1
|
da Conceição RR, Giannocco G, Herai RH, Petroski LP, Pereira BG, Oliveira KCD, Chiamolera MI, Sato MA, Maciel RM, de Souza JS. Thyroid dysfunction alters gene expression of proteins related to iron homeostasis and metabolomics in male rats. Mol Cell Endocrinol 2024; 579:112086. [PMID: 37858610 DOI: 10.1016/j.mce.2023.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Thyroid hormones (THs) are crucial in bodily functions, while iron is essential for processes like oxygen transport. Specialized proteins maintain iron balance, including ferritin, transferrin, ferroportin, and hepcidin. Research suggests that THs can influence iron homeostasis by affecting mRNA and protein expression, such as ferritin and transferrin. Our study focused on male rats to assess mRNA expression of iron homeostasis-related proteins and metabolomics in thyroid dysfunction. We found altered gene expression across various tissues (liver, duodenum, spleen, and kidney) and identified disrupted metabolite patterns in thyroid dysfunction. These findings highlight tissue-specific effects of thyroid dysfunction on essential iron homeostasis proteins and provide insights into associated metabolic changes. Our research contributes to understanding the intricate interplay between thyroid hormones and iron balance. By unveiling tissue-specific gene expression alterations and metabolic disruptions caused by thyroid dysfunction, our work lays a foundation for future investigations to explore underlying mechanisms and develop targeted strategies for managing iron-related complications in thyroid disorders.
Collapse
Affiliation(s)
- Rodrigo Rodrigues da Conceição
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Gisele Giannocco
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil; Departmento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, 09920-000, Brazil
| | - Roberto Hiroshi Herai
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences, School of Medicine and Life Sciences (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Luiz Pedro Petroski
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences, School of Medicine and Life Sciences (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Bruno Gabriel Pereira
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Kelen Carneiro de Oliveira
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Maria Izabel Chiamolera
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Monica Akemi Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo André, SP, Brazil
| | - Rui Monteiro Maciel
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Janaina Sena de Souza
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Monko TR, Tripp EH, Burr SE, Gunderson KN, Lanier LM, Georgieff MK, Bastian TW. Cellular Iron Deficiency Disrupts Thyroid Hormone Regulated Gene Expression in Developing Hippocampal Neurons. J Nutr 2024; 154:49-59. [PMID: 37984740 PMCID: PMC10808837 DOI: 10.1016/j.tjnut.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Developing neurons have high thyroid hormone and iron requirements to support their metabolically demanding growth. Early-life iron and thyroid-hormone deficiencies are prevalent and often coexist, and each independently increases risk of permanently impaired neurobehavioral function in children. Early-life dietary iron deficiency reduces thyroid-hormone concentrations and impairs thyroid hormone-responsive gene expression in the neonatal rat brain, but it is unclear whether the effect is cell-intrinsic. OBJECTIVES This study determined whether neuronal-specific iron deficiency alters thyroid hormone-regulated gene expression in developing neurons. METHODS Iron deficiency was induced in primary mouse embryonic hippocampal neuron cultures with the iron chelator deferoxamine (DFO) beginning at 3 d in vitro (DIV). At 11DIV and 18DIV, thyroid hormone-regulated gene messenger ribonucleic acid (mRNA)concentrations indexing thyroid hormone homeostasis (Hairless, mu-crystallin, Type II deiodinase, solute carrier family member 1c1, and solute carrier family member 16a2) and neurodevelopment (neurogranin, Parvalbumin, and Krüppel-like factor 9) were quantified. To assess the effect of iron repletion, DFO was removed at 14DIV from a subset of DFO-treated cultures, and gene expression and adenosine 5'-triphosphate (ATP) concentrations were quantified at 21DIV. RESULTS At 11DIV and 18DIV, neuronal iron deficiency decreased neurogranin, Parvalbumin, and mu-crystallin, and by 18DIV, solute carrier family member 16a2, solute carrier family member 1c1, Type II deiodinase, and Hairless were increased, suggesting cellular sensing of a functionally abnormal thyroid hormone state. Dimensionality reduction with Principal component analysis reveals that thyroid hormone homeostatic genes strongly correlate with and predict iron status. Iron repletion from 14-21DIV did not restore ATP concentration, and Principal component analysis suggests that, after iron repletion, cultures maintain a gene expression signature indicative of previous iron deficiency. CONCLUSIONS These novel findings suggest there is an intracellular mechanism coordinating cellular iron/thyroid hormone activities. We speculate this is a part of the homeostatic response to acutely match neuronal energy production and growth signaling. However, the adaptation to iron deficiency may cause permanent deficits in thyroid hormone-dependent neurodevelopmental processes even after recovery from iron deficiency.
Collapse
Affiliation(s)
- Timothy R Monko
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Emma H Tripp
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sierra E Burr
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Karina N Gunderson
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Lorene M Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Michael K Georgieff
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Thomas W Bastian
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
3
|
Abulseoud OA, Yehia A, Egol CJ, Nettey VN, Aly M, Qu Y, Skolnik AB, Grill MF, Sen A, Schneekloth TD. Attenuated initial serum ferritin concentration in critically ill coronavirus disease 2019 geriatric patients with comorbid psychiatric conditions. Front Psychiatry 2022; 13:1035986. [PMID: 36440432 PMCID: PMC9681793 DOI: 10.3389/fpsyt.2022.1035986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
We examined the effects of psychiatric comorbidity, sex, and ICU admission on serum ferritin concentration in 628 elderly patients (79.7 ± 8.5 years) with positive SARS-CoV-2 PCR test. Hospitalization was required in 96% of patients and 17% required ICU admission. Patients with COVID-19 and psychiatric comorbidities (n = 212) compared to patients without psychiatric comorbidities (n = 416) had significantly lower ferritin concentration (570.4 ± 900.1 vs. 744.1 ± 965, P = 0.029), a greater incidence of delirium (22.6 vs. 14.4%, P = 0.013) and higher mortality (35.3 vs. 27.6%, P = 0.015). Furthermore, we found significant effects for sex (P = 0.002) and ICU admission (P = 0.007). Among patients without comorbid psychiatric conditions, males had significantly higher ferritin compared to females (1,098.3 ± 78.4 vs. 651.5 ± 94.4, P < 0.001). ICU patients without comorbid psychiatric conditions had significantly higher serum ferritin compared to ICU patients with comorbid psychiatric conditions: (1,126.6 ± 110.7 vs. 668.6 ± 156.5, P < 0.001). Our results suggest that the presence of comorbid psychiatric conditions in elderly patients with COVID-19 is associated with higher rates of delirium and mortality and lower ferritin levels during severe illness. Whether high serum ferritin is protective during severe infection requires further investigation.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Collaborative Research Building (CRB), Scottsdale, AZ, United States
| | - Asmaa Yehia
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Claudine J. Egol
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Victor N. Nettey
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Mohamed Aly
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Yihuai Qu
- Alix School of Medicine at Mayo Clinic, Phoenix, AZ, United States
| | - Aaron B. Skolnik
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Marie F. Grill
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Ayan Sen
- Department of Critical Care, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Terry D. Schneekloth
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
4
|
R V, Dhiman P, Kollipaka R, P S, V H. Association of Hypothyroidism With Low Serum Ferritin Levels and Iron-Deficiency Anemia During the First Trimester of Pregnancy. Cureus 2022; 14:e28307. [PMID: 36158423 PMCID: PMC9498961 DOI: 10.7759/cureus.28307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/05/2022] Open
|
5
|
Yang LA, Wang J, Toufeeq S, Zhu LB, Zhang SZ, You LL, Hu P, Yu HZ, Zhao K, Xu X, Xu JP. Identification of FerLCH, isolation of ferritin and functional analysis related to interaction with pathogens in Eri-silkworm, Samia cynthia ricini. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21659. [PMID: 31976584 DOI: 10.1002/arch.21659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Ferritin is a ubiquitous and conserved iron storage protein that plays a significant role in host detoxification, iron storage, and immune response. Although ferritin has been studied in many species, little is known about its role in the Eri-silkworm (Samia cynthia ricini). In this study, the ferritin light-chain subunit gene, named ScFerLCH, was identified from S. c. ricini. The full-length gene, ScFerLCH, was 1,155 bp and encoded a protein consisting of 231 amino acids with a deduced molecular weight of 26.38 kDa. Higher ScFerLCH expression levels were found in the midgut, silk gland, and fat body by quantitative reverse-transcription polymerase chain reaction and western blot analysis. Injection of Staphylococcus aureus and Pseudomonas aeruginosa could induce upregulation of ScFerLCH in the hemolymph, fat body, and midgut, indicating that ScFerLCH may contribute to the host defense against invading pathogens. In addition, the native ferritin protein was isolated from S. c. ricini by native polyacrylamide gel electrophoresis and its two subunits, ferritin heavy-chain subunit (ScFerHCH) and ferritin light-chain subunit (ScFerLCH), were identified by mass spectrometry. Specifically, we found that recombinant ferritin subunits could self-assemble into a protein complex in vitro; moreover, both recombinant subunits and the protein complex were found to bind different bacteria, including Escherichia coli, P. aeruginosa, S. aureus, and Bacillus subtilis. However, bactericidal tests showed that the protein complex could not inhibit the growth of bacteria directly. Taken together, our results suggest that ScFerritin might play an important role in mediating molecular interaction with pathogens.
Collapse
Affiliation(s)
- Li-Ang Yang
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jie Wang
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shahzad Toufeeq
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Lin-Bao Zhu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shang-Zhi Zhang
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ling-Ling You
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Pei Hu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Hai-Zhong Yu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Kang Zhao
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xin Xu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- Department of Science and Technology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Fund Committee of China, Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
6
|
Yu HZ, Zhang SZ, Ma Y, Fei DQ, Li B, Yang LA, Wang J, Li Z, Muhammad A, Xu JP. Molecular Characterization and Functional Analysis of a Ferritin Heavy Chain Subunit from the Eri-Silkworm, Samia cynthia ricini. Int J Mol Sci 2017; 18:ijms18102126. [PMID: 29036914 PMCID: PMC5666808 DOI: 10.3390/ijms18102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Ferritins are conserved iron-binding proteins that are primarily involved in iron storage, detoxification and the immune response. Despite the importance of ferritin in organisms, little is known about their roles in the eri-silkworm (Samia cynthia ricini). We previously identified a ferritin heavy chain subunit named ScFerHCH in the S. c. ricini transcriptome database. The full-length S. c. ricini ferritin heavy chain subunit (ScFerHCH) was 1863 bp and encoded a protein of 231 amino acids with a deduced molecular weight of 25.89 kDa. Phylogenetic analysis revealed that ScFerHCH shared a high amino acid identity with the Bombyx mori and Danaus plexippus heavy chain subunits. Higher ScFerHCH expression levels were found in the silk gland, fat body and midgut of S. c. ricini by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Injection of Staphylococcus aureus and Pseudomonas aeruginosa was associated with an upregulation of ScFerHCH in the midgut, fat body and hemolymph, indicating that ScFerHCH may contribute to the host’s defense against invading pathogens. In addition, the anti-oxidation activity and iron-binding capacity of recombinant ScFerHCH protein were examined. Taken together, our results suggest that the ferritin heavy chain subunit from eri-silkworm may play critical roles not only in innate immune defense, but also in organismic iron homeostasis.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Azharuddin Muhammad
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
He J, Jiang J, Gu L, Zhao M, Wang R, Ye L, Yao T, Wang J. Identification and involvement of ferritin in the response to pathogen challenge in the abalone, Haliotis diversicolor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:23-32. [PMID: 26875633 DOI: 10.1016/j.dci.2016.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Accumulating data has demonstrated that ferritin plays an important role in host defense responses against infection by pathogens in many organisms. In this study, ultracentrifugation was used to isolate ferritin from abalone, Haliotis diversicolor, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that this ferritin consisted of two subunits (designated as HdFer1 and HdFer2). There are no disulfide bonds between the HdFer1 and HdFer2 subunits; however, these subunits co-assemble to form heteropolymers. A novel ferritin subunit (HdFer2) was cloned from H. diversicolor by 5' and 3' RACE (rapid amplification of cDNA ends) approach. The full-length HdFer2 cDNA sequence consists of 878 bp with an open reading frame of 513 bp that encodes a protein that is 170 amino acids in length. Quantitative real-time PCR analysis revealed that HdFer1 and HdFer2 were transcribed in various tissues, such as the mantle, gill and hepatopancreas, with the highest levels of expression in the hepatopancreas. Following a challenge with the pathogen, Vibrio harveyi, the expression of HdFer1 and HdFer2 were markedly induced at different times. This study has identified a novel ferritin subunit in H. diversicolor which will contribute to further exploration of the role of ferritin in mollusk innate immune defense against invading pathogens.
Collapse
Affiliation(s)
- Jian He
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jingzhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lu Gu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Manman Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Ruixuan Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lingtong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jiangyong Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
8
|
Ye T, Wu X, Wu W, Dai C, Yuan J. Ferritin protect shrimp Litopenaeus vannamei from WSSV infection by inhibiting virus replication. FISH & SHELLFISH IMMUNOLOGY 2015; 42:138-143. [PMID: 25449379 DOI: 10.1016/j.fsi.2014.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/20/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Iron is considered as an essential element for all living organisms. Therefore, limiting iron availability may be key part of the host's innate immune response to various pathogens. Ferritin is a major iron storage protein in living cells and plays an important role in iron homeostasis. One way the host can transiently reduce iron bioavailability is by ferritin over expression. In invertebrates, ferritin was found to be up-regulated after pathogens challenge and is considered to be an important element in the innate immune system. This study was designed to investigate the involvement of ferritin in shrimp Litopenaeus vannamei defense against WSSV. We discovered that the viral load of shrimp injected with recombinant ferritin protein was lower than that of control group. The suppression of ferritin by dsRNA increased susceptibility to WSSV with 3-fold high viral copies. The present study documented that ferritin protected shrimp L. vannamei from WSSV by inhibiting virus replication. We presume that ferritin reduce iron availability, leading to inhibit the activity of ribonucleotide reductase and delay the replication of virus genome. This study provided new insights into the understanding of molecular responses and defense mechanisms in shrimp against WSSV.
Collapse
Affiliation(s)
- Ting Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoting Wu
- Food Science College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenlin Wu
- Department of Biology, Quanzhou Normal University, Quanzhou 362000, China.
| | - Congjie Dai
- Department of Biology, Quanzhou Normal University, Quanzhou 362000, China
| | - Jianjun Yuan
- Department of Biology, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
9
|
Nayak S, Ramaiah N, Meena RM, Sreepada RA. Full-length cloning and phylogenetic analyses of translationally controlled tumour protein and ferritin genes from the Indian white prawn, Fenneropenaeus indicus (H. Milne Edwards). JOURNAL OF FISH DISEASES 2014; 37:77-87. [PMID: 24329985 DOI: 10.1111/jfd.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/08/2011] [Accepted: 12/11/2011] [Indexed: 06/03/2023]
Abstract
Elucidation, through molecular analyses, of bacterial afflictions in commercially important aquaculture-reared shrimps is pivotal for the prevention and/or control of disease outbreaks. In this study, we examined the phylogenetic relatedness and compared the possible immune-related functional roles of both translationally controlled tumour protein (TCTP) and ferritin genes with previous studies. Both TCTP and ferritin genes were substantially upregulated in the Indian white prawn, Fenneropenaeus indicus (H. Milne Edwards), post-larvae following bath challenge with the virulent strain of bacteria, Vibrio harveyi D3. Full-length cloning of these genes by rapid amplification of complementary DNA ends -polymerase chain reaction (RACE-PCR) yielded 727-base pair (bp)-long TCTP and 1212-bp-long ferritin gene sequences. Their open reading frames (ORFs) were 507 and 510 bp, respectively. The TCTP-ORF coded for 168 amino acids with three substitutions at positions 37, 141, 155, and the ferritin ORF coded for 170 amino acids with no species-specific substitutions. Phylogenetic analysis suggested the closest relatedness of both TCTP and ferritin from F. indicus to Chinese white prawn, Fenneropenaeus chinensis (Osbeck). In addition to reporting the full-length sequences of these immune-relevant genes, this study highlighted their conserved natures, which perhaps make them important defence-related proteins in the innate immune system of F. indicus.
Collapse
Affiliation(s)
- S Nayak
- Biological Oceanography Division, National Institute of Oceanography, Council of Scientific and Industrial Research, Goa, India
| | | | | | | |
Collapse
|
10
|
Zhu B, Huang L, Huang HQ. Cloning analysis of ferritin and the cisplatin-subunit for cancer cell apoptosis in Aplysia juliana hepatopancreas. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:95-103. [PMID: 22579997 DOI: 10.1016/j.cbpc.2012.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/03/2012] [Accepted: 04/25/2012] [Indexed: 11/27/2022]
Abstract
Ferritin, an iron storage protein, plays a key role in iron metabolism in vivo. Here, we have cloned an inducible ferritin cDNA with 519 bp within the open reading frame fragment from the hepatopancreas of Aplysia juliana (AJ). The subunit sequence of the ferritin was predicted to be a polypeptide of 172 amino acids with a molecular mass of 19.8291kDa and an isoelectric point of 5.01. The cDNA sequence of hepatopancreas ferritin in AJ was constructed into a pET-32a system for expressing its relative protein efficiently in E. coli strain BL21, under isopropyl-β-d-thiogalactoside induction. The recombinant ferritin, which was further purified on a Ni-NTA resin column and digested with enterokinase, was detected as a single subunit of approximately 20 kDa mass using both SDS-PAGE and mass spectrometry. The secondary structure and phosphorylation sites of the deduced amino acids were predicted using both ExPASy proteomic tools and the NetPhos 2.0 server, and the subunit space structure of the recombinant AJ ferritin (rAjFer) was built using a molecular operating environment software system. The result of in-gel digestion and identification using MALDI-TOF MS/MS showed that the recombinant protein was AjFer. ICP-MS results indicated that the rAjFer subunit could directly bind to cisplatin[cis-Diaminedichloroplatinum(CDDP)], giving approximately 17.6 CDDP/ferritin subunits and forming a novel CDDP-subunit. This suggests that a nanometer CDDP core-ferritin was constructed, which could be developed as a new anti-cancer drug. The flow cytometry results indicated that CDDP-rAjFer could induce Hela cell apoptosis. Results of the real-time PCR and Western blotting showed that the expression of AjFer mRNA was up-regulated in AJ under Cd(2+) stress. The recombinant AjFer protein should prove to be useful for further study of the structure and function of ferritin in Aplysia.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antineoplastic Agents/pharmacology
- Aplysia/drug effects
- Aplysia/genetics
- Aplysia/metabolism
- Apoptosis
- Base Sequence
- Cadmium/pharmacology
- Cell Proliferation/drug effects
- Cisplatin/metabolism
- Cisplatin/pharmacology
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Drug Screening Assays, Antitumor
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Ferritins/classification
- Ferritins/genetics
- Ferritins/metabolism
- Ferritins/pharmacology
- Flow Cytometry
- Gene Expression Regulation
- HeLa Cells
- Hepatopancreas/drug effects
- Hepatopancreas/metabolism
- Humans
- Isoelectric Point
- Isopropyl Thiogalactoside/metabolism
- Molecular Sequence Data
- Molecular Weight
- Open Reading Frames
- Phosphorylation
- Phylogeny
- Protein Binding
- Protein Structure, Secondary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Bo Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, China
| | | | | |
Collapse
|
11
|
Bai Z, Yuan Y, Yue G, Li J. Molecular cloning and copy number variation of a ferritin subunit (Fth1) and its association with growth in freshwater pearl mussel Hyriopsis cumingii. PLoS One 2011; 6:e22886. [PMID: 21818403 PMCID: PMC3144951 DOI: 10.1371/journal.pone.0022886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022] Open
Abstract
Iron is one of the most important minor elements in the shells of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell growth. A novel ferritin subunit (Fth1) cDNA from the freshwater pearl mussel (Hyriopsis cumingii) was isolated and characterized. The complete cDNA contained 822 bp, with an open reading frame (ORF) of 525 bp, a 153 bp 5′ untranslated region (UTR) and a 144 bp 3′ UTR. The complete genomic DNA was 4125 bp, containing four exons and three introns. The ORF encoded a protein of 174 amino acids without a signal sequence. The deduced ferritin contained a highly conserved motif for the ferroxidase center comprising seven residues of a typical vertebrate heavy-chain ferritin. It contained one conserved iron associated residue (Try27) and iron-binding region signature 1 residues. The mRNA contained a 27 bp iron-responsive element with a typical stem-loop structure in the 5′-UTR position. Copy number variants (CNVs) of Fth1 in two populations (PY and JH) were detected using quantitative real-time PCR. Associations between CNVs and growth were also analyzed. The results showed that the copy number of the ferritin gene of in the diploid genome ranged from two to 12 in PY, and from two to six in JH. The copy number variation in PY was higher than that in JH. In terms of shell length, mussels with four copies of the ferritin gene grew faster than those with three copies (P<0.05), suggesting that CNVs in the ferritin gene are associated with growth in shell length and might be a useful molecular marker in selective breeding of H. cumingii.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yiming Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Genhua Yue
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai Ocean University, Shanghai, China
- E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai, China
- * E-mail:
| |
Collapse
|
12
|
Bastian TW, Prohaska JR, Georgieff MK, Anderson GW. Perinatal iron and copper deficiencies alter neonatal rat circulating and brain thyroid hormone concentrations. Endocrinology 2010; 151:4055-65. [PMID: 20573724 PMCID: PMC2940517 DOI: 10.1210/en.2010-0252] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Copper (Cu), iron (Fe), and iodine/thyroid hormone (TH) deficiencies lead to similar defects in late brain development, suggesting that these micronutrient deficiencies share a common mechanism contributing to the observed derangements. Previous studies in rodents (postweanling and adult) and humans (adolescent and adult) indicate that Cu and Fe deficiencies affect the hypothalamic-pituitary-thyroid axis, leading to altered TH status. Importantly, however, relationships between Fe and Cu deficiencies and thyroidal status have not been assessed in the most vulnerable population, the developing fetus/neonate. We hypothesized that Cu and Fe deficiencies reduce circulating and brain TH levels during development, contributing to the defects in brain development associated with these deficiencies. To test this hypothesis, pregnant rat dams were rendered Cu deficient (CuD), FeD, or TH deficient from early gestation through weaning. Serum thyroxine (T(4)) and triiodothyronine (T(3)), and brain T(3) levels, were subsequently measured in postnatal d 12 (P12) pups. Cu deficiency reduced serum total T(3) by 48%, serum total T(4) by 21%, and whole-brain T(3) by 10% at P12. Fe deficiency reduced serum total T(3) by 43%, serum total T(4) by 67%, and whole-brain T(3) by 25% at P12. Brain mRNA analysis revealed that expression of several TH-responsive genes were altered in CuD or FeD neonates, suggesting that reduced TH concentrations were sensed by the FeD and CuD neonatal brain. These results indicate that at least some of the brain defects associated with neonatal Fe and Cu deficiencies are mediated through reductions in circulating and brain TH levels.
Collapse
Affiliation(s)
- Thomas W Bastian
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | | | | | | |
Collapse
|
13
|
Ruan YH, Kuo CM, Lo CF, Lee MH, Lian JL, Hsieh SL. Ferritin administration effectively enhances immunity, physiological responses, and survival of Pacific white shrimp (Litopenaeus vannamei) challenged with white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2010; 28:542-548. [PMID: 20045064 DOI: 10.1016/j.fsi.2009.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/03/2009] [Accepted: 12/10/2009] [Indexed: 05/28/2023]
Abstract
We examined the physiological (hemolymph glucose, lactate, and lipid) and innate non-specific immune responses (total hemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (release of superoxide anion, O(2)(-)) and superoxide dismutase (SOD) activity) to white spot syndrome virus (WSSV) in white shrimp (Litopenaeus vannamei) that were individually injected with 0.1, 0.5, and 1 ng g(-1) ferritin. Results showed that the THC, PO activity, and respiratory bursts of L. vannamei obviously increased (p < 0.05) 12 h after being injected with any dose of ferritin. However, the THC, PO activity, and respiratory bursts of L. vannamei that had received 0.5 and 1 ng g(-1) ferritin were significant higher than those of the other groups at 36-60, 60-72, and 36-60 h, respectively. SOD activities of L. vannamei 12 h after receiving 0.1, 0.5, and 1 ng g(-1) ferritin were significantly higher than those receiving saline. L. vannamei injected with ferritin at any dose maintained lower glucose, lactate, and lipid levels in response to WSSV challenge after 12-36, 24-48, and 36-60 h, respectively. The survival of shrimp that had received 0.5 and 1 ng g(-1) ferritin was significantly higher than that of shrimp that received saline and of control shrimp after 72 h. The ferritin messenger RNA transcripts of shrimp that had received 0.5 and 1 ng g(-1) ferritin were significantly higher than that of shrimp that received saline after 36 h. It was, therefore, concluded that the immune ability and resistance against WSSV infection increased in L. vannamei that had received > 0.5 ng g(-1) ferritin. Ferritin does play important roles in the innate immunity of the white shrimp. We observed higher SOD activities of L. vannamei that had received 0.1, 0.5, and 1 ng ferritin after 12 h than those that had received only saline (control), and the high SOD expression remained at the same levels even after 72 h of treatment.
Collapse
Affiliation(s)
- Yuan-Hwa Ruan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan 262, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Cloning, characterization and expression of ferritin subunit from clam Meretrix meretrix in different larval stages. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:12-6. [DOI: 10.1016/j.cbpb.2009.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/07/2009] [Accepted: 04/25/2009] [Indexed: 11/18/2022]
|
15
|
Ke Y, Qian ZM. Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 2007; 83:149-73. [PMID: 17870230 DOI: 10.1016/j.pneurobio.2007.07.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/10/2007] [Accepted: 07/26/2007] [Indexed: 01/09/2023]
Abstract
New findings obtained during the past years, especially the discovery of mutations in the genes associated with brain iron metabolism, have provided key insights into the homeostatic mechanisms of brain iron metabolism and the pathological mechanisms responsible for neurodegenerative diseases. The accumulated evidence demonstrates that misregulation in brain iron metabolism is one of the initial causes for neuronal death in some neurodegenerative disorders. The errors in brain iron metabolism found in these disorders have a multifactorial pathogenesis, including genetic and nongenetic factors. The disturbances of iron metabolism might occur at multiple levels, including iron uptake and release, storage, intracellular metabolism and regulation. It is the increased brain iron that triggers a cascade of deleterious events, leading to neuronal death in these diseases. In the article, the recent advances in studies on neurochemistry and neuropathophysiology of brain iron metabolism were reviewed.
Collapse
Affiliation(s)
- Ya Ke
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, NT, Hong Kong
| | | |
Collapse
|
16
|
Gambling L, Andersen HS, Czopek A, Wojciak R, Krejpcio Z, McArdle HJ. Effect of timing of iron supplementation on maternal and neonatal growth and iron status of iron-deficient pregnant rats. J Physiol 2004; 561:195-203. [PMID: 15358806 PMCID: PMC1665338 DOI: 10.1113/jphysiol.2004.068825] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 09/08/2004] [Indexed: 01/03/2023] Open
Abstract
We have previously shown that maternal iron (Fe) deficiency not only reduces fetal size, but also increases blood pressure in the offspring when they are adults. In this paper we examine whether there are critical periods when supplementation reverses or fails to reverse the effect both on size and on expression of genes of Fe metabolism. We made dams Fe deficient, mated them and provided supplements of Fe in the diet from the beginning of gestation (0.5 days), from 7.5 days or from 14.5 days. Within 12 h of birth, dams and neonates were killed and tissues taken and examined. Fe deficiency throughout pregnancy reduces neonatal size. Supplementation from the beginning of the first, second or third week all reduced the effect. Maternal haematocrit was restored to normal levels only in animals given supplements for at least 2 weeks. In contrast, the neonates' Fe levels were normal in all supplemented groups. These results were mirrored in liver Fe levels and in transferrin receptor mRNA. Iron-responsive element (IRE)-regulated divalent metal transporter 1 (DMT1) increased in maternal and neonatal liver. Non-IRE-regulated DMT1 levels did not change in the maternal liver, but decreased in the neonatal liver. H and L ferritin mRNA levels also showed different patterns in the mother and her offspring. Finally, the neonatal size correlated with maternal Fe stores, and not with those of the fetus. The data demonstrate that Fe supplementation during pregnancy is most effective when given early, rather than later, in gestation.
Collapse
Affiliation(s)
- L Gambling
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | | | | | | | | | | |
Collapse
|
17
|
Levenson CW, Tassabehji NM. Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev 2004; 3:251-63. [PMID: 15231236 DOI: 10.1016/j.arr.2004.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 03/29/2004] [Indexed: 01/21/2023]
Abstract
While there have been significant advances made in our understanding of the cellular and molecular mechanisms that regulate iron absorption, transport, storage, and utilization, the effect of ageing on these mechanisms and the role of iron in the ageing process is not fully understood. Thus, this review will provide an overview of the iron regulatory mechanisms that may be a factor in the ageing process. Additional reviews in this volume represent an attempt to explore the very latest information on the regulation of iron with a particular emphasis on age-related pathology including mitochondrial function, Parkinson's disease, Alzheimer's disease, stroke, and cardiovascular disease.
Collapse
Affiliation(s)
- Cathy W Levenson
- Program in Neuroscience and Department of Nutrition, Food and Exercise Sciences, 237 Biomedical Research Facility, Florida State University, Tallahassee, FL 32306-4340, USA.
| | | |
Collapse
|
18
|
VanLandingham JW, Levenson CW. Effect of retinoic acid on ferritin H expression during brain development and neuronal differentiation. Nutr Neurosci 2003; 6:39-45. [PMID: 12608735 DOI: 10.1080/1028415021000056041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously shown that brain ferritin H expression, which has been associated with iron utilization, is developmentally regulated. Because retinoic acid (RA) regulates gene expression and is involved in cellular differentiation, we tested the hypothesis that RA regulates ferritin H during brain development and neuronal differentiation. RA, administered to rats on postnatal day 1, produced a 4-fold increase in brain ferritin H mRNA (p < 0.01) after 24 h. To examine whether RA-stimulated neuronal differentiation contributed to this up-regulation, ferritin and ferritin H mRNA were measured in human neuronal precursor cells (NTera-2, NT2) before and after 4-weeks of RA-stimulated differentiation into post-mitotic neurons. Differentiation resulted in a 2-fold increase in both ferritin and ferritin H mRNA (p < 0.05). Immunocytochemistry and Northern analysis showed significant elevations in ferritin expression that began as early as 24 h after RA treatment. While there was also a significant increase in the labile iron pool after RA treatment, this did not occur until 72 h. These data show that RA regulates ferritin H expression during rat brain development and neuronal differentiation and suggests a new role for RA in brain iron metabolism.
Collapse
Affiliation(s)
- Jacob W VanLandingham
- Program in Neuroscience and Department of Nutrition, Food and Exercise Sciences, Florida State University, 237 Biomedical Research Facility, Tallahassee, FL 32306-4340, USA
| | | |
Collapse
|