1
|
Natural Immunity against HIV-1: Progression of Understanding after Association Studies. Viruses 2022; 14:v14061243. [PMID: 35746714 PMCID: PMC9227919 DOI: 10.3390/v14061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Natural immunity against HIV has been observed in many individuals in the world. Among them, a group of female sex workers enrolled in the Pumwani sex worker cohort remained HIV uninfected for more than 30 years despite high-risk sex work. Many studies have been carried out to understand this natural immunity to HIV in the hope to develop effective vaccines and preventions. This review focuses on two such examples. These studies started from identifying immunogenetic or genetic associations with resistance to HIV acquisition, and followed up with an in-depth investigation to understand the biological relevance of the correlations of protection, and to develop and test novel vaccines and preventions.
Collapse
|
2
|
Velarde-Félix JS, Cázarez-Salazar SG, Díaz-Camacho SP, Osuna-Ramírez I, Ochoa-Ramírez LA, Sánchez-Zazueta JG, Ramírez M. Stromal Cell-Derived Factor-1-3'A Polymorphism Favors HIV-1 Infection in Mexican Women. Intervirology 2016; 58:357-62. [PMID: 26859597 DOI: 10.1159/000443374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/13/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the association of the stromal cell-derived factor-1 (SDF1)-3'A polymorphism to HIV-1 infection, CD4+ T-lymphocyte counts, and viral load levels in a northwestern Mexican population. METHODS We investigated allele and genotype frequencies of the SDF1-3'A polymorphism in 634 mestizo individuals from Northwest Mexico (204 HIV-1 infected persons, 256 uninfected blood donors, and 174 uninfected female sex workers) by the PCR- RFLP method and compared them using a x(2) test. We also searched for correlations between the polymorphism and CD4+ T lymphocyte and viral load counts. RESULTS No differences were observed in the frequencies of alleles and genotypes between patients and controls. However, in female patients we found a significantly increased prevalence of both the A allele and GA heterozygous genotype compared to male patients, female blood donors, and female sex workers. CONCLUSION Here we describe the association of the SDF1-3'A polymorphism with HIV-1 infection only in women, but not to CD4+ T-lymphocyte categories, viral load levels in patients with HIV-1/AIDS, or to exposure levels in female sex workers.
Collapse
Affiliation(s)
- Jesús Salvador Velarde-Félix
- Centro de Medicina Genx00F3;mica, Hospital General de Culiacx00E1;n x2018;Dr. Bernardo J. Gastx00E9;lum', Servicios de Salud de Sinaloa, Culiacx00E1;n, Mexico
| | | | | | | | | | | | | |
Collapse
|
3
|
|
4
|
Ranasinghe C, Ramshaw IA. Genetic heterologous prime–boost vaccination strategies for improved systemic and mucosal immunity. Expert Rev Vaccines 2014; 8:1171-81. [DOI: 10.1586/erv.09.86] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Gourdain P, Boucau J, Kourjian G, Lai NY, Duong E, Le Gall S. A real-time killing assay to follow viral epitope presentation to CD8 T cells. J Immunol Methods 2013; 398-399:60-7. [PMID: 24060536 DOI: 10.1016/j.jim.2013.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/13/2013] [Indexed: 12/29/2022]
Abstract
The ability of cytotoxic T lymphocytes (CTL) to clear virus-infected cells requires the presentation of viral peptides intracellularly processed and displayed by major histocompatibility complex class I. Assays to measure CTL-mediated killing often use peptides exogenously added onto target cells--which does not account for epitope processing--or follow killing of infected cells at a single time point. In this study we established a real-time fluorogenic cytotoxic assay that measures the release of the Glucose-6-phosphate-dehydrogenase by dying target cells every 5 min after addition of CTL. It has comparable sensitivity to (51)chromium-based killing assay with the additional advantage of incorporating the kinetics of epitope presentation. We showed that HIV infection of immortalized or primary CD4 T cells leads to asynchronous killing by two CTL clones specific for epitopes located in different proteins. Real-time monitoring of killing of virus-infected cells will enable identification of immune responses efficiently preventing virus dissemination.
Collapse
Affiliation(s)
- Pauline Gourdain
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
6
|
Kunwar P, Hawkins N, Dinges WL, Liu Y, Gabriel EE, Swan DA, Stevens CE, Maenza J, Collier AC, Mullins JI, Hertz T, Yu X, Horton H. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design. PLoS One 2013; 8:e64405. [PMID: 23741326 PMCID: PMC3669284 DOI: 10.1371/journal.pone.0064405] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022] Open
Abstract
A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced responses or (ii) increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS) by three different methods (prevalence, entropy and conseq) on clade-B and group-M sequence alignments. The majority of CD8+ T cell responses were directed against variable epitopes (p<0.01). Interestingly, increasing breadth of CD8+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009). Moreover, subjects possessing CD8+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021). The association between viral control and the breadth of conserved CD8+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215). The associations with viral control were independent of functional avidity of CD8+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus on strategies that can elicit CD8+ T cell responses to multiple conserved epitopes of HIV-1.
Collapse
Affiliation(s)
- Pratima Kunwar
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Natalie Hawkins
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Warren L. Dinges
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Polyclinic Infectious Disease, Seattle, Washington, United States of America
| | - Yi Liu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Erin E. Gabriel
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David A. Swan
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Claire E. Stevens
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Janine Maenza
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ann C. Collier
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Tomer Hertz
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xuesong Yu
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Helen Horton
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
7
|
Thibault PA, Wilson JA. Targeting miRNAs to treat Hepatitis C Virus infections and liver pathology: Inhibiting the virus and altering the host. Pharmacol Res 2013; 75:48-59. [PMID: 23541631 DOI: 10.1016/j.phrs.2013.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C Virus (HCV) infection-induced liver disease is a growing problem worldwide, and is the primary cause of liver failure requiring liver transplantation in North America. Improved therapeutic strategies are required to control and possibly eradicate HCV infections, and to modulate HCV-induced liver disease. Cellular microRNAs anneal to and regulate mRNA translation and stability and form a regulatory network that modulates virtually every cellular process. Thus, miRNAs are promising cellular targets for therapeutic intervention for an array of diseases including cancer, metabolic diseases, and virus infections. In this review we outline the features of miRNA regulation and how miRNAs may be targeted in strategies to modulate HCV replication and pathogenesis. In particular, we highlight miR-122, a miRNA that directly modulates the HCV life cycle using an unusual mechanism. This miRNA is very important since miR-122 antagonists dramatically reduced HCV titres in HCV-infected chimpanzees and humans and currently represents the most likely candidate to be the first miRNA-based therapy licensed for use. However, we also discuss other miRNAs that directly or indirectly alter HCV replication efficiency, liver cirrhosis, fibrosis and the development of hepatocellular carcinoma (HCC). We also discuss a few miRNAs that might be targets to treat HCV in cases of HCV/HIV co-infection. Finally, we review methods to deliver miRNA antagonists and mimics to the liver. In the future, it may be possible to design and deliver specific combinations of miRNA antagonists and mimics to cure HCV infection or to limit liver pathogenesis.
Collapse
Affiliation(s)
- Patricia A Thibault
- Department of Microbiology and Immunology and Vaccine and Infectious Disease Organization, University of Saskatchewan, Rm 2D01, HSc Bldg, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | | |
Collapse
|
8
|
Associations of human leukocyte antigen-G with resistance and susceptibility to HIV-1 infection in the Pumwani sex worker cohort. AIDS 2013; 27:7-15. [PMID: 23032415 DOI: 10.1097/qad.0b013e32835ab1f2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the association between human leukocyte antigens (HLA)-G genotypes and resistance or susceptibility to HIV-1. DESIGN A group of sex workers in Pumwani, Kenya can be epidemiologically defined as resistant to HIV-1 infection despite frequent exposure and provide an example of natural protective immunity. HLA class I and II molecules have been shown to be associated with resistance/susceptibility to infection in this cohort. HLA-G is a nonclassical class I allele that is primarily involved in mucosal and inflammatory response, which is of interest in HIV-1 resistance. METHODS In this study, we used a sequence-based typing method to genotype HLA-G for 667 women enrolled in this cohort and examined the influence of HLA-G genotypes on resistance or susceptibility to HIV-1 infection. RESULTS The G*01 : 01:01 genotype was significantly enriched in the HIV-1-resistant women [P = 0.002, Odds ratio: 2.11, 95% confidence interval (CI): 0.259-0.976], whereas the G*01 : 04:04 genotype was significantly associated with susceptibility to HIV-1 infection (P = 0.039, OR:0.502, 95% CI:0.259-0.976). Kaplan-Meier survival analysis correlated with these results. G*01 : 01:01 genotype was associated with significantly lower rate of seroconversion (P = 0.001). Whereas, G*01 : 04:04 genotype was significantly associated with an increased rate of seroconversion (P = 0.013). The associations of these HLA-G alleles are independent of other HLA class I and II alleles identified in this population. CONCLUSION Our study showed that specific HLA-G alleles are associated with resistance or susceptibility to HIV-1 acquisition in this high-risk population. Further studies are needed to understand its functional significance in HIV-1 transmission.
Collapse
|
9
|
Liu Y, Zhao Z, Li T, Liao Q, Kushner N, Touzjian NY, Shao Y, Sun Y, Strong AJ, Lu Y. High resolution human leukocyte antigen class I allele frequencies and HIV-1 infection associations in Chinese Han and Uyghur cohorts. PLoS One 2012; 7:e50656. [PMID: 23251376 PMCID: PMC3520934 DOI: 10.1371/journal.pone.0050656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/24/2012] [Indexed: 12/19/2022] Open
Abstract
Background Host immunogenetic factors such as HLA class I polymorphism are important to HIV-1 infection risk and AIDS progression. Previous studies using high-resolution HLA class I profile data of Chinese populations appeared insufficient to provide information for HIV-1 vaccine development and clinical trial design. Here we reported HLA class I association with HIV-1 susceptibility in a Chinese Han and a Chinese Uyghur cohort. Methodology/Principal Findings Our cohort included 327 Han and 161 Uyghur ethnic individuals. Each cohort included HIV-1 seropositive and HIV-1 seronegative subjects. Four-digit HLA class I typing was performed by sequencing-based typing and high-resolution PCR-sequence specific primer. We compared the HLA class I allele and inferred haplotype frequencies between HIV-1 seropositive and seronegative groups. A neighbor-joining tree between our cohorts and other populations was constructed based on allele frequencies of HLA-A and HLA-B loci. We identified 58 HLA-A, 75 HLA-B, and 32 HLA-Cw distinct alleles from our cohort and no novel alleles. The frequency of HLA-B*5201 and A*0301 was significantly higher in the Han HIV-1 negative group. The frequency of HLA-B*5101 was significantly higher in the Uyghur HIV-1 negative group. We observed statistically significant increases in expectation-maximization (EM) algorithm predicted haplotype frequencies of HLA-A*0201-B*5101 in the Uyghur HIV-1 negative group, and of Cw*0304-B*4001 in the Han HIV-1 negative group. The B62s supertype frequency was found to be significantly higher in the Han HIV-1 negative group than in the Han HIV-1 positive group. Conclusions At the four-digit level, several HLA class I alleles and haplotypes were associated with lower HIV-1 susceptibility. Homogeneity of HLA class I and Bw4/Bw6 heterozygosity were not associated with HIV-1 susceptibility in our cohort. These observations contribute to the Chinese HLA database and could prove useful in the development of HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Yanhou Liu
- Vaccine Laboratory, Nankai University, Tianjin, China
| | | | - Tianyi Li
- Vaccine Laboratory, Nankai University, Tianjin, China
| | - Qi Liao
- Vaccine Laboratory, Nankai University, Tianjin, China
| | - Nicholas Kushner
- Vaccine Technologies Inc., Wellesley, Massachusetts, United States of America
| | - Neal Y. Touzjian
- Vaccine Technologies Inc., Wellesley, Massachusetts, United States of America
| | - Yiming Shao
- National Center for AIDS Prevention and Control, Beijing, China
| | - Yongtao Sun
- Fourth Military Medical University, Tangdu Hospital, Xi'an, China
| | - Amie J. Strong
- Vaccine Technologies Inc., Wellesley, Massachusetts, United States of America
| | - Yichen Lu
- Vaccine Technologies Inc., Wellesley, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
MicroRNAs (miRNAs) can exert a profound effect on Hepatitis C virus (HCV) replication. The interaction of HCV with the highly liver-enriched miRNA, miR-122 represents one such unique example of viruses having evolved mechanism(s) to usurp the host miRNA machinery to support viral life cycle. Furthermore, HCV infection can also trigger changes in the cellular miRNA profile, which may ultimately contribute to the outcome of viral infection. Accumulating knowledge on HCV-host miRNA interactions has ultimately influenced the design of therapeutic interventions against chronic HCV infection. The importance of microRNA modulation in Human Immunodeficiency Virus (HIV-1) replication has been reported, albeit only in the context of HIV-1 mono-infection. The development of HCV infection is dramatically influenced during co-infection with HIV-1. Here, we review the current knowledge on miRNAs in HCV mono-infection. In addition, we discuss the potential role of some miRNAs, identified from the analyses of public data, in HCV/HIV-1 co-infection.
Collapse
|
11
|
A distinct cytokine and chemokine profile at the genital mucosa is associated with HIV-1 protection among HIV-exposed seronegative commercial sex workers. Mucosal Immunol 2012; 5:277-87. [PMID: 22318497 DOI: 10.1038/mi.2012.7] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The predominance of HIV-1 sexual transmission requires a greater understanding of the interaction between HIV-1 and the mucosal immune system. The study of HIV-1-exposed seronegative (HESN) individuals serves as a model to identify the correlates of protection and to aid in microbicide development. A total of 22 cytokines/chemokines were analyzed at the systemic and mucosal compartments in 57 HESN, 51 HIV-1-negative, and 67 HIV-1-infected commercial sex workers from Nairobi, Kenya. HESN individuals had significantly lower expression of monokine induced by interferon-γ (MIG), interferon-γ-induced protein 10 (IP-10), and interleukin-1α (IL-1α) in their genital mucosa compared with controls. HESN cytokine expression also distinctly correlates with mucosal antiproteases, suggesting that HESN individuals have a unique pattern of mucosal chemokine/cytokine expression, which may result in reduced trafficking at the mucosa. These data support the immune quiescence model of protection, whereby lower T-cell activation/recruitment at the mucosal compartment reduces HIV-1 target cell numbers and is an important component of natural protection from HIV-1.
Collapse
|
12
|
For protection from HIV-1 infection, more might not be better: a systematic analysis of HIV Gag epitopes of two alleles associated with different outcomes of HIV-1 infection. J Virol 2011; 86:1166-80. [PMID: 22072744 DOI: 10.1128/jvi.05721-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of women in the Pumwani Sex Worker Cohort, established in 1985 in Nairobi, Kenya, remains uninfected despite repeated high-risk exposure (HIV-exposed, seronegative [HESN]) through active sex work. This HESN phenotype is associated with several alleles of human leukocyte antigens (HLAs) and specific CD8(+) and CD4(+) T cell responses to HIV-1. The associations of HLA alleles with differential HIV-1 infection are most likely due to their different abilities to present antigen and the different immune responses they induce. The characteristics of epitopes of HLA alleles associated with different outcomes of HIV-1 infection might therefore point to a vital clue for developing an effective vaccine. In this study, we systematically analyzed HIV-1 clade A and D Gag CD8(+) T cell epitopes of two HLA class I alleles associated with different outcomes of HIV-1 infection. Binding affinity and off-rates of the identified epitopes were determined. Gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assays with patient peripheral blood mononuclear cells (PBMCs) validated the epitopes. Epitope-specific CD8(+) T cells were further phenotyped for memory markers with tetramer staining. Our study showed that the protective allele A*01:01 recognizes only three Gag epitopes. By contrast, B*07:02, the allele associated with susceptibility, binds 30 epitope variants. These two alleles differ most importantly in the spectrum of Gag epitopes they can present and not in affinity, off-rates, the location of the epitopes, or epitope-specific Tem/Tcm frequencies. The binding of more epitopes and strong IFN-gamma ELISpot responses are associated with susceptibility to HIV-1 infection, while more focused antigen recognition of multiple subtypes is protective. Rational vaccine design should take these observations into account.
Collapse
|
13
|
Pashov A, Garimalla S, Monzavi-Karbassi B, Kieber-Emmons T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 2011; 1:777-94. [PMID: 20636023 DOI: 10.2217/imt.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning from the successes of other vaccines that enhance natural and existing protective responses to pathogens, the current effort in HIV vaccine research is directed toward inducing cytotoxic responses. Nevertheless, antibodies are fundamental players in vaccine development and are still considered in the context of passive specific immunotherapy of HIV, especially since several broadly neutralizing monoclonals are available. Special interest is directed toward antibodies binding to the glycan array on gp120 since they have the potential of broader reactivity and cross-clade neutralizing capacity. Humoral responses to carbohydrate antigens have proven effective against other pathogens, why not HIV? The variability of the epitope targets on HIV may not be the only problem to developing active or passive immunotherapeutic strategies. The dynamics of the infected immune system leads to ambiguous effects of most of the effector mechanisms calling for new approaches; some may already be available, while others are in the making.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology & Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, #824 Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
14
|
Evolution of the functional profile of HIV-specific CD8+ T cells in patients with different progression of HIV infection over 4 years. J Acquir Immune Defic Syndr 2010; 55:29-38. [PMID: 20634703 DOI: 10.1097/qai.0b013e3181e69609] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is a lack of information about the stability of these responses over time in subjects experiencing differences in HIV disease progression. The functional profile of Gag-specific and Nef-specific CD8T-cell responses based on the simultaneous production macrophage inflammatory protein (MIP)-1beta, interleukin (IL)-2, and tumor necrosis factor (TNF)-alpha was longitudinally assessed using flow cytometry over 4 years in 8 elite controllers (EC), 8 viremic controllers, 10 antiretroviral-naive typical progressors, and 10 patients with virological suppression (VS) on antiretroviral therapy. CD8 T-cell subsets with 2 functions tended to decline, whereas subsets with 1 function tended to increase over time in typical progressors. In viremic controller, Gag and Nef responses evolved differently. In EC, the functional profile of Gag-specific CD8T-cell responses evolved increasing polyfunctionality over time. Finally, Nef-specific responses in VS increased in the MIP+TNF-IL2- CD8 T-cell subset while Gag-specific responses did not change. The functional profile of HIV-specific CD8T-cell responses may evolve in different ways depending of the targeted HIV protein and the ability to control virus replication. In patients with uncontrolled HIV replication, the functionality of Gag-specific CD8T-cell responses tends to diminish over time, whereas in EC, there is an increase in polyfunctional subsets. Interestingly, VS do not seem to restore the polyfunctional profile of HIV-specific CD8T-cell responses.
Collapse
|
15
|
Hervouet C, Luci C, Cuburu N, Cremel M, Bekri S, Vimeux L, Marañon C, Czerkinsky C, Hosmalin A, Anjuère F. Sublingual immunization with an HIV subunit vaccine induces antibodies and cytotoxic T cells in the mouse female genital tract. Vaccine 2010; 28:5582-90. [PMID: 20600505 DOI: 10.1016/j.vaccine.2010.06.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 05/06/2010] [Accepted: 06/10/2010] [Indexed: 11/27/2022]
Abstract
A vaccine against heterosexual transmission by human immunodeficiency virus (HIV) should generate cytotoxic and antibody responses in the female genital tract and in extra-genital organs. We report that sublingual immunization with HIV-1 gp41 and a reverse transcriptase polypeptide coupled to the cholera toxin B subunit (CTB) induced gp41-specific IgA antibodies and antibody-secreting cells, as well as reverse transcriptase-specific CD8 T cells in the genital mucosa, contrary to intradermal immunization. Conjugation of the reverse transcriptase peptide to CTB favored its cross-presentation by human dendritic cells to a T cell line from an HIV(+) patient. Sublingual vaccination could represent a promising vaccine strategy against heterosexual transmission of HIV-1.
Collapse
|
16
|
Hervouet C, Luci C, Rol N, Rousseau D, Kissenpfennig A, Malissen B, Czerkinsky C, Anjuère F. Langerhans Cells Prime IL-17–Producing T Cells and Dampen Genital Cytotoxic Responses following Mucosal Immunization. THE JOURNAL OF IMMUNOLOGY 2010; 184:4842-51. [DOI: 10.4049/jimmunol.0901695] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Minang JT, Trivett MT, Coren LV, Barsov EV, Piatak M, Ott DE, Ohlen C. Nef-mediated MHC class I down-regulation unmasks clonal differences in virus suppression by SIV-specific CD8(+) T cells independent of IFN-gamma and CD107a responses. Virology 2009; 391:130-9. [PMID: 19555986 PMCID: PMC2716421 DOI: 10.1016/j.virol.2009.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/21/2009] [Accepted: 06/03/2009] [Indexed: 11/22/2022]
Abstract
CD8(+) T lymphocytes (CTL) play a role in controlling HIV/SIV infection. CTL antiviral activity is dependent on recognition of antigenic peptides associated with MHC class I molecules on infected target cells, and CTL activation can be impaired by Nef-mediated down-regulation of MHC class I molecules. We tested the ability of a series of rhesus macaque CD8(+) T-cell clones specific for the SIV Gag CM9 peptide to suppress SIV infection of autologous CD4(+) T cells. We used a set of SIV(mac)239 viruses with either wild-type Nef or Nef mutations that impair MHC class I down-regulation. All CTL clones efficiently suppressed virus replication in cells infected with mutant viruses with altered Nef function, phenotypically MHC class I(high) or MHC class I(intermediate). However, the ability of the clones to suppress virus replication was variably reduced in the presence of wild-type Nef (MHC class I(low)) despite the observations that all CTL clones showed similar IFN-gamma responses to titrated amounts of cognate peptide as well as to SIV-infected cells. In addition, the CTL clones showed variable CD107a (CTL degranulation marker) responses that did not correlate with their capacity to suppress virus replication. Thus, the clonal differences are not attributable to TCR avidity or typical effector responses, and point to a potential as yet unknown mechanism for CTL-mediated suppression of viral replication. These data emphasize that current assays for evaluating CTL responses in infected or vaccinated individuals do not fully capture the complex requirements for effective CTL-mediated control of virus replication.
Collapse
Affiliation(s)
- Jacob T. Minang
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Lori V. Coren
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Eugene V. Barsov
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - David E. Ott
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
18
|
Manuel SL, Schell TD, Acheampong E, Rahman S, Khan ZK, Jain P. Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease. J Leukoc Biol 2009; 86:1205-16. [PMID: 19656902 DOI: 10.1189/jlb.0309172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HTLV-1 is the etiologic agent of a debilitating neurologic disorder, HAM/TSP. This disease features a robust immune response including the oligoclonal expansion of CD8+ CTLs specific for the viral oncoprotein Tax. The key pathogenic process resulting in the proliferation of CTLs and the presentation of Tax peptide remains uncharacterized. We have investigated the role of APCs, particularly DCs, in priming of the anti-Tax CTL response under in vitro and in vivo conditions. We investigated two routes (direct vs. indirect) of Tax presentation using live virus, infected primary CD4+/CD25+ T cells, and the CD4+ T cell line (C8166, a HTLV-1-mutated line that only expresses Tax). Our results indicated that DCs are capable of priming a pronounced Tax-specific CTL response in cell cultures consisting of naïve PBLs as well as in HLA-A*0201 transgenic mice (line HHD II). DCs were able to direct the presentation of Tax successfully through infected T cells, live virus, and cell-free Tax. These observations were comparable with those made with a known stimulant of DC maturation, a combination of CD40L and IFN-gamma. Our studies clearly establish a role for this important immune cell component in HTLV-1 immuno/neuropathogenesis and suggest that modulation of DC functions could be an important tool for therapeutic interventions.
Collapse
Affiliation(s)
- Sharrón L Manuel
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gabitzsch ES, Xu Y, Yoshida LH, Balint J, Amalfitano A, Jones FR. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity. Vaccine 2009; 27:6394-8. [PMID: 19559110 DOI: 10.1016/j.vaccine.2009.06.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We previously reported the use of a novel Ad5 platform to induce cellular immune responses (CMI) against HIV-1 Gag in Ad5 hyper immune mice. Here, the effectiveness of the Ad5 [E1-, E2b-] vaccine platform was evaluated using a triad mixture of HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced following vaccination with the HIV-1 expressing vectors in Ad5 naïve and Ad5 immunized mice. A mixture of the three vaccines induced CMI against each transgene product even in the presence of hyper Ad5 immunity. These studies revealed that CMI responses to immunization with Ad5 [E1-, E2b-]-gag, Ad5 [E1-, E2b-]-pol or Ad5 [E1-, E2b-]-nef vectors were transgene specific and did not induce CMI responses against irrelevant antigens such as carcinoembryonic antigen (CEA), herpes simplex virus glycoprotein B (HSV), cytomegalovirus (CMV) or influenza virus antigens. We are evaluating this recombinant triad viral vector as an HIV-1 vaccine in a non-human primate model and the data indicate that the vaccine is worthy of clinical evaluation.
Collapse
|
20
|
Anton PA, Ibarrondo FJ, Boscardin WJ, Zhou Y, Schwartz EJ, Ng HL, Hausner MA, Shih R, Elliott J, Hultin PM, Hultin LE, Price C, Fuerst M, Adler A, Wong JT, Yang OO, Jamieson BD. Differential immunogenicity of vaccinia and HIV-1 components of a human recombinant vaccine in mucosal and blood compartments. Vaccine 2008; 26:4617-23. [PMID: 18621451 DOI: 10.1016/j.vaccine.2008.05.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 05/07/2008] [Accepted: 05/14/2008] [Indexed: 12/16/2022]
Abstract
Mucosal immune responses induced by HIV-1 vaccines are likely critical for prevention. We report a Phase 1 safety and immunogenicity trial in eight participants using the vaccinia-based TBC-3B vaccine given subcutaneously to determine the relationship between HIV-1 specific systemic and gastrointestinal mucosal responses. Across all subjects, detectable levels of blood vaccinia- and HIV-1-specific antibodies were elicited but none were seen mucosally. While the vaccinia component was immunogenic for CD8(+) T lymphocyte (CTL) responses in both blood and mucosa, it was greater in blood. The HIV-1 component of the vaccine was poorly immunogenic in both blood and mucosa. Although only eight volunteers were studied intensively, the discordance between mucosal and blood responses may highlight mechanisms contributing to recent vaccine failures.
Collapse
Affiliation(s)
- Peter A Anton
- Center for Prevention Research and the UCLA AIDS Institute, David Geffen School of Medicine at UCLA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The Mamu B 17-restricted SIV Nef IW9 to TW9 mutation abrogates correct epitope processing and presentation without loss of replicative fitness. Virology 2008; 375:307-14. [PMID: 18328525 DOI: 10.1016/j.virol.2008.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/06/2008] [Accepted: 02/08/2008] [Indexed: 01/11/2023]
Abstract
CD8(+) cytotoxic T lymphocytes (CTL) play an important role in controlling virus replication in HIV- and SIV-infected humans and monkeys, respectively. Three well-studied SIV CTL determinants are the two Mamu A()01-restricted epitopes Gag CM9 and Tat SL8, and the Mamu B()17-restricted epitope Nef IW9. Point mutations leading to amino acid replacements in these epitopes have been reported to mediate SIV escape from CTL control. We found that synthetic peptides containing mutations in SIV Gag CM9 and Tat SL8 were no longer recognized by the respective CTL. On the other hand, the described I-to-T replacement at the N-terminal amino acid residue of the SIV Nef IW9 epitope only moderately affected CTL recognition of the variant peptide, TW9. In an attempt to dissect the mechanism of escape of the Nef TW9 mutation, we investigated the effect of this mutation on CTL recognition of CD4(+)T cells infected with an engineered SIV(mac)239 that contained the TW9 mutation in Nef. Although, the wild type and mutant virus both infected and efficiently replicated in rhesus macaque CD4(+)T cells, the TW9 mutant virus failed to induce IFN-gamma expression in an SIV Nef IW9-specific CTL clone. Thus, unlike escape from Gag CM9- or Tat SL8-specfic CTL control presumably by loss of epitope binding, these results point to a defect at the level of processing and/or presentation of the variant TW9 epitope with resultant loss of triggering of the cognate TCR on CTL generated against the wild type peptide. Our data highlight the value of functional assays using virus-infected target cells as opposed to peptide-pulsed APC when assessing relevant escape mutations in CTL epitopes.
Collapse
|
22
|
Fomsgaard A, Vinner L, Therrien D, Jørgensen LB, Nielsen C, Mathiesen L, Pedersen C, Corbet S. Full-length characterization of A1/D intersubtype recombinant genomes from a therapy-induced HIV type 1 controller during acute infection and his noncontrolling partner. AIDS Res Hum Retroviruses 2008; 24:463-72. [PMID: 18373434 DOI: 10.1089/aid.2006.0294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To increase the understanding of mechanisms of HIV control we have genetically and immunologically characterized a full-length HIV-1 isolated from an acute infection in a rare case of undetectable viremia. The subject, a 43-year-old Danish white male (DK1), was diagnosed with acute HIV-1 infection after 1 year in Uganda. Following transient antiretroviral therapy DK1 maintained undetectable viral load for more than 10 years. His Ugandan wife (UG1) developed high viral load. HIV-1 sequences from both individuals were compared by bootscanning for recombination break points. Diversity plots and phylogenic trees were constructed and diversity and evolutionary distances were calculated. Intracellular IFN-gamma in CD8(+)CD3(+) T-lymphocyte reactions was investigated by intracellular flow cytometry (IC-FACS). Virus isolates from both patients were A1D intersubtype recombinants showing 98% sequence homology in shared regions. Four of seven crossover points were identical; however, the env gene from UG1 was subtype D, but A1 in DK1. Both viruses encoded proteins of the expected length and replicated equally well in vitro. DK1 and UG1 shared the HLA-A02 tissue type. HLA-A02-restricted CD8(+) T cell IFN-gamma IC-FACS response in DK1 was detected against only one (Pol(476)) of 23 conserved epitopes. Neutralizing antibodies were induced only to the homologous isolate. These results indicate an A1D intersubtype recombination or transmission of a minor variant. Transient early antiretroviral therapy may have induced full HIV-1 control in this individual mediated by a narrow specific cytotoxic T lymphocyte and neutralizing antibody response and/or other factors yet to be characterized.
Collapse
Affiliation(s)
- Anders Fomsgaard
- Department of Virology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Lasse Vinner
- Department of Virology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Dominic Therrien
- Department of Virology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | | | - Claus Nielsen
- Department of Virology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Lars Mathiesen
- Department of Infectious Diseases, University Hospital of Hvidovre, Hvidovre, Denmark
| | - Court Pedersen
- Department of Infectious Diseases, University Hospital of Odense, Odense, Denmark
| | - Sylvie Corbet
- Department of Virology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| |
Collapse
|
23
|
Streitz M, Tesfa L, Yildirim V, Yahyazadeh A, Ulrichs T, Lenkei R, Quassem A, Liebetrau G, Nomura L, Maecker H, Volk HD, Kern F. Loss of receptor on tuberculin-reactive T-cells marks active pulmonary tuberculosis. PLoS One 2007; 2:e735. [PMID: 17710135 PMCID: PMC1936433 DOI: 10.1371/journal.pone.0000735] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022] Open
Abstract
Background Tuberculin-specific T-cell responses have low diagnostic specificity in BCG vaccinated populations. While subunit-antigen (e.g. ESAT-6, CFP-10) based tests are useful for diagnosing latent tuberculosis infection, there is no reliable immunological test for active pulmonary tuberculosis. Notably, all existing immunological tuberculosis-tests are based on T-cell response size, whereas the diagnostic potential of T-cell response quality has never been explored. This includes surface marker expression and functionality of mycobacterial antigen specific T-cells. Methodology/Principal Findings Flow-cytometry was used to examine over-night antigen-stimulated T-cells from tuberculosis patients and controls. Tuberculin and/or the relatively M. tuberculosis specific ESAT-6 protein were used as stimulants. A set of classic surface markers of T-cell naïve/memory differentiation was selected and IFN-γ production was used to identify T-cells recognizing these antigens. The percentage of tuberculin-specific T-helper-cells lacking the surface receptor CD27, a state associated with advanced differentiation, varied considerably between individuals (from less than 5% to more than 95%). Healthy BCG vaccinated individuals had significantly fewer CD27-negative tuberculin-reactive CD4 T-cells than patients with smear and/or culture positive pulmonary tuberculosis, discriminating these groups with high sensitivity and specificity, whereas individuals with latent tuberculosis infection exhibited levels in between. Conclusions/Significance Smear and/or culture positive pulmonary tuberculosis can be diagnosed by a rapid and reliable immunological test based on the distribution of CD27 expression on peripheral blood tuberculin specific T-cells. This test works very well even in a BCG vaccinated population. It is simple and will be of great utility in situations where sputum specimens are difficult to obtain or sputum-smear is negative. It will also help avoid unnecessary hospitalization and patient isolation.
Collapse
Affiliation(s)
- Mathias Streitz
- Institut für Medizinische Immunologie der Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lydia Tesfa
- Institut für Medizinische Immunologie der Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Vedat Yildirim
- Institut für Medizinische Immunologie der Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ali Yahyazadeh
- Institut für Medizinische Immunologie der Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Timo Ulrichs
- Abteilung Immunologie, Max-Planck-Institut für Infektionsbiologie, Berlin, Germany
| | - Rodica Lenkei
- Capio Diagnostik AB, St Görans Hospital, Stockholm, Sweden
| | | | | | - Laurel Nomura
- BD Biosciences, San Jose, California, United States of America
| | - Holden Maecker
- BD Biosciences, San Jose, California, United States of America
| | - Hans-Dieter Volk
- Institut für Medizinische Immunologie der Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kern
- Institut für Medizinische Immunologie der Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
- Division of Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Boulassel MR, Mercier F, Gilmore N, Routy JP. Immunophenotypic patterns of CD8+ T cell subsets expressing CD8alphaalpha and IL-7Ralpha in viremic, aviremic and slow progressor HIV-1-infected subjects. Clin Immunol 2007; 124:149-57. [PMID: 17560832 DOI: 10.1016/j.clim.2007.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
Evidence from animal models suggests that the expression of CD8alphaalpha homodimer on CD8(+) T cells plays a key role in the generation of long-lived memory cells. Here, we studied the quantitative alterations of CD8(+) T cell subsets expressing CD8alphaalpha, interleukin-7 receptor (IL-7Ralpha) and activation markers in HIV-1-infected individuals including aviremic, viremic and slow progressor subjects using eight-color flow cytometry. Compared to slow progressor subjects, expression of CD8alphaalpha was significantly reduced in aviremic and viremic patients and this reduction occurred mainly within central memory cell subsets and not in naive and effector memory compartments. Persistence of antigenemia leads to IL-7Ralpha loss mainly on central and pre-terminal memory CD8(+) T cell subsets in viremic patients but not in slow progressor subjects. Compared to aviremic and viremic patients, slow progressor subjects had lower levels of IL-7 and reduced activated cells. The expression of CD8alphaalpha was not significantly related to IL-7Ralpha although negative associations were evidenced within all CD8(+) T cell subsets. Collectively, these results further advance the characterization of immunophenotypic patterns of CD8(+) T cell subsets expressing CD8alphaalpha/IL-7Ralpha and provide new insights into the ability of HIV-1 infection to alter memory cell population.
Collapse
Affiliation(s)
- Mohamed-Rachid Boulassel
- Immunodeficiency Service, Montreal Chest Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
25
|
Thorn M, Tang S, Therrien D, Kløverpris H, Vinner L, Kronborg G, Gerstoft J, Corbet S, Fomsgaard A. Sequence conservation of subdominant HLA-A2-binding CTL epitopes in HIV-1 clinical isolates and CD8+T-lymphocyte cross-recognition may explain the immune reaction in infected individuals. APMIS 2007; 115:757-68. [PMID: 17550385 DOI: 10.1111/j.1600-0463.2007.apm_595.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cytotoxic T-lymphocytes (CTL) are critical for immune control of infection with human immunodeficiency virus type-1 (HIV-1) and searches for relevant CTL epitopes for immune therapy are ongoing. Recently, we identified 28 HLA-A2-binding HIV-1 CTL epitopes (1). In this follow-up study we fully genome sequenced HIV-1 from 11 HLA-A2(+) patients to examine the sequence variation of these natural epitopes and compared them with the patient's CD8(+) T-cell recall response. Often the epitope was conserved but only a few patients showed a CD8(+) T-cell recall response. This infrequent targeting may be explained by immune subdominance. CD8(+) T-cell recall response to a natural epitope could be measured despite sequence differences in the patient's virus. T-cell cross-reaction between such variants could be demonstrated in HLA-A2 transgenic mice. Nine infrequently targeted but conserved or cross-reacting epitopes were identified in seven HIV-1 proteins. More immunogenic anchor amino acid optimized immunogens were designed that induced T-cell cross-reaction with these natural epitopes. It is concluded that most of the new CTL epitopes are conserved but subdominant during the infection. It is suggested that T-cell promiscuity may explain the observed CD8(+) T-cell reaction to epitope variants and it may be possible to use the selected immune optimized epitope peptides for therapeutic vaccination.
Collapse
Affiliation(s)
- Mette Thorn
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hanke T, McMichael AJ, Dorrell L. Clinical experience with plasmid DNA- and modified vaccinia virus Ankara-vectored human immunodeficiency virus type 1 clade A vaccine focusing on T-cell induction. J Gen Virol 2007; 88:1-12. [PMID: 17170430 DOI: 10.1099/vir.0.82493-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Candidate human immunodeficiency virus type 1 (HIV-1) vaccines focusing on T-cell induction, constructed as pTHr.HIVA DNA and modified vaccinia virus Ankara (MVA).HIVA, were delivered in a heterologous prime-boost regimen. The vaccines were tested in several hundred healthy or HIV-1-infected volunteers in Europe and Africa. Whilst larger trials of hundreds of volunteers suggested induction of HIV-1-specific T-cell responses in <15 % of healthy vaccinees, a series of small, rapid trials in 12-24 volunteers at a time with a more in-depth analysis of vaccine-elicited T-cell responses proved to be highly informative and provided more encouraging results. These trials demonstrated that the pTHr.HIVA vaccine alone primed consistently weak and mainly CD4(+), but also CD8(+) T-cell responses, and the MVA.HIVA vaccine delivered a consistent boost to both CD4(+) and CD8(+) T cells, which was particularly strong in HIV-1-infected patients. Thus, whilst the search is on for ways to enhance T-cell priming, MVA is a useful boosting vector for human subunit genetic vaccines.
Collapse
Affiliation(s)
- Tomáš Hanke
- Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, The John Radcliffe, Oxford OX3 9DS, UK
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, The John Radcliffe, Oxford OX3 9DS, UK
| | - Lucy Dorrell
- Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, University of Oxford, The John Radcliffe, Oxford OX3 9DS, UK
| |
Collapse
|
27
|
Lori F, Weiner DB, Calarota SA, Kelly LM, Lisziewicz J. Cytokine-adjuvanted HIV-DNA vaccination strategies. ACTA ACUST UNITED AC 2006; 28:231-8. [PMID: 17053912 DOI: 10.1007/s00281-006-0047-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 09/25/2006] [Indexed: 10/24/2022]
Abstract
This review highlights some of the most common cytokines currently being tested as adjuvants in HIV-1-DNA vaccine regimens. We discuss their use in both the prophylactic and therapeutic setting. Finally, we describe a novel dendritic cell-targeted vaccine candidate for HIV-1 treatment and prevention called DermaVir and explore the combination of the DermaVir technology with the cytokine adjuvants interleukin-7 and interleukin-15.
Collapse
Affiliation(s)
- Franco Lori
- Research Institute for Genetic and Human Therapy (RIGHT), Pavia, Italy.
| | | | | | | | | |
Collapse
|
28
|
Schreiber TH, Shinder V, Cain DW, Alon R, Sackstein R. Shear flow-dependent integration of apical and subendothelial chemokines in T-cell transmigration: implications for locomotion and the multistep paradigm. Blood 2006; 109:1381-6. [PMID: 17038526 PMCID: PMC1794074 DOI: 10.1182/blood-2006-07-032995] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lymphocyte extravasation requires that emigrating cells process chemoattractant signals, typically mediated by chemokines, encountered on endothelial surface (apical) and subendothelial (basal) compartments. These signals are delivered under conditions of hemodynamic shear, a fundamental feature of all physiologic leukocyte-endothelial interactions. To analyze lymphocyte responsiveness to spatially distributed chemokines and their effects on transendothelial migration (TEM) under hydrodynamic shear, we constructed a transwell-based flow assay. We observed that the inflammatory chemokine CCL5 (RANTES) induces negligible human T-cell migration across inflamed human umbilical vascular endothelial cells (HUVECs) when displayed alone in the subendothelial compartment under static or hemodynamic shear conditions or when combined with apical CXCL12 (SDF-1alpha) under static conditions. However, under shear stress, T cells encountering apically presented CXCL12 were primed to undergo robust LFA-1-dependent TEM toward subendothelial CCL5. Notably, locomotive T cells arriving at endothelial junctions were retained and extended pseudopodia into and through the junctions, thereby increasing sensitivity to subendothelial CCL5. These findings provide the first evidence that lymphocytes integrate, conditional to shear forces, permissive apical chemokine deposits, and integrin engagement signals, resulting in morphologic changes and amplified chemotaxis to an otherwise weak subendothelial chemokine signal.
Collapse
Affiliation(s)
- Taylor H Schreiber
- Harvard Skin Disease Research Center and the Department of Dermatology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Identification of HIV-1 specific T lymphocyte responses in highly exposed persistently seronegative Chinese. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200610010-00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
30
|
Nguyen M, Pean P, Lopalco L, Nouhin J, Phoung V, Ly N, Vermisse P, Henin Y, Barré-Sinoussi F, Burastero SE, Reynes JM, Carcelain G, Pancino G. HIV-specific antibodies but not t-cell responses are associated with protection in seronegative partners of HIV-1-infected individuals in Cambodia. J Acquir Immune Defic Syndr 2006; 42:412-9. [PMID: 16837821 DOI: 10.1097/01.qai.0000222289.97825.35] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To study biological factors related to protection against HIV-1 infection in Cambodia, we recruited 48 partners of HIV-1-infected patients who remained uninfected (exposed uninfected individuals, EUs) despite unprotected sexual intercourse for more than 1 year and 49 unexposed controls (UCs). HIV-1-specific antibodies (IgA anti-gp41 and IgG anti-CD4-gp120 complex), T-cell responses, and cellular factors that may be involved in protection (peripheral blood mononuclear cell [PBMC] resistance to HIV-1 infection and beta-chemokine production) were evaluated. Anti-HIV-1 antibodies were higher in EUs than those in UCs (P = 0.01 and P = 0.04 for anti-gp41 and anti-CD4-gp120, respectively). We observed a decreased susceptibility to a primary Cambodian isolate, HIV-1KH019, in EU PBMCs as compared with UC PBMCs (P = 0.03). A weak T-cell response to one pool of HIV-1 Gag peptides was found by ELISpot in 1 of 19 EUs. Whereas T-cell specific immunity was not associated to protection, our results suggest that HIV-specific humoral immunity and reduced cell susceptibility to infection may contribute to protection against HIV-1 infection in Cambodian EUs.
Collapse
Affiliation(s)
- Marie Nguyen
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ranasinghe C, Medveczky JC, Woltring D, Gao K, Thomson S, Coupar BEH, Boyle DB, Ramsay AJ, Ramshaw IA. Evaluation of fowlpox–vaccinia virus prime-boost vaccine strategies for high-level mucosal and systemic immunity against HIV-1. Vaccine 2006; 24:5881-95. [PMID: 16759767 DOI: 10.1016/j.vaccine.2006.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/16/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
We have tested the efficacy of recombinant fowl pox (rFPV) and recombinant vaccinia virus (rVV) encoding antigens of AE clade HIV-1 in a prime-boost strategy, using both systemic and mucosal delivery routes. Of the various vaccine routes tested, intranasal/intramuscular (i.n./i.m.) AE FPV/AE VV prime-boosting generated the highest mucosal and systemic T cell responses. Peak mucosal T cell responses occurred as early as 3 days post-boost vaccination. In contrast only low systemic responses were observed at this time with the peak response occurring at day 7. Current data also revealed that, due to better uptake of the rFPV, intranasal viral priming was much more effective than intranasal rDNA priming tested previously. The i.m./i.m. prime-boost delivery also generated strong systemic but poor mucosal responses to Gag peptides. Interestingly, the oral administration of AE FPV followed by i.m. AE VV delivery elicited strong systemic responses to sub-dominant Pol 1 peptides that were absent in mice that received vaccine by other routes. Moreover, priming with AE FPV co-expressing cytokine IL-12 significantly enhanced the T cell responses to target antigens, whilst co-expression of IFNgamma decreased these responses. The results also indicated that the route of inoculation and the vaccine vector combination could radically influence not only the magnitude but also the antigen specificity of the immune response generated. Further, in contrast to the generally protracted HIV rDNA/rFPV multiple delivery prime-boosting, this single rFPV prime and rVV boost approach was more flexible and generated excellent mucosal and systemic immune responses to HIV vaccine antigens.
Collapse
Affiliation(s)
- Charani Ranasinghe
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Watkins JD, Lancelot S, Campbell GR, Esquieu D, Mareuil JD, Opi S, Annappa S, Salles JP, Loret EP. Reservoir cells no longer detectable after a heterologous SHIV challenge with the synthetic HIV-1 Tat Oyi vaccine. Retrovirology 2006; 3:8. [PMID: 16441880 PMCID: PMC1434768 DOI: 10.1186/1742-4690-3-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/27/2006] [Indexed: 11/17/2022] Open
Abstract
Background Extra-cellular roles of Tat might be the main cause of maintenance of HIV-1 infected CD4 T cells or reservoir cells. We developed a synthetic vaccine based on a Tat variant of 101 residues called Tat Oyi, which was identified in HIV infected patients in Africa who did not progress to AIDS. We compared, using rabbits, different adjuvants authorized for human use to test on ELISA the recognition of Tat variants from the five main HIV-1 subtypes. A formulation was tested on macaques followed by a SHIV challenge with a European strain. Results Tat Oyi with Montanide or Calcium Phosphate gave rabbit sera able to recognize all Tat variants. Five on seven Tat Oyi vaccinated macaques showed a better control of viremia compared to control macaques and an increase of CD8 T cells was observed only on Tat Oyi vaccinated macaques. Reservoir cells were not detectable at 56 days post-challenge in all Tat Oyi vaccinated macaques but not in the controls. Conclusion The Tat Oyi vaccine should be efficient worldwide. No toxicity was observed on rabbits and macaques. We show in vivo that antibodies against Tat could restore the cellular immunity and make it possible the elimination of reservoir cells.
Collapse
Affiliation(s)
- Jennifer D Watkins
- UMR Univ. Med./CNRS FRE 2737, Faculté de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Sophie Lancelot
- UMR Univ. Med./CNRS FRE 2737, Faculté de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Grant R Campbell
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0672, USA
| | - Didier Esquieu
- SynProsis, Hôtel Technologique BP 100, Technopôle de Château Gombert, 13013 Marseille, France
| | - Jean de Mareuil
- UMR Univ. Med./CNRS FRE 2737, Faculté de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Sandrine Opi
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | - Sylvie Annappa
- SynProsis, Hôtel Technologique BP 100, Technopôle de Château Gombert, 13013 Marseille, France
| | - Jean-Pierre Salles
- SynProsis, Hôtel Technologique BP 100, Technopôle de Château Gombert, 13013 Marseille, France
| | - Erwann P Loret
- UMR Univ. Med./CNRS FRE 2737, Faculté de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
33
|
Kern F, LiPira G, Gratama JW, Manca F, Roederer M. Measuring Ag-specific immune responses: understanding immunopathogenesis and improving diagnostics in infectious disease, autoimmunity and cancer. Trends Immunol 2006; 26:477-84. [PMID: 16039158 DOI: 10.1016/j.it.2005.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/20/2005] [Accepted: 07/08/2005] [Indexed: 01/22/2023]
Abstract
Characterization of antigen-specific immune responses at the single-cell level has been made possible by recent advancements in reagent and technology development, combined with increasing knowledge of molecular mechanisms. Fluorescently labelled MHC-peptide multimers and antigens identify directly specific T and B cells, respectively, whereas dynamic assays exploit mediator production or secretion, or the changes in surface expression of other proteins, to identify specific lymphocytes--some techniques enabling the recovery of viable cells. Meanwhile, multiparameter flow cytometry has emerged as the most versatile platform for integrating most of these methods. As the complexity of experimental data increases, so does the level of technical sophistication required for analysis and interpretation, both in terms of basic research and modern medicine, with new applications for infectious diseases, autoimmunity and cancer.
Collapse
Affiliation(s)
- Florian Kern
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Campus Mitte, 10098 Berlin, Germany.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The biological correlates of an effective immune response that could contain or prevent HIV infection remain elusive despite substantial scientific accomplishments in understanding the interactions among the virus, the individual and the community. The observation that some individuals appear to possess resistance to HIV infection or its consequences has generated a host of epidemiologic investigations to identify biological or behavioral characteristics of these individuals. These data might hold the keys to developing appropriate strategies for mimicking the effective responses of those who appear immune. In this paper we review genetic mechanisms including the role of chemokines and their receptors, cytokines, host genetic immune response to HIV infection, local immune response correlating with behavioral variables, co-infection and immune based mechanisms that have been elucidated so far. We offer suggestions for how to use these observations as platforms for future research to further understand natural resistance to HIV infection through cohort studies, population genotype sampling, mathematical modeling of virus-host interactions and behavioral analyses.
Collapse
Affiliation(s)
- M Marmor
- Department of Environmental Medicine, New York University School of Medicine, 650 First Avenue, Room 560, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Genetic polymorphisms in human genes can influence the risk for HIV-1 infection and disease progression, although the reported effects of these alleles have been inconsistent. This review highlights the recent discoveries on global and Chinese genetic polymorphisms and their association with HIV-1 transmission and disease progression.
Collapse
Affiliation(s)
- Tuo Fu Zhu
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-8070, USA.
| | | | | | | | | |
Collapse
|
36
|
Eberhard A, Ponceau B, Biron F, Verrier B. [Mechanisms of resistance to sexual transmission of HIV-1]. Med Mal Infect 2005; 35:517-24. [PMID: 16253454 DOI: 10.1016/j.medmal.2005.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/24/2005] [Indexed: 11/18/2022]
Abstract
Sexual transmission is the most common pathway for HIV-1; nevertheless some individuals remain seronegative despite repeated high risk sexual exposure. These were grouped in cohorts of "highly exposed but persistently seronegative" individuals, mostly prostitutes and flailing couples. Three lines of defence were observed in these cohorts. The first one is the mucosal barrier, the determining factors of which are the type of epithelium (monolayer or multilayer), epithelial integrity, and the pre-existing microflora. The second one is linked to innate immunity directly related to the genetic and/or immune predispositions of the individual: mutations affecting the CCR5 chemokine receptor, secretion of protective soluble factors, and particular HLA alleles. The third one is acquired immunity via the mechanisms of humoral and/or specific cellular immunity. These studies suggest anti HIV-1 vaccinal strategies aiming at a local immunization combining the different types of responses observed in these individuals.
Collapse
Affiliation(s)
- A Eberhard
- FRE 2736 CNRS biomérieux, Tour CERVI IFR128 Lyon biosciences, 21, avenue Tony-Garnier, 69365 Lyon cedex 07, France.
| | | | | | | |
Collapse
|
37
|
Estcourt MJ, Létourneau S, McMichael AJ, Hanke T. Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses. Eur J Immunol 2005; 35:2532-40. [PMID: 16144036 DOI: 10.1002/eji.200535184] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of primary CD8+ T cell responses following administration of modified virus Ankara (MVA)- and DNA-vectored vaccines was investigated in a mouse model. To overcome the low frequency of naive antigen-specific precursors and follow the early expansion events, naive CFSE-labelled T cell receptor-transgenic F5 lymphocytes were transferred into syngeneic non-transgenic recipients prior to vaccination. Using the i.d., i.v. and i.m. routes and increasing recombinant MVA (rMVA) vaccine doses, the primary response was analysed on a divisional basis at local and distant lymphoid organs at various times after vaccination. The results indicated that F5 cell divisions were initiated in the local draining lymph nodes and cells only after five to six divisions appeared at more distant sites. The rMVA dose affected frequencies of cells entering division and at the peak response. When priming induced by rMVA and plasmid DNA was compared, dramatic differences in the cycling patterns were observed with plasmid DNA inducing a response slower and more sustained over the first 2 wk than rMVA. Both rMVA and DNA induced comparable IFN-gamma production, which increased with cell divisions. Taken together, the vaccine type, dose and route have a strong influence on the spatial and temporal patterns of initial T cell responses.
Collapse
Affiliation(s)
- Marie J Estcourt
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, United Kingdom
| | | | | | | |
Collapse
|
38
|
Asquith B, Mosley AJ, Barfield A, Marshall SEF, Heaps A, Goon P, Hanon E, Tanaka Y, Taylor GP, Bangham CRM. A functional CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lymphotropic virus type 1 proviral load. J Gen Virol 2005; 86:1515-1523. [PMID: 15831965 DOI: 10.1099/vir.0.80766-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CD8+ lymphocyte response is a main component of host immunity, yet it is difficult to quantify its contribution to the control of persistent viruses. Consequently, it remains controversial as to whether CD8+ cells have a biologically significant impact on viral burden and disease progression in infections such as human immunodeficiency virus-1 and human T-lymphotropic virus type I (HTLV-I). Experiments to ascertain the impact of CD8+ cells on viral burden based on CD8+ cell frequency or specificity alone give inconsistent results. Here, an alternative approach was developed that directly quantifies the impact of CD8+ lymphocytes on HTLV-I proviral burden by measuring the rate at which HTLV-I-infected CD4+ cells were cleared by autologous CD8+ cells ex vivo. It was demonstrated that CD8+ cells reduced the lifespan of infected CD4+ cells to 1 day, considerably shorter than the 30 day lifespan of uninfected cells in vivo. Furthermore, it was shown that HTLV-I-infected individuals vary considerably in the rate at which their CD8+ cells clear infected cells, and that this was a significant predictor of their HTLV-I proviral load. Forty to 50 % of between-individual variation in HTLV-I proviral load was explained by variation in the rate at which CD8+ cells cleared infected cells. This novel approach demonstrates that CD8+ cells are a major determinant of HTLV-I proviral load. This assay is applicable to quantifying the CD8+ cell response to other viruses and malignancies and may be of particular importance in assessing vaccines.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Imperial College, London, UK
| | | | - Anna Barfield
- Department of Genito-Urinary Medicine and Communicable Diseases, Imperial College, London, UK
| | | | - Adrian Heaps
- Department of Immunology, Imperial College, London, UK
| | - Peter Goon
- Department of Immunology, Imperial College, London, UK
| | | | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Japan
| | - Graham P Taylor
- Department of Genito-Urinary Medicine and Communicable Diseases, Imperial College, London, UK
| | | |
Collapse
|
39
|
Urbani S, Boni C, Amadei B, Fisicaro P, Cerioni S, Valli MA, Missale G, Ferrari C. Acute phase HBV-specific T cell responses associated with HBV persistence after HBV/HCV coinfection. Hepatology 2005; 41:826-31. [PMID: 15726541 DOI: 10.1002/hep.20614] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To characterize acute-phase hepatitis B virus (HBV)-specific T cell responses associated with self-limited and persistent HBV infections, we compared a patient with acute HBV/HCV coinfection, who was able to control HCV but developed chronic hepatitis B, with patients who resolved acute HBV infection spontaneously. Acute-phase CD4 responses were efficient in self-limited infections but undetectable in the coinfected patient with HBV persistence. CD8 responses were multispecific irrespective of the outcome of infection, but the CD8 repertoire associated with HBV persistence lacked the most dominant specificities detectable in self-limited infections. In conclusion, insufficient CD4 help and defective CD8 repertoire may play a role at the early stages of infection in influencing HBV persistence.
Collapse
Affiliation(s)
- Simona Urbani
- Laboratory of Viral Immunopathology, Division of Infectious Diseases and Hepatology, Azienda Ospedaliera di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zelinskyy G, Balkow S, Schimmer S, Schepers K, Simon MM, Dittmer U. Independent roles of perforin, granzymes, and Fas in the control of Friend retrovirus infection. Virology 2005; 330:365-74. [PMID: 15567431 DOI: 10.1016/j.virol.2004.08.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 06/21/2004] [Accepted: 08/05/2004] [Indexed: 11/18/2022]
Abstract
Cytotoxic T-cells (CTL) play a central role in the recovery of mammalian hosts from retroviral infections. However, the molecular pathways that mediate the antiretroviral activity of CTL are still elusive. Here we explore the protective role of the two main cytolytic pathways of CTL, that is, granule exocytosis and Fas/Fas ligand (FasL), in acute and persistent Friend retrovirus (FV) infection of mice. For this purpose, we have used mutant mouse strains with targeted gene defects in one or more components of the two cytolytic pathways including perforin, granzyme A, granzyme B, Fas, and FasL. The important function of CTL in resistance of C57BL/6 (B6) mice to FV is emphasized by the finding that depletion of CD8+ T-cells prior to virus infection resulted in severe splenomegaly and high viral loads in blood and spleen tissue. Analysis of primary FV infection in knockout mice revealed that acute infection was readily controlled in the absence of functional Fas. Most notably in the presence of Fas/FasL each of the three effector molecules of the exocytosis pathway (i.e., perforin, granzyme A, and granzyme B) was capable on its own to mediate suppression of virus replication and protection from leukemia. However, triple knockout mice lacking perforin and the two granzymes were fully susceptible to FV-induced leukemia. In contrast to acute infection the Fas/FasL pathway was mandatory for effective control of FV replication during persistent infection. These findings suggest novel pathways of CTL-mediated viral defense and contribute towards a better understanding of the molecular mechanisms of CTL activity in retroviral infections.
Collapse
Affiliation(s)
- Gennadiy Zelinskyy
- Institut für Virologie des Universitätsklinikums Essen, Universität Duisburg-Essen, 45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Borkow G, Bentwich Z. Chronic immune activation associated with chronic helminthic and human immunodeficiency virus infections: role of hyporesponsiveness and anergy. Clin Microbiol Rev 2005; 17:1012-30, table of contents. [PMID: 15489359 PMCID: PMC523563 DOI: 10.1128/cmr.17.4.1012-1030.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic immune activation is one of the hallmarks of human immunodeficiency virus (HIV) infection. It is present also, with very similar characteristics, in very large human populations infested with helminthic infections. We have tried to review the studies addressing the changes in the immune profiles and responses of hosts infected with either one of these two chronic infections. Not surprisingly, several of the immune derangements and impairments seen in HIV infection, and considered by many to be the "specific" effects of HIV, can be found in helminth-infected but HIV-noninfected individuals and can thus be accounted for by the chronic immune activation itself. A less appreciated element in chronic immune activation is the immune suppression and anergy which it may generate. Both HIV and helminth infections represent this aspect in a very wide and illustrative way. Different degrees of anergy and immune hyporesponsiveness are present in these infections and probably have far-reaching effects on the ability of the host to cope with these and other infections. Furthermore, they may have important practical implications, especially with regard to protective vaccinations against AIDS, for populations chronically infected with helminths and therefore widely anergic. The current knowledge of the mechanisms responsible for the generation of anergy by chronic immune activation is thoroughly reviewed.
Collapse
Affiliation(s)
- Gadi Borkow
- Animal Scienes, Faculty of Agriculture, Hebrew University, Rehovot, Israel
| | | |
Collapse
|
42
|
McNicholl JM, Promadej N. Insights into the role of host genetic and T-cell factors in resistance to HIV transmission from studies of highly HIV-exposed Thais. Immunol Res 2004; 29:161-74. [PMID: 15181279 DOI: 10.1385/ir:29:1-3:161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Studies of resistance to HIV-1 transmission are likely to be valuable for the design of vaccines and other efforts to prevent HIV. Here, we review the T-cell and genetic factors associated with resistance to HIV-1 transmission in studies of highly exposed but persistently seronegative (HEPS) women from northern Thailand. Women were enrolled in two sex-worker studies and in a discordant couple study. We performed Cr51 cytotoxic T lymphocyte (CTL), interferon-gamma (IFN-gamma) ELISPOT, and proliferation assays as well as genetic studies, including HLA-class I typing. CTL and ELISPOT studies showed a skewing of T-cell responses to conserved HIV-1 proteins in HEPS, but not in HIV-1-seropositive women. T-cell responses were extremely long-lived in some HEPS women. In the two sex-worker studies, HLA-A11 was associated with resistance to HIV-1 transmission. These data provide promise for the ability of CTL to control HIV and emphasize the importance of developing HIV vaccines that stimulate strong, long-lasting Tcell responses.
Collapse
Affiliation(s)
- Janet M McNicholl
- Immunogenetics Section, HIV Immunology and Diagnostics Branch, National Center for HIV, STD and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | | |
Collapse
|
43
|
Kan-Mitchell J, Bisikirska B, Wong-Staal F, Schaubert KL, Bajcz M, Bereta M. The HIV-1 HLA-A2-SLYNTVATL is a help-independent CTL epitope. THE JOURNAL OF IMMUNOLOGY 2004; 172:5249-61. [PMID: 15100263 DOI: 10.4049/jimmunol.172.9.5249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CTL response to the HLA-A*0201-restricted, HIV-1 p17 Gag(77-85) epitope (SLYNTVATL; SL9) has been extensively studied in patients. Although this reactivity is exceptionally prominent in chronically infected patients and inversely correlated to viral load, SL9-specific CTLs (SL9-CTLs) are rarely detected in acute infection. To explore the cellular basis for this unusual manifestation, SL9-CTLs primed ex vivo from naive circulating CD8(+) T cells of healthy, seronegative donors were generated and characterized. SL9 appeared to differ from other well-studied A*0201-restricted epitopes in several significant respects. In contrast to published reports for influenza and melanoma peptides and the HIV gag IV9 epitope studied here in parallel, SL9-CTLs were primed by immature but not mature autologous dendritic cells. Highly activated SL9-CTLs produce sufficient autocrine mediators to sustain clonal expansion and CTL differentiation for months without CD4(+) T cells or exogenous IL-2. Moreover, SL9-CTLs were sensitive to paracrine IL-2-induced apoptosis. IL-2 independence and sensitivity to paracrine IL-2 were also characteristic of SL9-CTLs immunized by dendritic cells transduced by a nonreplicating lentiviral vector encoding full-length Gag. In vitro-primed SL9-CTLs resembled those derived from patients in degeneracy of recognition and functional avidities for both SL9 and its natural mutations. Together, these data show that SL9 is a highly immunogenic, help-independent HIV epitope. The scarcity of SL9-CTLs in acute infection may result from cytokine-induced apoptosis with the intense activation of the innate immunity. In contrast, SL9-CTLs that constitutively produce autocrine help would predominate during CD4-diminished chronic infection.
Collapse
MESH Headings
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Cell Differentiation/immunology
- Cell Division/immunology
- Clone Cells
- Cytokines/physiology
- Cytotoxicity Tests, Immunologic
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes, T-Lymphocyte/immunology
- Gene Products, gag/immunology
- Genes, T-Cell Receptor beta
- Genetic Vectors
- HIV Antigens/immunology
- HIV-1/genetics
- HIV-1/immunology
- HLA-A Antigens/immunology
- HLA-A2 Antigen/immunology
- Humans
- Interleukin-2/pharmacology
- Lymphocyte Activation/immunology
- Lymphocyte Depletion
- Mutation
- Paracrine Communication/immunology
- Peptide Fragments
- Peptides/immunology
- Peptides/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Transduction, Genetic
- Viral Proteins/immunology
- env Gene Products, Human Immunodeficiency Virus
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- June Kan-Mitchell
- Karmanos Cancer Institute, Department of Pathology and Immunology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Wojna V, Carlson KA, Luo X, Mayo R, Meléndez LM, Kraiselburd E, Gendelman HE. Proteomic fingerprinting of human immunodeficiency virus type 1-associated dementia from patient monocyte-derived macrophages: A case study. J Neurovirol 2004; 10 Suppl 1:74-81. [PMID: 14982743 DOI: 10.1080/753312756] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The emergence of a subset of circulating monocytes during human immunodeficiency virus type 1 (HIV-1) disease has been shown to correlate with cognitive impairment. Thus, it is hypothesized that diagnostic protein profiles may be obtained from these cells from patients with or at risk for HIV-1-associated dementia (HAD). To address this possibility, we used ProteinChip assays to define a unique monocyte-derived macrophage (MDM) protein fingerprint during HAD and whether it is affected by highly active antiretroviral therapy (HAART). The study included five Hispanic women, one with HAD, two HIV-1-infected without cognitive impairment, and two seronegative controls. All patients were matched by age and immune status. Monocytes were recovered from the peripheral blood leukocytes by Percoll gradient centrifugation and allowed to differentiate in vitro for 7 days. Cell lysates and supernatants were collected from the MDM and analyzed by surface enhanced laser desorption/ionization-time of flight ProteinChip assays. Seven unique protein peaks between 3.0 and 20.0 kDa were found in the HAD MDM sample. Each of these proteins were abrogated after HAART. Additional studies extending this one time point determination would serve to confirm the general utility of MDM protein profiling for the diagnosis and monitoring of HAD.
Collapse
Affiliation(s)
- Valerie Wojna
- The Departments of Microbiology and Specialized NeuroSciences Program, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | | | | | | | | | | |
Collapse
|
45
|
McDermott AB, Mitchen J, Piaskowski S, De Souza I, Yant LJ, Stephany J, Furlott J, Watkins DI. Repeated low-dose mucosal simian immunodeficiency virus SIVmac239 challenge results in the same viral and immunological kinetics as high-dose challenge: a model for the evaluation of vaccine efficacy in nonhuman primates. J Virol 2004; 78:3140-4. [PMID: 14990733 PMCID: PMC353751 DOI: 10.1128/jvi.78.6.3140-3144.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV) challenge of rhesus macaques provides a relevant model for the assessment of human immunodeficiency virus (HIV) vaccine strategies. To ensure that all macaques become infected, the vaccinees and controls are exposed to large doses of pathogenic SIV. These nonphysiological high-dose challenges may adversely affect vaccine evaluation by overwhelming potentially efficacious vaccine responses. To determine whether a more physiologically relevant low-dose challenge can initiate infection and cause disease in Indian rhesus macaques, we used a repeated low-dose challenge strategy designed to reduce the viral inoculum to more physiologically relevant doses. In an attempt to more closely mimic challenge with HIV, we administered repeated mucosal challenges with 30, 300, and 3,000 50% tissue culture infective doses (TCID(50)) of pathogenic SIVmac239 to six animals in three groups. Infection was assessed by sensitive quantitative reverse transcription-PCR and was achieved following a mean of 8, 5.5, and 1 challenge(s) in the 30, 300, and 3,000 TCID(50) groups, respectively. Mortality, humoral immune responses, and peak plasma viral kinetics were similar in five of six animals, regardless of challenge dose. Interestingly, macaques challenged with lower doses of SIVmac239 developed broad T-cell immune responses as assessed by ELISPOT assay. This low-dose repeated challenge may be a valuable tool in the evaluation of potential vaccine regimes and offers a more physiologically relevant regimen for pathogenic SIVmac239 challenge experiments.
Collapse
Affiliation(s)
- Adrian B McDermott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Corbet S, Nielsen HV, Vinner L, Lauemoller S, Therrien D, Tang S, Kronborg G, Mathiesen L, Chaplin P, Brunak S, Buus S, Fomsgaard A. Optimization and immune recognition of multiple novel conserved HLA-A2, human immunodeficiency virus type 1-specific CTL epitopes. J Gen Virol 2003; 84:2409-2421. [PMID: 12917462 DOI: 10.1099/vir.0.19152-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MHC-I-restricted cytotoxic responses are considered a critical component of protective immunity against viruses, including human immunodeficiency virus type 1 (HIV-1). CTLs directed against accessory and early regulatory HIV-1 proteins might be particularly effective; however, CTL epitopes in these proteins are rarely found. Novel artificial neural networks (ANNs) were used to quantitatively predict HLA-A2-binding CTL epitope peptides from publicly available full-length HIV-1 protein sequences. Epitopes were selected based on their novelty, predicted HLA-A2-binding affinity and conservation among HIV-1 strains. HLA-A2 binding was validated experimentally and binders were tested for their ability to induce CTL and IFN-gamma responses. About 69 % were immunogenic in HLA-A2 transgenic mice and 61 % were recognized by CD8(+) T-cells from 17 HLA-A2 HIV-1-positive patients. Thus, 31 novel conserved CTL epitopes were identified in eight HIV-1 proteins, including the first HLA-A2 minimal epitopes ever reported in the accessory and regulatory proteins Vif, Vpu and Rev. Interestingly, intermediate-binding peptides of low or no immunogenicity (i.e. subdominant epitopes) were found to be antigenic and more conserved. Such epitope peptides were anchor-optimized to improve immunogenicity and further increase the number of potential vaccine epitopes. About 67 % of anchor-optimized vaccine epitopes induced immune responses against the corresponding non-immunogenic naturally occurring epitopes. This study demonstrates the potency of ANNs for identifying putative virus CTL epitopes, and the new HIV-1 CTL epitopes identified should have significant implications for HIV-1 vaccine development. As a novel vaccine approach, it is proposed to increase the coverage of HIV variants by including multiple anchor-optimized variants of the more conserved subdominant epitopes.
Collapse
Affiliation(s)
- Sylvie Corbet
- Department of Virology, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen S, Denmark
| | - Henrik Vedel Nielsen
- Department of Virology, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen S, Denmark
| | - Lasse Vinner
- Department of Virology, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen S, Denmark
| | - Sanne Lauemoller
- Institute for Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | - Dominic Therrien
- Department of Virology, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen S, Denmark
| | - Sheila Tang
- Department of Virology, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen S, Denmark
| | - Gitte Kronborg
- Department of Infectious Diseases, University Hospital of Copenhagen, Denmark
| | - Lars Mathiesen
- Department of Infectious Diseases, University Hospital of Hvidovre, Denmark
| | - Paul Chaplin
- Bavarian Nordic Research Institute, Martinsried, Germany
| | - Søren Brunak
- Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | - Søren Buus
- Institute for Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virology, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen S, Denmark
| |
Collapse
|
47
|
Trigona WL, Clair JH, Persaud N, Punt K, Bachinsky M, Sadasivan-Nair U, Dubey S, Tussey L, Fu TM, Shiver J. Intracellular Staining for HIV-Specific IFN-γ Production: Statistical Analyses Establish Reproducibility and Criteria for Distinguishing Positive Responses. J Interferon Cytokine Res 2003; 23:369-77. [PMID: 14511463 DOI: 10.1089/107999003322226023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cellular immune response plays a pivotal role in controlling the spread of HIV-1 infection by lysing virally infected cells and producing potent antiviral cytokines, such as interferon-gamma (IFN-gamma). Flow cytometric methods have been established to evaluate the contribution of both CD4 and CD8 subsets of T lymphocytes to the immune response to HIV by measuring their production of intracellular IFN-gamma following brief antigenic stimulation. We present a statistical treatment of intracellular cytokine staining (ICS) data that is aimed at establishing the reproducibility and robustness of this assay for use in HIV clinical trials. Comparisons of responses from HIV-seronegative and seropositive individuals were used to establish a 2-fold criterion for distinguishing positive responses with a low probability of false positives (<1%). Additional comparisons established that the reproducibility of the assay is between 1.4 and 2.0-fold depending on the magnitude of the response. Little variability was demonstrated between multiple operators for both the execution and analysis components of these experiments (<10% difference with 95% confidence). We conclude that the statistical criteria established by these analyses allow for the accurate detection and comparison of positive responses. Using these statistical criteria, the ICS assay is sufficiently robust for use in HIV-specific vaccine trials.
Collapse
Affiliation(s)
- Wendy L Trigona
- Department of Viral Vaccine Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Addo MM, Yu XG, Rathod A, Cohen D, Eldridge RL, Strick D, Johnston MN, Corcoran C, Wurcel AG, Fitzpatrick CA, Feeney ME, Rodriguez WR, Basgoz N, Draenert R, Stone DR, Brander C, Goulder PJR, Rosenberg ES, Altfeld M, Walker BD. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 2003; 77:2081-92. [PMID: 12525643 PMCID: PMC140965 DOI: 10.1128/jvi.77.3.2081-2092.2003] [Citation(s) in RCA: 537] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular immune responses play a critical role in the control of human immunodeficiency virus type 1 (HIV-1); however, the breadth of these responses at the single-epitope level has not been comprehensively assessed. We therefore screened peripheral blood mononuclear cells (PBMC) from 57 individuals at different stages of HIV-1 infection for virus-specific T-cell responses using a matrix of 504 overlapping peptides spanning all expressed HIV-1 proteins in a gamma interferon-enzyme-linked immunospot (Elispot) assay. HIV-1-specific T-cell responses were detectable in all study subjects, with a median of 14 individual epitopic regions targeted per person (range, 2 to 42), and all 14 HIV-1 protein subunits were recognized. HIV-1 p24-Gag and Nef contained the highest epitope density and were also the most frequently recognized HIV-1 proteins. The total magnitude of the HIV-1-specific response ranged from 280 to 25,860 spot-forming cells (SFC)/10(6) PBMC (median, 4,245) among all study participants. However, the number of epitopic regions targeted, the protein subunits recognized, and the total magnitude of HIV-1-specific responses varied significantly among the tested individuals, with the strongest and broadest responses detectable in individuals with untreated chronic HIV-1 infection. Neither the breadth nor the magnitude of the total HIV-1-specific CD8+-T-cell responses correlated with plasma viral load. We conclude that a peptide matrix-based Elispot assay allows for rapid, sensitive, specific, and efficient assessment of cellular immune responses directed against the entire expressed HIV-1 genome. These data also suggest that the impact of T-cell responses on control of viral replication cannot be explained by the mere quantification of the magnitude and breadth of the CD8+-T-cell response, even if a comprehensive pan-genome screening approach is applied.
Collapse
Affiliation(s)
- M M Addo
- Partners AIDS Research Center, Massachusetts General Hospital and Harvard Medical School. Fenway Community Health Center. Lemuel Shattuck Hospital, Boston, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tang J, Wilson CM, Meleth S, Myracle A, Lobashevsky E, Mulligan MJ, Douglas SD, Korber B, Vermund SH, Kaslow RA. Host genetic profiles predict virological and immunological control of HIV-1 infection in adolescents. AIDS 2002; 16:2275-84. [PMID: 12441799 DOI: 10.1097/00002030-200211220-00007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the correlation between host genetic profiles and virological and immunological outcomes among HIV-1-seropositive participants from the Reaching for Excellence in Adolescent Care and Health (REACH) cohort. METHODS HLA class I and chemokine coreceptor (CCR) alleles and haplotypes were resolved in 227 HIV-1-seropositive adolescents (ages 13-18 years; 75% females; 71% African-Americans) and 183 HIV-seronegative individuals, with quarterly follow-up visits between 1996 and 2000. Each HLA and CCR variant with consistent risk and protective effect on HIV-1 pathogenesis was assigned a score of -1 and +1, respectively. All individual markers and genetic scores were analyzed in relation to plasma viral load (VL) and CD4 T lymphocytes during a 6-12-month interval when no antiretroviral therapy was taken. RESULTS HLA-B*57 alone was a strong predictor of VL (P < 0.0001), but composite genetic profiles found in over 50% of patients consistently outperformed the individual component markers in multivariable analyses with or without adjustment for gender, race, age, and membership of clinical patient groups. Adolescents (n = 37) with a favorable combination of VL (< 1000 copies/ml) and CD4 T cell counts (> 450 x 10(6) cells/l) consistently had more positive (+1 to +2) than negative (-1 to -4) HLA and CCR scores compared with those (n = 56) with an unfavorable combination (VL > 16,000 copies/ml and CD4 cells < 450 x 10(6) cells/l) or the remainder (n = 134) of the cohort (overall P < 0.0001). CONCLUSION A generalizable genetic scoring algorithm based on seven HLA class I and CCR markers is highly predictive of viremia and immunodeficiency in HIV-1-infected adolescents.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, AL 39294-0022, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Fifteen years after the first, definitive reports of HIV-1-specific, CD8+ T cells [147,148], there is ample evidence for the importance of these cells in control of HIV-1 infection. As much is known of their role in the natural history of HIV-1 infection and their cellular and molecular mechanisms of reactivity than of T-cell responses to any other human virus. Indeed, HIV-1-related research has led the scientific field in revealing many new, fundamental principles of cellular immunity in the last 15 years. From these data, there are multiple, posited mechanisms for loss of CD8+ T-cell control of HIV-1 infection. These include both intrinsic defects in T-cell function and loss of T-cell recognition of HIV-1 because of its extraordinary genetic diversity and disruption of antigen presentation. Efforts have begun on devising approaches to reverse these immune defects in infected individuals and develop vaccines that induce T-cell immunity for protection from infection. Combination antiretroviral drug regimens now provide exceptional, long-lasting control of HIV-1 infection, even though they do not restore anti-HIV-1 T-cell immunity fully in persons with chronic HIV-1 infection. Very encouraging results show that such treatment can maintain normal T-cell reactivity specific for this virus in some persons with early HIV-1 infection. Unfortunately, the antiviral treatment does not cure the host of this persistent, latent virus. This has led to new strategies for immunotherapeutic intervention to enhance the level and breadth of the T-cell repertoire specific for the host's residual virus in persons with chronic HIV-1 infection. Although the principles of immunotherapy stem from early in the last century, modern era approaches are integrating highly sophisticated, molecular and cell biology reagents and methods for control of HIV-1 infection. The most promising immunotherapies are autologous virus activated in vivo by STI or administered in autologous DC that have been engineered ex vivo. There are also compelling rationales supported by animal models and early clinical trials for use of cytokines and chemokines as recombinant proteins or DNA to augment anti-HIV-1 T-cell reactivity and trafficking of T cells and APC to tissue sites of infection. For prevention of HIV-1 infection, the discouragingly poor results of vaccine development in the late 1980s and early 1990s have led to very encouraging, recent studies in monkeys that show partially protective and possibly sterilizing immunity. Finally, clinical trials of new-generation DNA and live vector vaccines already have indications of improved induction of HIV-1-specific T-cell responses. Knowledge of HIV-1-specific T-cell immunity and its role in protection from HIV-1 infection and disease must continue to expand until the goal of complete control of HIV-1 infection is accomplished.
Collapse
Affiliation(s)
- Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, 425 Parran Hall, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|