Department of Physiology and Biophysics, and
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
18
|
Abstract
AbstractA major challenge in taste research is to overcome the flavour imperfections in food products and to build nutritious strategies to combat against obesity as well as other related metabolic syndromes. The field of molecular taste research and chemical senses has contributed to an enormous development in understanding the taste receptors and mechanisms of taste perception. Accordingly, the development of taste-modifying compounds or taste modulators that alter the perception of basic taste modalities has gained significant prominence in the recent past. The beneficial aspects of these substances are overwhelming while considering their potential taste-modifying properties. The objective of the present review is to provide an impression about the taste-modulating compounds and their distinctive taste-modifying properties with reference to their targets and proposed mechanisms of action. The present review also makes an effort to discuss the basic mechanism involved in oro-gustatory taste perception as well as on the effector molecules involved in signal transduction downstream to the activation of taste receptors.
Collapse
|
19
|
Abstract
This chapter summarizes the available data about taste receptor functions and their role in perception of food with emphasis on the human system. In addition we illuminate the widespread presence of these receptors throughout the body and discuss some of their extraoral functions. Finally, we describe clinical aspects where taste receptor signaling could be relevant.
Collapse
Affiliation(s)
- Jonas C Töle
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
20
|
Kaushik S, Kumar R, Kain P. Salt an Essential Nutrient: Advances in Understanding Salt Taste Detection Using Drosophila as a Model System. J Exp Neurosci 2018; 12:1179069518806894. [PMID: 30479487 PMCID: PMC6249657 DOI: 10.1177/1179069518806894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022] Open
Abstract
Taste modalities are conserved in insects and mammals. Sweet gustatory signals evoke attractive behaviors while bitter gustatory information drive aversive behaviors. Salt (NaCl) is an essential nutrient required for various physiological processes, including electrolyte homeostasis, neuronal activity, nutrient absorption, and muscle contraction. Not only mammals, even in Drosophila melanogaster, the detection of NaCl induces two different behaviors: Low concentrations of NaCl act as an attractant, whereas high concentrations act as repellant. The fruit fly is an excellent model system for studying the underlying mechanisms of salt taste due to its relatively simple neuroanatomical organization of the brain and peripheral taste system, the availability of powerful genetic tools and transgenic strains. In this review, we have revisited the literature and the information provided by various laboratories using invertebrate model system Drosophila that has helped us to understand NaCl salt taste so far. We hope that this compiled information from Drosophila will be of general significance and interest for forthcoming studies of the structure, function, and behavioral role of NaCl-sensitive (low and high concentrations) gustatory circuitry for understanding NaCl salt taste in all animals.
Collapse
Affiliation(s)
- Shivam Kaushik
- Department of Neurobiology and Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Rahul Kumar
- Department of Neurobiology and Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.,Department of Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pinky Kain
- Department of Neurobiology and Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
21
|
St John SJ, McBrayer AM, Krauskopf EE. Sodium Carbonate is Saltier Than Sodium Chloride to Sodium-Depleted Rats. Chem Senses 2017; 42:647-653. [PMID: 28981821 DOI: 10.1093/chemse/bjx043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In a series of behavioral experiments in the 1960s, G.R. Morrison identified several unique features of the taste of Na2CO3 to rats; namely, it is 1) considerably more intense than NaCl at isomolar concentrations, 2) avoided at 10 times lower concentrations than NaCl to thirsty rats, 3) preferred at 10 times lower concentrations than NaCl in sodium-depleted rats. He also demonstrated its qualitatively similarity to NaCl. In Experiment 1, we confirmed and extended many of Morrison's observations. Rats were injected with furosemide on 3 occasions to stimulate a sodium appetite. After each depletion, rats were given a brief-access taste test in a lickometer presenting, in random order, water and 7 concentrations of salt. One test used NaCl (0.028-0.89 M, quarter log steps), another used Na2CO3, and the third used Na2CO3, but at a tenfold lower concentration range (0.0028-0.089 M). Rats licked NaCl in an inverted-U shaped concentration-response function peaking at 0.158-0.281 M. As Morrison's results predicted, rats licked Na2CO3 in nearly identical fashion, but at a tenfold lower concentration range (peak at 0.0158-0.028 M). In a second experiment, furosemide-treated rats were repeatedly tested with the lower Na2CO3 range but mixed in the epithelial sodium channel blocker amiloride at various concentrations (3-300 μM, half log steps). Amiloride reduced licking for Na2CO3 and shifted the peak response rightward up to about half a log unit. Thus, this "super-saltiness" of Na2CO3 to rats is at least partly amiloride-dependent.
Collapse
Affiliation(s)
| | - Anya M McBrayer
- Department of Psychology, Rollins College, Winter Park, FL, USA
| | | |
Collapse
|
22
|
Abstract
The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.
Collapse
|
23
|
The cellular mechanism for water detection in the mammalian taste system. Nat Neurosci 2017; 20:927-933. [DOI: 10.1038/nn.4575] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/30/2017] [Indexed: 12/20/2022]
|
24
|
Bigiani A. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents. Chem Senses 2017; 42:343-359. [DOI: 10.1093/chemse/bjx013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Qian J, Mummalaneni S, Phan THT, Heck GL, DeSimone JA, West D, Mahavadi S, Hojati D, Murthy KS, Rhyu MR, Spielman AI, Özdener MH, Lyall V. Cyclic-AMP regulates postnatal development of neural and behavioral responses to NaCl in rats. PLoS One 2017; 12:e0171335. [PMID: 28192441 PMCID: PMC5305205 DOI: 10.1371/journal.pone.0171335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
During postnatal development rats demonstrate an age-dependent increase in NaCl chorda tympani (CT) responses and the number of functional apical amiloride-sensitive epithelial Na+ channels (ENaCs) in salt sensing fungiform (FF) taste receptor cells (TRCs). Currently, the intracellular signals that regulate the postnatal development of salt taste have not been identified. We investigated the effect of cAMP, a downstream signal for arginine vasopressin (AVP) action, on the postnatal development of NaCl responses in 19-23 day old rats. ENaC-dependent NaCl CT responses were monitored after lingual application of 8-chlorophenylthio-cAMP (8-CPT-cAMP) under open-circuit conditions and under ±60 mV lingual voltage clamp. Behavioral responses were tested using 2 bottle/24h NaCl preference tests. The effect of [deamino-Cys1, D-Arg8]-vasopressin (dDAVP, a specific V2R agonist) was investigated on ENaC subunit trafficking in rat FF TRCs and on cAMP generation in cultured adult human FF taste cells (HBO cells). Our results show that in 19-23 day old rats, the ENaC-dependent maximum NaCl CT response was a saturating sigmoidal function of 8-CPT-cAMP concentration. 8-CPT-cAMP increased the voltage-sensitivity of the NaCl CT response and the apical Na+ response conductance. Intravenous injections of dDAVP increased ENaC expression and γ-ENaC trafficking from cytosolic compartment to the apical compartment in rat FF TRCs. In HBO cells dDAVP increased intracellular cAMP and cAMP increased trafficking of γ- and δ-ENaC from cytosolic compartment to the apical compartment 10 min post-cAMP treatment. Control 19-23 day old rats were indifferent to NaCl, but showed clear preference for appetitive NaCl concentrations after 8-CPT-cAMP treatment. Relative to adult rats, 14 day old rats demonstrated significantly less V2R antibody binding in circumvallate TRCs. We conclude that an age-dependent increase in V2R expression produces an AVP-induced incremental increase in cAMP that modulates the postnatal increase in TRC ENaC and the neural and behavioral responses to NaCl.
Collapse
Affiliation(s)
- Jie Qian
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shobha Mummalaneni
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tam-Hao T. Phan
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gerard L. Heck
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John A. DeSimone
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David West
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sunila Mahavadi
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Deanna Hojati
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Karnam S. Murthy
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mee-Ra Rhyu
- Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Korea
| | | | - Mehmet Hakan Özdener
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Vijay Lyall
- Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
26
|
Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms. J Neurosci 2016; 36:1942-53. [PMID: 26865617 DOI: 10.1523/jneurosci.2947-15.2016] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This "anion effect" has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding.
Collapse
|
27
|
|
28
|
Ueji K, Minematsu Y, Takeshita D, Yamamoto T. Saccharin Taste Conditions Flavor Preference in Weanling Rats. Chem Senses 2015; 41:135-41. [PMID: 26514409 DOI: 10.1093/chemse/bjv064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Innate and learned taste/flavor preferences to chemical stimuli in weanling rats are not fully understood. Our previous study showed that weanling rats could establish conditioned flavor preferences when low, but not high, concentrations of sucrose solutions were used as associative rewarding stimuli. Here, we examined whether 3-week-old rats could acquire flavor learning when the rewarding stimulus was saccharin, a non-nutritive artificial sweetener. In the acquisition session, they consumed water with a flavor (cherry or grape) and 0.1% sodium saccharin with another flavor (grape or cherry) for 15 min daily on alternative days over 6 consecutive days. The subsequent test session revealed significant preferences for the flavor previously associated with saccharin. However, they failed to retain the preference when retested in adulthood at the age of 20 weeks. These behavioral results were similar to those previously demonstrated when 2% sucrose was used as an associative sweetener. Although these 2 solutions were equally preferred, the taste quality may not be the same because the weanling rats showed neophobia to 0.1% saccharin and a larger chorda tympani response than 2% sucrose. The present study showed that a conditioned flavor preference was established to saccharin in weanling rats on the basis of flavor-taste association.
Collapse
Affiliation(s)
- Kayoko Ueji
- Department of Health and Nutrition, Faculty of Health Science, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan and
| | - Yuji Minematsu
- Health Science Research Center, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan
| | - Daisuke Takeshita
- Health Science Research Center, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan
| | - Takashi Yamamoto
- Department of Health and Nutrition, Faculty of Health Science, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan and Health Science Research Center, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan
| |
Collapse
|
29
|
Kellenberger S, Schild L. International Union of Basic and Clinical Pharmacology. XCI. Structure, Function, and Pharmacology of Acid-Sensing Ion Channels and the Epithelial Na+ Channel. Pharmacol Rev 2014; 67:1-35. [DOI: 10.1124/pr.114.009225] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Kwak Y, Han J, Rhyu MR, Nam TS, Leem JW, Lee BH. Different spatial expressions of c-Fos in the nucleus of the solitary tract following taste stimulation with sodium, potassium, and ammonium ions in rats. J Neurosci Res 2014; 93:340-9. [PMID: 25243715 DOI: 10.1002/jnr.23485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022]
Abstract
Cation-specific epithelial receptors on the tongue have been well demonstrated. However, active regions along the nucleus of the solitary tract (NST) for cations Na(+), K(+), NH4(+) are still unclear, even though the best responses of NST neurons to taste stimuli vary depending on the cell. In the present study, the spatial distribution patterns of cation-specific active regions in the NST are investigated. The tongues of urethane-anesthetized Sprague-Dawley rats (n = 25) were stimulated with artificial saliva (control), 0.5 M NaCl, 1.0 M NaCl, 0.5 M KCl, and 0.3 M NH(4) Cl. Then, the three-dimensional positions of c-Fos-like-immunoreactive (cFLI) cells in the NST were generated. The spatial distributions of cFLI cells in the NST were compared among five taste stimulations. cFLI cells were observed throughout the NST, irrespective of the stimulus; however, the intermediate-medial central regions of the NST had higher numbers of cFLI cells than the other regions in all taste stimulations. Analysis of images revealed that the activated regions in the NST differed significantly depending on the cations. The intermediate-dorsal-central region and the caudal-ventral region were activated by a 0.5 M concentration of sodium, the rostral-ventral region and the intermediate-dorsal/ventral region were activated by a 1.0 M concentration of sodium, the intermediate-dorsal/ventral region was activated by potassium ions, and the rostral-ventral region and the intermediate-ventral central region were activated by ammonium ions. These results suggest that the responses of NST cells to cation salt ions are regulated differentially.
Collapse
Affiliation(s)
- Yongho Kwak
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Mummalaneni S, Qian J, Phan THT, Rhyu MR, Heck GL, DeSimone JA, Lyall V. Effect of ENaC modulators on rat neural responses to NaCl. PLoS One 2014; 9:e98049. [PMID: 24839965 PMCID: PMC4026388 DOI: 10.1371/journal.pone.0098049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/28/2014] [Indexed: 01/31/2023] Open
Abstract
The effects of small molecule ENaC activators N,N,N-trimethyl-2-((4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanoyl)oxy)ethanaminium iodide (Compound 1) and N-(2-hydroxyethyl)-4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanamide (Compound 2), were tested on the benzamil (Bz)-sensitive NaCl chorda tympani (CT) taste nerve response under open-circuit conditions and under ±60 mV applied lingual voltage-clamp, and compared with the effects of known physiological activators (8-CPT-cAMP, BAPTA-AM, and alkaline pH), and an inhibitor (ionomycin+Ca2+) of ENaC. The NaCl CT response was enhanced at −60 mV and suppressed at +60 mV. In every case the CT response (r) versus voltage (V) curve was linear. All ENaC activators increased the open-circuit response (ro) and the voltage sensitivity (κ, negative of the slope of the r versus V curve) and ionomycin+Ca2+ decreased ro and κ to zero. Compound 1 and Compound 2 expressed a sigmoidal-saturating function of concentration (0.25–1 mM) with a half-maximal response concentration (k) of 0.49 and 1.05 mM, respectively. Following treatment with 1 mM Compound 1, 8-CPT-cAMP, BAPTA-AM and pH 10.3, the Bz-sensitive NaCl CT response to 100 mM NaCl was enhanced and was equivalent to the Bz-sensitive CT response to 300 mM NaCl. Plots of κ versus ro in the absence and presence of the activators or the inhibitor were linear, suggesting that changes in the affinity of Na+ for ENaC under different conditions are fully compensated by changes in the apical membrane potential difference, and that the observed changes in the Bz-sensitive NaCl CT response arise exclusively from changes in the maximum CT response (rm). The results further suggest that the agonists enhance and ionomycin+Ca2+ decreases ENaC function by increasing or decreasing the rate of release of Na+ from its ENaC binding site to the receptor cell cytosol, respectively. Irrespective of agonist type, the Bz-sensitive NaCl CT response demonstrated a maximum response enhancement limit of about 75% over control value.
Collapse
Affiliation(s)
- Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jie Qian
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tam-Hao T. Phan
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mee-Ra Rhyu
- Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Korea
| | - Gerard L. Heck
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John A. DeSimone
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Büsst CJ. Blood pressure regulation via the epithelial sodium channel: from gene to kidney and beyond. Clin Exp Pharmacol Physiol 2014; 40:495-503. [PMID: 23710770 DOI: 10.1111/1440-1681.12124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 01/11/2023]
Abstract
The epithelial sodium channel (ENaC) has long been recognized as playing a vital role in blood pressure (BP) regulation due to its involvement in fluid balance. The genes encoding the three ENaC subunits are likewise important contributors to hypertension, both in rare monogenic diseases and in the general population. The unusually high numbers of genetic variants associated with complex traits, including BP, that are located in non-coding areas suggest an involvement of these variants in regulatory functions. This may involve differential regulation of expression in different tissues. Emerging evidence indicates that the ENaC plays an important role in BP determination not only via its actions in the kidney, but also in other tissues commonly involved in BP regulation. The ENaC in the central nervous system is proposed to regulate BP via sympathetic nervous system activity. Recent evidence suggests that the ENaC contributes to vascular function and the myogenic response. Additional roles potentially include initiation of the baroreceptor reflex via ENaC in the baroreceptors and driving high salt intake with a 'taste for salt' via ENaC in the tongue. The present review describes the involvement of the ENaC in the determination of BP at a genetic and physiological level, detailing recent evidence for its role in the kidney and in other pertinent tissues.
Collapse
Affiliation(s)
- Cara J Büsst
- Departments of Physiology, The University of Melbourne and Monash University, Melbourne, Vic., Australia.
| |
Collapse
|
33
|
Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, Nelson TM. Genetics of taste receptors. Curr Pharm Des 2014; 20:2669-83. [PMID: 23886383 PMCID: PMC4764331 DOI: 10.2174/13816128113199990566] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.
Collapse
|
34
|
Abstract
In the tongue, distinct classes of taste receptor cells detect the five basic tastes; sweet, sour, bitter, sodium salt and umami. Among these qualities, bitter and sour stimuli are innately aversive, whereas sweet and umami are appetitive and generally attractive to animals. By contrast, salty taste is unique in that increasing salt concentration fundamentally transforms an innately appetitive stimulus into a powerfully aversive one. This appetitive-aversive balance helps to maintain appropriate salt consumption, and represents an important part of fluid and electrolyte homeostasis. We have shown previously that the appetitive responses to NaCl are mediated by taste receptor cells expressing the epithelial sodium channel, ENaC, but the cellular substrate for salt aversion was unknown. Here we examine the cellular and molecular basis for the rejection of high concentrations of salts. We show that high salt recruits the two primary aversive taste pathways by activating the sour- and bitter-taste-sensing cells. We also demonstrate that genetic silencing of these pathways abolishes behavioural aversion to concentrated salt, without impairing salt attraction. Notably, mice devoid of salt-aversion pathways show unimpeded, continuous attraction even to very high concentrations of NaCl. We propose that the 'co-opting' of sour and bitter neural pathways evolved as a means to ensure that high levels of salt reliably trigger robust behavioural rejection, thus preventing its potentially detrimental effects on health.
Collapse
|
35
|
Yamamoto K, Ishimaru Y. Oral and extra-oral taste perception. Semin Cell Dev Biol 2012; 24:240-6. [PMID: 22963927 DOI: 10.1016/j.semcdb.2012.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Of the five basic taste qualities, the molecular mechanisms underlying sweet, bitter, and umami (savory) taste perception have been extensively elucidated, including the taste receptors and downstream signal transduction molecules. Recent studies have revealed that these taste-related molecules play important roles not only in the oral cavity but also in a variety of tissues including the respiratory tract, stomach, intestines, pancreas, liver, kidney, testes, and brain. This review covers the current knowledge regarding the physiological roles of taste-related molecules in the oral and extra-oral tissues.
Collapse
Affiliation(s)
- Kurumi Yamamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
36
|
Abstract
Molecular mechanisms of salty taste in mammals are not completely understood. We use genetic approaches to study these mechanisms. Previously, we developed a high-throughput procedure to measure NaCl taste thresholds, which involves conditioning mice to avoid LiCl and then examining avoidance of NaCl solutions presented in 48-h 2-bottle preference tests. Using this procedure, we measured NaCl taste thresholds of mice from 13 genealogically divergent inbred stains: 129P3/J, A/J, BALB/cByJ, C3H/HeJ, C57BL/6ByJ, C57BL/6J, CBA/J, CE/J, DBA/2J, FVB/NJ, NZB/BlNJ, PWK/PhJ, and SJL/J. We found substantial strain variation in NaCl taste thresholds: mice from the A/J and 129P3/J strains had high thresholds (were less sensitive), whereas mice from the BALB/cByJ, C57BL/6J, C57BL/6ByJ, CE/J, DBA/2J, NZB/BINJ, and SJL/J had low thresholds (were more sensitive). NaCl taste thresholds measured in this study did not significantly correlate with NaCl preferences or amiloride sensitivity of chorda tympani nerve responses to NaCl determined in the same strains in other studies. To examine whether strain differences in NaCl taste thresholds could have been affected by variation in learning ability or sensitivity to toxic effects of LiCl, we used the same method to measure citric acid taste thresholds in 4 inbred strains with large differences in NaCl taste thresholds but similar acid sensitivity in preference tests (129P3/J, A/J, C57BL/6J, and DBA/2J). Citric acid taste thresholds were similar in these 4 strains. This suggests that our technique measures taste quality-specific thresholds that are likely to represent differences in peripheral taste responsiveness. The strain differences in NaCl taste sensitivity found in this study provide a basis for genetic analysis of this phenotype.
Collapse
Affiliation(s)
- Yutaka Ishiwatari
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
37
|
|
38
|
Ramírez M, Toledo H, Obreque-Slier E, Peña-Neira A, López-Solís RO. Aversive effect of tannic acid on drinking behavior in mice of an inbred strain: potential animal model for assessing astringency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11744-11751. [PMID: 21958051 DOI: 10.1021/jf2029972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Astringency, an orosensory sensation associated with dietary tannins, contributes to food appetitiveness/aversiveness. However, astringency perception varies greatly among individuals. This study examined whether genetically homogeneous naïve mice display appetitiveness/aversiveness when provided with tannin-containing drink solutions. Ingestion of serial dilutions of tannic acid (TA) by inbred mice (A/Snell) was assessed by a one-bottle preference test. Drink intake was far predominant at night (circadian rhythm). TA concentration-dependently inhibited daily drink consumption. Overnight consumption of TA solutions (range = 0.5-8 g/L) decreased linearly to zero during the first night and was recovered significantly during subsequent nights. TA also inhibited drink consumption in another two inbred mouse strains. The protein fraction of saliva collected from naive mice was markedly reactive with TA at the concentrations shown to affect drink consumption. Thus, testing for drink ingestion in inbred mice during short-term (overnight) exposure to tannin-containing liquid foods represents an advantageous animal model for assessing astringency.
Collapse
Affiliation(s)
- Manuel Ramírez
- Cellular and Molecular Biology Program, Faculty of Medicine (ICBM), University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
39
|
Isono K, Morita H. Molecular and cellular designs of insect taste receptor system. Front Cell Neurosci 2010; 4:20. [PMID: 20617187 PMCID: PMC2896210 DOI: 10.3389/fncel.2010.00020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/16/2010] [Indexed: 12/05/2022] Open
Abstract
The insect gustatory receptors (GRs) are members of a large G-protein coupled receptor family distantly related to the insect olfactory receptors. They are phylogenetically different from taste receptors of most other animals. GRs are often coexpressed with other GRs in single receptor neurons. Taste receptors other than GRs are also expressed in some neurons. Recent molecular studies in the fruitfly Drosophila revealed that the insect taste receptor system not only covers a wide ligand spectrum of sugars, bitter substances or salts that are common to mammals but also includes reception of pheromone and somatosensory stimulants. However, the central mechanism to perceive and discriminate taste information is not yet elucidated. Analysis of the primary projection of taste neurons to the brain shows that the projection profiles depend basically on the peripheral locations of the neurons as well as the GRs that they express. These results suggest that both peripheral and central design principles of insect taste perception are different from those of olfactory perception.
Collapse
Affiliation(s)
- Kunio Isono
- Graduate School of Information Sciences, Tohoku University Sendai, Japan
| | | |
Collapse
|
40
|
Abstract
There has been extensive work to elucidate the behavioral and physiological mechanisms responsible for taste preferences of the rat but little attempt to delineate the underlying genetic architecture. Here, we exploit the FHH-Chr n(BN)/Mcwi consomic rat strain set to identify chromosomes carrying genes responsible for taste preferences. We screened the parental Fawn Hooded Hypertensive (FHH) and Brown Norway (BN) strains and 22 FHH-Chr n(BN) consomic strains, with 96-h 2-bottle tests, involving a choice between water and each of the following 16 solutions: 10 mM NaCl, 237 mM NaCl, 32 mM CaCl(2), 1 mM saccharin, 100 mM NH(4)Cl, 32 mM sucrose, 100 mM KCl, 4% ethanol, 1 mM HCl, 10 mM monosodium glutamate, 1 mM citric acid, 32 microM quinine hydrochloride, 1% corn oil, 32 microM denatonium, 1% Polycose, and 1 microM capsaicin. Depending on the taste solution involved, between 1 and 16 chromosomes were implicated in the response. Few of these chromosomes carried genes believed to mediate taste transduction in the mouse, and many chromosomes with no candidate taste genes were revealed. The genetic architecture of taste preferences is considerably more complex than has heretofore been acknowledged.
Collapse
Affiliation(s)
- Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
The cells and peripheral representation of sodium taste in mice. Nature 2010; 464:297-301. [PMID: 20107438 PMCID: PMC2849629 DOI: 10.1038/nature08783] [Citation(s) in RCA: 459] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/05/2010] [Indexed: 11/08/2022]
Abstract
Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.
Collapse
|
42
|
Feldman GM, Heck GL, Smith NL. Human Salt Taste and the Lingual Surface Potential Correlate. Chem Senses 2009; 34:373-82. [DOI: 10.1093/chemse/bjp009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Frank ME, Lundy RF, Contreras RJ. Cracking taste codes by tapping into sensory neuron impulse traffic. Prog Neurobiol 2008; 86:245-63. [PMID: 18824076 DOI: 10.1016/j.pneurobio.2008.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 07/03/2008] [Accepted: 09/02/2008] [Indexed: 12/25/2022]
Abstract
Insights into the biological basis for mammalian taste quality coding began with electrophysiological recordings from "taste" nerves and this technique continues to produce essential information today. Chorda tympani (geniculate ganglion) neurons, which are particularly involved in taste quality discrimination, are specialists or generalists. Specialists respond to stimuli characterized by a single taste quality as defined by behavioral cross-generalization in conditioned taste tests. Generalists respond to electrolytes that elicit multiple aversive qualities. Na(+)-salt (N) specialists in rodents and sweet-stimulus (S) specialists in multiple orders of mammals are well characterized. Specialists are associated with species' nutritional needs and their activation is known to be malleable by internal physiological conditions and contaminated external caloric sources. S specialists, associated with the heterodimeric G-protein coupled receptor T1R, and N specialists, associated with the epithelial sodium channel ENaC, are consistent with labeled line coding from taste bud to afferent neuron. Yet, S-specialist neurons and behavior are less specific than T1R2-3 in encompassing glutamate and E generalist neurons are much less specific than a candidate, PDK TRP channel, sour receptor in encompassing salts and bitter stimuli. Specialist labeled lines for nutrients and generalist patterns for aversive electrolytes may be transmitting taste information to the brain side by side. However, specific roles of generalists in taste quality coding may be resolved by selecting stimuli and stimulus levels found in natural situations. T2Rs, participating in reflexes via the glossopharynygeal nerve, became highly diversified in mammalian phylogenesis as they evolved to deal with dangerous substances within specific environmental niches. Establishing the information afferent neurons traffic to the brain about natural taste stimuli imbedded in dynamic complex mixtures will ultimately "crack taste codes."
Collapse
Affiliation(s)
- Marion E Frank
- Center for Chemosensory Sciences, Department of Oral Health & Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030-1715, United States.
| | | | | |
Collapse
|
44
|
|
45
|
Tordoff MG, Bachmanov AA, Reed DR. Forty mouse strain survey of water and sodium intake. Physiol Behav 2007; 91:620-31. [PMID: 17490693 PMCID: PMC2085363 DOI: 10.1016/j.physbeh.2007.03.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/22/2007] [Accepted: 03/26/2007] [Indexed: 11/25/2022]
Abstract
We measured voluntary water and sodium intakes of 40 inbred strains of mice. Groups of approximately 10 males and approximately 10 females from each strain received a series of 48-h tests with a choice between a bottle of water and a bottle of one of the following: water, 25, 75, and 225 mM NaCl, 25, 75, and 225 sodium lactate. Sodium solution intakes were influenced by strain, sex, anion and concentration: Nine strains drank significantly more chloride than lactate, and only one strain (I/LnJ) drank significantly more lactate than chloride. The other 30 strains drank similar volumes of chloride and lactate. Sodium intakes were higher in females than males of 8 strains and did not differ by sex in the other 32 strains. Some strains had consistently high sodium intakes and preferred all sodium solutions to water (129S1/SvImJ, MA/MyJ, NZW/LacJ and SWR/J), some showed indifference (i.e. preferences not significantly different from 50%) to all concentrations tested (A/J, C57BL/6J, FVB/NJ and SEA/GnJ), and some had consistently low sodium intakes (AKR/J, C3H/HeJ, C57BL/10J, CBA/J, DBA/2J, I/LnJ, JF1/Ms, LP/J, NON/LtJ, PERA/EiJ, PL/J, and RIIIS/J). The results illustrate the diversity of voluntary sodium intake in mice and will assist in the selection of appropriate strains for focused genetic and physiological analyses.
Collapse
|
46
|
LopezJimenez ND, Cavenagh MM, Sainz E, Cruz-Ithier MA, Battey JF, Sullivan SL. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem 2006; 98:68-77. [PMID: 16805797 DOI: 10.1111/j.1471-4159.2006.03842.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Taste receptors cells are responsible for detecting a wide variety of chemical stimuli. Several molecules including both G protein coupled receptors and ion channels have been shown to be involved in the detection and transduction of tastants. We report on the expression of two members of the transient receptor potential (TRP) family of ion channels, PKD1L3 and PKD2L1, in taste receptor cells. Both of these channels belong to the larger polycystic kidney disease (PKD or TRPP) subfamily of TRP channels, members of which have been demonstrated to be non-selective cation channels and permeable to both Na(+) and Ca(2+). Pkd1l3 and Pkd2l1 are co-expressed in a select subset of taste receptor cells and therefore may, like other PKD channels, function as a heteromer. We found the taste receptor cells expressing Pkd1l3 and Pkd2l1 to be distinct from those that express components of sweet, bitter and umami signal transduction pathways. These results provide the first evidence for a role of TRPP channels in taste receptor cell function.
Collapse
Affiliation(s)
- Nelson D LopezJimenez
- Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Rockville, Maryland, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lyall V, Heck GL, Phan THT, Mummalaneni S, Malik SA, Vinnikova AK, Desimone JA. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses. ACTA ACUST UNITED AC 2005; 125:587-600. [PMID: 15928404 PMCID: PMC2234074 DOI: 10.1085/jgp.200509264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na+ activity ([Na+]i) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na+ channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.
Collapse
Affiliation(s)
- Vijay Lyall
- Department of Physiology, Division of Nephrology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
St John SJ, Hallagan LD. Psychophysical investigations of cetylpyridinium chloride in rats: its inherent taste and modifying effects on salt taste. Behav Neurosci 2005; 119:265-79. [PMID: 15727531 DOI: 10.1037/0735-7044.119.1.265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Salts are transduced by at least 2 mechanisms: (a) antagonized by amiloride and (b) antagonized by cetylpyridinium chloride (CPC). The authors report on 4 behavioral experiments in rats that characterize the orosensory properties of CPC itself as well as its effect in suppressing the intensity of NaCl and KCl taste. Experiments 1 and 2 indicated that CPC has a quinine-like taste quality. Experiments 3 and 4 demonstrated that the recognition of KCl, but not NaCl, is modestly reduced by mixture with CPC. However, control experiments call into question the mechanism of the salt suppression of CPC, because both CPC-salt and quinine-salt mixtures had similar effects. The relevance of these studies for understanding salt and bitter taste coding is discussed.
Collapse
Affiliation(s)
- Steven J St John
- Department of Psychology, Reed College, Portland, OR 97202, USA.
| | | |
Collapse
|
49
|
Curtis KS, Krause EG, Wong DL, Contreras RJ. Gestational and early postnatal dietary NaCl levels affect NaCl intake, but not stimulated water intake, by adult rats. Am J Physiol Regul Integr Comp Physiol 2004; 286:R1043-50. [PMID: 14764435 DOI: 10.1152/ajpregu.00582.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined body fluid regulation by weanling (21–25 days) and adult (>60 days) male rats that were offspring of dams fed chow containing either 0.1, 1, or 3% NaCl throughout gestation and lactation. Weanling rats were maintained on the test diets until postnatal day 30 and on standard 1% NaCl chow thereafter. Ad libitum water intake by weanlings was highest in those fed 3% NaCl and lowest in those fed 0.1% NaCl. Adult rats maintained on standard NaCl chow consumed similar amounts of water after overnight water deprivation or intravenous hypertonic NaCl (HS) infusion regardless of early NaCl condition. Moreover, baseline and HS-stimulated plasma Na+ concentrations also were similar for the three groups. Nonetheless, adult rats in the early 3% NaCl group consumed more of 0.5 M NaCl after 10 days of dietary Na+ deprivation than did rats in either the 1% or 0.1% NaCl group. Interestingly, whether NaCl was consumed in a concentrated solution in short-term, two-bottle tests after dietary Na+ deprivation or in chow during ad libitum feeding, adult rats in the 3% NaCl group drank less water for each unit of NaCl consumed, whereas rats in the 0.1% NaCl group drank more water for each unit of NaCl consumed. Thus gestational and early postnatal dietary NaCl levels do not affect stimulated water intake or long-term body fluid regulation. Together with our previous studies, these results suggest that persistent changes in NaCl intake and in water intake associated with NaCl ingestion reflect short-term behavioral effects that may be attributable to differences in NaCl taste processing.
Collapse
Affiliation(s)
- Kathleen S Curtis
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL 32306-1270, USA.
| | | | | | | |
Collapse
|
50
|
Lyall V, Heck GL, Vinnikova AK, Ghosh S, Phan THT, Alam RI, Russell OF, Malik SA, Bigbee JW, DeSimone JA. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol 2004; 558:147-59. [PMID: 15146042 PMCID: PMC1664927 DOI: 10.1113/jphysiol.2004.065656] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The amiloride-insensitive salt taste receptor is the predominant transducer of salt taste in some mammalian species, including humans. The physiological, pharmacological and biochemical properties of the amiloride-insensitive salt taste receptor were investigated by RT-PCR, by the measurement of unilateral apical Na+ fluxes in polarized rat fungiform taste receptor cells and by chorda tympani taste nerve recordings. The chorda tympani responses to NaCl, KCl, NH4Cl and CaCl2 were recorded in Sprague-Dawley rats, and in wild-type and vanilloid receptor-1 (VR-1) knockout mice. The chorda tympani responses to mineral salts were monitored in the presence of vanilloids (resiniferatoxin and capsaicin), VR-1 antagonists (capsazepine and SB-366791), and at elevated temperatures. The results indicate that the amiloride-insensitive salt taste receptor is a constitutively active non-selective cation channel derived from the VR-1 gene. It accounts for all of the amiloride-insensitive chorda tympani taste nerve response to Na+ salts and part of the response to K+, NH4+ and Ca2+ salts. It is activated by vanilloids and temperature (> 38 degrees C), and is inhibited by VR-1 antagonists. In the presence of vanilloids, external pH and ATP lower the temperature threshold of the channel. This allows for increased salt taste sensitivity without an increase in temperature. VR-1 knockout mice demonstrate no functional amiloride-insensitive salt taste receptor and no salt taste sensitivity to vanilloids and temperature. We conclude that the mammalian non-specific salt taste receptor is a VR-1 variant.
Collapse
Affiliation(s)
- Vijay Lyall
- Department of Physiology, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|