1
|
Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-Κb signaling pathways. Inflamm Res 2020; 69:1257-1270. [PMID: 33037469 DOI: 10.1007/s00011-020-01407-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE AND DESIGN Methyl gallate (MG) is a prevalent polyphenol in the plant kingdom, which may be related to the effects of several medicinal plants. Although it is widely reported that polyphenols have therapeutic effects, there are few studies demonstrating that MG has anti-inflammatory action. This study aimed to investigate the molecular mechanism behind the anti-inflammatory activity of MG and its effect on hyperalgesia. METHODS Swiss mice were pretreated orally with different doses of MG and subjected to i.pl. injection of zymosan to induce paw edema. RAW264.7 macrophages and BMDMs stimulated with different TLR agonists such as zymosan, LPS, or Pam3CSK4 were used to investigate the molecular mechanisms of MG RESULTS: MG inhibits zymosan-induced paw edema and hyperalgesia and modulates molecular pathways crucial for inflammation development. Pretreatment with MG inhibited cytokines production and NF-κB activity by RAW 264.7 cells stimulated with zymosan, Pam3CSK4 or LPS, but not with PMA. Moreover, pretreatment with MG decreased IκB degradation, nuclear translocation of NF-κBp65, c-jun and c-fos and ERK1/2, p38 and JNK phosphorylation. CONCLUSION Thus, the results of this study demonstrate that MG has a promising anti-inflammatory effect and suggests an explanation of its mechanism of action through the inhibition of NF-κB signaling and the MAPK pathway.
Collapse
|
2
|
Gonçalves ECD, Vieira G, Gonçalves TR, Simões RR, Brusco I, Oliveira SM, Calixto JB, Cola M, Santos ARS, Dutra RC. Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model. Cell Mol Neurobiol 2020; 41:63-78. [PMID: 32222846 DOI: 10.1007/s10571-020-00832-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B1 and B2) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B1 and B2 and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.
Collapse
Affiliation(s)
- Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil.,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Graziela Vieira
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Tainara R Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Róli R Simões
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Indiara Brusco
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Sara M Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - João B Calixto
- Center of Innovation and Preclinical Research, Florianópolis, SC, 88056-000, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil. .,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil. .,Laboratório de Autoimunidade e Imunofarmacologia (LAIF), Departamento de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Araranguá. Rodovia Jorge Lacerda, Km 35.4 - Jardim das Avenidas, Araranguá, SC, CEP 88906-072, Brazil.
| |
Collapse
|
3
|
Marzoli F, Marianecci C, Rinaldi F, Passeri D, Rossi M, Minosi P, Carafa M, Pieretti S. Long-Lasting, Antinociceptive Effects of pH-Sensitive Niosomes Loaded with Ibuprofen in Acute and Chronic Models of Pain. Pharmaceutics 2019; 11:pharmaceutics11020062. [PMID: 30717144 PMCID: PMC6410004 DOI: 10.3390/pharmaceutics11020062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Ibuprofen is one of the non-steroidal anti-inflammatory drugs (NSAIDs) widely used to treat pain conditions. NSAIDs encounter several obstacles to passing across biological membranes. To overcome these constraints, we decided to study the effects of a new pH-sensitive formulation of niosomes containing Polysorbate 20 derivatized by Glycine and loaded with ibuprofen (NioIbu) in several animal models of pain in mice. We performed two tests commonly used to study acute antinociceptive activity, namely the writhing test and the capsaicin test. Our results demonstrated that NioIbu, administered 2 h before testing, reduced nociception, whereas the free form of ibuprofen was ineffective. In a model of inflammatory pain, hyperalgesia induced by zymosan, NioIbu induced a long-lasting reduction in hyperalgesia in treated mice. In a model of neuropathic pain induced by sciatic nerve chronic constriction, NioIbu reduced both neuropathy-induced allodynia and hyperalgesia. The results obtained in our experiments suggest that pH-sensitive niosomes containing Polysorbate 20 derivatized by Glycine is an effective model for NSAIDs delivery, providing durable antinociceptive effects and reducing the incidence of side effects.
Collapse
Affiliation(s)
- Francesca Marzoli
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy.
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy.
| | - Federica Rinaldi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia (ITT), 00161 Rome, Italy.
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161 Rome, Italy.
- Research Center for Nanotechnology Applied to Engineering, Sapienza University of Rome (CNIS), 00185 Rome, Italy.
| | - Paola Minosi
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy.
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy.
| | - Stefano Pieretti
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy.
| |
Collapse
|
4
|
El-Kady MM, Girgis ZI, Abd El-Rasheed EA, Shaker O, Attallah MI, Soliman AA. Role of selective blocking of bradykinin receptor subtypes in attenuating allergic airway inflammation in guinea pigs. Eur J Pharmacol 2016; 788:152-159. [PMID: 27321873 DOI: 10.1016/j.ejphar.2016.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 11/25/2022]
Abstract
The present study was designed to evaluate the potential role of bradykinin antagonists (R-715; bradykinin B1 receptor antagonist and icatibant; bradykinin B2 receptor antagonist) in treatment of allergic airway inflammation in comparison to dexamethasone and montelukast. R-715 as dexamethasone significantly decreased peribronchial leukocyte infiltration, bronchoalveolar lavage fluid (BALF) albumin and interleukin 1β as well as serum OVA-specific IgE level. Also, R-715 like montelukast significantly decreased BALF cell count (total and eosinophils). Icatibant showed negative results. The current findings suggest that selective bradykinin B1 receptor antagonists may have the therapeutic potential for the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Mohamed M El-Kady
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, 11559, Egypt.
| | - Zarif I Girgis
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, 11559, Egypt.
| | - Eman A Abd El-Rasheed
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, 11559, Egypt.
| | - Olfat Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, 11559, Egypt.
| | - Magdy I Attallah
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, 11559, Egypt.
| | - Ahmed A Soliman
- Department of Pathology, Faculty of Medicine, Cairo University, 11559, Egypt.
| |
Collapse
|
5
|
Teixeira JM, de Oliveira-Fusaro MCG, Parada CA, Tambeli CH. Peripheral P2X7 receptor-induced mechanical hyperalgesia is mediated by bradykinin. Neuroscience 2014; 277:163-73. [PMID: 24997266 DOI: 10.1016/j.neuroscience.2014.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/23/2014] [Accepted: 06/26/2014] [Indexed: 12/12/2022]
Abstract
P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.
Collapse
Affiliation(s)
- J M Teixeira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862, Brazil
| | - M C G de Oliveira-Fusaro
- Faculty of Applied Sciences, State University of Campinas - UNICAMP, Rua Pedro Zaccaria, 1300, Limeira, SP CEP 13484-350, Brazil
| | - C A Parada
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862, Brazil
| | - C H Tambeli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Rua Monteiro Lobato, 255, Campinas, SP CEP 13083-862, Brazil.
| |
Collapse
|
6
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
7
|
Paul-Clark MJ, George PM, Gatheral T, Parzych K, Wright WR, Crawford D, Bailey LK, Reed DM, Mitchell JA. Pharmacology and therapeutic potential of pattern recognition receptors. Pharmacol Ther 2012; 135:200-15. [PMID: 22627269 DOI: 10.1016/j.pharmthera.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 12/30/2022]
Abstract
Pharmacologists have used pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) for decades as a stimulus for studying mediators involved in inflammation and for the screening of anti-inflammatory compounds. However, in the view of immunologists, LPS was too non-specific for studying the mechanisms of immune signalling in infection and inflammation, as no receptors had been identified. This changed in the late 1990s with the discovery of the Toll-like receptors. These 'pattern recognition receptors' (PRRs) were able to recognise highly conserved sequences, the so called pathogen associated molecular patterns (PAMPs) present in or on pathogens. This specificity of particular PAMPs and their newly defined receptors provided a common ground between pharmacologists and immunologists for the study of inflammation. PRRs also recognise endogenous agonists, the so called danger-associated molecular patterns (DAMPs), which can result in sterile inflammation. The signalling pathways and ligands of many PRRs have now been characterised and there is no doubt that this rich vein of research will aid the discovery of new therapeutics for infectious conditions and chronic inflammatory disease.
Collapse
Affiliation(s)
- M J Paul-Clark
- Department of Cardiothoracic Pharmacology, Pharmacology and Toxicology, National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London SW3 6LY, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Emerging role of microglial kinin B1 receptor in diabetic pain neuropathy. Exp Neurol 2012; 234:373-81. [DOI: 10.1016/j.expneurol.2011.11.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/01/2011] [Accepted: 11/22/2011] [Indexed: 12/28/2022]
|
9
|
Barth M, Bondoux M, Luccarini JM, Peyrou V, Dodey P, Pruneau D, Massardier C, Paquet JL. From bradykinin B2 receptor antagonists to orally active and selective bradykinin B1 receptor antagonists. J Med Chem 2012; 55:2574-84. [PMID: 22369198 DOI: 10.1021/jm2016057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bradykinin (BK) B1 receptor is an attractive target for the treatment of chronic pain and inflammation. Starting from a dual B1 and B2 antagonist, novel antagonists were designed that display low-nanomolar affinity for human B1 receptor and selectivity over B2. Initially, potent imidazoline derivatives were studied, but these compounds suffered from low bioavailability. This issue could be overcome by the use of less basic amino derivatives leading to orally active compounds.
Collapse
Affiliation(s)
- Martine Barth
- Department of Chemical Design and Synthesis, Clinical Candidate Selection, Laboratoires Fournier, 50 Rue de Dijon, 21121 Daix, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Röhn TA, Ralvenius WT, Paul J, Borter P, Hernandez M, Witschi R, Grest P, Zeilhofer HU, Bachmann MF, Jennings GT. A Virus-Like Particle-Based Anti-Nerve Growth Factor Vaccine Reduces Inflammatory Hyperalgesia: Potential Long-Term Therapy for Chronic Pain. THE JOURNAL OF IMMUNOLOGY 2010; 186:1769-80. [DOI: 10.4049/jimmunol.1000030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Huszár J, Timár Z, Bogár F, Penke B, Kiss R, Szalai KK, Schmidt É, Papp A, Keserű G. Aspartic acid scaffold in bradykinin B1 antagonists. J Pept Sci 2009; 15:423-34. [DOI: 10.1002/psc.1134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Novel bradykinin-1 antagonists containing a (1,2,3,4-tetrahydro-isoquinolin-1-yl)acetic acid scaffold. Eur J Med Chem 2008; 43:1552-8. [DOI: 10.1016/j.ejmech.2007.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 10/18/2007] [Accepted: 10/29/2007] [Indexed: 11/19/2022]
|
13
|
Dong H, Sun H, Magal E, Ding X, Kumar GN, Chen JJ, Johnson EJ, Manning BH. Inflammatory pain in the rabbit: A new, efficient method for measuring mechanical hyperalgesia in the hind paw. J Neurosci Methods 2008; 168:76-87. [DOI: 10.1016/j.jneumeth.2007.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 09/18/2007] [Accepted: 09/20/2007] [Indexed: 11/29/2022]
|
14
|
Petcu M, Dias JP, Ongali B, Thibault G, Neugebauer W, Couture R. Role of kinin B1 and B2 receptors in a rat model of neuropathic pain. Int Immunopharmacol 2007; 8:188-96. [PMID: 18182225 DOI: 10.1016/j.intimp.2007.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/31/2007] [Accepted: 09/06/2007] [Indexed: 12/14/2022]
Abstract
Kinin B1 and B2 receptor (R) gene expression (mRNA) is increased in the sensory system after peripheral nerve injury. This study measured the densities of B1R and B2R binding sites in the spinal cord and dorsal root ganglia (DRG) by quantitative autoradiography, and evaluated the effects of two selective non-peptide antagonists at B1R (LF22-0542) and B2R (LF16-0687) on pain behavior after partial ligation of the left sciatic nerve. Increases of B1R binding sites were seen in superficial laminae of the ipsi- and contralateral spinal cord at 2 and 14 days while B2R binding sites were increased on the ipsilateral side at 2 days and on both sides at 14 days. In DRG, B1R and B2R binding sites were significantly increased at 2 days (ipsilateral) and 14 days on both sides. Whereas tactile allodynia started to develop progressively from 2 to 25 days post-ligation, the occurrence of cold allodynia and thermal hyperalgesia became significant from day 8 and day 14 post-ligation, respectively. At day 21 after sciatic nerve ligation, thermal hyperalgesia was blocked by LF22-0542 (10 mg/kg, s.c.) and LF16-0687 (3 mg/kg, s.c.), yet both antagonists had no effect on tactile and cold allodynia. Data highlight the implication of both kinin receptors in thermal hyperalgesia but not in tactile and cold allodynia associated with peripheral nerve injury. Hence LF22-0542 and LF16-0687 present therapeutic potential for the treatment of some aspects of neuropathic pain.
Collapse
Affiliation(s)
- M Petcu
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | |
Collapse
|
15
|
Cunha TM, Verri WA, Fukada SY, Guerrero ATG, Santodomingo-Garzón T, Poole S, Parada CA, Ferreira SH, Cunha FQ. TNF-alpha and IL-1beta mediate inflammatory hypernociception in mice triggered by B1 but not B2 kinin receptor. Eur J Pharmacol 2007; 573:221-9. [PMID: 17669394 DOI: 10.1016/j.ejphar.2007.07.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/28/2007] [Accepted: 07/04/2007] [Indexed: 12/16/2022]
Abstract
Kinin receptors are involved in the genesis of inflammatory pain. However, there is controversy concerning the mechanism by which B(1) and B(2) kinin receptors mediate inflammatory hypernociception. In the present study, the role of these receptors on inflammatory hypernociception in mice was addressed. Mechanical hypernociception was detected with an electronic pressure meter paw test in mice and cytokines were measured by ELISA. It was observed that in naïve mice a B(2) (d-Arg-Hyp(3), d-Phe(7)-bradykinin) but not a B(1) kinin receptor antagonist (des-Arg(9)-[Leu(8)]-bradykinin, DALBK) inhibited bradykinin- and carrageenin-induced hypernociception. Bradykinin-induced hypernociception was inhibited by indomethacin (5 mg/kg) and guanethidine (30 mg/kg), while not affected by IL-1ra (10 mg/kg) or antibody against keratinocyte-derived chemokine (KC/CXCL-1, 500 ng/paw) or in TNFR1 knockout mice. By contrast, in previously lipopolysaccharide (LPS)-primed mouse paw, B(1) but not B(2) kinin receptor antagonist inhibited bradykinin hypernociception. Furthermore, B(1) kinin receptor agonist induced mechanical hypernociception in LPS-primed mice, which was inhibited by indomethacin, guanethidine, antiserum against TNF-alpha or IL-1ra. This was corroborated by the induction of TNF-alpha and IL-1beta release by B(1) kinin receptor agonist in LPS-primed mouse paws. Moreover, B(1) but not B(2) kinin receptor antagonist inhibited carrageenin-induced hypernociception, and TNF-alpha and IL-1beta release as well, in LPS-primed mice. These results suggest that in naïve mice the B(2) kinin receptor mediates inflammatory hypernociception dependent on prostanoids and sympathetic amines, through a cytokine-independent mechanism. On the other hand, in LPS-primed mice, the B(1) kinin receptor mediates hypernociception by a mechanism dependent on TNF-alpha and IL-1beta, which could stimulate prostanoid and sympathetic amine production.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Bradykinin/administration & dosage
- Bradykinin/analogs & derivatives
- Bradykinin/pharmacology
- Bradykinin B1 Receptor Antagonists
- Bradykinin B2 Receptor Antagonists
- Bradykinin Receptor Antagonists
- Carrageenan/administration & dosage
- Carrageenan/toxicity
- Dose-Response Relationship, Drug
- Guanethidine/pharmacology
- Hyperalgesia/chemically induced
- Hyperalgesia/physiopathology
- Hyperalgesia/prevention & control
- Indomethacin/pharmacology
- Inflammation/chemically induced
- Inflammation/physiopathology
- Inflammation/prevention & control
- Interleukin-1beta/immunology
- Interleukin-1beta/physiology
- Lipopolysaccharides/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Prostaglandins/physiology
- Receptor, Bradykinin B1/agonists
- Receptor, Bradykinin B1/physiology
- Receptor, Bradykinin B2/physiology
- Receptors, Bradykinin/agonists
- Receptors, Bradykinin/physiology
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Thiago M Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dias JP, Ismael MA, Pilon M, de Champlain J, Ferrari B, Carayon P, Couture R. The kinin B1 receptor antagonist SSR240612 reverses tactile and cold allodynia in an experimental rat model of insulin resistance. Br J Pharmacol 2007; 152:280-7. [PMID: 17618300 PMCID: PMC1978253 DOI: 10.1038/sj.bjp.0707388] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetes causes sensory polyneuropathy with associated pain in the form of tactile allodynia and thermal hyperalgesia which are often intractable and resistant to current therapy. This study tested the beneficial effects of the non-peptide and orally active kinin B(1) receptor antagonist SSR240612 against tactile and cold allodynia in a rat model of insulin resistance. EXPERIMENTAL APPROACH Rats were fed with 10% D-glucose for 12 weeks and effects of orally administered SSR240612 (0.3-30 mg kg(-1)) were determined on the development of tactile and cold allodynia. Possible interference of SSR240612 with vascular oxidative stress and pancreatic function was also addressed. KEY RESULTS Glucose-fed rats exhibited tactile and cold allodynia, increases in systolic blood pressure and higher plasma levels of insulin and glucose, at 12 weeks. SSR240612 blocked tactile and cold allodynia at 3 h (ID(50)=5.5 and 7.1 mg kg(-1), respectively) in glucose-fed rats but had no effect in control rats. The antagonist (10 mg kg(-1)) had no effect on plasma glucose and insulin, insulin resistance (HOMA index) and aortic superoxide anion production in glucose-fed rats. CONCLUSIONS AND IMPLICATIONS We provide the first evidence that the B(1) receptors are involved in allodynia in an experimental rat model of insulin resistance. Allodynia was alleviated by SSR240612 most likely through a direct inhibition of B(1) receptors affecting spinal cord and/or sensory nerve excitation. Thus, orally active non-peptide B(1) receptor antagonists should have clinical therapeutic potential in the treatment of sensory polyneuropathy.
Collapse
Affiliation(s)
- J P Dias
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
| | - M A Ismael
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
| | - M Pilon
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
| | - J de Champlain
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
| | - B Ferrari
- Sanofi-Aventis R&D Montpellier, France
| | - P Carayon
- Sanofi-Aventis R&D Montpellier, France
| | - R Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal Montréal, Québec, Canada
- Author for correspondence:
| |
Collapse
|
17
|
Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci 2006; 99:6-38. [PMID: 16177542 DOI: 10.1254/jphs.srj05001x] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The kallikrein-kinin system is an endogenous metabolic cascade, triggering of which results in the release of vasoactive kinins (bradykinin-related peptides). This complex system includes the precursors of kinins known as kininogens and mainly tissue and plasma kallikreins. The pharmacologically active kinins, which are often considered as either proinflammatory or cardioprotective, are implicated in many physiological and pathological processes. The interest of the various components of this multi-protein system is explained in part by the multiplicity of its pharmacological activities, mediated not only by kinins and their receptors, but also by their precursors and their activators and the metallopeptidases and the antiproteases that limit their activities. The regulation of this system by serpins and the wide distribution of the different constituents add to the complexity of this system, as well as its multiple relationships with other important metabolic pathways such as the renin-angiotensin, coagulation, or complement pathways. The purpose of this review is to summarize the main properties of this kallikrein-kinin system and to address the multiple pharmacological interventions that modulate the functions of this system, restraining its proinflammatory effects or potentiating its cardiovascular properties.
Collapse
|
18
|
Fotsch C, Biddlecome G, Biswas K, Chen JJ, D'Amico DC, Groneberg RD, Han NB, Hsieh FY, Kamassah A, Kumar G, Lester-Zeiner D, Liu Q, Mareska DA, Riahi BB, Wang YJJ, Yang K, Zhan J, Zhu J, Johnson E, Ng G, Askew BC. A new class of bradykinin 1 receptor antagonists containing the piperidine acetic acid tetralin core. Bioorg Med Chem Lett 2006; 16:2071-5. [PMID: 16464576 DOI: 10.1016/j.bmcl.2006.01.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/16/2006] [Accepted: 01/17/2006] [Indexed: 11/19/2022]
Abstract
The bradykinin 1 (B1) receptor is upregulated during times of inflammation and is important for maintaining inflamed and chronic pain states. Blocking this receptor has been shown to reverse and/or ameliorate pain and inflammation in animal models. In this report, we describe a new class of B1 receptor antagonists that contain the piperidine acetic acid tetralin core. A structure-activity relationship for these analogs is described in this paper. The most potent compounds from this class have IC50s<20 nM in a B1 receptor functional assay. One of these compounds, 13g, shows modest oral bioavailability in rats.
Collapse
Affiliation(s)
- Christopher Fotsch
- Amgen Inc., Department of Chemistry Research and Development, One Amgen Center Drive, Thousand Oaks, CA 91360, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Porreca F, Vanderah TW, Guo W, Barth M, Dodey P, Peyrou V, Luccarini JM, Junien JL, Pruneau D. Antinociceptive pharmacology of N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]methyl]-2-[2-[[(4-methoxy-2,6-dimethylphenyl) sulfonyl]methylamino]ethoxy]-N-methylacetamide, fumarate (LF22-0542), a novel nonpeptidic bradykinin B1 receptor antagonist. J Pharmacol Exp Ther 2006; 318:195-205. [PMID: 16565167 DOI: 10.1124/jpet.105.098368] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antinociceptive pharmacology of N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]methyl]-2-[2-[[(4-methoxy-2,6-dimethylphenyl) sulfonyl]methylamino]ethoxy]-N-methylacetamide fumarate (LF22-0542), a novel nonpeptidic B1 antagonist, was characterized. LF22-0542 showed high affinity for human and mouse B1 receptors with virtually no affinity for the human B2 receptor; a selectivity index of at least 4000 times was obtained when LF22-0542 was profiled throughout binding or cell biology assays on 64 other G-protein-coupled receptor, 10 ion channels, and seven enzymes. LF22-0542 was a competitive B1 receptor antagonist and elicited significant antinociceptive actions in the mouse acetic acid-induced writhing assay, as well as in the second phases of formalin-induced nociception in mice and in both the first and second phases of the formalin response in rats. LF22-0542 was active after s.c. but not p.o. administration. In B1 receptor knockout (KO) mice, acetic acid and formalin responses were significantly reduced and LF22-0542 had no additional effects in these animals. LF22-0542 alleviated thermal hypersensitivity in both acute (carrageenan) and persistent inflammatory (complete Freund's adjuvant) pain models in rats. LF22-0542 produced a full reversal of experimental neuropathic thermal hypersensitivity but was inactive in reversing nerve injury-induced tactile hypersensitivity in rats. In agreement with this observation, B1 KO mice subjected to peripheral nerve injury did not show thermal hypersensitivity but developed nerve injury-induced tactile hypersensitivity normally. The data demonstrate the antihyperalgesic actions of a selective systemically administered B1 receptor antagonist and suggest the utility of this class of agents for the treatment of inflammatory pain states and for some aspects of neuropathic pain.
Collapse
Affiliation(s)
- F Porreca
- Department of Pharmacology, University of Arizona, Arizona Health Sciences Center, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hess A, Sergejeva M, Budinsky L, Zeilhofer HU, Brune K. Imaging of hyperalgesia in rats by functional MRI. Eur J Pain 2006; 11:109-19. [PMID: 16517192 DOI: 10.1016/j.ejpain.2006.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 01/12/2006] [Accepted: 01/27/2006] [Indexed: 11/17/2022]
Abstract
Cerebral activation in response to sequences of temperature boosts at the hindpaw was observed in functional magnetic resonance imaging (fMRI) experiments in isoflurane anesthetized rats. Cingulate, retrosplenial, sensory-motor and insular cortex, medial and lateral posterior thalamic nuclei, pretectal area, hypothalamus and periaqueductal gray were the most consistently, often bilaterally activated regions. With the same experimental paradigm, activity changes in the brain following subcutaneous zymosan injection into one hindpaw were detected. These changes developed over time (up to 4h) in parallel with the temporal development of hyperalgesia shown by a modified Hargreaves test, thus reflecting processes of peripheral and central sensitization. When the heat stimuli were applied to the inflamed paw, the hyperalgesia manifested itself as a volume increase of the activated areas and/or an enhanced functional blood oxygenation level dependent (BOLD) signal in all the above-mentioned brain regions. Enhanced BOLD signals were also observed in response to stimulation of the contralateral non-injected paw. They were significant in higher associative regions and more pronounced in output-related than in input-related brain structures. This indicates additional sensitization processes in the brain, which we named cerebral sensitization. Long lasting zymosan-induced hyperalgesia could be monitored with high resolution fMRI in rats under isoflurane anaesthesia. This technique may provide an effective method for testing new analgesics and studying structure specific pain processing.
Collapse
Affiliation(s)
- Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Institute for Pharmacology and Toxicology, Fahrstrasse 17, D-91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
21
|
Conley RK, Wheeldon A, Webb JK, DiPardo RM, Homnick CF, Bock MG, Chen TB, Chang RSL, Pettibone DJ, Boyce S. Inhibition of acute nociceptive responses in rat spinal cord by a bradykinin B1 receptor antagonist. Eur J Pharmacol 2005; 527:44-51. [PMID: 16310181 DOI: 10.1016/j.ejphar.2005.06.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 04/28/2005] [Accepted: 06/28/2005] [Indexed: 11/23/2022]
Abstract
This study used behavioural and in vivo electrophysiological paradigms to examine the effects of systemic and spinal administration of a bradykinin B1 receptor antagonist, compound X, on acute nociceptive responses in the rat. In behavioural experiments, compound X significantly increased the latency to withdraw the hindpaw from a radiant heat source after both intravenous and intrathecal administration, without affecting motor performance on the rotarod. In electrophysiological experiments, both intravenous and direct spinal administration of compound X attenuated the responses of single dorsal horn neurones to noxious thermal stimulation of the hindpaw. These data show that the antinociceptive effects of a bradykinin B1 receptor antagonist are mediated, at least in part, at the level of the spinal cord and suggest a role for spinal bradykinin B1 receptors in acute nociception.
Collapse
Affiliation(s)
- Rachel K Conley
- Merck Sharp and Dohme, In Vivo Neuroscience Department, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fox A, Kaur S, Li B, Panesar M, Saha U, Davis C, Dragoni I, Colley S, Ritchie T, Bevan S, Burgess G, McIntyre P. Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor. Br J Pharmacol 2005; 144:889-99. [PMID: 15685199 PMCID: PMC1576084 DOI: 10.1038/sj.bjp.0706139] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We describe the properties of a novel nonpeptide kinin B1 receptor antagonist, NVP-SAA164, and demonstrate its in vivo activity in models of inflammatory pain in transgenic mice expressing the human B1 receptor. NVP-SAA164 showed high affinity for the human B1 receptor expressed in HEK293 cells (K(i) 8 nM), and inhibited increases in intracellular calcium induced by desArg10kallidin (desArg10KD) (IC50 33 nM). While a similar high affinity was observed in monkey fibroblasts (K(i) 7.7 nM), NVP-SAA164 showed no affinity for the rat B1 receptor expressed in Cos-7 cells. In transgenic mice in which the native B1 receptor was deleted and the gene encoding the human B1 receptor was inserted (hB1 knockin, hB1-KI), hB1 receptor mRNA was induced in tissues following LPS treatment. No mRNA encoding the mouse or human B1 receptor was detected in mouse B1 receptor knockout (mB1-KO) mice following LPS treatment. Freund's complete adjuvant-induced mechanical hyperalgesia was similar in wild-type and hB(1)-KI mice, but was significantly reduced in mB1-KO animals. Mechanical hyperalgesia induced by injection of the B1 agonist desArg10KD into the contralateral paw 24 h following FCA injection was similar in wild-type and hB1-KI mice, but was absent in mB1-KO animals. Oral administration of NVP-SAA164 produced a dose-related reversal of FCA-induced mechanical hyperalgesia and desArg10KD-induced hyperalgesia in hB1-KI mice, but was inactive against inflammatory pain in wild-type mice. These data demonstrate the use of transgenic technology to investigate the in vivo efficacy of species selective agents and show that NVP-SAA164 is a novel orally active B1 receptor antagonist, providing further support for the utility of B1 receptor antagonists in inflammatory pain conditions in man.
Collapse
Affiliation(s)
- Alyson Fox
- Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57:27-77. [PMID: 15734727 DOI: 10.1124/pr.57.1.2] [Citation(s) in RCA: 729] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.
Collapse
Affiliation(s)
- L M Fredrik Leeb-Lundberg
- Division of Cellular and Molecular Pharmacology, Department of Experimental Medical Science, Lund University, BMC, A12, SE-22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
24
|
McLean PG, Perretti M, Ahluwalia A. Kinin B1receptors as novel anti-inflammatory targets. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.2.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Cabrini DA, Campos MM. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 2004; 143:803-18. [PMID: 15520046 PMCID: PMC1575942 DOI: 10.1038/sj.bjp.0706012] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 08/03/2004] [Accepted: 09/10/2004] [Indexed: 01/25/2023] Open
Abstract
Kinins are a family of peptides implicated in several pathophysiological events. Most of their effects are likely mediated by the activation of two G-protein-coupled receptors: B(1) and B(2). Whereas B(2) receptors are constitutive entities, B(1) receptors behave as key inducible molecules that may be upregulated under some special circumstances. In this context, several recent reports have investigated the importance of B(1) receptor activation in certain disease models. Furthermore, research on B(1) receptors in the last years has been mainly focused in determining the mechanisms and pathways involved in the process of induction. This was essentially favoured by the advances obtained in molecular biology studies, as well as in the design of selective and stable peptide and nonpeptide kinin B(1) receptor antagonists. Likewise, development of kinin B(1) receptor knockout mice greatly helped to extend the evidence about the relevance of B(1) receptors during pathological states. In the present review, we attempted to remark the main advances achieved in the last 5 years about the participation of kinin B(1) receptors in painful and inflammatory disorders. We have also aimed to point out some groups of chronic diseases, such as diabetes, arthritis, cancer or neuropathic pain, in which the strategic development of nonpeptidic oral-available and selective B(1) receptor antagonists could have a potential relevant therapeutic interest.
Collapse
Affiliation(s)
- João B Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88049-900 Florianópolis, SC, Brazil.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Bradykinin, an endogenous nonapeptide and an important mediator of inflammation, is also implicated in the initiation and maintenance of pain. Both des-Arg(8), Leu(8)-bradykinin (dALBK) and HOE-140, the prototypic bradykinin B1 and B2 receptor antagonists, respectively, have been shown to reduce pain behaviors and inflammation in animal models of persistent nociception. We studied them for activity against incision-induced pain behaviors in a rat model for postoperative pain. A 1-cm plantar incision was made in the hind paw of halothane-anesthetized rats and closed with 5-0 nylon. Withdrawal responses to punctate and nonpunctate mechanical stimuli were tested with von Frey filaments and a plastic disk attached to a von Frey filament, respectively. Withdrawal latency to radiant heat was also tested. Rats were tested 1 day before the incision, 1 h after the incision, and 0.5, 1, 1.5, and 2.5 h after the injection of the drug. They were then retested at the same times before and after the injection of the drug on each of the first 2 postoperative days. The rats received the saline vehicle dALBK (0.1, 0.3, 1.0, or 3.0 mg/kg) or HOE-140 (0.1, 0.3, 1.0, or 3.0 mg/kg) IV. Another group of rats had the drug injected 1 h before incision and tested as above. Statistical significance (P < 0.05) was determined with Kruskal-Wallis test and a two-way analysis of variance. None of the doses of either dALBK or HOE-140 affected the responses to punctate or blunt mechanical stimulation or heat, either as a pretreatment or as a posttreatment. These data support the unique mechanisms for incision-induced pain relative to inflammation-related pain. Although inflammation may represent a component of incisional pain, the etiology of inflammation and its role seem different than in other models.
Collapse
Affiliation(s)
- Paul A Leonard
- Department of Anesthesia, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
27
|
Vellani V, Zachrisson O, McNaughton PA. Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J Physiol 2004; 560:391-401. [PMID: 15319421 PMCID: PMC1665249 DOI: 10.1113/jphysiol.2004.067462] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bradykinin (BK) has long been recognized as an important mediator of pain and inflammation. In normal tissue bradykinin causes an acute sensation of pain by an action at B2 receptors, but in inflamed tissue the pharmacology of the response changes to that of B1 receptors. Attempts to demonstrate the presence of functional B1 receptors in sensory neurones have failed, however, and the actions of B1 agonists have therefore been presumed to be indirect. Here we show that specific B1 receptor activation causes translocation of the epsilon isoform of protein kinase C (PKC-epsilon) to the membrane of a small fraction of freshly isolated sensory neurones from rats and mice. The proportion of neurones in which PKC-epsilon translocation was observed increased to around 20% of neurones after 3 days in culture with the neurotrophins glial cell line derived neurotrophic factor (GDNF) and neurturin, but not with nerve growth factor (NGF). Using in situ hybridization we found that the proportion of neurones expressing B1 mRNA increased from close to zero to 20.4% after 8 h culture in GDNF. Neurones expressing functional B1 receptors were negative for the neuropeptides CGRP and substance P, but most expressed functional TRPV1 receptors for capsaicin (60%) and bound the lectin IB4 (68%), both markers characteristic of nociceptors. B1 activation enhanced the heat-activated membrane current approximately 3-fold, and the enhancement was much more prolonged than was the case with B2 activation, consistent with a role for B1 receptors in sustained pain. We conclude that GDNF and neurturin potently upregulate functional B1 receptor expression in small non-peptidergic nociceptive neurones.
Collapse
Affiliation(s)
- Vittorio Vellani
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1QJ, UK
| | | | | |
Collapse
|
28
|
Marceau F, Fortin JP, Morissette G, Dziadulewicz EK. A non-peptide antagonist unusually selective for the human form of the bradykinin B2 receptor. Int Immunopharmacol 2003; 3:1529-36. [PMID: 12946450 DOI: 10.1016/s1567-5769(03)00180-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Analgesic and anti-inflammatory applications for non-peptide bradykinin (BK) B2 receptor antagonists have been documented in rats. However, very large species differences in affinity were also noted within this class of drugs, making the preclinical development of relevant drugs difficult. Bradyzide is a potent antagonist at the rat B2 receptor, but a weak one at the human receptor; a series of analogues in which the diphenylmethyl moiety of this drug has been substituted with dibenzosuberane have been reported to gain potency at the human B2 receptor, with some loss of affinity at the rat receptor. The present experiments have been performed in order to verify that the novel series of dibenzosuberane B2 receptor antagonist optimized for affinity in the human species are effective in the isolated human umbilical vein contractility assay. Bradyzide, its analog compound (S)-14c and the dibenzosuberane compounds (S)-14d and 19c surmountably antagonized BK-induced contraction (pA2 values of 5.42, 6.48, 7.42 and 7.53, respectively). In the rabbit jugular vein contractility assay, the pA2 of compound 19c was smaller than 5. Potency at the recombinant rabbit B2 receptor was generally decreasing in the series of four drugs (Ki in a [3H]BK competition assay to recombinant receptors of 0.78, 0.77, 10.2 and 44.4 nM, respectively); these four compounds did not displace [3H]Lys-des-Arg(9)-BK binding from human B1 receptors expressed by smooth muscle cells. The dibenzosuberane compound 19c, verified to functionally antagonize the vascular B2 receptor, is an example of a drug unusually specific for the human form of the receptor.
Collapse
Affiliation(s)
- François Marceau
- Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, 11 Côte-du-Palais, Québec, Québec, Canada G1R 2J6.
| | | | | | | |
Collapse
|
29
|
Gabra BH, Sirois P. Beneficial effect of chronic treatment with the selective bradykinin B1 receptor antagonists, R-715 and R-954, in attenuating streptozotocin-diabetic thermal hyperalgesia in mice. Peptides 2003; 24:1131-9. [PMID: 14612183 DOI: 10.1016/j.peptides.2003.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinins are important mediators of cardiovascular homeostasis, inflammation and nociception. Bradykinin (BK) B(1) receptors (BKB1-R) are over-expressed in pathological conditions including diabetes, and were reported to play a role in hyperglycemia, renal abnormalities, and altered vascular permeability associated with type 1 diabetes. Recent studies from our laboratory demonstrated that BKB1-R are implicated in streptozotocin (STZ)-diabetes-mediated hyperalgesia, since acute administration of the selective BKB1-R antagonists significantly and dose-dependently inhibited such hyperalgesic activity. In the present study, we examined the effect of chronic treatment of STZ-diabetic mice with the selective BKB1-R agonist desArg9bradykinin (DBK) and two specific antagonists R-715 and R-954, on diabetic hyperalgesia. Diabetes was induced in male CD-1 mice by injecting a single high dose of STZ (200mg/kg, i.p.) and nociception was assessed using the hot plate, plantar stimulation, tail immersion and tail flick tests. Drugs were injected i.p. twice daily for 7 days, starting 4 days after STZ. We showed that chronically administered R-715 (400 micrograms/kg) and R-954 (200 micrograms/kg), significantly attenuated the hyperalgesic effect developed in STZ-diabetic mice as measured by the four thermal nociceptive tests. Further, chronic treatment with DBK (400 micrograms/kg) produced a marked potentiation of the hyperalgesic activity, an effect that was reversed by both R-715 and R-954. The results from this chronic study confirm a pivotal role of the BKB1-R in the development of STZ-diabetic hyperalgesia and suggest a novel approach to the treatment of this short-term diabetic complication using BKB1-R antagonists.
Collapse
Affiliation(s)
- Bichoy H Gabra
- Institute of Pharmacology of Sherbrooke, School of Medicine, University of Sherbrooke, Sherbrooke, PQ, Canada J1H 5N4
| | | |
Collapse
|
30
|
Fortin JP, Bouthillier J, Marceau F. High agonist-independent clearance of rabbit kinin B1 receptors in cultured cells. Am J Physiol Heart Circ Physiol 2003; 284:H1647-54. [PMID: 12521931 DOI: 10.1152/ajpheart.00884.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that the inducible kinin B(1) receptor (B(1)R) is rapidly cleared from cells when its synthesis subsides. The agonist-independent degradation of the rabbit B(1)Rs and related B(2) receptors (B(2)Rs) was investigated. Endocytosis of the B(1)R-yellow fluorescent protein (YFP) conjugate was more intense than that of B(2)R-green fluorescent protein (GFP) based on fluorescence accumulation in HEK 293 cells treated with a lysosomal inhibitor. The cells expressing B(1)R-YFP contained more GFP/YFP-sized degradation product(s) than those expressing B(2)R-GFP (immunoblot, antibodies equally reacting with both fluorescent proteins). The binding site density of B(1)R-YFP decreased in the presence of protein synthesis or maturation inhibitors (anisomycin, brefeldin A), whereas that of B(2)R-GFP remained constant. Wild-type B(1)Rs were also cleared faster than B(2)Rs in rabbit smooth muscle cells treated with metabolic inhibitors. Contractility experiments based on brefeldin A-treated isolated rabbit blood vessels also functionally support that B(1)Rs are more rapidly eliminated than B(2)Rs (decreased maximal effect of agonist over 2 h). The highly regulated B(1)R is rapidly degraded, relative to the constitutive B(2)R.
Collapse
MESH Headings
- Animals
- Anisomycin/pharmacology
- Aorta/cytology
- Bradykinin/metabolism
- Bradykinin/pharmacology
- Cells, Cultured
- Green Fluorescent Proteins
- Humans
- Immunoblotting
- Indicators and Reagents/metabolism
- Jugular Veins/cytology
- Kallidin/analogs & derivatives
- Kallidin/metabolism
- Kallidin/pharmacology
- Kidney/cytology
- Luminescent Proteins/genetics
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Protein Synthesis Inhibitors/pharmacology
- Rabbits
- Radioligand Assay
- Receptor, Bradykinin B1
- Receptor, Bradykinin B2
- Receptors, Bradykinin/agonists
- Receptors, Bradykinin/genetics
- Receptors, Bradykinin/metabolism
- Recombinant Proteins/metabolism
- Tritium
Collapse
Affiliation(s)
- Jean-Philippe Fortin
- Centre Hospitalier Universitaire de Québec, Centre de recherche du Pavillon l'Hôtel-Dieu de Québec, 11 Côte-du-Palais, Quebec City, Quebec, Canada G1R 2J6
| | | | | |
Collapse
|
31
|
Abstract
Insulin-dependent diabetes mellitus (type 1 diabetes) is an inflammatory autoimmune disease associated with vascular permeability changes leading to many complications including nephropathy, retinopathy, neuropathy, hypertension and hyperalgesia. The bradykinin B(1) receptors (BKB(1)-R) were recently found to be upregulated alongside the development of type 1 diabetes and to be involved in its complications. Kinins are important mediators of a variety of biological effects including cardiovascular homeostasis, inflammation and nociception. In the present study, we studied the effect of a selective BKB(1)-R agonist desArg(9)-BK (DBK) and two selective receptor antagonists, the R-715 (Ac-Lys-[D-beta Nal(7), Ile(8)] desArg(9)-BK) and the R-954 (Ac-Orn-[Oic(2), alphaMe Phe(5), D-beta Nal(7), Ile(8)] desArg(9)-BK) on diabetic hyperalgesia. Type 1 diabetes was induced in male CD-1 mice via a single injection of streptozotocin (STZ, 200mg/kg, i.p.), one week before the test. Nociception, a measure of hyperalgesia, was assessed using the plantar stimulation (Hargreaves) and the tail-immersion tests. The induction of type 1 diabetes provoked a significant hyperalgesic activity in diabetic mice, causing an 11% decrease in plantar stimulation reaction time and 13% decrease in tail-immersion reaction time, compared to normal mice. Following acute administration of R-715 (100-600 microg/kg, i.p.), or R-954 (50-400 microg/kg, i.p.), the STZ-induced hyperalgesic activity was blocked in a dose-dependent manner and the hot plate and tail-immersion latencies of diabetic mice returned to normal values observed in control healthy mice. In addition, the acute administration of DBK (400 microg/kg, i.p.) significantly potentiated diabetes-induced hyperalgesia, an effect that was totally reversed by R-715 (1.6-2.4 mg/kg, i.p.) and R-954 (0.8-1.2mg/kg, i.p.). These results provide further evidence for the implication of the BKB(1)-R in type 1 diabetic hyperalgesia and suggest a novel approach in the treatment of this complication using the BKB(1)-R antagonists.
Collapse
Affiliation(s)
- Bichoy H Gabra
- Institute of Pharmacology of Sherbrooke, School of Medicine, University of Sherbrooke, Sherbrooke, PQ, Canada J1H 5N4
| | | |
Collapse
|
32
|
Gabra BH, Sirois P. Role of bradykinin B(1) receptors in diabetes-induced hyperalgesia in streptozotocin-treated mice. Eur J Pharmacol 2002; 457:115-24. [PMID: 12464357 DOI: 10.1016/s0014-2999(02)02658-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin-dependent diabetes mellitus (type-1 diabetes) is an inflammatory autoimmune disease associated with vascular permeability changes leading to many complications including nephropathy, retinopathy, hypertension, hyperalgesia and neuropathy. The bradykinin B(1) receptor was recently found to be upregulated during the development of the diabetes and to be involved in its complications. Kinins are known to be important mediators of a variety of biological effects including cardiovascular homeostasis, inflammation and nociception. In the present study, we studied the effect of the selective B(1) receptor agonist, des-Arg(9)-bradykinin, and its specific antagonists, Ac-Lys-[D-beta Nal(7), Ile(8)]des-Arg(9)-bradykinin (R-715) and Ac-Orn-[Oic(2), alphaMe Phe(5), D-beta Nal(7), Ile(8)]des-Arg(9)-bradykinin (R-954), on diabetic hyperalgesia. Diabetes was induced in male CD-1 mice by injecting a single high dose of streptozotocin (200 mg kg(-1), i.p.) and the nociception was assessed using the hot plate and the tail flick tests, 1 week following the injection of streptozotocin. Our results showed that induction of diabetes by streptozotocin provoked a marked hyperalgesia in diabetic mice expressed as about 11% decrease in hot plate reaction time and 26% decrease in tail flick reaction time. Following acute administration of R-715 (200-800 microg kg(-1), i.p.) and R-954 (50-600 microg kg(-1), i.p.), this hyperalgesic activity was blocked and the hot plate and tail flick latencies of diabetic mice returned to normal values observed in control healthy mice. In addition, the acute administration of des-Arg(9)-bradykinin (200-600 microg kg(-1), i.p.) significantly potentiated diabetes-induced hyperalgesia, an effect that was totally reversed by R-715 (1.6-2.4 mg kg(-1), i.p.) and R-954 (0.8-1.6 mg kg(-1), i.p.). These results provide a major evidence for the implication of the bradykinin B(1) receptors in the development of hyperalgesia associated with diabetes and suggest a novel approach to the treatment of this diabetic complication using the bradykinin B(1) receptor antagonists.
Collapse
Affiliation(s)
- Bichoy H Gabra
- Institute of Pharmacology of Sherbrooke, School of Medicine, University of Sherbrooke, Sherbrooke, PQ, Canada J1H 5N4
| | | |
Collapse
|
33
|
Sabourin T, Morissette G, Bouthillier J, Levesque L, Marceau F. Expression of kinin B(1) receptor in fresh or cultured rabbit aortic smooth muscle: role of NF-kappa B. Am J Physiol Heart Circ Physiol 2002; 283:H227-37. [PMID: 12063295 DOI: 10.1152/ajpheart.00978.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinin B(1) receptor (B(1)R) expression and the importance of the transcription factor nuclear factor (NF)-kappa B in this process were evaluated in models based on the rabbit aorta: freshly isolated tissue (postisolation induction) and cultured smooth muscle cells (SMCs). A 3-h incubation of freshly isolated tissues determined a sharp B(1)R mRNA increase (RT-PCR). Coincubation of tissues with a stimulus (interleukin-1 beta, fetal bovine serum, epidermal growth factor, or cycloheximide) further increased mRNA levels. Cultured SMCs possessed a basal population of surface B(1)Rs ([(3)H]Lys-des-Arg(9)-bradykinin binding) that was upregulated by treatments with the same set of stimuli (binding, mRNA, nuclear runon). Pharmacological inhibitors of NF-kappa B (MG-132, BAY 11-7082, dexamethasone) or actinomycin D reduced the postisolation induction of B(1)Rs in fresh aortic tissue (contractility or mRNA) and the cytokine effect on cells (mRNA, binding). NF-kappa B may be a common mediator of various stimuli that increase B(1)R gene transcription in the rabbit aorta, including tissue isolation, but cycloheximide also stabilizes B(1)R mRNA. The SMC models faithfully mimic the in vivo situation with regard to B(1)R regulation.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Blood Proteins/pharmacology
- Cells, Cultured
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Epidermal Growth Factor/pharmacology
- Interleukin-1/pharmacology
- Leupeptins/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/metabolism
- Nitriles
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Organic Chemicals
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/metabolism
- Rabbits
- Receptor, Bradykinin B1
- Receptors, Bradykinin/biosynthesis
- Receptors, Bradykinin/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sulfones
- Up-Regulation/drug effects
- Up-Regulation/physiology
- Vasoconstrictor Agents/pharmacology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Thierry Sabourin
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Pavillon l'Hôtel-Dieu de Québec, Québec Canada G1R 2J6
| | | | | | | | | |
Collapse
|
34
|
Sabourin T, Bastien L, Bachvarov DR, Marceau F. Agonist-induced translocation of the kinin B(1) receptor to caveolae-related rafts. Mol Pharmacol 2002; 61:546-53. [PMID: 11854434 DOI: 10.1124/mol.61.3.546] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kallikrein-kinin system, activated during inflammatory conditions and the regulation of specific cardiovascular and renal functions, includes two G protein-coupled receptors for bradykinin (BK)-related peptides. The B(1) receptor (B(1)R) subtype is not believed to undergo agonist-induced phosphorylation and endocytosis. A conjugate made of the rabbit B(1)R fused with the yellow variant of green fluorescent protein (YFP) was expressed in mammalian cells. In COS-1 or human embryonic kidney (HEK) 293 cells, the construction exhibited a nanomolar affinity for the agonist radioligand [(3)H]Lys-des-Arg(9)-BK or the antagonist ligand [(3)H]Lys-[Leu(8)]des-Arg(9)-BK and a pharmacological profile virtually identical to that of wild-type B(1)R. Lys-des-Arg(9)-BK stimulation of HEK 293 cells stably expressing B(1)R-YFP but not stimulation of untransfected cells released [(3)H]arachidonate in a phospholipase A(2) assay. B(1)R-YFP was visualized as a continuous labeling of the plasma membranes in stably transfected HEK 293 cells (confocal microscopy). Addition of Lys-des-Arg(9)-BK (1-100 nM) rapidly concentrated the receptor-associated fluorescence into multiple aggregates that remained associated with the plasma membrane (no significant internalization) and colocalized with caveolin-1. This reaction was slowly reversible upon agonist washing at 37 degrees C and prevented pretreatment with a B(1)R antagonist. beta-Cyclodextrin treatment, which extracts cholesterol from membranes and disrupts caveolae-related rafts, prevented agonist-induced redistribution of B(1)R-YFP but not the PLA(2) activation mediated by this receptor. The agonist radioligand copurified with caveolin-1 to a greater extent than the tritiated antagonist in buoyant fractions of HEK 293 cells treated with the ligands. Agonist-induced cellular translocation of the kinin B(1)R to caveolae-related rafts without endocytosis is a novel variation on the theme of G protein-coupled receptor adaptation.
Collapse
Affiliation(s)
- Thierry Sabourin
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Pavillon l'Hôtel-Dieu de Québec, Québec, Canada
| | | | | | | |
Collapse
|
35
|
Campos MM, de Souza GEP, Ricci ND, Pesquero JL, Teixeira MM, Calixto JB. The role of migrating leukocytes in IL-1 beta-induced up-regulation of kinin B(1) receptors in rats. Br J Pharmacol 2002; 135:1107-14. [PMID: 11877316 PMCID: PMC1573216 DOI: 10.1038/sj.bjp.0704488] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
1. The present study examines the role of migrating leukocytes in the ability of IL-1 beta to induce the functional up-regulation of B(1) receptors, as assessed by kinin B(1) agonist-induced oedema in the rat paw. 2. Pre-treatment with the PAF receptor antagonist WEB 2086 inhibited des-Arg(9)-BK-induced oedema in IL-1 beta-treated paws, while the LTB(4) receptor antagonist CP105696 had no effect. Des-Arg(9)-BK-induced paw oedema was also inhibited by pre-treatment with the selectin blocker fucoidin or by an anti-CD-18 monoclonal antibody. 3. I.d. injection of IL-1 beta produced a 5 - 10-fold increase of myeloperoxidase (MPO) activity in the rat paw. The increase in MPO activity was significantly inhibited by WEB 2086 (46 +/- 9%), fucoidin (68 +/- 5%) or the CD-18 antibody (84 +/- 3%). In contrast, i.d. injection of TNF alpha a dose known to upregulate the B(1) receptor functionally did not induce any significant increase in MPO activity. 4. Des-Arg(9)-BK alone had no effect in MPO activity but enhanced (by about 40%) the response induced by IL-1 beta, an effect prevented by the B(1) receptor antagonist des-Arg(9)-[Leu(8)]-BK. 5. The concentration of TNF-alpha was increased in the paws after i.d. injection of IL-1 beta. Pre-treatment with fucoidin, WEB 2086, anti-CD-18 or CP 105695, significantly reversed the local increases in TNF-alpha concentrations (80 +/- 2; 75 +/- 4, 73 +/- 3 and 40 +/- 2%), respectively. 6. Finally, IL-1 beta induced an increase of B(1) receptor mRNA levels in the rat paw, an effect which was prevented by fucoidin treatment. 7. Taken together, these results indicate that up-regulation of B(1) receptors in the rat paw following IL-1 beta seems to involve the local recruitment of neutrophils and subsequent local TNF-alpha production. The cross-talk between kinins, cytokines and leukocytes implicate B(1) receptors in chronic inflammatory diseases.
Collapse
MESH Headings
- Animals
- Bradykinin Receptor Antagonists
- Cell Adhesion Molecules
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/physiology
- Edema/metabolism
- Injections, Intradermal
- Interleukin-1/pharmacology
- Male
- Neutrophils/physiology
- Peroxidase/metabolism
- Platelet Membrane Glycoproteins/antagonists & inhibitors
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
- Receptor Cross-Talk
- Receptor, Bradykinin B1
- Receptors, Bradykinin/agonists
- Receptors, Bradykinin/metabolism
- Receptors, Cell Surface
- Receptors, G-Protein-Coupled
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Maria M Campos
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88015-420 - Florianópolis, SC, Brazil
| | - Glória E P de Souza
- Laboratory of Pharmacology, Faculty of Pharmacy, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Natasha D Ricci
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jorge L Pesquero
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João B Calixto
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88015-420 - Florianópolis, SC, Brazil
- Author for correspondence:
| |
Collapse
|
36
|
Abstract
Kinins are among the most potent autacoids involved in inflammatory, vascular and pain processes. These short-lived peptides, including bradykinin, kallidin and T-kinin, are generated during tissue injury and noxious stimulation. However, emerging evidence also suggests that kinins are stored in neuronal elements of the central nervous system (CNS) where they are thought to play a role as neuromediators in various cerebral functions, particularly in the control of nociceptive information. Kinins exert their biological effects through the activation of two transmembrane G-protein-coupled receptors, denoted bradykinin B(1) and B(2). Whereas the B(2) receptor is constitutive and activated by the parent molecules, the B(1) receptor is generally underexpressed in normal tissues and is activated by kinins deprived of the C-terminal Arg (des-Arg(9)-kinins). The induction and increased expression of B(1) receptor occur following tissue injury or after treatment with bacterial endotoxins or cytokines such as interleukin-1 beta and tumor necrosis factor-alpha. This review summarizes the most recent data from various animal models which convey support for a role of B(2) receptors in the acute phase of the inflammatory and pain response, and for a role of B(1) receptors in the chronic phase of the response. The B(1) receptor may exert a strategic role in inflammatory diseases with an immune component (diabetes, asthma, rheumatoid arthritis and multiple sclerosis). New information is provided regarding the role of sensory mechanisms subserving spinal hyperalgesia and intrapleural neutrophil migration that occur upon B(1) receptor activation in streptozotocin-treated rats, a model of insulin-dependent diabetes mellitus in which the B(1) receptor seems to be rapidly overexpressed. Although it is widely accepted that the blockade of kinin receptors with specific antagonists could be of benefit in the treatment of somatic and visceral inflammation and pain, recent molecular and functional evidence suggests that the activation of B(1) receptors with an agonist may afford a novel therapeutic approach in the CNS inflammatory demyelinating disorder encountered in multiple sclerosis by reducing immune cell infiltration (T-lymphocytes) into the brain. Hence, the B(1) receptor may exert either a protective or detrimental effect depending on the inflammatory disease. This dual function of the B(1) receptor deserves to be investigated further.
Collapse
Affiliation(s)
- R Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7.
| | | | | | | |
Collapse
|
37
|
Calixto JB, Cabrini DA, Ferreira J, Campos MM. Inflammatory pain: kinins and antagonists. Curr Opin Anaesthesiol 2001; 14:519-26. [PMID: 17019140 DOI: 10.1097/00001503-200110000-00010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This short review focuses on the most recent findings in the rapidly expanding field of kinin research. Through a series of recent publications, the crucial relevance of this group of peptides as mediators of inflammatory pain is becoming increasingly evident. On the strength of this idea, kinins have been implicated as algogen peptides produced in response to noxious stimuli. The importance of kinins has been elucidated by different pharmacological and molecular approaches. Special attention has been given to studies with selective kinin antagonists, as well as to the use of receptor gene deletion technology. The gathering of results has demonstrated that both B(1) and B(2) receptors seem to exert a meaningful role during nociceptive responses, the B(1) receptor being most relevant in the chronic stages of inflammatory pain. It is hoped that new effective and useful therapeutic agents, mainly B(1) kinin selective receptor antagonists, might soon be available.
Collapse
Affiliation(s)
- J B Calixto
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88015-420 Florianópolis, Santa Catarina, Brazil.
| | | | | | | |
Collapse
|
38
|
deBlois D, Horlick RA. Endotoxin sensitization to kinin B(1) receptor agonist in a non-human primate model: haemodynamic and pro-inflammatory effects. Br J Pharmacol 2001; 132:327-35. [PMID: 11156593 PMCID: PMC1572522 DOI: 10.1038/sj.bjp.0703748] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Revised: 09/25/2000] [Accepted: 10/02/2000] [Indexed: 11/08/2022] Open
Abstract
1. Although endotoxaemia induces kinin B(1) receptors in several animal models, this condition is not documented in primates. This study examined the up-regulation of haemodynamic and pro-inflammatory responses to the B(1) agonist des-Arg(10)-kallidin (dKD) in a non-human primate model. 2. Green monkeys (Cercopithecus aethiops St Kitts) received lipopolysaccharide (LPS; 90 microg kg(-1)) or saline intravenously. After 4 h, anaesthetized monkeys were cannulated via the carotid artery to monitor blood pressure changes following intra-arterial injections of dKD or the B(2) agonist bradykinin (BK). Oedema induced by subcutaneous kinin administration was evaluated as the increase in ventral skin folds in anaesthetized monkeys injected with captopril at 4 h to 56 days post-LPS. 3. LPS increased rectal temperature but did not affect blood pressure after 4 h. dKD reduced blood pressure (E(max): 27+/-4 mmHg; EC(50): 130 pmol kg(-1)) and increased heart rate (E(max): 33 b.p.m.) only after LPS. In contrast, the dose-dependent fall in blood pressure with BK was comparable in all groups. The selective B(1) antagonist [Leu(9)]dKD (75 ng kg(-1) min(-1), intravenously) abolished responses to dKD but not BK. 4. dKD injection induced oedema dose-dependently (2.4+/-0.1 mm at 150 nmol) only following LPS (at 4 h to 12 days but not 56 days). In contrast, BK-induced oedema was present and stable in all monkeys. Co-administration of [Leu(9)]dKD (150 nmol) significantly reduced oedema induced by dKD (50 nmol). 5. These results suggest LPS up-regulation of B(1) receptor effects in green monkeys. This non-human primate model may be suitable for testing new, selective B(1) antagonists with therapeutic potential as anti-inflammatory agents.
Collapse
Affiliation(s)
- D deBlois
- University of Montreal Hospital (CHUM) Research Center, 3840 St. Urbain St., room 7-132B, Montreal, Quebec H2W 1T8, Canada.
| | | |
Collapse
|
39
|
Abstract
The pro-inflammatory, pain producing, and cardiovascular effects of bradykinin B2 receptor activation are well characterized. Bradykinin B1 receptors also produce inflammation and pain. Therefore, antagonists are expected to be anti-inflammatory/analgesic drugs. Other exploitable clinical opportunities may exist. The newly discovered non-peptide B2 receptor antagonists and the equivalent B1 receptor pharmacological agents, which are in the pipeline, are suitable preclinical tools to properly evaluate potential utilities.
Collapse
Affiliation(s)
- M G Bock
- Merck Research Laboratories, West Point, PA 19486, USA.
| | | |
Collapse
|