1
|
Yao T, He J, Cui Z, Wang R, Bao K, Huang Y, Wang R, Liu T. Central 5-HTR2C in the Control of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:694204. [PMID: 34367066 PMCID: PMC8334728 DOI: 10.3389/fendo.2021.694204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
The 5-hydroxytryptamine 2C receptor (5-HTR2C) is a class G protein-coupled receptor (GPCR) enriched in the hypothalamus and the brain stem, where it has been shown to regulate energy homeostasis, including feeding and glucose metabolism. Accordingly, 5-HTR2C has been the target of several anti-obesity drugs, though the associated side effects greatly curbed their clinical applications. Dissecting the specific neural circuits of 5-HTR2C-expressing neurons and the detailed molecular pathways of 5-HTR2C signaling in metabolic regulation will help to develop better therapeutic strategies towards metabolic disorders. In this review, we introduced the regulatory role of 5-HTR2C in feeding behavior and glucose metabolism, with particular focus on the molecular pathways, neural network, and its interaction with other metabolic hormones, such as leptin, ghrelin, insulin, and estrogens. Moreover, the latest progress in the clinical research on 5-HTR2C agonists was also discussed.
Collapse
Affiliation(s)
- Ting Yao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University School of Medicine, Xi’an, China
- *Correspondence: Ting Yao, ; Ru Wang, ; Tiemin Liu,
| | - Jiehui He
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhicheng Cui
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ruwen Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Kaixuan Bao
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yiru Huang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Ting Yao, ; Ru Wang, ; Tiemin Liu,
| | - Tiemin Liu
- School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- *Correspondence: Ting Yao, ; Ru Wang, ; Tiemin Liu,
| |
Collapse
|
2
|
Ho JE, Larson MG, Ghorbani A, Cheng S, Chen MH, Keyes M, Rhee EP, Clish CB, Vasan RS, Gerszten RE, Wang TJ. Metabolomic Profiles of Body Mass Index in the Framingham Heart Study Reveal Distinct Cardiometabolic Phenotypes. PLoS One 2016; 11:e0148361. [PMID: 26863521 PMCID: PMC4749349 DOI: 10.1371/journal.pone.0148361] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Background Although obesity and cardiometabolic traits commonly overlap, underlying pathways remain incompletely defined. The association of metabolite profiles across multiple cardiometabolic traits may lend insights into the interaction of obesity and metabolic health. We sought to investigate metabolic signatures of obesity and related cardiometabolic traits in the community using broad-based metabolomic profiling. Methods and Results We evaluated the association of 217 assayed metabolites and cross-sectional as well as longitudinal changes in cardiometabolic traits among 2,383 Framingham Offspring cohort participants. Body mass index (BMI) was associated with 69 of 217 metabolites (P<0.00023 for all), including aromatic (tyrosine, phenylalanine) and branched chain amino acids (valine, isoleucine, leucine). Additional metabolic pathways associated with BMI included the citric acid cycle (isocitrate, alpha-ketoglutarate, aconitate), the tryptophan pathway (kynurenine, kynurenic acid), and the urea cycle. There was considerable overlap in metabolite profiles between BMI, abdominal adiposity, insulin resistance [IR] and dyslipidemia, modest overlap of metabolite profiles between BMI and hyperglycemia, and little overlap with fasting glucose or elevated blood pressure. Metabolite profiles were associated with longitudinal changes in fasting glucose, but the involved metabolites (ornithine, 5-HIAA, aminoadipic acid, isoleucine, cotinine) were distinct from those associated with baseline glucose or other traits. Obesity status appeared to “modify” the association of 9 metabolites with IR. For example, bile acid metabolites were strongly associated with IR among obese but not lean individuals, whereas isoleucine had a stronger association with IR in lean individuals. Conclusions In this large-scale metabolite profiling study, body mass index was associated with a broad range of metabolic alterations. Metabolite profiling highlighted considerable overlap with abdominal adiposity, insulin resistance, and dyslipidemia, but not with fasting glucose or blood pressure traits.
Collapse
Affiliation(s)
- Jennifer E. Ho
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Martin G. Larson
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| | - Anahita Ghorbani
- Mount Auburn Hospital, Cambridge, Massachusetts, United States of America
| | - Susan Cheng
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
- Division of Cardiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ming-Huei Chen
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
| | - Michelle Keyes
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eugene P. Rhee
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Renal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Ramachandran S. Vasan
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts, United States of America
- Division of Cardiology and Preventive Medicine, Department of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Robert E. Gerszten
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Thomas J. Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Busardò FP, Frati P, Sanzo MD, Napoletano S, Pinchi E, Zaami S, Fineschi V. The impact of nandrolone decanoate on the central nervous system. Curr Neuropharmacol 2016; 13:122-31. [PMID: 26074747 PMCID: PMC4462037 DOI: 10.2174/1570159x13666141210225822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/10/2014] [Accepted: 10/25/2014] [Indexed: 01/31/2023] Open
Abstract
Nandrolone is included in the class II of anabolic androgenic steroids (AAS) which is
composed of 19-nor-testosterone-derivates. In general, AAS is a broad and rapidly increasing group
of synthetic androgens used both clinically and illicitly. AAS in general and nandrolone decanoate
(ND) in particular have been associated with several behavioral disorders. The purpose of this review
is to summarize the literature concerning studies dealing with ND exposure on animal models, mostly
rats that mimic human abuse systems (i.e. supraphysiological doses). We have focused in particular
on researches that have investigated how ND alters the function and expression of neuronal signaling molecules that
underlie behavior, anxiety, aggression, learning and memory, reproductive behaviors, locomotion and reward.
Collapse
Affiliation(s)
- Francesco P Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy; ; Neuromed, Istituto Mediterraneo Neurologico (IRCCS), Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | - Mariantonia Di Sanzo
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Simona Napoletano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Enrica Pinchi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| |
Collapse
|
4
|
Vidal C, Li W, Santner-Nanan B, Lim CK, Guillemin GJ, Ball HJ, Hunt NH, Nanan R, Duque G. The kynurenine pathway of tryptophan degradation is activated during osteoblastogenesis. Stem Cells 2015; 33:111-21. [PMID: 25186311 DOI: 10.1002/stem.1836] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
The mechanisms involved in the anabolic effect of interferon gamma (IFNγ) on bone have not been carefully examined. Using microarray expression analysis, we found that IFNγ upregulates a set of genes associated with a tryptophan degradation pathway, known as the kynurenine pathway, in osteogenic differentiating human mesenchymal stem cells (hMSC). We, therefore, hypothesized that activation of the kynurenine pathway plays a role in osteoblastogenesis even in the absence of IFNγ. Initially, we observed a strong increase in tryptophan degradation during osteoblastogenesis with and without IFNγ in the media. We next blocked indoleamine 2,3-dioxygenase-1 (IDO1), the most important enzyme in the kynurenine pathway, using a siRNA and pharmacological approach and observed a strong inhibition of osteoblastogenesis with a concomitant decrease in osteogenic factors. We next examined the bone phenotype of Ido1 knockout (Ido1(-/-)) mice. Compared to their wild-type littermates, Ido1(-/-) mice exhibited osteopenia associated with low osteoblast and high osteoclast numbers. Finally, we tested whether the end products of the kynurenine pathway have an osteogenic effect on hMSC. We identified that picolinic acid had a strong and dose-dependent osteogenic effect in vitro. In summary, we demonstrate that the activation of the kynurenine pathway plays an important role during the commitment of hMSC into the osteoblast lineage in vitro, and that this process can be accelerated by exogenous addition of IFNγ. In addition, we found that mice lacking IDO1 activity are osteopenic. These data therefore support a new role for the kynurenine pathway and picolinic acid as essential regulators of osteoblastogenesis and as potential new targets of bone-forming cells in vivo.
Collapse
|
5
|
Piszczek L, Piszczek A, Kuczmanska J, Audero E, Gross CT. Modulation of anxiety by cortical serotonin 1A receptors. Front Behav Neurosci 2015; 9:48. [PMID: 25759645 PMCID: PMC4338812 DOI: 10.3389/fnbeh.2015.00048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/09/2015] [Indexed: 01/29/2023] Open
Abstract
Serotonin (5-HT) plays an important role in the modulation of behavior across animal species. The serotonin 1A receptor (Htr1a) is an inhibitory G-protein coupled receptor that is expressed both on serotonin and non-serotonin neurons in mammals. Mice lacking Htr1a show increased anxiety behavior suggesting that its activation by serotonin has an anxiolytic effect. This outcome can be mediated by either Htr1a population present on serotonin (auto-receptor) or non-serotonin neurons (hetero-receptor), or both. In addition, both transgenic and pharmacological studies have shown that serotonin acts on Htr1a during development to modulate anxiety in adulthood, demonstrating a function for this receptor in the maturation of anxiety circuits in the brain. However, previous studies have been equivocal about which Htr1a population modulates anxiety behavior, with some studies showing a role of Htr1a hetero-receptor and others implicating the auto-receptor. In particular, cell-type specific rescue and suppression of Htr1a expression in either forebrain principal neurons or brainstem serotonin neurons reached opposite conclusions about the role of the two populations in the anxiety phenotype of the knockout. One interpretation of these apparently contradictory findings is that the modulating role of these two populations depends on each other. Here we use a novel Cre-dependent inducible allele of Htr1a in mice to show that expression of Htr1a in cortical principal neurons is sufficient to modulate anxiety. Together with previous findings, these results support a hetero/auto-receptor interaction model for Htr1a function in anxiety.
Collapse
Affiliation(s)
- Lukasz Piszczek
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Agnieszka Piszczek
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Joanna Kuczmanska
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Enrica Audero
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Cornelius T Gross
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| |
Collapse
|
6
|
Shpakov AO. The role of disturbances in hormonal signaling systems in etiology and pathogenesis of diabetes mellitus. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093014060118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus. JOURNAL OF SIGNAL TRANSDUCTION 2013; 2013:594213. [PMID: 24191197 PMCID: PMC3804439 DOI: 10.1155/2013/594213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/05/2013] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) induces a large number of diseases of the nervous, cardiovascular, and some other systems of the organism. One of the main causes of the diseases is the changes in the functional activity of hormonal signaling systems which lead to the alterations and abnormalities of the cellular processes and contribute to triggering and developing many DM complications. The key role in the control of physiological and biochemical processes belongs to the adenylyl cyclase (AC) signaling system, sensitive to biogenic amines and polypeptide hormones. The review is devoted to the changes in the GPCR-G protein-AC system in the brain, heart, skeletal muscles, liver, and the adipose tissue in experimental and human DM of the types 1 and 2 and also to the role of the changes in AC signaling in the pathogenesis and etiology of DM and its complications. It is shown that the changes of the functional state of hormone-sensitive AC system are dependent to a large extent on the type and duration of DM and in experimental DM on the model of the disease. The degree of alterations and abnormalities of AC signaling pathways correlates very well with the severity of DM and its complications.
Collapse
|
8
|
Ho JE, Larson MG, Vasan RS, Ghorbani A, Cheng S, Rhee EP, Florez JC, Clish CB, Gerszten RE, Wang TJ. Metabolite profiles during oral glucose challenge. Diabetes 2013; 62:2689-98. [PMID: 23382451 PMCID: PMC3717862 DOI: 10.2337/db12-0754] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To identify distinct biological pathways of glucose metabolism, we conducted a systematic evaluation of biochemical changes after an oral glucose tolerance test (OGTT) in a community-based population. Metabolic profiling was performed on 377 nondiabetic Framingham Offspring cohort participants (mean age 57 years, 42% women, BMI 30 kg/m(2)) before and after OGTT. Changes in metabolite levels were evaluated with paired Student t tests, cluster-based analyses, and multivariable linear regression to examine differences associated with insulin resistance. Of 110 metabolites tested, 91 significantly changed with OGTT (P ≤ 0.0005 for all). Amino acids, β-hydroxybutyrate, and tricarboxylic acid cycle intermediates decreased after OGTT, and glycolysis products increased, consistent with physiological insulin actions. Other pathways affected by OGTT included decreases in serotonin derivatives, urea cycle metabolites, and B vitamins. We also observed an increase in conjugated, and a decrease in unconjugated, bile acids. Changes in β-hydroxybutyrate, isoleucine, lactate, and pyridoxate were blunted in those with insulin resistance. Our findings demonstrate changes in 91 metabolites representing distinct biological pathways that are perturbed in response to an OGTT. We also identify metabolite responses that distinguish individuals with and without insulin resistance. These findings suggest that unique metabolic phenotypes can be unmasked by OGTT in the prediabetic state.
Collapse
Affiliation(s)
- Jennifer E. Ho
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
- Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Martin G. Larson
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Ramachandran S. Vasan
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
- Division of Cardiology and Preventive Medicine, Department of Medicine, Boston University, Boston, Massachusetts
| | - Anahita Ghorbani
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susan Cheng
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
- Division of Cardiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eugene P. Rhee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Renal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Jose C. Florez
- Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Robert E. Gerszten
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Thomas J. Wang
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, Massachusetts
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Corresponding author: Thomas J. Wang,
| |
Collapse
|
9
|
Tucci P, Morgese MG, Colaianna M, Zotti M, Schiavone S, Cuomo V, Trabace L. Neurochemical consequence of steroid abuse: stanozolol-induced monoaminergic changes. Steroids 2012; 77:269-75. [PMID: 22197661 DOI: 10.1016/j.steroids.2011.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 01/21/2023]
Abstract
An extensive literature has documented adverse effects on mental health in anabolic androgenic steroids (AAS) abusers. Depression seems a common adverse reaction in AAS abusers. Recently it has been reported that in a rat model of AAS abuse stanozolol induces behavioural and biochemical changes related to the pathophysiology of major depressive disorder. In the present study, we used the model of AAS abuse to examine possible changes in the monoaminergic system, a neurobiological substrate of depression, in different brain areas of stanozolol-treated animals. Wistar rats received repeated injections of stanozolol (5mg/kg, s.c.), or vehicle (propylene glycol, 1ml/kg) once daily for 4weeks. Twenty-four hours after last injection, changes of dopamine (DA) and relative metabolite levels, homovanilic acid (HVA) and 3,4-dihydroxy phenylacetic acid (DOPAC), serotonin (5-HT) and its metabolite levels, 5-hydroxy indolacetic acid (5-HIAA), and noradrenaline (NA) amount were investigated in prefrontal cortex (PFC), nucleus accumbens (NAC), striatum (STR) and hippocampus (HIPP). The analysis of data showed that after chronic stanozolol, DA levels were increased in the HIPP and decreased in the PFC. No significant changes were observed in the STR or in the NAC. 5-HT and 5-HIAA levels were decreased in all brain areas investigated after stanozolol exposure; however, the 5-HIAA/5-HT ratio was not altered. Taken together, our data indicate that chronic use of stanozolol significantly affects brain monoamines leading to neurochemical modifications possibly involved in depression and stress-related states.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Biomedical Sciences, University of Foggia, V.le Luigi Pinto 1, 71121 Foggia, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E, Lanthorn TH. Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS One 2008; 3:e3301. [PMID: 18923670 PMCID: PMC2565062 DOI: 10.1371/journal.pone.0003301] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/08/2008] [Indexed: 11/19/2022] Open
Abstract
The neurotransmitter serotonin (5-HT) plays an important role in both the peripheral and central nervous systems. The biosynthesis of serotonin is regulated by two rate-limiting enzymes, tryptophan hydroxylase-1 and -2 (TPH1 and TPH2). We used a gene-targeting approach to generate mice with selective and complete elimination of the two known TPH isoforms. This resulted in dramatically reduced central 5-HT levels in Tph2 knockout (TPH2KO) and Tph1/Tph2 double knockout (DKO) mice; and substantially reduced peripheral 5-HT levels in DKO, but not TPH2KO mice. Therefore, differential expression of the two isoforms of TPH was reflected in corresponding depletion of 5-HT content in the brain and periphery. Surprisingly, despite the prominent and evolutionarily ancient role that 5-HT plays in both vertebrate and invertebrate physiology, none of these mutations resulted in an overt phenotype. TPH2KO and DKO mice were viable and normal in appearance. Behavioral alterations in assays with predictive validity for antidepressants were among the very few phenotypes uncovered. These behavioral changes were subtle in the TPH2KO mice; they were enhanced in the DKO mice. Herein, we confirm findings from prior descriptions of TPH1 knockout mice and present the first reported phenotypic evaluations of Tph2 and Tph1/Tph2 knockout mice. The behavioral effects observed in the TPH2 KO and DKO mice strongly confirm the role of 5-HT and its synthetic enzymes in the etiology and treatment of affective disorders.
Collapse
|
11
|
Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci U S A 2008; 105:1333-8. [PMID: 18212115 DOI: 10.1073/pnas.0711496105] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of brain serotonin (5-HT) neurotransmission is thought to underlie mental conditions as diverse as depression, anxiety disorders, bipolar disorder, autism, and schizophrenia. Despite treatment of these conditions with serotonergic drugs, the molecular mechanisms by which 5-HT is involved in the regulation of aberrant emotional behaviors are poorly understood. Here, we generated knockin mice expressing a mutant form of the brain 5-HT synthesis enzyme, tryptophan hydroxylase 2 (Tph2). This mutant is equivalent to a rare human variant (R441H) identified in few individuals with unipolar major depression. Expression of mutant Tph2 in mice results in markedly reduced ( approximately 80%) brain 5-HT production and leads to behavioral abnormalities in tests assessing 5-HT-mediated emotional states. This reduction in brain 5-HT levels is accompanied by activation of glycogen synthase kinase 3beta (GSK3beta), a signaling molecule modulated by many psychiatric therapeutic agents. Importantly, inactivation of GSK3beta in Tph2 knockin mice, using pharmacological or genetic approaches, alleviates the aberrant behaviors produced by 5-HT deficiency. These findings establish a critical role of Tph2 in the maintenance of brain serotonin homeostasis and identify GSK3beta signaling as an important pathway through which brain 5-HT deficiency induces abnormal behaviors. Targeting GSK3beta and related signaling events may afford therapeutic advantages for the management of certain 5-HT-related psychiatric conditions.
Collapse
|
12
|
Zhou L, Sutton GM, Rochford JJ, Semple RK, Lam DD, Oksanen L, Thornton-Jones ZD, Clifton PG, Yueh CY, Evans ML, McCrimmon R, Elmquist JK, Butler AA, Heisler LK. Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab 2007; 6:398-405. [PMID: 17983585 PMCID: PMC2075535 DOI: 10.1016/j.cmet.2007.10.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 08/16/2007] [Accepted: 10/15/2007] [Indexed: 11/18/2022]
Abstract
The burden of type 2 diabetes and its associated premature morbidity and mortality is rapidly growing, and the need for novel efficacious treatments is pressing. We report here that serotonin 2C receptor (5-HT(2C)R) agonists, typically investigated for their anorectic properties, significantly improve glucose tolerance and reduce plasma insulin in murine models of obesity and type 2 diabetes. Importantly, 5-HT(2C)R agonist-induced improvements in glucose homeostasis occurred at concentrations of agonist that had no effect on ingestive behavior, energy expenditure, locomotor activity, body weight, or fat mass. We determined that this primary effect on glucose homeostasis requires downstream activation of melanocortin-4 receptors (MC4Rs), but not MC3Rs. These findings suggest that pharmacological targeting of 5-HT(2C)Rs may enhance glucose tolerance independently of alterations in body weight and that this may prove an effective and mechanistically novel strategy in the treatment of type 2 diabetes.
Collapse
MESH Headings
- Absorptiometry, Photon
- Animals
- Blotting, Western
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Gene Expression/drug effects
- Glucose/metabolism
- Glucose Intolerance
- Glucose Tolerance Test
- Homeostasis/drug effects
- Immunohistochemistry
- Insulin/blood
- Male
- Mice
- Mice, Knockout
- Mice, Obese
- Neurons/drug effects
- Neurons/metabolism
- Piperazines/pharmacology
- Polymerase Chain Reaction
- Pro-Opiomelanocortin/genetics
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/metabolism
- Receptor, Melanocortin, Type 4/physiology
- Serotonin 5-HT2 Receptor Agonists
- Serotonin Receptor Agonists/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ligang Zhou
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gregory M. Sutton
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Justin J. Rochford
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Robert K. Semple
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Daniel D. Lam
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Laura J. Oksanen
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Peter G. Clifton
- Department of Psychology, Sussex University, Brighton BN1 9QG, UK
| | - Chen-Yu Yueh
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Mark L. Evans
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Rory J. McCrimmon
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and the Departments of Internal Medicine and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9051, USA
| | - Andrew A. Butler
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Lora K. Heisler
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| |
Collapse
|
13
|
Cowan RL, Haga E, deB Frederick B, Dietrich MS, Vimal RLP, Lukas SE, Renshaw PF. MDMA use is associated with increased spatial BOLD fMRI visual cortex activation in human MDMA users. Pharmacol Biochem Behav 2006; 84:219-28. [PMID: 16782178 DOI: 10.1016/j.pbb.2006.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 03/30/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Previous animal studies have demonstrated that 3,4-methylenedioxymethamphetamine (MDMA) exposure causes serotonin axotomy that is greatest in occipital cortex (including primary visual cortex) where serotonergic axons innervate neurons and blood vessels. Human MDMA users have altered serotonergic function and reduced gray matter density in occipital cortex. The fMRI BOLD method is potentially sensitive to both the neuronal and vascular consequences of MDMA-induced serotonin toxicity. To test the hypothesis that MDMA users have altered visual system function, we used the fMRI BOLD technique to assay visual cortical activation after photic stimulation in a group of adult MDMA users. Because MDMA users worldwide are polydrug users and therefore difficult to match to comparison groups in terms of polydrug exposure, we conducted a primary within-group analysis examining the correlation between lifetime episodes of MDMA exposure and measures of visual cortical activation. The within-group correlational analysis in the MDMA user group revealed that the degree of prior MDMA exposure was significantly positively correlated with the number of activated pixels for photic stimulation (r=0.582, p=0.007). A secondary between-group comparison of MDMA users with non-MDMA users found overall greater levels of polydrug exposure in the MDMA user cohort but no significant differences in visual cortical activation measures between the two groups. Additional research is needed to clarify the origin and significance of the current findings.
Collapse
Affiliation(s)
- R L Cowan
- Brain Imaging Center, McLean Hospital, and Department of Psychiatry, Harvard Medical School, MA 02478, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Zhou L, Williams T, Lachey JL, Kishi T, Cowley MA, Heisler LK. Serotonergic pathways converge upon central melanocortin systems to regulate energy balance. Peptides 2005; 26:1728-32. [PMID: 15993514 DOI: 10.1016/j.peptides.2004.12.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 12/04/2004] [Indexed: 10/25/2022]
Abstract
Multiple lines of research provide compelling support for an important role for central serotonergic (5-hydroxytryptamine, 5-HT) and melanocortin pathways in the regulation of food intake and body weight. In this brief review, we outline data supporting a model in which serotonergic pathways affect energy balance, in part, by converging upon central melanocortin systems to stimulate the release of the endogenous melanocortin agonist, alpha-melanocyte stimulating hormone (alpha-MSH). Further, we review the neuroanatomical mapping of a downstream target of alpha-MSH, the melanocortin 4 receptor (MC4R), in the rodent brain. We propose that downstream activation of MC4R-expressing neurons substantially contributes to serotonin's effects on energy homeostasis.
Collapse
Affiliation(s)
- Ligang Zhou
- Department of Clinical Biochemistry, Addenbrooke's Hospital, Level 4, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
| | | | | | | | | | | |
Collapse
|
16
|
Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB, Schwartz DA, Krishnan KRR, Caron MG. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 2005; 45:11-6. [PMID: 15629698 DOI: 10.1016/j.neuron.2004.12.014] [Citation(s) in RCA: 362] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 11/29/2004] [Accepted: 12/07/2004] [Indexed: 11/15/2022]
Abstract
Dysregulation of central serotonin neurotransmission has been widely suspected as an important contributor to major depression. Here, we identify a (G1463A) single nucleotide polymorphism (SNP) in the rate-limiting enzyme of neuronal serotonin synthesis, human tryptophan hydroxylase-2 (hTPH2). The functional SNP in hTPH2 replaces the highly conserved Arg441 with His, which results in approximately 80% loss of function in serotonin production when hTPH2 is expressed in PC12 cells. Strikingly, SNP analysis in a cohort of 87 patients with unipolar major depression revealed that nine patients carried the mutant (1463A) allele, while among 219 controls, three subjects carried this mutation. In addition, this functional SNP was not found in a cohort of 60 bipolar disorder patients. Identification of a loss-of-function mutation in hTPH2 suggests that defect in brain serotonin synthesis may represent an important risk factor for unipolar major depression.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Cell Biology, Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lesch KP. Genetic alterations of the murine serotonergic gene pathway: the neurodevelopmental basis of anxiety. Handb Exp Pharmacol 2005:71-112. [PMID: 16594255 DOI: 10.1007/3-540-28082-0_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The relative contribution of genetic and environmental factors in the configuration of behavioral differences is among the most prolonged and contentious controversies in intellectual history. Although current views emphasize the joint influence of genes and environmental sources during early brain development, the physiological complexities of multiple gene-gene and gene-environment interactions in the developmental neurobiology of fear and anxiety remain elusive. Variation in genes coding for proteins that control serotonin (5-hydroxytryptamine, 5-HT) system development and plasticity, establish 5-HT neuron identity, and modulate 5-HT receptor-mediated signal transduction as well as cellular pathways have been implicated in the genetics of anxiety and related disorders. This review selects anxiety and avoidance as paradigmatic traits and behaviors, and it focuses on mouse models that have been modified by deletion of genes coding for key players of serotonergic neurotransmission. In particular, pertinent approaches regarding phenotypic changes in mice bearing inactivation mutations of 5-HT receptors, 5-HT transporter, and monoamine oxidase A and other genes related to 5-HT signaling will be discussed and major findings highlighted.
Collapse
Affiliation(s)
- K P Lesch
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080 Würzburg, Germany.
| |
Collapse
|
18
|
Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 2004; 305:217. [PMID: 15247473 DOI: 10.1126/science.1097540] [Citation(s) in RCA: 490] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dysregulation of brain serotonin contributes to many psychiatric disorders. Tryptophan hydroxylase-2 (Tph2), rather than Tph1, is preferentially expressed in the brain. We report a functional (C1473G) single-nucleotide polymorphism in mouse Tph2 that results in the substitution of Pro447 with Arg447 and leads to decreased serotonin levels in PC12 cells. Moreover, in BALB/cJ and DBA/2 mice that are homozygous for the 1473G allele, brain serotonin tissue content and synthesis are reduced in comparison to C57Bl/6 and 129X1/SvJ mice that are homozygous for the 1473C allele. Our data provide direct evidence for a fundamental role of Tph2 in brain serotonin synthesis.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Howard Hughes Medical Institute Laboratory, Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Box 3287, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
19
|
Regina MJ, Winter JC, Rabin RA. Characterization of a novel effect of serotonin 5-HT1A and 5-HT2A receptors: increasing cGMP levels in rat frontal cortex. Neuropharmacology 2004; 45:1041-9. [PMID: 14614947 DOI: 10.1016/s0028-3908(03)00287-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Elucidating the mechanisms of action of hallucinogens has become an increasingly important area of research as their abuse has grown in recent years. Although serotonin receptors appear to play a role in the behavioral effects of the phenethylamine and indoleamine hallucinogens, the signaling pathways activated by these agents are unclear. Here it is shown that administration of serotonin (5-hydroxytryptamine, 5-HT) increased cyclic guanosine monophosphate (cGMP) production in frontal cortical slices of rat brain. The effect of 5-HT was greater than that of N-methyl-D-aspartate (NMDA), a stimulant of cGMP formation in the central nervous system. The 5-HT(2A/2C) receptor phenethylamine agonist, 2,5-dimethoxy-4-methylamphetamine (DOM), increased cGMP content in the slices. Additionally 8-hydroxy-2-(di-n-propylamino)tetralin (DPAT), a 5-(HT1A/7) receptor agonist also increased cGMP production. Stimulation of cGMP formation by DOM was prevented by a 5-HT(2A/2C) receptor antagonist, pirenperone, as well as by a 5-HT2A receptor selective antagonist, MDL100907. A 5-HT2C receptor antagonist, SB242084, did not block the effect of DOM. Stimulation of cGMP production by DPAT was blocked by the 5-HT1A receptor antagonist, WAY100635. Stimulation of cGMP formation by serotonin could be prevented by pirenperone or WAY100635. In summary, activation of serotonin 5-HT1A and 5-HT2A receptors increase brain cGMP levels.
Collapse
Affiliation(s)
- Meredith J Regina
- SUNY-Buffalo, Department of Pharmacology and Toxicology, 102 Farber Hall, Buffalo, NY 14214-3000, USA
| | | | | |
Collapse
|
20
|
Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J, Dumuis A, Brunner D, Bockaert J, Hen R. Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 2004; 24:412-9. [PMID: 14724239 PMCID: PMC6729986 DOI: 10.1523/jneurosci.2806-03.2004] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Revised: 10/27/2003] [Accepted: 10/27/2003] [Indexed: 11/21/2022] Open
Abstract
To study the functions of 5-HT4 receptors, a null mutation was engineered in the corresponding gene. 5-HT4 receptor knock-out mice displayed normal feeding and motor behaviors in baseline conditions but abnormal feeding and locomotor behavior in response to stress and novelty. Specifically, stress-induced hypophagia and novelty-induced exploratory activity were attenuated in the knock-out mice. In addition, pentylenetetrazol-induced convulsive responses were enhanced in the knock-out mice, suggesting an increase in neuronal network excitability. These results provide the first example of a genetic deficit that disrupts the ability of stress to reduce feeding and body weight and suggest that 5-HT4 receptors may be involved in stress-induced anorexia and seizure susceptibility.
Collapse
Affiliation(s)
- Valérie Compan
- Unité Propre de Recherche Centre National de la Recherche Scientifique 2580, Génomique fonctionnelle, Montpellier 34094, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2004; 4:1002-12. [PMID: 14618156 DOI: 10.1038/nrn1256] [Citation(s) in RCA: 939] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New genetic models that target the serotonin system show that transient alterations in serotonin homeostasis cause permanent changes to adult behaviour and modify the fine wiring of brain connections. These findings have revived a long-standing interest in the developmental role of serotonin. Molecular genetic approaches are now showing us that different serotonin receptors, acting at different developmental stages, modulate different developmental processes such as neurogenesis, apoptosis, axon branching and dendritogenesis. Our understanding of the specification of the serotonergic phenotype is improving. In addition, studies have revealed that serotonergic traits are dissociable, as there are populations of neurons that contain serotonin but do not synthesize it.
Collapse
Affiliation(s)
- Patricia Gaspar
- INSERM U 106, Hôpital Salpêtrière, 47, Boulevard de l'Hôpital, 75651, Paris cedex 13, France.
| | | | | |
Collapse
|
22
|
Clark AS, Henderson LP. Behavioral and physiological responses to anabolic-androgenic steroids. Neurosci Biobehav Rev 2003; 27:413-36. [PMID: 14505684 DOI: 10.1016/s0149-7634(03)00064-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone originally designed for therapeutic uses to provide enhanced anabolic potency with negligible androgenic effects. Although AAS continue to be used clinically today, the medical benefits of low therapeutic doses of AAS stand in sharp contrast to the potential health risks associated with the excessive doses self-administered not only by elite athletes and body builders, but by a growing number of recreational users, including adolescent boys and girls. The deleterious effects of AAS on peripheral organs and the incidence of altered behaviors in AAS abusers have been well documented in a number of excellent current reviews for clinical populations. However, a comparable synthesis of nonclinical studies has not been made. Our purpose in this review is to summarize the literature for animal models of the effects of supraphysiological doses of AAS (e.g. those that mimic human abuse regimes) on behaviors and on the neural circuitry for these behaviors. In particular, we have focused on studies in rodents that have examined how AAS alter aggression, sexual behaviors, anxiety, reward, learning, and locomotion and how AAS alter the expression and function of neurotransmitter systems and other signaling molecules that underlie these behaviors.
Collapse
Affiliation(s)
- Ann S Clark
- Department of Psychological and Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755, USA.
| | | |
Collapse
|
23
|
Lesch KP, Zeng Y, Reif A, Gutknecht L. Anxiety-related traits in mice with modified genes of the serotonergic pathway. Eur J Pharmacol 2003; 480:185-204. [PMID: 14623362 DOI: 10.1016/j.ejphar.2003.08.106] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neurobiology of anxiety is complex, reflecting the cumulative physiological effects of multiple genes. These genes are interactive with each other and with the environment in which they are expressed. Variation in genes coding for proteins that control serotonin (5-HT) system development and plasticity, establish 5-HT neuron identity, and modulate 5-HT receptor-mediated signal transduction and cellular pathways have been implicated in the genetics of anxiety and related disorders. Here, we selected anxiety and avoidance as paradigmatic traits and behavior and cover both traditional studies with inbred murine strains and selected lines which have been modified by gene knockout technologies. The design of a mouse model partially or completely lacking a gene of interest during all stages of development (constitutive knockout) or in a spatio-temporal context (conditional knockout) is among the prime strategies directed at elucidating the role of genetic factors in fear and anxiety. In many cases, knockout mice have been able to confirm what has already been anticipated based on pharmacological studies. In other instances, knockout studies have changed views of the relevance of 5-HT homeostasis in brain development and plasticity as well as processes underlying emotional behavior. In this review, we discuss the pertinent literature regarding phenotypic changes in mice bearing inactivation mutations of 5-HT receptors, 5-HT transporter, monoamine oxidase A and other components of the serotonergic pathway. Finally, we attempt to identify future directions of genetic manipulation in animal models to advance our understanding of brain dysregulation characteristic of anxiety disorders.
Collapse
Affiliation(s)
- Klaus Peter Lesch
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080, Würzburg, Germany.
| | | | | | | |
Collapse
|
24
|
Yilmazer-Hanke DM, Roskoden T, Zilles K, Schwegler H. Anxiety-related behavior and densities of glutamate, GABAA, acetylcholine and serotonin receptors in the amygdala of seven inbred mouse strains. Behav Brain Res 2003; 145:145-59. [PMID: 14529813 DOI: 10.1016/s0166-4328(03)00107-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The amygdala is a brain region involved in the regulation of anxiety-related behavior. The purpose of this study was to correlate anxiety-related behavior of inbred mouse strains (BA//c, BALB/cJ, C3H/HeJ, C57BL/6J, CPB-K, DBA/2J, NMRI) to receptor binding in the amygdala. Binding site densities of receptors (NMDA, AMPA, kainate, GABA(A), serotonin, muscarinergic M(1)-M(2)) were measured with quantitative receptor autoradiography using tritiated ligands. Measurements of fear-sensitized acoustic startle response (ASR; induced by footshocks), elevated plus maze (EPM) behavior and receptor binding studies showed differences between the strains except for AMPA and muscarinergic M(2) receptors. Factor analysis revealed a Startle Factor with positive loadings of the density of serotonin and kainate receptors, and the amplitudes of the baseline and fear-sensitized ASRs. A second Anxiety-related Factor only correlated with the fear-sensitized ASR and anxiety parameters on the EPM but not receptor densities. There were also two General Activity Factors defined by (negative) correlations with entries to closed arms of the EPM. Because the density of NMDA and muscarinergic M(1) receptors also correlated negatively with the two factors, these receptors had a positive effect on general activity. In contrast, correlations of GABA(A), serotonin, and kainate receptors had the opposite sign as compared to closed arm entries. It is concluded that hereditary variations in the amygdala, particularly in kainate and serotonin receptors, play a role for the baseline and fear-sensitized ASR, whereas the general activity is influenced by many neurotransmitter receptor systems.
Collapse
Affiliation(s)
- Deniz M Yilmazer-Hanke
- Institute of Anatomy, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
25
|
Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. GENES, BRAIN, AND BEHAVIOR 2003; 2:255-67. [PMID: 14606691 PMCID: PMC6748642 DOI: 10.1034/j.1601-183x.2003.00037.x] [Citation(s) in RCA: 1825] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autism is a severe neurobehavioral syndrome, arising largely as an inherited disorder, which can arise from several diseases. Despite recent advances in identifying some genes that can cause autism, its underlying neurological mechanisms are uncertain. Autism is best conceptualized by considering the neural systems that may be defective in autistic individuals. Recent advances in understanding neural systems that process sensory information, various types of memories and social and emotional behaviors are reviewed and compared with known abnormalities in autism. Then, specific genetic abnormalities that are linked with autism are examined. Synthesis of this information leads to a model that postulates that some forms of autism are caused by an increased ratio of excitation/inhibition in sensory, mnemonic, social and emotional systems. The model further postulates that the increased ratio of excitation/inhibition can be caused by combinatorial effects of genetic and environmental variables that impinge upon a given neural system. Furthermore, the model suggests potential therapeutic interventions.
Collapse
Affiliation(s)
- J L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Center for Neurobiology and Psychiatry, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94143-0984, USA.
| | | |
Collapse
|
26
|
Meneses A. A pharmacological analysis of an associative learning task: 5-HT(1) to 5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory. Learn Mem 2003; 10:363-72. [PMID: 14557609 PMCID: PMC218002 DOI: 10.1101/lm.60503] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation.
Collapse
Affiliation(s)
- Alfredo Meneses
- Depto De Farmacobiología, CINVESTAV-IPN, México City 14330, México.
| |
Collapse
|
27
|
Gingrich JA, Ansorge MS, Merker R, Weisstaub N, Zhou M. New lessons from knockout mice: The role of serotonin during development and its possible contribution to the origins of neuropsychiatric disorders. CNS Spectr 2003; 8:572-7. [PMID: 12907920 DOI: 10.1017/s1092852900018848] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Serotonin (5-HT) modulates numerous processes in the central nervous system that are relevant to neuropsychiatric function and dysfunction. It exerts significant effects on anxiety, mood, impulsivity, sleep, ingestive behavior, reward systems, and psychosis. Serotonergic dysfunction has been implicated in several psychiatric conditions but efforts to more clearly understand the mechanisms of this influence have been hampered by the complexity of this system at the receptor level. There are at least 14 distinct receptors that mediate the effects of 5-HT as well as several enzymes that control its synthesis and metabolism. Pharmacologic agents that target specific receptors have provided clues regarding the function of these receptors in the human brain. 5-HT is also an important modulator of neural development and several groups have employed a genetic strategy relevant to behavior. Several inactivation mutations of specific 5-HT receptors have been generated producing interesting behavioral phenotypes related to anxiety, depression, drug abuse, psychosis, and cognition. In many cases, knockout mice have been used to confirm what has already been suspected based on pharmacologic studies. In other instances, mutations have demonstrated new functions of serotonergic genes in development and behavior.
Collapse
Affiliation(s)
- Jay A Gingrich
- Department of Psychiatry, Division of Psychobiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
28
|
Finn DA, Rutledge-Gorman MT, Crabbe JC. Genetic animal models of anxiety. Neurogenetics 2003; 4:109-35. [PMID: 12687420 DOI: 10.1007/s10048-003-0143-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 12/30/2002] [Indexed: 11/29/2022]
Abstract
The focus of this review is on progress achieved in identifying specific genes conferring risk for anxiety disorders through the use of genetic animal models. We discuss gene-finding studies as well as those manipulating a candidate gene. Both human and animal studies thus far support the genetic complexity of anxiety. Clinical manifestations of these diseases are likely related to multiple genes. While different anxiety disorders and anxiety-related traits all appear to be genetically influenced, it has been difficult to ascertain genetic influences in common. Mouse studies have provisionally mapped several loci harboring genes that affect anxiety-related behavior. The growing array of mutant mice is providing valuable information about how genes and environment interact to affect anxious behavior via multiple neuropharmacological pathways. Classical genetic methods such as artificial selection of rodents for high or low anxiety are being employed. Expression array technologies have as yet not been employed, but can be expected to implicate novel candidates and neurobiological pathways.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Veterans Affairs Medical Center, Oregon Health & Science University, Portland, OR 97239 USA.
| | | | | |
Collapse
|
29
|
Affiliation(s)
- Catharine H Rankin
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
30
|
Ase AR, Sénécal J, Reader TA, Hen R, Descarries L. Decreased G-protein coupling of serotonin 5-HT(1A) receptors in the brain of 5-HT(1B) knockout mouse. Neuropharmacology 2002; 42:941-9. [PMID: 12069904 DOI: 10.1016/s0028-3908(02)00045-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The firing of central serotonin (5-hydroxytryptamine, 5-HT) neurons and their capacity to release 5-HT are subjected to a receptor-mediated auto-control via 5-HT(1A) and 5-HT(1B) receptors respectively located on the somata/dendrites (5-HT(1A) autoreceptors) and preterminal axon arborizations (5-HT(1B) autoreceptors) of these neurons. To further characterize mutual adaptations of these two receptor subtypes in the absence of one of them, activation of G-protein coupling by agonist was measured and compared to wild-type (WT) in 5-HT(1A) and 5-HT(1B) homozygous knockout (KO) mice. As expected, in WT, the non-selective 5-HT(1A/1B) receptor agonist 5-carboxyamidotryptamine (5-CT) stimulated guanosine 5'-O-(gamma-[(35)S]thio)triphosphate ([(35)S]GTP(gamma)S) incorporation in many brain regions endowed with one and/or the other receptor. In the respective KOs, no stimulation was measured in regions known to express only or mainly the deleted receptor. In the 5-HT(1A) KOs, the amplitude of G-protein activation in regions endowed with 5-HT(1B) receptors was unchanged by comparison to WT. In the 5-HT(1B) KOs, the magnitude of the 5-CT stimulation was the same as WT in all regions containing 5-HT(1A) receptors, except in the amygdala, where it was significantly lower, even if this region was one of the most strongly activated in the WT. A similar result was obtained in the amygdala of 5-HT(1B) KOs after activation by the selective 5-HT(1A) receptor agonist R-(+)8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). Under these conditions, however, there was in addition a significant lowering of the stimulated (but not basal) [(35)S]GTP(gamma)S incorporation by comparison to WT in all regions endowed with 5-HT(1A) receptors, including the dorsal raphe nucleus. Thus, eventhough agonist radioligand binding to either 5-HT(1A) or 5-HT(1B) receptors is unchanged in the reciprocal KOs, it appears that a compensatory decrease in the efficiency of G-protein coupling to 5-HT(1A) receptors has developed in the 5-HT(1B) mutant. This could represent the first indication of a cross-talk between these two 5-HT receptor subtypes, at least in brain regions where they are co localized in the same neurons.
Collapse
Affiliation(s)
- A R Ase
- Faculté de Médecine, Département de Physiologie, Université de Montréal, Succursale Centre-ville, Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
31
|
Lesch KP. Variation of serotonergic gene expression: neurodevelopment and the complexity of response to psychopharmacologic drugs. Eur Neuropsychopharmacol 2001; 11:457-74. [PMID: 11704423 DOI: 10.1016/s0924-977x(01)00123-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Individual differences in drug effects and treatment response are relatively enduring, continuously distributed, as well as substantially heritable, and are therefore likely to result from an interplay of multiple genomic variations with environmental influences. As the etiology and pathogenesis of behavioral and psychiatric disorders is genetically complex, so is the response to drug treatment. Psychopharmacologic drug response depends on the structure and functional expression of gene products, which may be direct drug targets or may indirectly modify the development and synaptic plasticity of neural networks critically involved in drug response. While formation and integration of these neural networks is dependent on the action of manifold proteins, converging lines of evidence indicate that genetically controlled variability in the expression of genes critical to the development and plasticity of distinct neurocircuits influences a wide spectrum of quantitative traits including treatment response. During brain development, neurotransmitter systems (e.g. serotonergic system), which are frequently targeted by psychotropic drugs, control neuronal specification, differentiation, and phenotype maintenance. The formation and maturation of these neurotransmitter systems, in turn, is directed by an intrinsic genetic program. Based on the notion that complex gene-gene and gene environment interactions in the regulation of brain plasticity are presumed to contribute to interindividual differences in drug response, the concept of developmental psychopharmacogenetics is emerging. This review appraises prototypical genomic variation with impact on gene expression and complementary studies of genetic and environmental effects on brain development and synaptic plasticity in the mouse model. Although special emphasis is given to molecular mechanisms of neurodevelopmental genetics, relevant conceptual and methodological issues pertinent to the dissection of the psychopharmacogenetic-neurodevelopmental interface are also considered.
Collapse
Affiliation(s)
- K P Lesch
- Department of Psychiatry and Psychotherapy, University of Wuerzburg, Fuechsleinstr. 15, 97080, Germany.
| |
Collapse
|
32
|
Adan RA, Vink T. Drug target discovery by pharmacogenetics: mutations in the melanocortin system and eating disorders. Eur Neuropsychopharmacol 2001; 11:483-90. [PMID: 11704425 DOI: 10.1016/s0924-977x(01)00125-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The identification of the genetic defect underlying the obese phenotype of the viable yellow mouse, ectopic overexpression of the agouti protein which acts as antagonist at the melanocortin-4 receptor, together with the demonstration that the brain melanocortin system was one major downstream effector pathway of leptin signaling has put forward melanocortin receptors as drug targets for obesity. The lack of compounds acting as melanocortin receptor antagonists was the reason why pharmacological studies had not recognized melanocortin receptors as important drug targets earlier. Blockade of brain melanocortin receptors results in increased food intake and body weight, whereas stimulation of the brain melanocortin system results in decreased food intake and activation of the hypothalamo-pituitary-adrenal axis. Anorexia nervosa is characterized by decreased body weight and food intake accompanied by changes in neuroendocrine systems such as strong activation of the hypothalamo-pituitary-adrenal axis. Since agouti-related protein suppresses the activity of the melanocortin system, the AgRP gene was investigated as candidate gene in anorexia nervosa. One variant of the AgRP gene was associated with anorexia nervosa, thus putting forward melanocortin receptor blockade as putative pharmacotherapy. Investigating variations in candidate genes in disease populations appears to be a fruitful approach towards the identification of drug targets.
Collapse
Affiliation(s)
- R A Adan
- Section Molecular Neuroscience, Department of Pharmacology, Rudolf Magnus Institute for Neurosciences, University Medical Center, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | |
Collapse
|
33
|
Murphy DL, Li Q, Engel S, Wichems C, Andrews A, Lesch KP, Uhl G. Genetic perspectives on the serotonin transporter. Brain Res Bull 2001; 56:487-94. [PMID: 11750794 DOI: 10.1016/s0361-9230(01)00622-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The serotonin transporter (5-HTT) is most well known as the site of action of the serotonin reuptake inhibitors, which were initially developed as antidepressants, but now are the most widely used agents in the treatment of many additional neuropsychiatric and related disorders. The discovery that the gene that expresses the 5-HTT possesses a functional promoter-region polymorphism, which is associated with temperament and personality traits such as anxiety and negative emotionality as well as some behaviors, led to many studies examining this polymorphism in individuals with different neuropsychiatric disorders. The subsequent development of mice with a targeted disruption of the 5-HTT in our laboratory has provided an experimental model to examine the many consequences of diminished (in +/-, heterozygote mice) or absent (in -/-, homozygote knockout mice) function of the 5-HTT. The 5-HTT-deficient mice were also crossed with other knockout mice, allowing the study of multiple neurobiologic dysfunctions. As multiple genes are probably involved in the expression of complex behaviors such as anxiety, as well as neuropsychiatric disorders, these more genetically complex mice may more closely model disorders with complex etiologies. Thus, the combination of these comparative human and mouse studies may extend the opportunities to examine genetic alterations from a novel "bottom-up" approach [gene knockout or partial gene knockout in a combinational gene x gene x (yet unknown) gene approach], which is complementary to the traditional "top-down" genetic approach based upon studies of individuals with diagnosed neuropsychiatric disorders and their family members.
Collapse
Affiliation(s)
- D L Murphy
- Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1264, USA.
| | | | | | | | | | | | | |
Collapse
|