1
|
Hardy E, Moulard J, Walter A, Ezan P, Bemelmans AP, Mouthon F, Charvériat M, Rouach N, Rancillac A. Upregulation of astroglial connexin 30 impairs hippocampal synaptic activity and recognition memory. PLoS Biol 2023; 21:e3002075. [PMID: 37040348 PMCID: PMC10089355 DOI: 10.1371/journal.pbio.3002075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/10/2023] [Indexed: 04/12/2023] Open
Abstract
Astrocytes crucially contribute to synaptic physiology and information processing. One of their key characteristics is to express high levels of connexins (Cxs), the gap junction-forming protein. Among them, Cx30 displays specific properties since it is postnatally expressed and dynamically upregulated by neuronal activity and modulates cognitive processes by shaping synaptic and network activities, as recently shown in knockout mice. However, it remains unknown whether local and selective upregulation of Cx30 in postnatal astrocytes within a physiological range modulates neuronal activities in the hippocampus. We here show in mice that, whereas Cx30 upregulation increases the connectivity of astroglial networks, it decreases spontaneous and evoked synaptic transmission. This effect results from a reduced neuronal excitability and translates into an alteration in the induction of synaptic plasticity and an in vivo impairment in learning processes. Altogether, these results suggest that astroglial networks have a physiologically optimized size to appropriately regulate neuronal functions.
Collapse
Affiliation(s)
- Eléonore Hardy
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, College de France, CNRS, Inserm, Labex Memolife, Université PSL, Paris, France
- Theranexus, Lyon, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Julien Moulard
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, College de France, CNRS, Inserm, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Augustin Walter
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, College de France, CNRS, Inserm, Labex Memolife, Université PSL, Paris, France
- Doctoral School N° 158, Sorbonne Université, Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, College de France, CNRS, Inserm, Labex Memolife, Université PSL, Paris, France
| | - Alexis-Pierre Bemelmans
- Neurodegenerative Diseases Laboratory, Molecular Imaging Research Center, Paris-Saclay University, CEA, CNRS, Fontenay-aux-Roses, France
| | | | | | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, College de France, CNRS, Inserm, Labex Memolife, Université PSL, Paris, France
| | - Armelle Rancillac
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, College de France, CNRS, Inserm, Labex Memolife, Université PSL, Paris, France
| |
Collapse
|
2
|
Ngezahayo A, Ruhe FA. Connexins in the development and physiology of stem cells. Tissue Barriers 2021; 9:1949242. [PMID: 34227910 DOI: 10.1080/21688370.2021.1949242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Connexins (Cxs) form gap junction (GJ) channels linking vertebrate cells. During embryogenesis, Cxs are expressed as early as the 4-8 cell stage. As cells differentiate into pluripotent stem cells (PSCs) and during gastrulation, the Cx expression pattern is adapted. Knockdown of Cx43 and Cx45 does not interfere with embryogenic development until the blastula stage, questioning the role of Cxs in PSC physiology and development. Studies in cultivated and induced PSCs (iPSCs) showed that Cx43 is essential for the maintenance of self-renewal and the expression of pluripotency markers. It was found that the role of Cxs in PSCs is more related to regulation of transcription or cell-cell adherence than to formation of GJ channels. Furthermore, a crucial role of Cxs for the self-renewal and differentiation was shown in cultivated adult mesenchymal stem cells. This review aims to highlight aspects that link Cxs to the function and physiology of stem cell development.
Collapse
Affiliation(s)
- Anaclet Ngezahayo
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience (ZSN), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Frederike A Ruhe
- Dept. Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
3
|
Cho HJ, Velichkovska M, Schurhoff N, András IE, Toborek M. Extracellular vesicles regulate gap junction-mediated intercellular communication and HIV-1 infection of human neural progenitor cells. Neurobiol Dis 2021; 155:105388. [PMID: 33962010 DOI: 10.1016/j.nbd.2021.105388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) has been shown to cross the blood-brain barrier and cause HIV-associated neurocognitive disorders (HAND) through a process that may involve direct or indirect interactions with the central nervous system (CNS) cells and alterations of amyloid β (Aβ) homeostasis. The present study focused on the mechanisms of HIV-1 infecting human neural progenitor cells (hNPCs) and affecting NPC intercellular communications with human brain endothelial cells (HBMEC). Despite the lack of the CD4 receptor, hNPCs were effectively infected by HIV-1 via a mechanism involving the chemokine receptors, CXCR4 and CCR5. HIV-1 infection increased expression of connexin-43 (Cx43), phosphorylated Cx43 (pCx43), and pannexin 2 (Panx2) protein levels in hNPCs, suggesting alterations in gap-junction (GJ) and pannexin channel communication. Indeed, a functional GJ assay indicated an increase in communication between HIV-infected hNPCs and non-infected HBMEC. We next analyzed the impact of HBMEC-derived extracellular vesicles (EVs) and EVs carrying Aβ (EV-Aβ) on the expression of Cx43, pCx43, and Panx2 in HIV-1 infected and non-infected hNPCs. Exposure to EV-Aβ resulted in significant reduction of Cx43 and pCx43 protein expression in non-infected hNPCs when compared to EV controls. Interestingly, EV-Aβ treatment significantly increased levels of Cx43, pCx43, and Panx2 in HIV-1-infected hNPCs when compared to non-infected controls. These results were confirmed in a GJ functional assay and an ATP release assay, which is an indicator of connexin hemichannel and/or pannexin channel functions. Overall, the current study demonstrates the importance of hNPCs in HIV-1 infection and indicates that intercellular communications between infected hNPCs and HBMEC can be effectively modulated by EVs carrying Aβ as their cargo.
Collapse
Affiliation(s)
- Hyung Joon Cho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ibolya E András
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Zoidl GR, Spray DC. The Roles of Calmodulin and CaMKII in Cx36 Plasticity. Int J Mol Sci 2021; 22:4473. [PMID: 33922931 PMCID: PMC8123330 DOI: 10.3390/ijms22094473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Anatomical and electrophysiological evidence that gap junctions and electrical coupling occur between neurons was initially confined to invertebrates and nonmammals and was thought to be a primitive form of synaptic transmission. More recent studies revealed that electrical communication is common in the mammalian central nervous system (CNS), often coexisting with chemical synaptic transmission. The subsequent progress indicated that electrical synapses formed by the gap junction protein connexin-36 (Cx36) and its paralogs in nonmammals constitute vital elements in mammalian and fish synaptic circuitry. They govern the collective activity of ensembles of coupled neurons, and Cx36 gap junctions endow them with enormous adaptive plasticity, like that seen at chemical synapses. Moreover, they orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie the fundamental integrative processes, such as memory and learning. Here, we review the available mechanistic evidence and models that argue for the essential roles of calcium, calmodulin, and the Ca2+/calmodulin-dependent protein kinase II in integrating calcium signals to modulate the strength of electrical synapses through interactions with the gap junction protein Cx36.
Collapse
Affiliation(s)
- Georg R. Zoidl
- Department of Biology & Center for Vision Research (CVR), York University, Toronto, ON M3J 1P3, Canada
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
5
|
Zurzolo C. Tunneling nanotubes: Reshaping connectivity. Curr Opin Cell Biol 2021; 71:139-147. [PMID: 33866130 DOI: 10.1016/j.ceb.2021.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs), open membranous channels between connected cells, represent a novel direct way of communication between distant cells for the diffusion of various cellular material, including survival or death signals, genetic material, organelles, and pathogens. Their discovery prompted us to review our understanding of many physiological and pathological processes involving cellular communication but also allowed us to discover new mechanisms of communication at a distance. While this has enriched the field, it has also generated some confusion, as different TNT-like protrusions have been described, and it is not clear whether they have the same structure-function. Most studies have been based on low-resolution imaging methods, and one of the major problems is the inconsistency in demonstrating the capacity of these various connections to transfer material between cells belonging to different populations. This brief review examines the fundamental properties of TNTs. In adult tissues, TNTs are stimulated by different diseases, stresses, and inflammatory signals. 'Moreover', based on the similarity of the processes of development of synaptic spines and TNT formation, we argue that TNTs in the brain predate synaptic transmission, being instrumental in the orchestration of the immature neuronal circuit.
Collapse
Affiliation(s)
- Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015, Paris, France.
| |
Collapse
|
6
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
7
|
Zhao H, Jin T, Cheng X, Qin J, Zhang L, He H, Xue J, Jin G. GAS5 which is regulated by Lhx8 promotes the recovery of learning and memory in rats with cholinergic nerve injury. Life Sci 2020; 260:118388. [PMID: 32890602 DOI: 10.1016/j.lfs.2020.118388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/03/2020] [Accepted: 08/30/2020] [Indexed: 01/24/2023]
Abstract
Damage to the cholinergic system in central nervous system injuries such as traumatic brain injury (TBI) and neurodegenerative diseases leads to impaired learning and cognition. Neural stem cells (NSCs) have self-renewal capacity and multi-directional differentiation potential and considered the best source of cells for cell replacement therapy. However, how to promote the differentiation of NSCs into neurons is a major challenge in current research. Lhx8 has a specific effect on the development of the cholinergic nervous system, but its exact function is unclear. In this study, we found that Lhx8 could regulate the expression of Growth arrest-specific (GAS)5 which has been implicated in cancer but was less studied in the nervous system. Additionally, results from PCR, fluorescence in situ hybridization, and immunocytochemical analyses showed that GAS5 is mainly expressed in the cytoplasm of hippocampal neural stems cells and promotes their differentiation into neurons; the Morris water maze test demonstrated that GAS5 overexpression restored learning and memory in rats with cholinergic injury. These findings indicate that GAS5, which is regulated by Lhx8, improve brain function following cholinergic nerve injury.
Collapse
Affiliation(s)
- Heyan Zhao
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Tianren Jin
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Jianbing Qin
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Lei Zhang
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Hui He
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Jianhua Xue
- Departments of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Nantong, China
| | - Guohua Jin
- Department of Human Anatomy, The Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
8
|
Dilger N, Neehus AL, Grieger K, Hoffmann A, Menssen M, Ngezahayo A. Gap Junction Dependent Cell Communication Is Modulated During Transdifferentiation of Mesenchymal Stem/Stromal Cells Towards Neuron-Like Cells. Front Cell Dev Biol 2020; 8:869. [PMID: 32984345 PMCID: PMC7487424 DOI: 10.3389/fcell.2020.00869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
In vitro transdifferentiation of patient-derived mesenchymal stem/stromal cells (MSCs) into neurons is of special interest for treatment of neurodegenerative diseases. Although there are encouraging studies, little is known about physiological modulations during this transdifferentiation process. Here, we focus on the analysis of gap junction dependent cell-cell communication and the expression pattern of gap junction-building connexins during small molecule-induced neuronal transdifferentiation of human bone marrow-derived MSCs. During this process, the MSC markers CD73, CD90, CD105, and CD166 were downregulated while the neuronal marker Tuj1 was upregulated. Moreover, the differentiation protocol used in the present study changed the cellular morphology and physiology. The MSCs evolved from a fibroblastoid morphology towards a neuronal shape with round cell bodies and neurite-like processes. Moreover, depolarization evoked action potentials in the transdifferentiated cells. MSCs expressed mRNAs encoding Cx43 and Cx45 as well as trace levels of Cx26, Cx37- and Cx40 and allowed transfer of microinjected Lucifer yellow. The differentiation protocol increased levels of Cx26 (mRNA and protein) and decreased Cx43 (mRNA and protein) while reducing the dye transfer. Cx36 mRNA was nearly undetectable in all cells regardless of treatment. Treatment of the cells with the gap junction coupling inhibitor carbenoxolone (CBX) only modestly altered connexin mRNA levels and had little effect on neuronal differentiation. Our study indicates that the small molecule-based differentiation protocol generates immature neuron-like cells from MSCs. This might be potentially interesting for elucidating physiological modifications and mechanisms in MSCs during the initial steps of differentiation towards a neuronal lineage.
Collapse
Affiliation(s)
- Nadine Dilger
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany
| | - Anna-Lena Neehus
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany.,Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), Hanover, Germany
| | - Klaudia Grieger
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany
| | - Andrea Hoffmann
- Graded Implants and Regenerative Strategies, Department of Orthopedic Surgery, Hannover Medical School, Hanover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hanover, Germany
| | - Max Menssen
- Department of Biostatistics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany
| | - Anaclet Ngezahayo
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hanover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
9
|
Koner S, Najem JS, Hasan MS, Sarles SA. Memristive plasticity in artificial electrical synapses via geometrically reconfigurable, gramicidin-doped biomembranes. NANOSCALE 2019; 11:18640-18652. [PMID: 31584592 DOI: 10.1039/c9nr07288h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is now known that mammalian brains leverage plasticity of both chemical and electrical synapses (ES) for collocating memory and processing. Unlike chemical synapses, ES join neurons via gap junction ion channels that permit fast, threshold-independent, and bidirectional ion transport. Like chemical synapses, ES exhibit activity-dependent plasticity, which modulates the ionic conductance between neurons and, thereby, enables adaptive synchronization of action potentials. Many types of adaptive computing devices that display discrete, threshold-dependent changes in conductance have been developed, yet far less effort has been devoted to emulating the continuously variable conductance and activity-dependent plasticity of ES. Here, we describe an artificial electrical synapse (AES) that exhibits voltage-dependent, analog changes in ionic conductance at biologically relevant voltages. AES plasticity is achieved at the nanoscale by linking dynamical geometrical changes of a host lipid bilayer to ion transport via gramicidin transmembrane ion channels. As a result, the AES uniquely mimics the composition, biophysical properties, bidirectional and threshold-independent ion transport, and plasticity of ES. Through experiments and modeling, we classify our AES as a volatile memristor, where the voltage-controlled conductance is governed by reversible changes in membrane geometry and gramicidin channel density. Simulations show that AES plasticity can adaptively synchronize Hodgkin-Huxley neurons. Finally, by modulating the molecular constituents of the AES, we show that the amplitude, direction, and speed of conductance changes can be tuned. This work motivates the development and integration of ES-inspired computing devices for achieving more capable neuromorphic hardware.
Collapse
Affiliation(s)
- Subhadeep Koner
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37916, USA.
| | - Joseph S Najem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Md Sakib Hasan
- Department of Electrical Engineering, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Stephen A Sarles
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37916, USA.
| |
Collapse
|
10
|
Zhao HY, Zhang ST, Cheng X, Li HM, Zhang L, He H, Qin JB, Zhang WY, Sun Y, Jin GH. Long non-coding RNA GAS5 promotes PC12 cells differentiation into Tuj1-positive neuron-like cells and induces cell cycle arrest. Neural Regen Res 2019; 14:2118-2125. [PMID: 31397350 PMCID: PMC6788226 DOI: 10.4103/1673-5374.262592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Growth arrest-specific 5 (GAS5) is an anti-oncogene that has been extensively studied in tumors. However, research on GAS5 in the context of nervous system disease is rare at present. This study aimed to investigate the role of the long non-coding RNA GAS5 in rat pheochromocytoma cells (PC12 cells). GAS5-overexpressing lentivirus was transfected into PC12 cells, and expression levels of GAS5 and C-myc were detected by real-time PCR. Ratios of cells in S phase were detected by 5-ethynyl-2′-deoxyuridine. Immunohistochemical staining was used to detect the immunoreactivity of neuron microtubule markers Tuj1, doublecortin, and microtubule-associated protein 2. Apoptosis was detected by flow cytometry, while expression of acetylcholine in cells was detected by western blot assay. We found that GAS5 can promote PC12 cells to differentiate into Tuj1-positive neuron-like cells with longer processes. In addition, cell proliferation and cell cycle were significantly suppressed by GAS5, whereas it had no effect on apoptosis of PC12 cells. Our results indicate that GAS5 could increase the expression of choline acetyltransferase and acetylcholine release. Thus, we speculate that GAS5 is beneficial to the recovery of neurons and the cholinergic nervous system.
Collapse
Affiliation(s)
- He-Yan Zhao
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng-Tong Zhang
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Hao-Ming Li
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Lei Zhang
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Hui He
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Jian-Bing Qin
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Wei-Ye Zhang
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Yan Sun
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Guo-Hua Jin
- Department of Human Anatomy, the Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
11
|
Pang W, Lian FZ, Leng X, Wang SM, Li YB, Wang ZY, Li KR, Gao ZX, Jiang YG. Microarray expression profiling and co-expression network analysis of circulating LncRNAs and mRNAs associated with neurotoxicity induced by BPA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15006-15018. [PMID: 29552716 DOI: 10.1007/s11356-018-1678-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
A growing body of evidence has shown bisphenol A (BPA), an estrogen-like industrial chemical, has adverse effects on the nervous system. In this study, we investigated the transcriptional behavior of long non-coding RNAs (lncRNAs) and mRNAs to provide the information to explore neurotoxic effects induced by BPA. By microarray expression profiling, we discovered 151 differentially expressed lncRNAs and 794 differentially expressed mRNAs in the BPA intervention group compared with the control group. Gene ontology analysis indicated the differentially expressed mRNAs were mainly involved in fundamental metabolic processes and physiological and pathological conditions, such as development, synaptic transmission, homeostasis, injury, and neuroinflammation responses. In the expression network of the BPA-induced group, a great number of nodes and connections were found in comparison to the control-derived network. We identified lncRNAs that were aberrantly expressed in the BPA group, among which, growth arrest specific 5 (GAS5) might participate in the BPA-induced neurotoxicity by regulating Jun, RAS, and other pathways indirectly through these differentially expressed genes. This study provides the first investigation of genome-wide lncRNA expression and correlation between lncRNA and mRNA expression in the BPA-induced neurotoxicity. Our results suggest that the elevated expression of lncRNAs is a major biomarker in the neurotoxicity induced by BPA.
Collapse
Affiliation(s)
- Wei Pang
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China
| | - Fu-Zhi Lian
- Department of Preventive Medicine, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xue Leng
- Tianjin Institute of Medical Equipment, Tianjin, 300161, China
| | - Shu-Min Wang
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China
| | - Yi-Bo Li
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China
| | - Zi-Yu Wang
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China
| | - Kai-Ren Li
- Tianjin Institute of Medical Equipment, Tianjin, 300161, China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China.
| | - Yu-Gang Jiang
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China.
| |
Collapse
|
12
|
Abstract
Electrical synapses are an omnipresent feature of nervous systems, from the simple nerve nets of cnidarians to complex brains of mammals. Formed by gap junction channels between neurons, electrical synapses allow direct transmission of voltage signals between coupled cells. The relative simplicity of this arrangement belies the sophistication of these synapses. Coupling via electrical synapses can be regulated by a variety of mechanisms on times scales ranging from milliseconds to days, and active properties of the coupled neurons can impart emergent properties such as signal amplification, phase shifts and frequency-selective transmission. This article reviews the biophysical characteristics of electrical synapses and some of the core mechanisms that control their plasticity in the vertebrate central nervous system.
Collapse
Affiliation(s)
- Sebastian Curti
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - John O'Brien
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
13
|
Abstract
Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36, Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important gaps in knowledge to be bridged.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- />Division of Medical Sciences, University of Victoria, Medical Sciences Building Rm 224, 3800 Finnerty Rd, Victoria, BC V8P5C2 Canada
| | - Steffany A. L. Bennett
- />Department of Biochemistry, Microbiology and Immunology, Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
14
|
Sisakhtnezhad S, Khosravi L. Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur J Cell Biol 2015; 94:429-43. [PMID: 26164368 DOI: 10.1016/j.ejcb.2015.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell communication is a critical requirement to coordinate behaviors of the cells in a community and thereby achieve tissue homeostasis and conservation of the multicellular organisms. Tunneling nanotubes (TNTs), as a cell-to-cell communication over long distance, allow for bi- or uni-directional transfer of cellular components between cells. Identification of inducing agents and the cell and molecular mechanism underling the formation of TNTs and their structural and functional features may lead to finding new important roles for these intercellular bridges in vivo and in vitro. During the last decade, research has shown TNTs have different structural and functional properties, varying between and within cell systems. In this review, we will focus on TNTs and their cell and molecular mechanism of formation. Moreover, the latest findings into their functional roles in physiological and pathological processes, such as signal transduction, micro and nano-particles delivery, immune responses, embryogenesis, cellular reprogramming, apoptosis, cancer, and neurodegenerative diseases initiation and progression and pathogens transfer, will be discussed.
Collapse
Affiliation(s)
| | - Leila Khosravi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
15
|
Liu WJ, Yang J. Preferentially regulated expression of connexin 43 in the developing spiral ganglion neurons and afferent terminals in post-natal rat cochlea. Eur J Histochem 2015; 59:2464. [PMID: 25820563 PMCID: PMC4378217 DOI: 10.4081/ejh.2015.2464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/23/2022] Open
Abstract
The expression pattern of connexin 43 (Cx43) in the cochlea is not determined and is controversial. Since the presence of Cx43 is essential for hearing, we re-examined its distribution during post-natal development of rat cochlea. Cx43 protein was expressed in spiral ganglion neurons (SGNs) and their neurite terminals innervating the inner and outer hair cells (IHCs and OHCs) as early as birth (postnatal day 0, P0), and persisted until P14. Double immunofluorescence staining, using two antibodies against Cx43 and TUJ1, a marker for all SGNs and afferent terminals, showed that immunoreactivity for Cx43 and TUJ1 was perfectly colocalized in SGNs and afferent terminals associated with the IHCs and OHCs. However, beyond P14, Cx43 immunostaining could no longer be detected in the region of the synaptic terminals at the bases of IHCs and OHCs (P17, adult). In contrast, Cx43 maintained its expression in SGNs into adulthood. We further performed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) to identify the presence of Cx43 mRNA in the modiolus (mainly containing SGNs). Cx43 mRNA was higher at P8, compared with P1, and subsequently decreased at P14. These results indicated that Cx43 correlated with cochlear synaptogenesis and establishment of auditory neurotransmission.
Collapse
Affiliation(s)
- W J Liu
- Xinhua Hospital, Shanghai Jiaotong University, Shanghai Jiaotong University Ear Institute.
| | | |
Collapse
|
16
|
RCCS bioreactor-based modelled microgravity induces significant changes on in vitro 3D neuroglial cell cultures. BIOMED RESEARCH INTERNATIONAL 2015; 2015:754283. [PMID: 25654124 PMCID: PMC4309310 DOI: 10.1155/2015/754283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 11/18/2022]
Abstract
We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions.
Collapse
|
17
|
Mylvaganam S, Ramani M, Krawczyk M, Carlen PL. Roles of gap junctions, connexins, and pannexins in epilepsy. Front Physiol 2014; 5:172. [PMID: 24847276 PMCID: PMC4019879 DOI: 10.3389/fphys.2014.00172] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/13/2014] [Indexed: 12/19/2022] Open
Abstract
Enhanced gap junctional communication (GJC) between neurons is considered a major factor underlying the neuronal synchrony driving seizure activity. In addition, the hippocampal sharp wave ripple complexes, associated with learning and seizures, are diminished by GJC blocking agents. Although gap junctional blocking drugs inhibit experimental seizures, they all have other non-specific actions. Besides interneuronal GJC between dendrites, inter-axonal and inter-glial GJC is also considered important for seizure generation. Interestingly, in most studies of cerebral tissue from animal seizure models and from human patients with epilepsy, there is up-regulation of glial, but not neuronal gap junctional mRNA and protein. Significant changes in the expression and post-translational modification of the astrocytic connexin Cx43, and Panx1 were observed in an in vitro Co++ seizure model, further supporting a role for glia in seizure-genesis, although the reasons for this remain unclear. Further suggesting an involvement of astrocytic GJC in epilepsy, is the fact that the expression of astrocytic Cx mRNAs (Cxs 30 and 43) is several fold higher than that of neuronal Cx mRNAs (Cxs 36 and 45), and the number of glial cells outnumber neuronal cells in mammalian hippocampal and cortical tissue. Pannexin expression is also increased in both animal and human epileptic tissues. Specific Cx43 mimetic peptides, Gap 27 and SLS, inhibit the docking of astrocytic connexin Cx43 proteins from forming intercellular gap junctions (GJs), diminishing spontaneous seizures. Besides GJs, Cx membrane hemichannels in glia and Panx membrane channels in neurons and glia are also inhibited by traditional gap junctional pharmacological blockers. Although there is no doubt that connexin-based GJs and hemichannels, and pannexin-based membrane channels are related to epilepsy, the specific details of how they are involved and how we can modulate their function for therapeutic purposes remain to be elucidated.
Collapse
Affiliation(s)
- Shanthini Mylvaganam
- Neurobiology, Toronto Western Research Institute, University Health Network and University of Toronto Toronto, ON, Canada
| | - Meera Ramani
- Neurobiology, Toronto Western Research Institute, University Health Network and University of Toronto Toronto, ON, Canada
| | - Michal Krawczyk
- Neurobiology, Toronto Western Research Institute, University Health Network and University of Toronto Toronto, ON, Canada
| | - Peter L Carlen
- Neurobiology, Toronto Western Research Institute, University Health Network and University of Toronto Toronto, ON, Canada
| |
Collapse
|
18
|
Rinaldi F, Hartfield EM, Crompton LA, Badger JL, Glover CP, Kelly CM, Rosser AE, Uney JB, Caldwell MA. Cross-regulation of Connexin43 and β-catenin influences differentiation of human neural progenitor cells. Cell Death Dis 2014; 5:e1017. [PMID: 24457961 PMCID: PMC4040652 DOI: 10.1038/cddis.2013.546] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 12/03/2022]
Abstract
Connexin43 (Cx43) is the most widely and abundantly expressed gap junction (GJ) protein and it is strongly associated with the regulation of cell cycle progression. Emerging roles for Cx43 in cell adhesion and migration during neural differentiation have also been recently recognized, and this has emphasized the involvement of Cx43 in different physiological process beyond its role as a GJ protein. In this study, we explore the function of Cx43 in the differentiation of human neural progenitor cells (hNPCs) using viral vectors that mediate the overexpression or knockdown of the protein. Results showed that in the absence of this protein fetal cortex-derived hNPCs differentiated toward a neuronal phenotype at expenses of a glial phenotype. Furthermore, the silencing of Cx43 did not affect hNPC proliferation rate or numbers of apoptotic cells. The increase in the number of neurons was not recapitulated when GJ intercellular communications were pharmacologically blocked, and this suggested that Cx43 was influencing hNPCs differentiation with a GJ-independent effect. In addition, Cx43 knockdown significantly increased β-catenin signaling, which has been shown to regulate the transcription of pro-neuronal genes during embryonic neural development. Our results add further support to the hypothesis that Cx43 protein itself regulates key signaling pathways during development and neurogenesis beyond its role as GJ protein.
Collapse
Affiliation(s)
- F Rinaldi
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - E M Hartfield
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - L A Crompton
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - J L Badger
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - C P Glover
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - C M Kelly
- Brain Repair Group, School of Biosciences, Life Science Building, University of Cardiff, Cardiff, UK
| | - A E Rosser
- Brain Repair Group, School of Biosciences, Life Science Building, University of Cardiff, Cardiff, UK
- Department of Neurology, School of Medicine, University of Cardiff, Cardiff, UK
| | - J B Uney
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - M A Caldwell
- Stem Cells and Neuroregeneration Research Group, School of Clinical Sciences, Medical Sciences Building, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Wan CK, O'Carroll SJ, Kim SL, Green CR, Nicholson LFB. Spatiotemporal changes in Cx30 and Cx43 expression during neuronal differentiation of P19 EC and NT2/D1 cells. CELL BIOLOGY INTERNATIONAL REPORTS 2013; 20:13-23. [PMID: 25505515 PMCID: PMC4255794 DOI: 10.1002/cbi3.10005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/17/2013] [Indexed: 12/23/2022]
Abstract
While connexins (Cxs) are thought to be involved in differentiation, their expression and role has yet to be fully elucidated. We investigated the temporal expression of Cx30, Cx36 and Cx43 in two in vitro models of neuronal differentiation: human NT2/D1 and murine P19 cells, and the spatial localisation of Cx30 and Cx43 in these models. A temporal Cx43 downregulation was confirmed in both cell lines during RA-induced neuronal differentiation using RT-PCR (P < 0.05) preceding an increase in neuronal doublecortin protein. RT-PCR showed Cx36 was upregulated twofold in NT2/D1 cells (P < 0.05) and sixfold in P19 cells (P < 0.001) during neuronal differentiation. Cx30 exhibited a transient peak in expression midway through the timecourse of differentiation increasing threefold in NT2/D1 cells (P < 0.001) and eightfold in P19 cells (P < 0.01). Qualitative immunocytochemistry was used to examine spatiotemporal patterns of Cx protein distribution alongside neuronal differentiation markers. The temporal immunolabelling pattern was similar to that seen using RT-PCR. Cx43 was observed intracellularly and on cell surfaces, while Cx30 was seen as puncta. Spatially Cx43 was seen on doublecortin-negative cells, which may indicate Cx43 downregulation is requisite for differentiation in these models. Conversely, Cx30 puncta were observed on doublecortin-positive and -negative cells in NT2/D1 cells and examination of the Cx30 peak showed puncta also localized to nestin-positive cells, with few puncta on MAP2-positive cells. In P19 cells Cx30 was localized on clusters of cells surrounded by MAP2- and doublecortin-positive processes. The expression pattern of Cx30 indicates a role in neuronal differentiation; the nature of that role warrants future investigation.
Collapse
Affiliation(s)
- Carthur K Wan
- Faculty of Medical and Health Sciences, Department of Anatomy with Radiology and Centre for Brain Research, The University of Auckland Auckland, 92019, New Zealand
| | - Simon J O'Carroll
- Faculty of Medical and Health Sciences, Department of Anatomy with Radiology and Centre for Brain Research, The University of Auckland Auckland, 92019, New Zealand
| | - Sue-Ling Kim
- Faculty of Medical and Health Sciences, Department of Anatomy with Radiology and Centre for Brain Research, The University of Auckland Auckland, 92019, New Zealand
| | - Colin R Green
- Faculty of Medical and Health Sciences, Department of Ophthalmology, The University of Auckland Auckland, 92019, New Zealand
| | - Louise F B Nicholson
- Faculty of Medical and Health Sciences, Department of Anatomy with Radiology and Centre for Brain Research, The University of Auckland Auckland, 92019, New Zealand
| |
Collapse
|
20
|
Hunecke D, Spanel R, Länger F, Nam SW, Borlak J. MYC-regulated genes involved in liver cell dysplasia identified in a transgenic model of liver cancer. J Pathol 2012; 228:520-33. [DOI: 10.1002/path.4059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 12/12/2022]
|
21
|
Regulation of Cx45 hemichannels mediated by extracellular and intracellular calcium. Pflugers Arch 2012; 464:249-59. [DOI: 10.1007/s00424-012-1133-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 12/15/2022]
|
22
|
Abounit S, Zurzolo C. Wiring through tunneling nanotubes--from electrical signals to organelle transfer. J Cell Sci 2012; 125:1089-98. [PMID: 22399801 DOI: 10.1242/jcs.083279] [Citation(s) in RCA: 254] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tunneling nanotubes (TNTs) represent a subset of F-actin-based transient tubular connections that allow direct communication between distant cells. Recent studies have provided new insights into the existence of TNTs in vivo, and this novel mechanism of intercellular communication is implicated in various essential processes, such as development, immunity, tissue regeneration and transmission of electrical signals. TNTs are versatile structures known to facilitate the transfer of various cargos, such as organelles, plasma membrane components, pathogens and Ca(2+). Recently, a new function of TNTs in the long-range transfer of electrical signals that involves gap junctions has been suggested. This indicates that different types of TNTs might exist, and supports the notion that TNTs might not be just passive open conduits but rather are regulated by gating mechanisms. Furthermore, TNTs have been found in different cell lines and are characterized by their diversity in terms of morphology. Here we discuss these novel findings in the context of the two models that have been proposed for TNT formation, and focus on putative proteins that could represent TNT specific markers. We also shed some light on the molecular mechanisms used by TNTs to transfer cargos, as well as chemical and electrical signals.
Collapse
Affiliation(s)
- Saïda Abounit
- Institut Pasteur, Unité de Trafic Membranaire et Pathogénèse, 25 rue du Docteur Roux, 75724 Paris, Cedex 15, France
| | | |
Collapse
|
23
|
Altered postnatal development of cortico-hippocampal neuronal electric activity in mice deficient for the mitochondrial aspartate-glutamate transporter. J Cereb Blood Flow Metab 2012; 32:306-17. [PMID: 21934695 PMCID: PMC3272597 DOI: 10.1038/jcbfm.2011.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The deficiency in the mitochondrial aspartate/glutamate transporter Aralar/AGC1 results in a loss of the malate-aspartate NADH shuttle in the brain neurons, hypomyelination, and additional defects in the brain metabolism. We studied the development of cortico/hippocampal local field potential (LFP) in Aralar/AGC1 knockout (KO) mice. Laminar profiles of LFP, evoked potentials, and unit activity were recorded under anesthesia in young (P15 to P22) Aralar-KO and control mice as well as control adults. While LFP power increased 3 to 7 times in both cortex and hippocampus of control animals during P15 to P22, the Aralar-KO specimens hardly progressed. The divergence was more pronounced in the CA3/hilus region. In parallel, spontaneous multiunit activity declined severely in KO mice. Postnatal growth of hippocampal-evoked potentials was delayed in KO mice, and indicated abnormal synaptic and spike electrogenesis and reduced output at P20 to P22. The lack of LFP development in KO mice was accompanied by the gradual appearance of epileptic activity in the CA3/hilus region that evolved to status epilepticus. Strikingly, CA3 bursts were poorly conducted to the CA1 field. We conclude that disturbed substrate supply to neuronal mitochondria impairs development of cortico-hippocampal LFPs. Aberrant neuronal electrogenesis and reduced neuron output may explain circuit dysfunction and phenotype deficiencies.
Collapse
|
24
|
Giaume C, Liu X. From a glial syncytium to a more restricted and specific glial networking. ACTA ACUST UNITED AC 2011; 106:34-9. [PMID: 21979115 DOI: 10.1016/j.jphysparis.2011.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/26/2011] [Accepted: 09/02/2011] [Indexed: 02/03/2023]
Abstract
In the brain, glia represents the cell population that expresses the highest level of connexins, the membrane protein constituents of gap junction channels and hemichannels. This statement has initially led to propose the existence of a glial syncytium. Since then, functional studies have established that connexin channel-mediated communication between glial cells was more restricted and plastic that primarily thought. In particular, this is the case for astrocytes that form functional networks of communicating cells. Altogether these findings lead to reconsider the interaction between neurons and glia that should not be solely studied at the single cell level but also at a more integrated level as the interplay between neuronal circuits and glial networks.
Collapse
Affiliation(s)
- Christian Giaume
- CIRB, CNRS UMR UMR7241/INSERM U1050, MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Collège de France, University Pierre et Marie Curie, ED, N°158, 11 Place Marcelin Berthelot, 75005 Paris, France.
| | | |
Collapse
|
25
|
Machtaler S, Dang-Lawson M, Choi K, Jang C, Naus CC, Matsuuchi L. The gap junction protein Cx43 regulates B-lymphocyte spreading and adhesion. J Cell Sci 2011; 124:2611-21. [PMID: 21750189 DOI: 10.1242/jcs.089532] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The gap junction protein connexin43 (Cx43) is widely expressed in mammalian cells and forms intercellular channels for the transfer of small molecules between adjacent cells, as well as hemichannels that mediate bidirectional transport of molecules between the cell and the surrounding environment. Cx43 regulates cell adhesion and migration in neurons and glioma cells, and we now show that Cx43 influences BCR-, LFA-1- and CXCL12-mediated activation of the Rap1 GTPase. Using shRNA knockdown of Cx43 in WEHI 231 cells, we show that Cx43 is required for sustained Rap1 activation and BCR-mediated spreading. To determine the domains of Cx43 that are important for this effect, Cx43-null J558 μm3 B cells (which express a wild-type IgM BCR) were transfected with wild-type Cx43-GFP or a C-terminal-truncated Cx43 (Cx43ΔT-GFP). Expression of wild-type Cx43-GFP, but not Cx43ΔT-GFP, was sufficient to restore sustained, BCR-mediated Rap1 activation and cell spreading. Cx43, and specifically the C-terminal domain, was also important for LFA-1- and CXCL12-mediated Rap1 activation, spreading and adhesion to an endothelial cell monolayer. These data show that Cx43 has an important and previously unreported role in B-cell processes that are essential to normal B-cell development and immune responses.
Collapse
Affiliation(s)
- Steven Machtaler
- CELL and I³ Research Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Bouhours M, Po MD, Gao S, Hung W, Li H, Georgiou J, Roder JC, Zhen M. A co-operative regulation of neuronal excitability by UNC-7 innexin and NCA/NALCN leak channel. Mol Brain 2011; 4:16. [PMID: 21489288 PMCID: PMC3102621 DOI: 10.1186/1756-6606-4-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/13/2011] [Indexed: 11/10/2022] Open
Abstract
Gap junctions mediate the electrical coupling and intercellular communication between neighboring cells. Some gap junction proteins, namely connexins and pannexins in vertebrates, and innexins in invertebrates, may also function as hemichannels. A conserved NCA/Dmα1U/NALCN family cation leak channel regulates the excitability and activity of vertebrate and invertebrate neurons. In the present study, we describe a genetic and functional interaction between the innexin UNC-7 and the cation leak channel NCA in Caenorhabditis elegans neurons. While the loss of the neuronal NCA channel function leads to a reduced evoked postsynaptic current at neuromuscular junctions, a simultaneous loss of the UNC-7 function restores the evoked response. The expression of UNC-7 in neurons reverts the effect of the unc-7 mutation; moreover, the expression of UNC-7 mutant proteins that are predicted to be unable to form gap junctions also reverts this effect, suggesting that UNC-7 innexin regulates neuronal activity, in part, through gap junction-independent functions. We propose that, in addition to gap junction-mediated functions, UNC-7 innexin may also form hemichannels to regulate C. elegans' neuronal activity cooperatively with the NCA family leak channels.
Collapse
Affiliation(s)
- Magali Bouhours
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada M5G 1X5
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Parenti R, Cicirata F, Zappalà A, Catania A, La Delia F, Cicirata V, Tress O, Willecke K. Dynamic expression of Cx47 in mouse brain development and in the cuprizone model of myelin plasticity. Glia 2010; 58:1594-609. [DOI: 10.1002/glia.21032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Olk S, Turchinovich A, Grzendowski M, Stühler K, Meyer HE, Zoidl G, Dermietzel R. Proteomic analysis of astroglial connexin43 silencing uncovers a cytoskeletal platform involved in process formation and migration. Glia 2010; 58:494-505. [PMID: 19795503 DOI: 10.1002/glia.20942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein of the brain, where it is predominantly expressed in astrocytes. Recent studies imply a role of Cx43 in the regulation of important cellular processes, including migration, proliferation, and shape formation. These processes are assumed to be reflected by the proteome of the Cx43 expressing cells. To analyze the influence of Cx43 on the astrocytic proteome, we used RNA interference to downregulate the expression of this connexin in cultures of mouse astrocytes. We applied difference gel electrophoresis (DIGE) to compare silenced astrocytes with control cells. The differential proteome analysis revealed 15 significantly regulated proteins (between 1.2- and 1.6-fold), of which six are known to belong to a group of cytoskeletal proteins involved in cortical platform formation. Astrocytes treated with Cx43 small interfering (si)RNA showed an increased expression of the cytoskeletal proteins: actin, tropomyosin, microtubule-associated protein RP/EB1, transgelin, and GFAP, and a decreased expression of cofilin-1. Quantitative immunocytochemistry and Western blotting revealed similar results showing an upregulation of actin, tubulin, tropomyosin, EB1, transgelin and GFAP, and a downregulation of Ser-3-phosphorylated cofilin. Furthermore, Cx43 silencing led to phenotypical changes in cell morphology, migratory activity, and cell adhesion. Our results provide mechanistic clues for an understanding of Cx43 interaction with cellular motor activities such as migration and process formation in astrocytes.
Collapse
Affiliation(s)
- Stephan Olk
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Santiago MF, Alcami P, Striedinger KM, Spray DC, Scemes E. The carboxyl-terminal domain of connexin43 is a negative modulator of neuronal differentiation. J Biol Chem 2010; 285:11836-45. [PMID: 20164188 DOI: 10.1074/jbc.m109.058750] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Connexin43 (Cx43) is widely expressed in embryonic brain, and its expression becomes restricted mainly to astrocytes as the central nervous system matures. Recent studies have indicated that Cx43 plays important, nonchannel, roles during central nervous system development by affecting neuronal cell migration. Here, we evaluated the effects of Cx43 on neuronal differentiation. For that we used an in vitro model of neural cell development (neurospheres) to evaluate, through immunocytochemistry, electrophysiology, and molecular biology, the degree of neuronal maturation from neurospheres derived from wild-type (WT) and Cx43-null mice. Our results indicate that Cx43 is a negative modulator of neuronal differentiation. The percent neurospheres containing differentiated neurons and the number of cells displaying inward currents were significantly higher in Cx43-null than in WT littermate neurospheres. Knockdown of Cx43 with small interfering RNA increased the number of WT neurospheres generating differentiated neurons. Blockade of gap junctional communication with carbenoxolone did not induce neuronal differentiation in WT neurospheres. Transfection of Cx43-null neurospheres with Cx43 mutants revealed that Cx43 carboxyl terminus prevents neuronal maturation. In agreement with these in vitro data, in situ analysis of embryonic day 16 brains revealed increased beta-III-tubulin expression in germinal zones of Cx43-null compared with that of WT littermates. These results indicate that Cx43, and specifically its carboxyl terminus, is crucial for signaling mechanisms preventing premature neuronal differentiation during embryonic brain development.
Collapse
Affiliation(s)
- Marcelo F Santiago
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
30
|
REST and CoREST modulate neuronal subtype specification, maturation and maintenance. PLoS One 2009; 4:e7936. [PMID: 19997604 PMCID: PMC2782136 DOI: 10.1371/journal.pone.0007936] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/18/2009] [Indexed: 11/19/2022] Open
Abstract
Background The repressor element-1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master regulator of neuronal gene expression. REST functions as a modular scaffold for dynamic recruitment of epigenetic regulatory factors including its primary cofactor, the corepressor for element-1-silencing transcription factor (CoREST), to genomic loci that contain the repressor element-1 (RE1) binding motif. While REST was initially believed to silence RE1 containing neuronal genes in neural stem cells (NSCs) and non-neuronal cells, emerging evidence shows an increasingly complex cell type- and developmental stage-specific repertoire of REST target genes and functions that include regulation of neuronal lineage maturation and plasticity. Methodology/Principal Findings In this study, we utilized chromatin immunoprecipitation on chip (ChIP-chip) analysis to examine REST and CoREST functions during NSC-mediated specification of cholinergic neurons (CHOLNs), GABAergic neurons (GABANs), glutamatergic neurons (GLUTNs), and medium spiny projection neurons (MSNs). We identified largely distinct but overlapping profiles of REST and CoREST target genes during neuronal subtype specification including a disproportionately high percentage that are exclusive to each neuronal subtype. Conclusions/Significance Our findings demonstrate that the differential deployment of REST and CoREST is an important regulatory mechanism that mediates neuronal subtype specification by modulating specific gene networks responsible for inducing and maintaining neuronal subtype identity. Our observations also implicate a broad array of factors in the generation of neuronal diversity including but not limited to those that mediate homeostasis, cell cycle dynamics, cell viability, stress responses and epigenetic regulation.
Collapse
|
31
|
Calera MR, Wang Z, Sanchez-Olea R, Paul DL, Civan MM, Goodenough DA. Depression of intraocular pressure following inactivation of connexin43 in the nonpigmented epithelium of the ciliary body. Invest Ophthalmol Vis Sci 2009; 50:2185-93. [PMID: 19168903 DOI: 10.1167/iovs.08-2962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Conditional inactivation of connexin43 (Cx43) in the pigmented epithelium of the mouse eye results in a reduction in aqueous humor production and complete loss of the vitreous chamber. It was proposed that gap junctions between pigmented and nonpigmented epithelia of the ciliary body are critical for the production of the aqueous humor. To form such junctions, Cx43 in the pigmented epithelium must interact with connexin(s) present in the adjacent cells of the nonpigmented epithelium. The importance of Cx43 expression in the nonpigmented epithelium for the establishment of gap junctions and the regulation of intraocular pressure was tested. METHODS To inactivate Cx43 in the nonpigmented epithelium of the mouse eye, a mouse line was crossed with a floxed Cx43 locus (Cx43(flox/flox)) and a transgenic mouse line expressing cre recombinase under the control of the Pax6alpha promoter. General eye structure was evaluated by light microscopy, gap junctions were analyzed by electron microscopy, and intraocular pressure was directly assessed with micropipettes. RESULTS In Pax6alpha-cre/Cx43(flox/flox) mice, Cx43 was partially inactivated in the nonpigmented epithelium of the ciliary body and iris. Animals developed dilatations between the pigmented and nonpigmented epithelia and displayed a significant reduction in intraocular pressure. However, gap junctions between the ciliary epithelial layers were decreased but not eliminated. CONCLUSIONS Cx43 expression in the nonpigmented epithelium of the ciliary body contributes to the formation of gap junctions with the cells of the pigmented epithelium. These gap junctions play a critical role in maintaining the physical integrity of the ciliary body epithelium. Although the partial loss of Cx43 from the nonpigmented epithelium was correlated with a measurable drop in intraocular pressure, possible changes in Cx43 in the aqueous outflow pathway may provide an additional contribution to the observed phenotype.
Collapse
Affiliation(s)
- Mónica R Calera
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02125, USA
| | | | | | | | | | | |
Collapse
|
32
|
Uziel D, Rozental R. Neurologic birth defects after prenatal exposure to antiepileptic drugs. Epilepsia 2008; 49 Suppl 9:35-42. [DOI: 10.1111/j.1528-1167.2008.01925.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Mohns EJ, Blumberg MS. Synchronous bursts of neuronal activity in the developing hippocampus: modulation by active sleep and association with emerging gamma and theta rhythms. J Neurosci 2008; 28:10134-44. [PMID: 18829971 PMCID: PMC2678192 DOI: 10.1523/jneurosci.1967-08.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/06/2008] [Accepted: 09/02/2008] [Indexed: 11/21/2022] Open
Abstract
The neonatal hippocampus exhibits regularly recurring waves of synchronized neuronal activity in vitro. Because active sleep (AS), characterized by bursts of phasic motor activity in the form of myoclonic twitching, may provide conditions that are conducive to activity-dependent development of hippocampal circuits, we hypothesized that the waves of synchronous neuronal activity that have been observed in vitro would be associated with AS-related twitching. Using unanesthetized 1- to 12-d-old rats, we report here that the majority of neurons in CA1 and the dentate gyrus (DG) are significantly more active during AS than during either quiet sleep or wakefulness. Neuronal activity typically occurs in phasic bursts, during which most neurons are significantly cross-correlated both within and across the CA1 and DG fields. All AS-active neurons increase their firing rates during periods of myoclonic twitching of the limbs, and a subset of these neurons exhibit a burst of activity immediately after limb twitches, suggesting that the twitches themselves provide sensory feedback to the infant hippocampus, as occurs in the infant spinal cord and neocortex. Finally, the synchronous bursts of neuronal activity are coupled to the emergence of the AS-related hippocampal gamma rhythm during the first postnatal week, as well as the emergence of the AS-related theta rhythm during the second postnatal week. We hypothesize that the phasic motor events of active sleep provide the developing hippocampus with discrete sensory stimulation that contributes to the development and refinement of hippocampal circuits as well as the development of synchronized interactions between hippocampus and neocortex.
Collapse
Affiliation(s)
- Ethan J. Mohns
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, Iowa 52242
| | - Mark S. Blumberg
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
34
|
Shao M, Gottesman-Davis A, Popratiloff A, Peusner KD. Dye coupling in developing vestibular nuclei. J Neurosci Res 2008; 86:832-44. [PMID: 17941057 DOI: 10.1002/jnr.21541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The chick tangential nucleus is a major vestibular nucleus whose principal cells participate in the vestibular reflexes. During development, most mature vestibular nucleus neurons must acquire repetitive firing of action potentials on depolarization and spontaneous spike activity to process signals effectively. In the chicken, these properties emerge gradually in the embryo, starting the week before (E13, E16) and continuing through the first week after hatching (H7). Since gap junction-mediated cell coupling may influence the emergence of neuronal excitability, we investigated whether neuron-neuron and neuron-glia coupling are present in this morphologically distinctive vestibular nucleus during the period for establishing signal processing. In brain slices, principal cells were injected with biocytin in the whole-cell configuration and visualized via confocal imaging at E13, E16, and H7. The incidence of dye coupling between the injected principal cell and neurons was 42% at E13, 75% at E16, and 7% at H7, whereas the incidence of dye coupling with glia was 100% at both embryonic ages but decreased to 27% by H7. For each injected principal cell at E13, one coupled neuron and 35 coupled glia were detected, whereas three coupled neurons and 12 coupled glia were observed at E16, and few if any coupled neurons and glia were detected at H7. These results suggest that neuron-neuron and neuron-glia coupling are developmentally regulated and present before, but not after, the onset of mature signal processing by these neurons. Thus, transient neuron-neuron and neuron-glia coupling may both play roles in establishing excitability in vestibular nucleus neurons during development.
Collapse
Affiliation(s)
- M Shao
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
35
|
Scemes E. Modulation of astrocyte P2Y1 receptors by the carboxyl terminal domain of the gap junction protein Cx43. Glia 2008; 56:145-53. [PMID: 17990308 DOI: 10.1002/glia.20598] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gap junction proteins, connexins, provide intercellular channels that allow ions and small signaling molecules to be transmitted to adjacent coupled cells. Besides this function, it is becoming apparent that connexins also exert channel-independent effects, which are likely mediated by processes involving protein-protein interactions. Although a number of connexin interacting proteins have been identified, only little is known about the functional consequences of such interactions. We have previously shown that deletion of the astrocytic gap junction protein, connexin43 (Cx43) causes a right-ward shift in the dose-response curve to P2Y1R agonists and decreased P2Y1R expression levels. To evaluate whether these changes were due to reduced gap junctional communication or to protein-protein interactions, Cx43-null astrocytes were transfected with full-length Cx43 and Cx43 domains, and P2Y1R function and expression levels evaluated. Results indicate that restoration of P2Y1R function is independent of gap junctional communication and that the Cx43 carboxyl terminus spanning the SH3 binding domain (260-280) participates in the rescue of P2Y1R pharmacological behavior (shifting to the left the P2Y1R dose-response curve) without affecting its expression levels. These results suggest that the Cx43 carboxyl-terminus domain provides a binding site for an intracellular molecule, most likely a member of the c-Src tyrosine kinase family, which affects P2Y1R-induced calcium mobilization. It is here proposed that a nonchannel function of Cx43 is to serve as a decoy for such kinases. Such modulation of P2Y1R is expected to influence several neural cell functions, especially under inflammation and neurodegenerative disorders where expression levels of Cx43 are decreased.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine. Bronx, New York 10461, USA.
| |
Collapse
|
36
|
Jorge I, Casas EM, Villar M, Ortega-Pérez I, López-Ferrer D, Martínez-Ruiz A, Carrera M, Marina A, Martínez P, Serrano H, Cañas B, Were F, Gallardo JM, Lamas S, Redondo JM, García-Dorado D, Vázquez J. High-sensitivity analysis of specific peptides in complex samples by selected MS/MS ion monitoring and linear ion trap mass spectrometry: application to biological studies. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1391-1403. [PMID: 17960563 DOI: 10.1002/jms.1314] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mass spectrometry (MS) is a technique of paramount importance in Proteomics, and developments in this field have been possible owing to novel MS instrumentation, experimental strategies, and bioinformatics tools. Today it is possible to identify and determine relative expression levels of thousands of proteins in a biological system by MS analysis of peptides produced by proteolytic digestion. In some situations, however, the precise characterization of a particular peptide species in a very complex peptide mixture is needed. While single-fragment ion-based scanning modes such as selected ion reaction monitoring (SIRM) or consecutive reaction monitoring (CRM) may be highly sensitive, they do not produce MS/MS information and their actual specificity must be determined in advance, a prerequisite that is not usually met in a basic research context. In such cases, the MS detector may be programmed to perform continuous MS/MS spectra on the peptide ion of interest in order to obtain structural information. This selected MS/MS ion monitoring (SMIM) mode has a number of advantages that are fully exploited by MS detectors that, like the linear ion trap, are characterized by high scanning speeds. In this work, we show some applications of this technique in the context of biological studies. These results were obtained by selecting an appropriate combination of scans according to the purpose of each one of these research scenarios. They include highly specific identification of proteins present in low amounts, characterization and relative quantification of post-translational modifications such as phosphorylation and S-nitrosylation and species-specific peptide identification.
Collapse
Affiliation(s)
- Inmaculada Jorge
- Protein Chemistry and Proteomics Laboratory, Centro de Biología Molecular Severo Ochoa, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mohns EJ, Karlsson KAE, Blumberg MS. Developmental emergence of transient and persistent hippocampal events and oscillations and their association with infant seizure susceptibility. Eur J Neurosci 2007; 26:2719-30. [PMID: 17973923 DOI: 10.1111/j.1460-9568.2007.05928.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the second postnatal week in rats, the hippocampus exhibits a transient period of hyperexcitability. To systematically assess the relationship between the onset and end of this period and spontaneous hippocampal activity, we used silicon depth electrodes in unanaesthetized head-fixed rats from postnatal day (P)2 to P18. At all ages, hippocampal sharp waves (SPWs) were prominent in the EEG. Beginning at P6, however, marked changes in SPWs and associated oscillations were detected. SPW-related 'gamma tails' (60-100 Hz) and 'ripples' (140-200 Hz) were first observed at P6 and P7, respectively, and both oscillations persisted up to P18. Transiently, between P6 and P11, SPW duration decreased and the occurrence of SPW doublets increased. In addition, between P8 and P11, a subset of rats exhibited 'spontaneous potentiated SPWs' characterized by double polarity reversals, enhanced likelihood of gamma tails, and population spikes. Having identified a suite of transient hippocampal features consistent with a window of increased excitability, we next assessed whether electrographic seizure activity would be most easily induced during this period. To do this, kainic acid (KA; 200 ng/infusion) was infused into the hippocampus contralateral to the recording probe. KA did not induce seizure activity until P7 and reached peak effectiveness at P9. Thereafter, sensitivity to KA declined. All together, these findings provide in vivo neurophysiological support for the notion of a developmental window of heightened seizure susceptibility during the second postnatal week, and also suggest that spontaneous nonpathological hippocampal activity can be used to mark the onset and end of this period.
Collapse
Affiliation(s)
- Ethan J Mohns
- Program in Behavioural and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
38
|
Talhouk RS, Zeinieh MP, Mikati MA, El-Sabban ME. Gap junctional intercellular communication in hypoxia-ischemia-induced neuronal injury. Prog Neurobiol 2007; 84:57-76. [PMID: 18006137 DOI: 10.1016/j.pneurobio.2007.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 08/29/2007] [Accepted: 10/04/2007] [Indexed: 01/07/2023]
Abstract
Brain hypoxia-ischemia is a relatively common and serious problem in neonates and in adults. Its consequences include long-term histological and behavioral changes and reduction in seizure threshold. Gap junction intercellular communication is pivotal in the spread of hypoxia-ischemia related injury and in mediating its long-term effects. This review provides a comprehensive and critical review of hypoxia-ischemia and hypoxia in the brain and the potential role of gap junctions in the spread of the neuronal injury induced by these insults. It also presents the effects of hypoxia-ischemia and of hypoxia on the state of gap junctions in vitro and in vivo. Understanding the mechanisms involved in gap junction-mediated neuronal injury due to hypoxia will lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rabih S Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | | | | | | |
Collapse
|
39
|
Gershon E, Plaks V, Aharon I, Galiani D, Reizel Y, Sela-Abramovich S, Granot I, Winterhager E, Dekel N. Oocyte-directed depletion of connexin43 using the Cre-LoxP system leads to subfertility in female mice. Dev Biol 2007; 313:1-12. [PMID: 18005958 DOI: 10.1016/j.ydbio.2007.08.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 11/18/2022]
Abstract
Gap junctions, predominantly comprising connexin43 (Cx43), mediate cell-to-cell communication within the ovarian follicle. However, the partaking of Cx43 in the formation of the gap junction channels, between the oocyte and the somatic cells, is controversial. We addressed this dispute by crossing females that carry a Cx43 coding region, flanked by loxP recognition sites, with males expressing the Cre recombinase under the control of Zp3 promoter. Oocytes of the resultant Zp3Cre;Gja1(lox/lox) mice did not express Cx43 and were referred to as Cx43(del/del). Unexpectedly, a decrease in Cx43 was observed in cumulus/granulosa cells of some follicles as well. Nevertheless, no histological abnormalities were detected in the ovaries of the Zp3Cre;Gja1(lox/lox) mice. Furthermore, these mice ovulated normally and developed fully functional corpora lutea. Additionally, the ovarian Cx43(del/del) oocytes were meiotically arrested and transferred Lucifer yellow to the surrounding cumulus cells. However, mating Zp3Cre;Gja1(lox/lox) females with wild-type males resulted in a reduced rate of parturition and a substantial decrease in litter size. Further examination revealed that although preimplantation development of Zp3Cre;Gja1(lox/+) embryos was normal, the blactocysts exhibited impaired implantation. Our data suggest that total ablation of Cx43 in the oocyte, combined with its decrease in the surrounding somatic cells, allows normal oogenesis and folliculogenesis, ovulation and early embryonic development but severely impairs the implantation capacity of the resulting blactocysts.
Collapse
Affiliation(s)
- Eran Gershon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wiencken-Barger AE, Djukic B, Casper KB, McCarthy KD. A role for Connexin43 during neurodevelopment. Glia 2007; 55:675-86. [PMID: 17311295 DOI: 10.1002/glia.20484] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Connexin43 (Cx43) is the predominant gap junction protein expressed in premitotic radial glial cells and mature astrocytes. It is thought to play a role in many aspects of brain development and physiology, including intercellular communication, the release of neuroactive substances, and neural and glial proliferation and migration. To investigate the role of Cx43 in brain physiology, we generated a conditional knockout (cKO) mouse expressing Cre recombinase driven by the human GFAP promoter and a floxed Cx43 gene. The removal of Cx43 from GFAP-expressing cells affects the behavior of the mice and the development of several brain structures; however, the severity of the phenotype varies depending on the mouse background. One mouse subline, hereafter termed Shuffler, exhibits cellular disorganization of the cortex, hippocampus, and cerebellum, accompanied by ataxia and motor deficits. The Shuffler cerebellum is most affected and displays altered distribution and lamination of glia and neurons suggestive of cell migration defects. In all Shuffler mice by postnatal day two (P2), the hippocampus, cortex, and cerebellum are smaller. Disorganization of the ventricular and subventricular zone of the cortex is also evident. Given that these are sites of early progenitor cell proliferation, we suspect production and migration of neural progenitors may be altered. In conclusion, neurodevelopment of Shuffler/Cx43 cKO mice is abnormal, and the observed cellular phenotype may explain behavioral disturbances seen in these animals as well as in humans carrying Cx43 mutations.
Collapse
Affiliation(s)
- Amy E Wiencken-Barger
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
41
|
Crépel V, Aronov D, Jorquera I, Represa A, Ben-Ari Y, Cossart R. A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus. Neuron 2007; 54:105-20. [PMID: 17408581 DOI: 10.1016/j.neuron.2007.03.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 01/25/2007] [Accepted: 03/09/2007] [Indexed: 01/13/2023]
Abstract
Correlated neuronal activity is instrumental in the formation of networks, but its emergence during maturation is poorly understood. We have used multibeam two-photon calcium microscopy combined with targeted electrophysiological recordings in order to determine the development of population coherence from embryonic to postnatal stages in the hippocampus. At embryonic stages (E16-E19), synchronized activity is absent, and neurons are intrinsically active and generate L-type channel-mediated calcium spikes. At birth, small cell assemblies coupled by gap junctions spontaneously generate synchronous nonsynaptic calcium plateaus associated to recurrent burst discharges. The emergence of coherent calcium plateaus at birth is controlled by oxytocin, a maternal hormone initiating labour, and progressively shut down a few days later by the synapse-driven giant depolarizing potentials (GDPs) that synchronize the entire network. Therefore, in the developing hippocampus, delivery is an important signal that triggers the first coherent activity pattern, which is silenced by the emergence of synaptic transmission.
Collapse
Affiliation(s)
- Valérie Crépel
- INMED, INSERM, U29, Université de La Méditerranée, Parc scientifique de Luminy, BP 13, 13273 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
42
|
Rodríguez-Sinovas A, Cabestrero A, López D, Torre I, Morente M, Abellán A, Miró E, Ruiz-Meana M, García-Dorado D. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:219-32. [PMID: 17462722 DOI: 10.1016/j.pbiomolbio.2007.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Connexins form a diverse and ubiquitous family of integral membrane proteins. Characteristically, connexins are assembled into intercellular channels that aggregate into discrete cell-cell contact areas termed gap junctions (GJ), allowing intercellular chemical communication, and are essential for propagation of electrical impulses in excitable tissues, including, prominently, myocardium, where connexin 43 (Cx43) is the most important isoform. Previous studies have shown that GJ-mediated communication has an important role in the cellular response to stress or ischemia. However, recent evidence suggests that connexins, and in particular Cx43, may have additional effects that may be important in cell death and survival by mechanisms independent of cell to cell communication. Connexin hemichannels, located at the plasma membrane, may be important in paracrine signaling that could influence intracellular calcium and cell survival by releasing intracellular mediators as ATP, NAD(+), or glutamate. In addition, recent studies have shown the presence of connexins in cell structures other than the plasma membrane, including the cell nucleus, where it has been suggested that Cx43 influences cell growth and differentiation. In addition, translocation of Cx43 to mitochondria appears to be important for certain forms of cardioprotection. These findings open a new field of research of previously unsuspected roles of Cx43 intracellular signaling.
Collapse
Affiliation(s)
- Antonio Rodríguez-Sinovas
- Laboratorio de Cardiología Experimental, Servicio de Cardiologia, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Smith JM, Bradley DP, James MF, Huang CLH. Physiological studies of cortical spreading depression. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2006.tb00214.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
McCracken CB, Roberts DCS. Neuronal Gap Junctions: Expression, Function, And Implications For Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:125-51. [PMID: 16737903 DOI: 10.1016/s0074-7742(06)73004-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Clinton B McCracken
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
45
|
Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A, Chopp M. Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience 2006; 141:687-695. [PMID: 16730912 DOI: 10.1016/j.neuroscience.2006.04.054] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 11/30/2022]
Abstract
Bone morphogenetic proteins play a key role in astrocytic differentiation. Astrocytes express the gap junctional protein connexin-43, which permits exchange of small molecules in brain and enhances synaptic efficacy. Bone marrow stromal cells produce soluble factors including bone morphogenetic protein 2 and bone morphogenetic protein 4 (bone morphogenetic protein 2/4) in ischemic brain. Here, we tested whether intra-carotid infusion of bone marrow stromal cells promotes synaptophysin expression and neurological functional recovery after stroke in rats. Adult male Wistar rats were subjected to 2 h of right middle cerebral artery occlusion. Rats were treated with or without bone marrow stromal cells at 24 h after middle cerebral artery occlusion via intra-arterial injection (n=8/group). A battery of functional tests was performed. Immunostaining of 5-bromo-2-deoxyuridine, Ki67, bone morphogenetic protein 2/4, connexin-43, synaptophysin, glial fibrillary acidic protein, neuronal nuclear antigen, and double staining of 5-bromo-2-deoxyuridine/glial fibrillary acidic protein, 5-bromo-2-deoxyuridine/neuronal nuclear antigen, glial fibrillary acidic protein/bone morphogenetic protein 2/4 and glial fibrillary acidic protein/connexin-43 were employed. Rats treated with bone marrow stromal cells significantly (P<0.05) improved functional recovery compared with the controls. 5-Bromo-2-deoxyuridine and Ki67 positive cells in the ipsilateral subventricular zone were significantly (P<0.05) increased in bone marrow stromal cell treatment group compared with the controls, respectively. Administration of bone marrow stromal cells significantly (P<0.05) promoted the proliferating cell astrocytic differentiation, and increased bone morphogenetic protein 2/4, connexin-43 and synaptophysin expression in the ischemic boundary zone compared with the controls, respectively. Bone morphogenetic protein 2/4 expression correlated with the expression of connexin-43 (r=0.84, P<0.05) and connexin-43 expression correlated with the expression of synaptophysin (r=0.73, P<0.05) in the ischemic boundary zone, respectively. Administration of bone marrow stromal cells via an intra-carotid route increases endogenous brain bone morphogenetic protein 2/4 and connexin-43 expression in astrocytes and promotes synaptophysin expression, which may benefit functional recovery after stroke in rats.
Collapse
Affiliation(s)
- C Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Y Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - J Chen
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Q Gao
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - A Zacharek
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - A Kapke
- Department of Biostatistics and Research Epidemiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - M Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
46
|
Zekri L, Chebli K, Tourrière H, Nielsen FC, Hansen TVO, Rami A, Tazi J. Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. Mol Cell Biol 2005; 25:8703-16. [PMID: 16166649 PMCID: PMC1265751 DOI: 10.1128/mcb.25.19.8703-8716.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of mRNA stability plays a major role in the control of gene expression during cell proliferation, differentiation, and development. Here, we show that inactivation of the RasGAP-associated endoribonuclease (G3BP)-encoding gene leads to embryonic lethality and growth retardation. G3BP-/- mice that survived to term exhibited increased apoptotic cell death in the central nervous system and neonatal lethality. Both in mouse embryonic fibroblasts and during development, the absence of G3BP altered the expression of essential growth factors, among which imprinted gene products and growth arrest-specific mRNAs were outstanding. The results demonstrate that G3BP is essential for proper embryonic growth and development by mediating the coordinate expression of multiple imprinted growth-regulatory transcripts.
Collapse
Affiliation(s)
- Latifa Zekri
- Institut de Génétique Moléculaire de Montpellier UMR 5535, IFR 122, Centre National de Recherche Scientifique, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Das AV, Edakkot S, Thoreson WB, James J, Bhattacharya S, Ahmad I. Membrane properties of retinal stem cells/progenitors. Prog Retin Eye Res 2005; 24:663-81. [PMID: 15939659 DOI: 10.1016/j.preteyeres.2005.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane properties of cells help integrate extrinsic information relayed through growth factors, chemokines, extracellular matrix, gap junctions and neurotransmitters towards modulating cell-intrinsic properties, which in turn determine whether cells remain quiescent, proliferate, differentiate, establish contact with other cells or remove themselves by activating programmed cell death. This review highlights some of the membrane properties of early and late retinal stem cells/progenitors, which are likely to be helpful in the identification and enrichment of these cells and in understanding mechanisms underlying their maintenance and differentiation. Understanding of membrane properties of retinal stem cells/progenitors is essential for the successful formulation of approaches to treat retinal degeneration and diseases by cell therapy.
Collapse
Affiliation(s)
- Ani V Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-7691, USA
| | | | | | | | | | | |
Collapse
|
48
|
Nogi T, Levin M. Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev Biol 2005; 287:314-35. [PMID: 16243308 DOI: 10.1016/j.ydbio.2005.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 08/20/2005] [Accepted: 09/01/2005] [Indexed: 10/25/2022]
Abstract
Planaria possess remarkable powers of regeneration. After bisection, one blastema regenerates a head, while the other forms a tail. The ability of previously-adjacent cells to adopt radically different fates could be due to long-range signaling allowing determination of position relative to, and the identity of, remaining tissue. However, this process is not understood at the molecular level. Following the hypothesis that gap-junctional communication (GJC) may underlie this signaling, we cloned and characterized the expression of the Innexin gene family during planarian regeneration. Planarian innexins fall into 3 groups according to both sequence and expression. The concordance between expression-based and phylogenetic grouping suggests diversification of 3 ancestral innexin genes into the large family of planarian innexins. Innexin expression was detected throughout the animal, as well as specifically in regeneration blastemas, consistent with a role in long-range signaling relevant to specification of blastema positional identity. Exposure to a GJC-blocking reagent which does not distinguish among gap junctions composed of different Innexin proteins (is not subject to compensation or redundancy) often resulted in bipolar (2-headed) animals. Taken together, the expression data and the respecification of the posterior blastema to an anteriorized fate by GJC loss-of-function suggest that innexin-based GJC mediates instructive signaling during regeneration.
Collapse
Affiliation(s)
- Taisaku Nogi
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | | |
Collapse
|
49
|
de Pina-Benabou MH, Szostak V, Kyrozis A, Rempe D, Uziel D, Urban-Maldonado M, Benabou S, Spray DC, Federoff HJ, Stanton PK, Rozental R. Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 2005; 36:2232-7. [PMID: 16179575 DOI: 10.1161/01.str.0000182239.75969.d8] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We investigated the contribution of gap junctions to brain damage and delayed neuronal death produced by oxygen-glucose deprivation (OGD). METHODS Histopathology, molecular biology, and electrophysiological and fluorescence cell death assays in slice cultures after OGD and in developing rats after intrauterine hypoxia-ischemia (HI). RESULTS OGD persistently increased gap junction coupling and strongly activated the apoptosis marker caspase-3 in slice cultures. The gap junction blocker carbenoxolone applied to hippocampal slice cultures before, during, or 60 minutes after OGD markedly reduced delayed neuronal death. Administration of carbenoxolone to ischemic pups immediately after intrauterine HI prevented caspase-3 activation and dramatically reduced long-term neuronal damage. CONCLUSIONS Gap junction blockade may be a useful therapeutic tool to minimize brain damage produced by perinatal and early postnatal HI.
Collapse
Affiliation(s)
- Mara H de Pina-Benabou
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sutor B, Hagerty T. Involvement of gap junctions in the development of the neocortex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:59-68. [PMID: 16225838 DOI: 10.1016/j.bbamem.2005.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/31/2005] [Accepted: 09/06/2005] [Indexed: 11/18/2022]
Abstract
Gap junctions play an important role during the development of the mammalian brain. In the neocortex, gap junctions are already expressed at very early stages of development and they seem to be involved in many processes like neurogenesis, migration and synapse formation. Gap junctions are found in all cell types including progenitor cells, glial cells and neurons. These direct cell-to-cell connections form clusters consisting of a distinct number of cells of a certain type. These clusters can be considered as communication compartments in which the information transfer is mediated electrically by ionic currents and/or chemically by, e.g., small second messenger molecules. Within the neocortex, four such communication compartments can be identified: (1) gap junction-coupled neuroblasts of the ventricular zone and gap junctions in migrating cells and radial glia, (2) gap junction-coupled glial cells (astrocytes and oligodendrocytes), (3) gap junction-coupled pyramidal cells (only during the first two postnatal weeks) and (4) gap junction-coupled inhibitory interneurons. These compartments can consist of sub-compartments and they may overlap to some degree. The compartments 1 and 3 disappear with ongoing develop, whereas compartments 2 and 4 persist in the mature neocortex. Gap junction-mediated coupling of glial cells seems to be important for stabilization of the extracellular ion homeostasis, uptake of neurotransmitters, migration of neurons and myelination of axons. Electrical synapses between inhibitory interneurons facilitate the synchronization of pyramidal cells. In this way, they contribute to the generation of oscillatory network activity correlated with higher cortical functions. The role of gap junctions present in neuroblasts of the ventricular zone as well as the role of gap junctions found in pyramidal cells during the early postnatal stages is less clear. It is assumed that they might help to form precursors of the functional columns observed in the mature neocortex. Although recent developments of new techniques led to the solution of many problems concerning gap junction-coupling between neurons and glial cells in the neocortex, there are many open questions which need to be answered before we can achieve a comprehensive understanding of the role of gap junctions in the development of the neocortex.
Collapse
Affiliation(s)
- Bernd Sutor
- Institute of Physiology, University of Munich, Pettenkoferstrasse 12, 80336 München, Germany.
| | | |
Collapse
|