1
|
Ishiyama M, Gotoh H, Oe S, Nomura T, Kitada M, Ono K. Glycogenolysis-Induced Astrocytic Serping1 Expression Regulates Neuroinflammatory Effects on Hippocampal neuron. Mol Neurobiol 2024:10.1007/s12035-024-04345-8. [PMID: 38985256 DOI: 10.1007/s12035-024-04345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The bacterial pathogen, lipopolysaccharide (LPS), elicits microglial response and induces cytokine secretion that subsequently activates astrocytes. Recent findings have indicated that LPS-induced activation of postnatal glial cells has led to alterations in synapse formation in hippocampal and cortical neurons, thereby resulting in a prolonged increased risk for seizure or depression. Nevertheless, its mechanisms remain to be fully elucidated. Cellular metabolism has recently gained recognition as a critical regulatory mechanism for the activation of peripheral immune cells, as it supplies the requisite energy and metabolite for their activation. In the present study, we report that LPS did not change the expression of reported astrocyte-derived synaptogenic genes in the postnatal hippocampus; however, it induced upregulation of astrocytic complement component regulator Serping1 within the postnatal hippocampus. As a regulatory mechanism, activation of glycogen degradation (glycogenolysis) governs the expression of a subset of inflammatory-responsive genes including Serping1 through reactive oxygen species (ROS)-NF-κB axis. Our study further demonstrated that glycogenolysis is implicated in neurotoxic phenotypes of astrocytes, such as impaired neuronal synaptogenesis or cellular toxicity. These findings suggested that activation of glycogenolysis in postnatal astrocytes is an essential metabolic pathway for inducing responses in inflammatory astrocytes.
Collapse
Affiliation(s)
- Masahito Ishiyama
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Building, 1-5 Shimogamo Hanki-Cho, Sakyo-Ku, Kyoto City, 606-0823, Japan
| | - Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Building, 1-5 Shimogamo Hanki-Cho, Sakyo-Ku, Kyoto City, 606-0823, Japan.
| | - Souichi Oe
- Department of Anatomy, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan
| | - Tadashi Nomura
- Applied Biology, Kyoto Institute of Technology, 1-5 Matsugasaki Hashikami-Cho, Sakyo-Ku, Kyoto City, 606-8585, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, 2-5-1 Shinmachi, Hirakata City, Osaka, 573-1010, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Building, 1-5 Shimogamo Hanki-Cho, Sakyo-Ku, Kyoto City, 606-0823, Japan
| |
Collapse
|
2
|
Jong Huat T, Camats-Perna J, Newcombe EA, Onraet T, Campbell D, Sucic JT, Martini A, Forner S, Mirzaei M, Poon W, LaFerla FM, Medeiros R. The impact of astrocytic NF-κB on healthy and Alzheimer's disease brains. Sci Rep 2024; 14:14305. [PMID: 38906984 PMCID: PMC11192733 DOI: 10.1038/s41598-024-65248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
Astrocytes play a role in healthy cognitive function and Alzheimer's disease (AD). The transcriptional factor nuclear factor-κB (NF-κB) drives astrocyte diversity, but the mechanisms are not fully understood. By combining studies in human brains and animal models and selectively manipulating NF-κB function in astrocytes, we deepened the understanding of the role of astrocytic NF-κB in brain health and AD. In silico analysis of bulk and cell-specific transcriptomic data revealed the association of NF-κB and astrocytes in AD. Confocal studies validated the higher level of p50 NF-κB and phosphorylated-p65 NF-κB in glial fibrillary acidic protein (GFAP)+-astrocytes in AD versus non-AD subjects. In the healthy mouse brain, chronic activation of astrocytic NF-κB disturbed the proteomic milieu, causing a loss of mitochondrial-associated proteins and the rise of inflammatory-related proteins. Sustained NF-κB signaling also led to microglial reactivity, production of pro-inflammatory mediators, and buildup of senescence-related protein p16INK4A in neurons. However, in an AD mouse model, NF-κB inhibition accelerated β-amyloid and tau accumulation. Molecular biology studies revealed that astrocytic NF-κB activation drives the increase in GFAP and inflammatory proteins and aquaporin-4, a glymphatic system protein that assists in mitigating AD. Our investigation uncovered fundamental mechanisms by which NF-κB enables astrocytes' neuroprotective and neurotoxic responses in the brain.
Collapse
Affiliation(s)
- Tee Jong Huat
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Judith Camats-Perna
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Estella A Newcombe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Josiah T Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Alessandra Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Stefânia Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Mehdi Mirzaei
- Clinical Medicine Department, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Wayne Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Rodrigo Medeiros
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA.
| |
Collapse
|
3
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
4
|
Rodríguez J, De Santis Arévalo J, Dennis VA, Rodríguez AM, Giambartolomei GH. Bystander activation of microglia by Brucella abortus-infected astrocytes induces neuronal death via IL-6 trans-signaling. Front Immunol 2024; 14:1343503. [PMID: 38322014 PMCID: PMC10844513 DOI: 10.3389/fimmu.2023.1343503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024] Open
Abstract
Inflammation plays a key role in the pathogenesis of neurobrucellosis where glial cell interactions are at the root of this pathological condition. In this study, we present evidence indicating that soluble factors secreted by Brucella abortus-infected astrocytes activate microglia to induce neuronal death. Culture supernatants (SN) from B. abortus-infected astrocytes induce the release of pro-inflammatory mediators and the increase of the microglial phagocytic capacity, which are two key features in the execution of live neurons by primary phagocytosis, a recently described mechanism whereby B. abortus-activated microglia kills neurons by phagocytosing them. IL-6 neutralization completely abrogates neuronal loss. IL-6 is solely involved in increasing the phagocytic capacity of activated microglia as induced by SN from B. abortus-infected astrocytes and does not participate in their inflammatory activation. Both autocrine microglia-derived and paracrine astrocyte-secreted IL-6 endow microglial cells with up-regulated phagocytic capacity that allows them to phagocytose neurons. Blocking of IL-6 signaling by soluble gp130 abrogates microglial phagocytosis and concomitant neuronal death, indicating that IL-6 activates microglia via trans-signaling. Altogether, these results demonstrate that soluble factors secreted by B. abortus-infected astrocytes activate microglia to induce, via IL-6 trans-signaling, the death of neurons. IL-6 signaling inhibition may thus be considered a strategy to control inflammation and CNS damage in neurobrucellosis.
Collapse
Affiliation(s)
- Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia De Santis Arévalo
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vida A Dennis
- Center for NanoBiotechnology Research and Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Ana M Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Nagata S, Yamasaki R, Takase EO, Iida K, Watanabe M, Masaki K, Wijering MHC, Yamaguchi H, Kira JI, Isobe N. Iguratimod Ameliorates the Severity of Secondary Progressive Multiple Sclerosis in Model Mice by Directly Inhibiting IL-6 Production and Th17 Cell Migration via Mitigation of Glial Inflammation. BIOLOGY 2023; 12:1217. [PMID: 37759616 PMCID: PMC10525689 DOI: 10.3390/biology12091217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
We previously reported a novel secondary progressive multiple sclerosis (SPMS) model, progressive experimental autoimmune encephalomyelitis (pEAE), in oligodendroglia-specific Cx47-inducible conditional knockout (Cx47 icKO) mice. Based on our prior study showing the efficacy of iguratimod (IGU), an antirheumatic drug, for acute EAE treatment, we aimed to elucidate the effect of IGU on the SPMS animal model. We induced pEAE by immunizing Cx47 icKO mice with myelin oligodendrocyte glycoprotein peptide 35-55. IGU was orally administered from 17 to 50 days post-immunization. We also prepared a primary mixed glial cell culture and measured cytokine levels in the culture supernatant after stimulation with designated cytokines (IL-1α, C1q, TNF-α) and lipopolysaccharide. A migration assay was performed to evaluate the effect of IGU on the migration ability of T cells toward mixed glial cell cultures. IGU treatment ameliorated the clinical signs of pEAE, decreased the demyelinated area, and attenuated glial inflammation on immunohistochemical analysis. Additionally, IGU decreased the intrathecal IL-6 level and infiltrating Th17 cells. The migration assay revealed reduced Th17 cell migration and IL-6 levels in the culture supernatant after IGU treatment. Collectively, IGU successfully mitigated the clinical signs of pEAE by suppressing Th17 migration through inhibition of IL-6 production by proinflammatory-activated glial cells.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ezgi Ozdemir Takase
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kotaro Iida
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Marion Heleen Cathérine Wijering
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen (UMCG), MS Center Noord Nederland, 9713 AV Groningen, The Netherlands
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- School of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka 811-0213, Japan
| | - Jun-ichi Kira
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, Fukuoka 810-0022, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Varma M, Kaur A, Bhandari R, Kumar A, Kuhad A. Major depressive disorder (mdd): emerging immune targets at preclinical level. Expert Opin Ther Targets 2023; 27:479-501. [PMID: 37334668 DOI: 10.1080/14728222.2023.2225216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Major depressive disorder is a mental health disorder that is characterized by a persistently low mood and loss of interest. MDD is affecting over 3.8% of the global population as a major health problem. Its etiology is complex, and involves the interaction between a number of factors, including genetic predisposition and the presence of environmental stresses. AREAS COVERED The role of the immune and inflammatory systems in depression has been gaining interest, with evidence suggesting the potential involvement of pro-inflammatory molecules like TNF, interleukins, prostaglandins, and other cytokines, among others, has been put forth. Along with this, the potential of agents, from NSAIDs to antibiotics, are being evaluated in therapy for depression. The current review will discuss emerging immune targets at the preclinical level. EXPERT OPINION With increasing evidence to show that immune and inflammatory mediators are implicated in MDD, increasing research toward their potential as drug targets is encouraged. At the same time, agents acting on these mediators and possessing anti-inflammatory potential are also being evaluated as future therapeutic options for MDD, and increasing focus toward non-conventional drugs which can act through these mechanisms is important as regards the future prospects of the use of anti-inflammatory agents in depression.
Collapse
Affiliation(s)
- Manasi Varma
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Arshpreet Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ranjana Bhandari
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ashwani Kumar
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Anurag Kuhad
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| |
Collapse
|
7
|
Alvez FL, Bona NP, Pedra NS, da Silva DS, Cunico WJ, Stefanello FM, de Andrade CM, Soares MSP, Spanevello RM. Effect of Thiazolidin-4-one Against Lipopolysaccharide-Induced Oxidative Damage, and Alterations in Adenine Nucleotide Hydrolysis and Acetylcholinesterase Activity in Cultured Astrocytes. Cell Mol Neurobiol 2023; 43:283-297. [PMID: 35031909 DOI: 10.1007/s10571-021-01177-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/28/2021] [Indexed: 01/07/2023]
Abstract
Astrocytes play multiple important roles in brain physiology. However, depending on the stimuli, astrocytes may exacerbate inflammatory reactions, contributing to the development and progression of neurological diseases. Therefore, therapies targeting astrocytes represent a promising area for the development of new brain drugs. Thiazolidinones are heterocyclic compounds that have a sulfur and nitrogen atom and a carbonyl group in the ring and represent a class of compounds of great scientific interest due to their pharmacological properties. The aim of this study was to investigate the effect of 3-(3-(diethylamino)propyl)-2-(4-(methylthio)phenyl)thiazolidin-4-one (DS27) on cell proliferation and morphology, oxidative stress parameters, activity of the enzymes ectonucleotidases and acetylcholinesterase (AChE) and interleukin 6 (IL-6) levels in primary astrocyte cultures treated with lipopolysaccharide (LPS), to model neuroinflammation. The astrocyte culture was exposed to LPS (10 μg/ml) for 3 h and subsequently treated with compound DS27 for 24 and 48 h (concentrations ranging to 10-100 μM). LPS induced an increase in astrocyte proliferation, AChE activity, IL-6 levels, oxidative damage, ATP and ADP and a reduction in AMP hydrolysis in rat primary astrocyte cultures. DS27 treatment was effective in reversing these alterations induced by LPS. Our findings demonstrated that DS27 is able to modulate cholinergic and purinergic signaling, redox status, and the levels of pro-inflammatory cytokines in LPS-induced astrocyte damage. These glioprotective effects of DS27 may be very important for improving neuroinflammation, which is associated with many brain diseases.
Collapse
Affiliation(s)
- Fernando Lopez Alvez
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Daniel Schuch da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wilson João Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Cinthia Melazzo de Andrade
- Programa de Pós-Graduação em Medicina Veterinária, Departamento de Clínica de Pequenos Animais, Laboratório de Análises Clínicas Veterinária, Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil. .,Universidade Federal de Pelotas, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| |
Collapse
|
8
|
Meng J, Zhang J, Fang J, Li M, Ding H, Zhang W, Chen C. Dynamic inflammatory changes of the neurovascular units after ischemic stroke. Brain Res Bull 2022; 190:140-151. [DOI: 10.1016/j.brainresbull.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
9
|
Jia C, Lovins C, Malone HM, Keasey MP, Hagg T. Female-specific neuroprotection after ischemic stroke by vitronectin-focal adhesion kinase inhibition. J Cereb Blood Flow Metab 2022; 42:1961-1974. [PMID: 35702047 PMCID: PMC9536130 DOI: 10.1177/0271678x221107871] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We found that blood vitronectin (VTN) leaks into the brain and exacerbates tissue loss after stroke by increasing pro-inflammatory IL-6 expression in female, but not male, mice. VTN signals through integrins and downstream focal adhesion kinase (FAK). Here, a two day systemic treatment with a small molecule FAK inhibitor starting 6 h after middle cerebral artery occlusion reduced ipsilateral brain injury size by ∼40-45% at 7 and 14 d, as well as inflammation and motor dysfunction in wild-type female, but not male, mice. FAK inhibition also reduced IL-6 expression in the injured female striatum at 24 h by 62%. Inducible selective gene deletion of FAK in astrocytes also reduced acute IL-6 expression by 72% only in females, and mitigated infarct size by ∼80% and inflammation at 14 d after stroke. Lastly, VTN-/- females had better outcomes, but FAK inhibitor treatment had no additional protective or anti-inflammatory effects. Altogether, this suggests that VTN is detrimental in females primarily through FAK and that FAK inhibition provides neuroprotection (cerebroprotection) by reducing VTN-induced IL-6 expression in astrocytes. Thus, VTN signaling can be targeted to mitigate harmful inflammation with relevance to treatments for women with ischemic stroke, who often have worse outcomes than men.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Hannah M Malone
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| |
Collapse
|
10
|
Erisken S, Nune G, Chung H, Kang JW, Koh S. Time and age dependent regulation of neuroinflammation in a rat model of mesial temporal lobe epilepsy: Correlation with human data. Front Cell Dev Biol 2022; 10:969364. [PMID: 36172274 PMCID: PMC9512631 DOI: 10.3389/fcell.2022.969364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Acute brain insults trigger diverse cellular and signaling responses and often precipitate epilepsy. The cellular, molecular and signaling events relevant to the emergence of the epileptic brain, however, remain poorly understood. These multiplex structural and functional alterations tend also to be opposing - some homeostatic and reparative while others disruptive; some associated with growth and proliferation while others, with cell death. To differentiate pathological from protective consequences, we compared seizure-induced changes in gene expression hours and days following kainic acid (KA)-induced status epilepticus (SE) in postnatal day (P) 30 and P15 rats by capitalizing on age-dependent differential physiologic responses to KA-SE; only mature rats, not immature rats, have been shown to develop spontaneous recurrent seizures after KA-SE. To correlate gene expression profiles in epileptic rats with epilepsy patients and demonstrate the clinical relevance of our findings, we performed gene analysis on four patient samples obtained from temporal lobectomy and compared to four control brains from NICHD Brain Bank. Pro-inflammatory gene expressions were at higher magnitudes and more sustained in P30. The inflammatory response was driven by the cytokines IL-1β, IL-6, and IL-18 in the acute period up to 72 h and by IL-18 in the subacute period through the 10-day time point. In addition, a panoply of other immune system genes was upregulated, including chemokines, glia markers and adhesion molecules. Genes associated with the mitogen activated protein kinase (MAPK) pathways comprised the largest functional group identified. Through the integration of multiple ontological databases, we analyzed genes belonging to 13 separate pathways linked to Classical MAPK ERK, as well as stress activated protein kinases (SAPKs) p38 and JNK. Interestingly, genes belonging to the Classical MAPK pathways were mostly transiently activated within the first 24 h, while genes in the SAPK pathways had divergent time courses of expression, showing sustained activation only in P30. Genes in P30 also had different regulatory functions than in P15: P30 animals showed marked increases in positive regulators of transcription, of signaling pathways as well as of MAPKKK cascades. Many of the same inflammation-related genes as in epileptic rats were significantly upregulated in human hippocampus, higher than in lateral temporal neocortex. They included glia-associated genes, cytokines, chemokines and adhesion molecules and MAPK pathway genes. Uniquely expressed in human hippocampus were adaptive immune system genes including immune receptors CDs and MHC II HLAs. In the brain, many immune molecules have additional roles in synaptic plasticity and the promotion of neurite outgrowth. We propose that persistent changes in inflammatory gene expression after SE leads not only to structural damage but also to aberrant synaptogenesis that may lead to epileptogenesis. Furthermore, the sustained pattern of inflammatory genes upregulated in the epileptic mature brain was distinct from that of the immature brain that show transient changes and are resistant to cell death and neuropathologic changes. Our data suggest that the epileptogenic process may be a result of failed cellular signaling mechanisms, where insults overwhelm the system beyond a homeostatic threshold.
Collapse
Affiliation(s)
- Sinem Erisken
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - George Nune
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Neurology, University of Southern California, Los Angeles, CA, United States
| | - Hyokwon Chung
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
| | - Joon Won Kang
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
- Department of Pediatrics & Medical Science, Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Sookyong Koh
- Department of Pediatrics, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University School of Medicine, Chicago, IL, United States
- Department of Pediatrics, Children’s Hospital & Medical Center, University of Nebraska, Omaha, NE, United States
- *Correspondence: Sookyong Koh,
| |
Collapse
|
11
|
Wang Y, Zhang J, Chang H, Wang H, Xu W, Cong H, Zhang X, Liu J, Yin L. NMO-IgG induce interleukin-6 release via activation of the NF-κB signaling pathway in astrocytes. Neuroscience 2022; 496:96-104. [PMID: 35659638 DOI: 10.1016/j.neuroscience.2022.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disorder of the central nervous system (CNS) that frequently affects the optic nerve and spinal cord. Interleukin-6 (IL-6) is considered a key cytokine in the pathogenesis of NMOSD, and the level of IL-6 is significantly increased in the sera and cerebrospinal fluid (CSF) of patients with NMOSD. We have reported that the production of IL-6 depends on the JAK/STAT3 signaling pathway. However, it is not clear whether the NF-κB-dependent inflammatory response stimulated by neuromyelitis optica IgG (NMO-IgG) could also drive the production of IL-6 in astrocytes. In this study, we used an in vitro model of primary rat astrocytes stimulated by NMO-IgG to study the role of the NF-κB signaling pathway in mediating the release of IL-6. First, we confirmed that the level of IL-6 was significantly higher in the sera of NMOSD patients than that of healthy people by humoral fluid analysis and that NMO-IgG can significantly induce the release of IL-6 from astrocytes by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Then, Western blotting and immunocytochemistry showed that NMO-IgG can activate the intracellular NF-κB signaling pathway. Finally, it was found that S3633, an inhibitor of the NF-κB signaling pathway, can effectively inhibit the increase in IL-6 levels. These results prove that the production of IL-6 is partly mediated by the NF-κB signaling pathway, providing a potential effective strategy for targeted treatment of NMOSD.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Jingwen Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Haoxiao Chang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Huabing Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Wangshu Xu
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Hengri Cong
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Xinghu Zhang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Linlin Yin
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4thRing West Road, Fengtai District, Beijing 100160, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2022; 13:394-421. [PMID: 33826123 PMCID: PMC9095790 DOI: 10.1007/s13238-021-00834-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Collapse
Affiliation(s)
- Tiemin Liu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong Xu
- grid.39382.330000 0001 2160 926XChildren’s Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Chun-Xia Yi
- grid.7177.60000000084992262Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Qingchun Tong
- grid.453726.10000 0004 5906 7293Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Graduate Program in Neuroscience of MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Dongsheng Cai
- grid.251993.50000000121791997Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 USA
| |
Collapse
|
13
|
Gairing SJ, Anders J, Kaps L, Nagel M, Michel M, Kremer WM, Hilscher M, Galle PR, Schattenberg JM, Wörns MA, Labenz C. Evaluation of IL-6 for Stepwise Diagnosis of Minimal Hepatic Encephalopathy in Patients With Liver Cirrhosis. Hepatol Commun 2022; 6:1113-1122. [PMID: 35032100 PMCID: PMC9035565 DOI: 10.1002/hep4.1883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
Diagnosis of minimal hepatic encephalopathy (MHE) requires psychometric testing, which is time-consuming and often neglected in clinical practice. Elevated Interleukin-6 (IL-6) serum levels have been linked to MHE. The aim of this study was to investigate the usefulness of IL-6 as a biomarker in a stepwise diagnostic algorithm to detect MHE in patients with liver cirrhosis. A total of 197 prospectively recruited patients without clinical signs of hepatic encephalopathy (HE) served as the development cohort. Another independent cohort consisting of 52 patients served for validation purposes. Psychometric Hepatic Encephalopathy Score (PHES) was applied for the diagnosis of MHE. Fifty (25.4%) patients of the development cohort presented with MHE. Median IL-6 levels were more than twice as high in patients with MHE than in patients without HE (16 vs. 7 pg/mL; P < 0.001). On multivariable logistic regression analysis, higher IL-6 levels (odds ratio 1.036; 95% confidence interval [CI] 1.009-1.064; P = 0.008) remained independently associated with the presence of MHE. IL-6 levels ≥ 8pg/mL discriminated best between patients with and without MHE in receiver operating characteristic (ROC) analysis (area under the ROC 0.751). With a cutoff value of ≥7 pg/mL, further elaborate testing with PHES could be avoided in 38% of all patients with a sensitivity of 90% (95% CI 77%-96%) and a negative predictive value (NPV) of 93% (95% CI 84%-98%). This diagnostic accuracy was confirmed in the validation cohort (sensitivity 94%; NPV 93%). Conclusion: Using IL-6 serum levels as a biomarker in a stepwise diagnostic algorithm to detect MHE could substantially reduce the number of patients requiring testing with PHES and in turn the workload. IL-6 may have especially helped in patients who are unable to perform other screening tests.
Collapse
Affiliation(s)
- Simon Johannes Gairing
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Cirrhosis Center MainzUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Julian Anders
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany
| | - Leonard Kaps
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Cirrhosis Center MainzUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Michael Nagel
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Cirrhosis Center MainzUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Maurice Michel
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Cirrhosis Center MainzUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Wolfgang Maximilian Kremer
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Cirrhosis Center MainzUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Max Hilscher
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Cirrhosis Center MainzUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Peter Robert Galle
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Cirrhosis Center MainzUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Jörn M Schattenberg
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Metabolic Liver Research ProgramUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Marcus-Alexander Wörns
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Cirrhosis Center MainzUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany.,Department of Gastroenterology, Hematology, Oncology and EndocrinologyKlinikum Dortmund GmbHDortmundGermany
| | - Christian Labenz
- Department of Internal Medicine IUniversity Medical Center of the Johannes Gutenberg-UniversityMainzGermany.,Cirrhosis Center MainzUniversity Medical Center of the Johannes Gutenberg UniversityMainzGermany
| |
Collapse
|
14
|
Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants (Basel) 2022; 11:antiox11020350. [PMID: 35204231 PMCID: PMC8868289 DOI: 10.3390/antiox11020350] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Studies show that the autonomic nervous system (ANS) has an important impact on health in general. In response to environmental demands, homeostatic processes are often compromised, therefore determining an increase in the sympathetic nervous system (SNS)’s functions and a decrease in the parasympathetic nervous system (PNS)’s functions. In modern societies, chronic stress associated with an unhealthy lifestyle contributes to ANS dysfunction. In this review, we provide a brief introduction to the ANS network, its connections to the HPA axis and its stress responses and give an overview of the critical implications of ANS in health and disease—focused specifically on the immune system, cardiovascular, oxidative stress and metabolic dysregulation. The hypothalamic–pituitary–adrenal axis (HPA), the SNS and more recently the PNS have been identified as regulating the immune system. The HPA axis and PNS have anti-inflammatory effects and the SNS has been shown to have both pro- and anti-inflammatory effects. The positive impact of physical exercise (PE) is well known and has been studied by many researchers, but its negative impact has been less studied. Depending on the type, duration and individual characteristics of the person doing the exercise (age, gender, disease status, etc.), PE can be considered a physiological stressor. The negative impact of PE seems to be connected with the oxidative stress induced by effort.
Collapse
|
15
|
Extracellular Vesicles Derived from Young Neural Cultures Attenuate Astrocytic Reactivity In Vitro. Int J Mol Sci 2022; 23:ijms23031371. [PMID: 35163295 PMCID: PMC8835866 DOI: 10.3390/ijms23031371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication and are involved in both physiological and pathological processes. In the central nervous system (CNS), EVs secreted from different brain cell types exert a sundry of functions, from modulation of astrocytic proliferation and microglial activation to neuronal protection and regeneration. However, the effect of aging on the biological functions of neural EVs is poorly understood. In this work, we studied the biological effects of small EVs (sEVs) isolated from neural cells maintained for 14 or 21 days in vitro (DIV). We found that EVs isolated from 14 DIV cultures reduced the extracellular levels of lactate dehydrogenase (LDH), the expression levels of the astrocytic protein GFAP, and the complexity of astrocyte architecture suggesting a role in lowering the reactivity of astrocytes, while EVs produced by 21 DIV cells did not show any of the above effects. These results in an in vitro model pave the way to evaluate whether similar results occur in vivo and through what mechanisms.
Collapse
|
16
|
Wang CY, Yang CC, Hsiao LD, Yang CM. Involvement of FoxO1, Sp1, and Nrf2 in Upregulation of Negative Regulator of ROS by 15d-PGJ 2 Attenuates H 2O 2-Induced IL-6 Expression in Rat Brain Astrocytes. Neurotox Res 2022; 40:154-172. [PMID: 34997457 PMCID: PMC8784370 DOI: 10.1007/s12640-020-00318-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
Excessive production of reactive oxygen species (ROS) by NADPH oxidase (Nox) resulted in inflammation. The negative regulator of ROS (NRROS) dampens ROS generation during inflammatory responses. 15-Deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) exhibits neuroprotective effects on central nervous system (CNS). However, whether 15d-PGJ2-induced NRROS expression was unknown in rat brain astrocytes (RBA-1). NRROS expression was determined by Western blot, RT/real-time PCR, and promoter activity assays. The signaling components were investigated using pharmacological inhibitors or specific siRNAs. The interaction between transcription factors and the NRROS promoter was investigated by chromatin immunoprecipitation assay. Upregulation of NRROS on the hydrogen peroxide (H2O2)-mediated ROS generation and interleukin 6 (IL-6) secretion was measured. 15d-PGJ2-induced NRROS expression was mediated through PI3K/Akt-dependent activation of Sp1 and FoxO1 and established the essential promoter regions. We demonstrated that 15d-PGJ2 activated PI3K/Akt and following by cooperation between phosphorylated nuclear FoxO1 and Sp1 to initiate the NRROS transcription. In addition, Nrf2 played a key role in NRROS expression induced by 15d-PGJ2 which was mediated through its phosphorylation. Finally, the NRROS stable clones attenuated the H2O2-induced ROS generation and expression of IL-6 through suppressing the Nox-2 activity. These results suggested that 15d-PGJ2-induced NRROS expression is mediated through a PI3K/Akt-dependent FoxO1 and Sp1 phosphorylation, and Nrf2 cascade, which suppresses ROS generation through attenuating the p47phox phosphorylation and gp91phox formation and IL-6 expression in RBA-1 cells. These results confirmed the mechanisms underlying 15d-PGJ2-induced NRROS expression which might be a potential strategy for prevention and management of brain inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital At Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan. .,Ph.D. Program for Biotch Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan. .,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung, 41354, Taiwan.
| |
Collapse
|
17
|
You Y, Muraoka S, Jedrychowski MP, Hu J, McQuade AK, Young‐Pearse T, Aslebagh R, Shaffer SA, Gygi SP, Blurton‐Jones M, Poon WW, Ikezu T. Human neural cell type-specific extracellular vesicle proteome defines disease-related molecules associated with activated astrocytes in Alzheimer's disease brain. J Extracell Vesicles 2022; 11:e12183. [PMID: 35029059 PMCID: PMC8758831 DOI: 10.1002/jev2.12183] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
In neurodegenerative diseases, extracellular vesicles (EVs) transfer pathogenic molecules and are consequently involved in disease progression. We have investigated the proteomic profiles of EVs that were isolated from four different human-induced pluripotent stem cell-derived neural cell types (excitatory neurons, astrocytes, microglia-like cells, and oligodendrocyte-like cells). Novel cell type-specific EV protein markers were then identified for the excitatory neurons (ATP1A3, NCAM1), astrocytes (LRP1, ITGA6), microglia-like cells (ITGAM, LCP1), and oligodendrocyte-like cells (LAMP2, FTH1), as well as 16 pan-EV marker candidates, including integrins and annexins. To further demonstrate how cell-type-specific EVs may be involved in Alzheimer's disease (AD), we performed protein co-expression network analysis and conducted cell type assessments for the proteomes of brain-derived EVs from the control, mild cognitive impairment, and AD cases. A protein module enriched in astrocyte-specific EV markers was most significantly associated with the AD pathology and cognitive impairment, suggesting an important role in AD progression. The hub protein from this module, integrin-β1 (ITGB1), was found to be significantly elevated in astrocyte-specific EVs enriched from the total brain-derived AD EVs and associated with the brain β-amyloid and tau load in independent cohorts. Thus, our study provides a featured framework and rich resource for the future analyses of EV functions in neurodegenerative diseases in a cell type-specific manner.
Collapse
Affiliation(s)
- Yang You
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Satoshi Muraoka
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | | | - Jianqiao Hu
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Amanda K. McQuade
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tracy Young‐Pearse
- Department of Neurology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Roshanak Aslebagh
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
- Mass Spectrometry FacilityUniversity of Massachusetts Medical SchoolShrewsburyMassachusettsUSA
| | - Scott A. Shaffer
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
- Mass Spectrometry FacilityUniversity of Massachusetts Medical SchoolShrewsburyMassachusettsUSA
| | - Steven P. Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Mathew Blurton‐Jones
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Wayne W. Poon
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tsuneya Ikezu
- Department of Pharmacology & Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
- The Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
18
|
Dhouibi R, Affes H, Ben Salem M, Charfi S, Marekchi R, Hammami S, Zeghal K, Ksouda K. Protective effect of Urtica dioica in induced neurobehavioral changes, nephrotoxicity and hepatotoxicity after chronic exposure to potassium bromate in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117657. [PMID: 34435563 DOI: 10.1016/j.envpol.2021.117657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND PURPOSE Chronic exposure to potassium bromate (KBrO3), a toxic halogen in the environment, has become a global problem of public health. The current study aims to elucidate for the first time the effect of Urtica dioica (UD) on behavioural changes, oxidative stress, and histopathological changes induced by KBrO3 in the cerebellum, kidney, liver and other organs of adult rats. STUDY DESIGN AND METHODS The rats were divided into four groups: group 1 served as a control received physiological serum, Group 2 received KBrO3 (2 g/L of drinking water), group 3 received KBrO3 and Urtica dioica (100 mg/kg), and group 4 received KBrO3 and Urtica dioica (400 mg/kg). We then measured behavioural changes, oxidative stress, and biochemical and histological changes in the cerebellum, liver, kidney and others organs in these rats. After 30 days of treatment, the animals were sacrificed. RESULTS We observed significant behavioural changes in KBrO3-exposed rats. When investigating redox homeostasis in the cerebellum, we found that mice treated with KBrO3 had increased lipid peroxidation and protein oxidation in the cerebellum. In addition, it inhibits hepatic and lipid peroxidation (malondialdehyde), advanced oxidation protein product (AOPP), attenuates KBrO3-mediated enzyme depletion, catalase, superoxide dismutase, glutathione peroxidase enzymatic and antioxidant activities in the liver and kidney. Rats that were co-managed with Urtica dioica at the high portion of 400 mg/kg indicated a higher effect than that treated with the low dose of 100 mg/kg practically in all the tests carried out. CONCLUSION Our results demonstrate that Urtica dioica is a potential therapeutic agent for oxidative stress associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Raouia Dhouibi
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia.
| | - Hanen Affes
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia
| | - Maryem Ben Salem
- Department of Anatomopathology, CHU Habib Bourguiba of Sfax, Tunisia
| | - Slim Charfi
- Department of Anatomopathology, CHU Habib Bourguiba of Sfax, Tunisia
| | - Rim Marekchi
- Laboratory of Biochemistry, CHU Hedi Cheker of Sfax, Tunisia
| | - Serria Hammami
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia
| | - Khaled Zeghal
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia
| | - Kamilia Ksouda
- Laboratory of Pharmacology, Faculty of Medicine of Sfax - University of Sfax, Tunisia
| |
Collapse
|
19
|
Hoiland RL, Ainslie PN, Wellington CL, Cooper J, Stukas S, Thiara S, Foster D, Fergusson N, Conway EM, Menon DK, Gooderham PA, Hirsch-Reinshagen V, Griesdale D, Sekhon M. Brain Hypoxia Is Associated With Neuroglial Injury in Humans Post-Cardiac Arrest. Circ Res 2021; 129:583-597. [PMID: 34287000 PMCID: PMC8376277 DOI: 10.1161/circresaha.121.319157] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supplemental Digital Content is available in the text. Secondary brain hypoxia portends significant mortality in ischemic brain diseases; yet, our understanding of hypoxic ischemic brain injury (HIBI) pathophysiology in humans remains rudimentary.
Collapse
Affiliation(s)
- Ryan L Hoiland
- Health and Exercise Sciences, University of British Columbia Okanagan, CANADA
| | | | | | | | - Sophie Stukas
- Pathology and Laboratory Medicine, University of British Columbia, CANADA
| | - Sonny Thiara
- Critical Care Medicine, University of British Columbia
| | - Denise Foster
- Critical Care Medicine, University of British Columbia, CANADA
| | | | - Edward M Conway
- Centre for Blood Research, University of British Columbia, CANADA
| | | | | | | | | | | |
Collapse
|
20
|
Choudhary A, Varshney R, Kumar A, Kaushik K. A Prospective Study of Novel Therapeutic Targets Interleukin 6, Tumor Necrosis Factor α, and Interferon γ as Predictive Biomarkers for the Development of Posttraumatic Epilepsy. World Neurosurg X 2021; 12:100107. [PMID: 34195601 PMCID: PMC8233159 DOI: 10.1016/j.wnsx.2021.100107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Posttraumatic epilepsy (PTE) is a serious and debilitating consequence of traumatic brain injury (TBI). Sometimes, the management of PTE becomes a challenging task on account of its resistance to existing antiepileptic drugs and often contributes to poor functional and psychosocial outcomes after TBI. We investigated the role of inflammatory markers interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interferon γ (INF-γ) in predicting the development of PTE. Methods A prospective analysis was performed of 254 patients who were admitted with head injury to our hospital, 35 of whom had posttraumatic epilepsy (32 males and 3 females); 30 adults (28 men, 2 women) with a similar demographic profile were selected randomly as control individuals. Blood levels of TNF-α, IL-6, and INF-γ were evaluated in all participants. Results IL-6 levels were significantly higher in the PTE group (121.36 pg/mL; standard deviation [SD], 89.23) than in the nonseizure group (65.30 pg/mL; SD, 74.75; P = 0.01), whereas there was no significant difference between the seizure group (11.42 pg/mL; SD, 7.84) and the nonseizure groups (10.58 pg/mL; SD, 7.84) in terms of TNF-α level (P = 0.343). The level of INF-γ in the seizure group tended to be higher (mean, 1.88 pg/mL, SD, 2.13 in seizure group vs. 1.10 pg/mL, SD, 1.45 in the nonseizure group); however, no statistically significant difference was detected among the 2 groups (P = 0.09). Conculsions Posttraumatic epilepsy has a strong association with an increased level of IL-6 in the blood. INF-γ may or may not be associated with PTE. However, TNF-α was not associated with PTE.
Collapse
Key Words
- CI, Confidence interval
- CNS, Central nervous system
- CSF, Cerebrospinal fluid
- Cytokines
- Epileptogenesis
- GCS, Glasgow Coma Scale
- IL-6, Interleukin 6
- INF-γ, Interferon γ
- Immunomodulators
- NMDA, N-methyl-d-aspartate
- Neuroplasticity
- PTE, Posttraumatic epilepsy
- PTS, Posttraumatic seizures
- ROC, Receiver operating characteristic
- Seizures
- TBI, Traumatic brain injury
- TNF-α, Tumor necrosis factor α
Collapse
Affiliation(s)
| | - Rahul Varshney
- To whom correspondence should be addressed: Rahul Varshney, M.Ch.
| | | | | |
Collapse
|
21
|
Haavik H, Niazi IK, Kumari N, Amjad I, Duehr J, Holt K. The Potential Mechanisms of High-Velocity, Low-Amplitude, Controlled Vertebral Thrusts on Neuroimmune Function: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:536. [PMID: 34071880 PMCID: PMC8226758 DOI: 10.3390/medicina57060536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
The current COVID-19 pandemic has necessitated the need to find healthcare solutions that boost or support immunity. There is some evidence that high-velocity, low-amplitude (HVLA) controlled vertebral thrusts have the potential to modulate immune mediators. However, the mechanisms of the link between HVLA controlled vertebral thrusts and neuroimmune function and the associated potential clinical implications are less clear. This review aims to elucidate the underlying mechanisms that can explain the HVLA controlled vertebral thrust--neuroimmune link and discuss what this link implies for clinical practice and future research needs. A search for relevant articles published up until April 2021 was undertaken. Twenty-three published papers were found that explored the impact of HVLA controlled vertebral thrusts on neuroimmune markers, of which eighteen found a significant effect. These basic science studies show that HVLA controlled vertebral thrust influence the levels of immune mediators in the body, including neuropeptides, inflammatory markers, and endocrine markers. This narravtive review discusses the most likely mechanisms for how HVLA controlled vertebral thrusts could impact these immune markers. The mechanisms are most likely due to the known changes in proprioceptive processing that occur within the central nervous system (CNS), in particular within the prefrontal cortex, following HVLA spinal thrusts. The prefrontal cortex is involved in the regulation of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis and the immune system. Bi-directional neuro-immune interactions are affected by emotional or pain-related stress. Stress-induced sympathetic nervous system activity also alters vertebral motor control. Therefore, there are biologically plausible direct and indirect mechanisms that link HVLA controlled vertebral thrusts to the immune system, suggesting HVLA controlled vertebral thrusts have the potential to modulate immune function. However, it is not yet known whether HVLA controlled vertebral thrusts have a clinically relevant impact on immunity. Further research is needed to explore the clinical impact of HVLA controlled vertebral thrusts on immune function.
Collapse
Affiliation(s)
- Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Nitika Kumari
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad 46000, Pakistan
| | - Jenna Duehr
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| | - Kelly Holt
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| |
Collapse
|
22
|
Interleukin-33 modulates lipopolysaccharide-mediated inflammatory response in rat primary astrocytes. Neuroreport 2021; 32:694-701. [PMID: 33913926 DOI: 10.1097/wnr.0000000000001644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Astrocytes have a crucial role in the modulation of the neuroinflammatory response. However, the underlying mechanisms have yet to be fully defined. Interleukin-33 (IL-33) is constitutively expressed in astrocytes, which has been found to orchestrate inflammatory responses in a large variety of immune-mediated and inflammatory diseases of the nervous system. Thus, the purpose of this study was to elucidate the potential effect of IL-33 in the regulation of inflammatory response in primary cultured astrocytes. We investigated the role of IL-33 in the regulation of inflammatory responses in the lipopolysaccharide-stimulated astrocytes. This study utilized lentiviral short hairpin RNA vectors to target IL-33 (LV-shIL-33) for gene silencing. After lipopolysaccharide stimulation, the expression levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as the activation of nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) signaling pathways, were evaluated to elucidate the mechanisms related to the contributions of IL-33 to the inflammatory response in astrocytes. We found that the expression IL-33 has increased in rat primary cultured astrocytes after lipopolysaccharide stimulation. Administration of LV-shIL-33 knocked down the expression of IL-33 and markedly reduced the overexpression of spinal IL-1β, IL-6, and TNF-α, and attenuated the activation of ERK and NF-κB/p65. This study shows that IL-33 participates in regulating inflammatory responses in primary cultured astrocytes, which might provide additional targets for controlling inflammatory responses following neurological diseases. See Video abstract, http://links.lww.com/WNR/A627.
Collapse
|
23
|
Dejakaisaya H, Kwan P, Jones NC. Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer's disease. Epilepsia 2021; 62:1485-1493. [PMID: 33971019 DOI: 10.1111/epi.16918] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) can increase the risk of epilepsy by up to 10-fold compared to healthy age-matched controls. However, the pathological mechanisms that underlie this increased risk are poorly understood. Because disruption in brain glutamate homeostasis has been implicated in both AD and epilepsy, this might play a mechanistic role in the pathogenesis of epilepsy in AD. Prior to the formation of amyloid beta (Aβ) plaques, the brain can undergo pathological changes as a result of increased production of amyloid precursor protein (APP) and Aβ oligomers. Impairments in the glutamate uptake ability of astrocytes due to astrogliosis are hypothesized to be an early event occurring before Aβ plaque formation. Astrogliosis may increase the susceptibility to epileptogenesis of the brain via accumulation of extracellular glutamate and resulting excitotoxicity. Here we hypothesize that Aβ oligomers and proinflammatory cytokines can cause astrogliosis and accumulation of extracellular glutamate, which then contribute to the pathogenesis of epilepsy in AD. In this review article, we consider the evidence supporting a potential role of dysfunction of the glutamate-glutamine cycle and the astrocyte in the pathogenesis of epilepsy in AD.
Collapse
Affiliation(s)
- Hattapark Dejakaisaya
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
24
|
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021; 15:662578. [PMID: 33897376 PMCID: PMC8062881 DOI: 10.3389/fncel.2021.662578] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.
Collapse
Affiliation(s)
- Petra Tavčar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
25
|
Duchow A, Bellmann-Strobl J. Satralizumab in the treatment of neuromyelitis optica spectrum disorder. Neurodegener Dis Manag 2021; 11:49-59. [DOI: 10.2217/nmt-2020-0046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare and debilitating autoimmune astrocytopathy with a predominantly relapsing disease course. Satralizumab, a humanized monoclonal antibody, was designed to treat NMOSD by targeting the IL-6 receptor. Satralizumab builds on positive experiences of off-label use tocilizumab in recent years. Before 2019, no medications were approved for the treatment of NMOSD. In 2020, satralizumab became the third compound to enter the US market, adding to the complement inhibitor eculizumab and the CD19 inhibitor inebilizumab. Here, we review the two randomized, double-blind, Phase III trials that investigated the subcutaneous administration of satralizumab as add-on treatment and monotherapy. Both studies revealed positive effects concerning the reduction of relapse risk for AQP4 seropositive NMOSD patients and generally good tolerability.
Collapse
Affiliation(s)
- Ankelien Duchow
- Neurocure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, & Berlin Institute of Health, 10117 Berlin, Germany
- Experimental & Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, & Berlin Institute of Health & Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Judith Bellmann-Strobl
- Neurocure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, & Berlin Institute of Health, 10117 Berlin, Germany
- Experimental & Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, & Berlin Institute of Health & Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
26
|
Chen Z, He Y, Su Y, Sun Y, Zhang Y, Chen H. Association of inflammatory and platelet volume markers with clinical outcome in patients with anterior circulation ischaemic stroke after endovascular thrombectomy. Neurol Res 2021; 43:503-510. [PMID: 33402058 DOI: 10.1080/01616412.2020.1870359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: To determine the correlation of inflammatory and platelet volume indices with the severity of stroke and 3-month clinical outcomes in patients with acute ischemic stroke (AIS) after endovascular thrombectomy (EVT).Methods: A retrospective analysis was conducted for AIS patients who underwent EVT at our hospital from 2015 to 2019. Inflammatory factors, including white blood count, neutrophil count, lymphocyte count, neutrophil to lymphocyte ratio (NLR), high-sensitivity C-reactive protein (hs-CRP), procalcitonin (PCT) and interleukin-6 (IL-6), and platelet volume indices, including platelet count (PC), mean platelet volume (MPV), platelet distribution width (PDW) and MPV/PC levels were assessed. Results were analyzed between patients with favorable and unfavorable outcomes at 3 months post-EVT.Results: A total of 257 AIS patients were included in the study. There were 86 (33.5%) patients with favorable functional outcomes at 3 months. Compared to patients with favorable outcomes, those with poor outcomes have lower lymphocyte count, higher neutrophil count and NLR levels. There were no differences in hs-CRP,PCT and IL-6 between the two groups. The correlation analysis showed that the increase in MPV, PDW, and MPV/PC was related to the high level of the NIHSS score at admission. Multivariate logistic regression analysis showed that higher NLR levels are an independent risk factor for unfavorable outcomes at 3 months (OR = 1.141; 95% CI 1.061 to 1.227, P = 0.000).Conclusions: MPV, PDW, and MPV/PC are associated with stroke severity. Higher NLR levels upon admission may predict unfavorable functional outcomes in patients with AIS after undergoing EVT.Abbreviations ACA: anterior cerebral artery; AIS: acute ischemic stroke; ASPECTS: alberta stroke program early CT score; BMI: body mass index; DBP: diastolic blood pressure; END: early neurological deterioration; EVT: endovascular thrombectomy; hs-CRP: high-sensitivity C-reactive protein; HT: hemorrhagic transformation; ICA: internal carotid artery; IL-6: interleukin-6; IS: ischemic progression; LAA: Large-Artery Atherosclerosis; MCA: middle cerebral artery; MPV: mean platelet volume; mTICI: modified thrombolysis in cerebral infarction; NIHSS: National Institute of Health stroke scale; NLR: neutrophil to lymphocyte ratio; OTP: onset-to-puncture; PC: platelet count; PCT: procalcitonin; PDW: platelet distribution width; SBP: systolic blood pressure; sICH: symptomatic intracerebral hemorrhageWBC: white blood cell.
Collapse
Affiliation(s)
- Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanbo He
- Department of Neurology, The Beijing Moslem People Hospital, Beijing, China
| | - Yingying Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yijia Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yingbo Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China
| | - Hongbo Chen
- Department of Neurology, Liangxiang Hospital of Beijing Fangshan District, Beijing, China
| |
Collapse
|
27
|
Dean O, Anjum S, Hess B, Hammoud DA, Athas D, Wheat J, Williamson PR. Central Nervous System Histoplasma-Associated Post-infectious Inflammatory Response Syndrome (Histo-PIIRS). J Clin Immunol 2021; 41:545-551. [PMID: 33387157 PMCID: PMC7776302 DOI: 10.1007/s10875-020-00954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
We present a case of central nervous system (CNS) histoplasmosis in a previously healthy adult with hepatitis C (HCV) presenting with neurological symptoms refractory to antifungal therapy and ventriculoperitoneal (VP) shunting 4 months after initial diagnosis. Persistent symptoms were thought to be inflammatory rather than infectious given negative cerebrospinal fluid (CSF) and serum fungal antigens. The patient promptly improved after initiation of corticosteroid therapy. Elevated CSF cytokines and regional enhancement on brain MRI resolved with corticosteroid treatment. This is the first case of Histoplasma-associated post-infectious inflammatory response syndrome (Histo-PIIRS) documented by CSF cytokine reduction in response to corticosteroid therapy.
Collapse
Affiliation(s)
- Owen Dean
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bld 10, Rm 11C208, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Seher Anjum
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bld 10, Rm 11C208, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Bryan Hess
- Division of Infectious Diseases, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Deena Athas
- Division of Infectious Diseases, Gundersen Health System, La Crosse, WI, USA
| | | | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bld 10, Rm 11C208, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol 2021; 21:20-36. [PMID: 32811994 DOI: 10.1038/s41577-020-0387-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Neuroimmunology is one of the fastest-growing fields in the life sciences, and for good reason; it fills the gap between two principal systems of the organism, the nervous system and the immune system. Although both systems affect each other through bidirectional interactions, we focus here on one direction - the effects of the nervous system on immunity. First, we ask why is it beneficial to allow the nervous system any control over immunity? We evaluate the potential benefits to the immune system that arise by taking advantage of some of the brain's unique features, such as its capacity to integrate and synchronize physiological functions, its predictive capacity and its speed of response. Second, we explore how the brain communicates with the peripheral immune system, with a focus on the endocrine, sympathetic, parasympathetic, sensory and meningeal lymphatic systems. Finally, we examine where in the brain this immune information is processed and regulated. We chart a partial map of brain regions that may be relevant for brain-immune system communication, our goal being to introduce a conceptual framework for formulating new hypotheses to study these interactions.
Collapse
Affiliation(s)
- Maya Schiller
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar L Ben-Shaanan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Asya Rolls
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
29
|
Augusto-Oliveira M, Arrifano GP, Takeda PY, Lopes-Araújo A, Santos-Sacramento L, Anthony DC, Verkhratsky A, Crespo-Lopez ME. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev 2020; 118:331-357. [DOI: 10.1016/j.neubiorev.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
30
|
Du L, Chang H, Xu W, Wei Y, Wang Y, Yin L, Zhang X. Effect of NMO-IgG on the interleukin-6 cascade in astrocytes via activation of the JAK/STAT3 signaling pathway. Life Sci 2020; 258:118217. [DOI: 10.1016/j.lfs.2020.118217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
|
31
|
McGurran H, Glenn JM, Madero EN, Bott NT. Prevention and Treatment of Alzheimer's Disease: Biological Mechanisms of Exercise. J Alzheimers Dis 2020; 69:311-338. [PMID: 31104021 DOI: 10.3233/jad-180958] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. With an aging population and no disease modifying treatments available, AD is quickly becoming a global pandemic. A substantial body of research indicates that lifestyle behaviors contribute to the development of AD, and that it may be worthwhile to approach AD like other chronic diseases such as cardiovascular disease, in which prevention is paramount. Exercise is an important lifestyle behavior that may influence the course and pathology of AD, but the biological mechanisms underpinning these effects remain unclear. This review focuses on how exercise can modify four possible mechanisms which are involved with the pathology of AD: oxidative stress, inflammation, peripheral organ and metabolic health, and direct interaction with AD pathology. Exercise is just one of many lifestyle behaviors that may assist in preventing AD, but understanding the systemic and neurobiological mechanisms by which exercise affects AD could help guide the development of novel pharmaceutical agents and non-pharmacological personalized lifestyle interventions for at-risk populations.
Collapse
Affiliation(s)
- Hugo McGurran
- Research Master's Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Nicholas T Bott
- Neurotrack Technologies Inc., Redwood City, CA, USA.,Clinical Excellence Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Psychology, PGSP-Stanford Consortium, Palo Alto University, Palo Alto, CA, USA
| |
Collapse
|
32
|
Extracellular Alpha-Synuclein Promotes a Neuroinhibitory Secretory Phenotype in Astrocytes. Life (Basel) 2020; 10:life10090183. [PMID: 32911644 PMCID: PMC7555668 DOI: 10.3390/life10090183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple system atrophy (MSA) and dementia with Lewy bodies (DLB) are α-synucleinopathies that exhibit widespread astrogliosis as a component of the neuroinflammatory response. Munc18, a protein critical to vesicle exocytosis, was previously found to strongly mark morphologically activated astrocytes in brain tissue of MSA patients. Immunofluorescence of MSA, DLB and normal brain tissue sections was combined with cell culture and co-culture experiments to investigate the relationship between extracellular α-synuclein and the transition to a secretory astrocyte phenotype. Increased Munc18-positive vesicles were resolved in activated astrocytes in MSA and DLB tissue compared to controls, and they were also significantly upregulated in the human 1321N1 astrocytoma cell line upon treatment with α-synuclein, with parallel increases in GFAP expression and IL-6 secretion. In co-culture experiments, rat primary astrocytes pretreated with α-synuclein inhibited the growth of neurites of co-cultured primary rat neurons and upregulated chondroitin sulphate proteoglycan. Taken together, these results indicate that the secretory machinery is significantly upregulated in the astrocyte response to extracellular α-synuclein and may participate in the release of neuroinhibitory and proinflammatory factors in α-synucleinopathies.
Collapse
|
33
|
Steardo L, Steardo L, Verkhratsky A. Psychiatric face of COVID-19. Transl Psychiatry 2020; 10:261. [PMID: 32732883 PMCID: PMC7391235 DOI: 10.1038/s41398-020-00949-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) represents a severe multiorgan pathology which, besides cardio-respiratory manifestations, affects the function of the central nervous system (CNS). The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), similarly to other coronaviruses demonstrate neurotropism; the viral infection of the brain stem may complicate the course of the disease through damaging central cardio-respiratory control. The systemic inflammation as well as neuroinflammatory changes are associated with massive increase of the brain pro-inflammatory molecules, neuroglial reactivity, altered neurochemical landscape and pathological remodelling of neuronal networks. These organic changes, emerging in concert with environmental stress caused by experiences of intensive therapy wards, pandemic fears and social restrictions, promote neuropsychiatric pathologies including major depressive disorder, bipolar disorder (BD), various psychoses, obsessive-compulsive disorder and post-traumatic stress disorder. The neuropsychiatric sequelae of COVID-19 represent serious clinical challenge that has to be considered for future complex therapies.
Collapse
Affiliation(s)
| | - Luca Steardo
- Sapienza University Rome, Rome, Italy.
- Fortunato University, Benevento, Italy.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
34
|
Microglia depletion fails to abrogate inflammation-induced sickness in mice and rats. J Neuroinflammation 2020; 17:172. [PMID: 32475344 PMCID: PMC7262755 DOI: 10.1186/s12974-020-01832-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background Production of inflammatory mediators by reactive microglial cells in the brain is generally considered the primary mechanism underlying the development of symptoms of sickness in response to systemic inflammation. Methods Depletion of microglia was achieved in C57BL/6 mice by chronic oral administration of PLX5622, a specific antagonist of colony stimulating factor-1 receptor, and in rats by a knock-in model in which the diphtheria toxin receptor was expressed under the control of the endogenous fractalkine receptor (CX3CR1) promoter sequence. After successful microglia depletion, mice and rats were injected with a sickness-inducing dose of lipopolysaccharide according to a 2 (depletion vs. control) × 2 (LPS vs. saline) factorial design. Sickness was measured by body weight loss and decreased locomotor activity in rats and mice, and reduced voluntary wheel running in mice. Results Chronic administration of PLX5622 in mice and administration of diphtheria toxin to knock-in rats depleted microglia and peripheral tissue macrophages. However, it did not abrogate the inducible expression of proinflammatory cytokines in the brain in response to LPS and even exacerbated it for some of the cytokines. In accordance with these neuroimmune effects, LPS-induced sickness was not abrogated, rather it was exacerbated when measured by running wheel activity in mice. Conclusions These findings reveal that the sickness-inducing effects of acute inflammation can develop independently of microglia activation.
Collapse
|
35
|
Holst CB, Christensen IJ, Skjøth-Rasmussen J, Hamerlik P, Poulsen HS, Johansen JS. Systemic Immune Modulation in Gliomas: Prognostic Value of Plasma IL-6, YKL-40, and Genetic Variation in YKL-40. Front Oncol 2020; 10:478. [PMID: 32363159 PMCID: PMC7180208 DOI: 10.3389/fonc.2020.00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/17/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Complex local and systemic immune dysfunction in glioblastoma (GBM) may affect survival. Interleukin (IL)-6 and YKL-40 are pleiotropic biomarkers present in the tumor microenvironment and involved in immune regulation. We therefore analyzed plasma IL-6, YKL-40, and genetic variation in YKL-40 and explored their ability to distinguish between glioma subtypes and predict survival in GBM. Methods: One hundred fifty-eight patients with glioma WHO grade II-IV were included in the study. Plasma collected at surgery was analyzed for IL-6 and YKL-40 (CHI3L1) by ELISA. CHI3L1 rs4950928 genotyping was analyzed on whole-blood DNA. Results: Neither plasma IL-6 nor YKL-40 corrected for age or rs4950928 genotype could differentiate GBM from lower grade gliomas. GC and GG rs4950928 genotype were associated with lower plasma YKL-40 levels (CC vs. GC, p = 0.0019; CC vs. GG, p = 0.01). Only 10 and 14 out of 94 patients with newly diagnosed GBM had elevated IL-6 or YKL-40, respectively. Most patients received corticosteroid treatment at time of blood-sampling. Higher pretreatment plasma IL-6 was associated with short overall survival (OS) [HR = 1.19 (per 2-fold change), p = 0.042] in univariate analysis. The effect disappeared in multivariate analysis. rs4950928 genotype did not associate with OS [HR = 1.30, p = 0.30]. In recurrent GBM, higher YKL-40 [HR = 2.12 (per 2-fold change), p = 0.0005] but not IL-6 [HR = 0.99 (per 2-fold change), p = 0.92] were associated with short OS in univariate analysis. Conclusion: In recurrent GBM high plasma YKL-40 may hold promise as a prognostic marker. In newly diagnosed GBM perioperative plasma IL-6, YKL-40, and genetic variation in YKL-40 did not associate with survival. Corticosteroid use may complicate interpretation of results.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Ib Jarle Christensen
- Department of Gastroenterology, Hvidovre Hospital, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Maia-Farias A, Lima CM, Freitas PSL, Diniz DG, Rodrigues APD, Quaresma JAS, Diniz CWP, Diniz JA. Early and late neuropathological features of meningoencephalitis associated with Maraba virus infection. ACTA ACUST UNITED AC 2020; 53:e8604. [PMID: 32294697 PMCID: PMC7162580 DOI: 10.1590/1414-431x20208604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/06/2020] [Indexed: 11/22/2022]
Abstract
Maraba virus is a member of the genus Vesiculovirus of the Rhabdoviridae family that was isolated in 1983 from sandflies captured in the municipality of Maraba, state of Pará, Amazônia, Brazil. Despite 30 years having passed since its isolation, little is known about the neuropathology induced by the Maraba virus. Accordingly, in this study the histopathological features, inflammatory glial changes, cytokine concentrations, and nitric oxide activity in the encephalon of adult mice subjected to Maraba virus nostril infection were evaluated. The results showed that 6 days after intranasal inoculation, severe neuropathological-associated disease signs appeared, including edema, necrosis and pyknosis of neurons, generalized congestion of encephalic vessels, and intra- and perivascular meningeal lymphocytic infiltrates in several brain regions. Immunolabeling of viral antigens was observed in almost all central nervous system (CNS) areas and this was associated with intense microglial activation and astrogliosis. Compared to control animals, infected mice showed significant increases in interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (INF)-γ, MCP-1, nitric oxide, and encephalic cytokine levels. We suggest that an exacerbated inflammatory response in several regions of the CNS of adult BALB/c mice might be responsible for their deaths.
Collapse
Affiliation(s)
- A Maia-Farias
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, PA, Brasil
| | - C M Lima
- Laboratório de Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João Barros Barreto, Universidade Federal do Pará, Belém, PA, Brasil
| | - P S L Freitas
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, PA, Brasil
| | - D G Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, PA, Brasil.,Laboratório de Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João Barros Barreto, Universidade Federal do Pará, Belém, PA, Brasil
| | - A P D Rodrigues
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, PA, Brasil
| | - J A S Quaresma
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brasil
| | - C W Picanço Diniz
- Laboratório de Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João Barros Barreto, Universidade Federal do Pará, Belém, PA, Brasil
| | - J A Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, PA, Brasil.,Laboratório de Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João Barros Barreto, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
37
|
Bahrini K, Belghith M, Maghrebi O, Bekir J, Kchaou M, Jeridi C, Amouri R, Hentati F, Belal S, Ben Sassi S, Barbouche MR. Discriminative expression of CD39 and CD73 in Cerebrospinal fluid of patients with Multiple Sclerosis and Neuro-Behçet's disease. Cytokine 2020; 130:155054. [PMID: 32151963 DOI: 10.1016/j.cyto.2020.155054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Treg-mediated immune suppression involves many molecular mechanisms including the cleavage of inflammatory extracellular ATP to adenosine by CD39 ectoenzyme. In the peripheral blood of Multiple Sclerosis (MS) patients, it has been suggested that CD39+ Treg cells have the potential to suppress pro-inflammatory IL-17 secreting cells. Herein, we studied cellular phenotype and mRNA expression of CD39 and CD73 ectoenzymes in the Cerebrospinal fluid (CSF) of MS patients and another neuro-inflammatory disease: the Neuro-behçet's disease (NBD). Using qRT-PCR, we assessed mRNA expression of CD39 and CD73 as well as anti-inflammatory (IL-10) and pro-inflammatory (IL-6, TNF-α, IL-1β) cytokines in patients Peripheral blood mononuclear cells (PBMCs) and CSF of 28 relapsing-remitting multiple sclerosis (RRMS), 20 NBD and 22 controls with non inflammatory neurological disorders (NIND). The most substantial result in the CSF was the higher expression of CD39 in both RRMS and NBD patients compared to NIND. While, the expression of CD73 in CSF samples of NBD was low. In RRMS samples, we detected a significant positive correlation of both CD39 and CD73 with IL-10 expression. Moreover, results by flow cytometry revealed a high percentage of CD39 Treg cells in RRMS CSF. CD39 was preferentially expressed on B cells of NBD. Regarding inflammatory response, we showed a significant increase of IL-6 mRNA expression in NBD patients CSF while in RRMS this increase concerned TNF-α. These results bring evidence that CD39 correlates positively with an anti-inflammatory IL-10 response in RRMS. In contrast, no such association was observed in CSF of NBD patients and CD39 was preferentially expressed on B cells.
Collapse
Affiliation(s)
- Khadija Bahrini
- Institut Pasteur de Tunis, LTCII, LR11IPT02, Tunis 1002, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia.
| | - Meriam Belghith
- Institut Pasteur de Tunis, LTCII, LR11IPT02, Tunis 1002, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia.
| | - Olfa Maghrebi
- Institut Pasteur de Tunis, LTCII, LR11IPT02, Tunis 1002, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia.
| | - Jihène Bekir
- Institut Pasteur de Tunis, LTCII, LR11IPT02, Tunis 1002, Tunisia; Tunis El Manar University, Tunis 1068, Tunisia.
| | - Mariem Kchaou
- Neurological Department of Charles Nicolle Hospital, Tunis, Tunisia.
| | - Cyrine Jeridi
- Neurology's Department, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia.
| | - Rim Amouri
- Neurology's Department, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia.
| | - Faycel Hentati
- Neurology's Department, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia.
| | - Samir Belal
- Neurology's Department, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia; Faculty of Medicine of Tunis, 1006, Tunisia.
| | - Samia Ben Sassi
- Neurology's Department, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia.
| | - Mohamed-Ridha Barbouche
- Institut Pasteur de Tunis, LTCII, LR11IPT02, Tunis 1002, Tunisia; Faculty of Medicine of Tunis, 1006, Tunisia.
| |
Collapse
|
38
|
Hupp S, Iliev AI. CSF-1 receptor inhibition as a highly effective tool for depletion of microglia in mixed glial cultures. J Neurosci Methods 2020; 332:108537. [PMID: 31790710 DOI: 10.1016/j.jneumeth.2019.108537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/26/2019] [Accepted: 11/28/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND A breakthrough in the microglia and macrophages field was the identification of the macrophage colony stimulating factor-1 (CSF-1) as a pro-survival factor. Its pharmacological inhibition in animals depletes rapidly all microglia and macrophages. Microglial depletion in mixed glial cultures has always represented a challenge and none of the existing approaches delivers satisfactory results. NEW METHOD We applied a CSF-1R inhibitor (PLX5622) in primary mouse glial cultures, analyzing microglial dose-responses, starting at different time-points and incubating for various periods of time. RESULTS We used two treatment modalities with 10 μM PLX5622 to deplete microglia: i) immediately after brain homogenization and ii) at day in vitro 12. The application of the inhibitor immediately after cell preparation depleted microglia to 8% at 1 week, to 2% at 4 weeks and to 0.5% at 6 weeks (half-time 3.5 days). When mixed glial cultures were treated starting at day in vitro 12, microglia depletion was slower (half-time 6 days) and not complete, indicating a decreased sensitivity to CSF-1. The remaining astrocytes preserved their proliferation ability, their migration in a scratch wound assay, and their pro-inflammatory (IL-6) response towards lipopolysaccharide. COMPARISON TO EXISTING METHODS The proposed approach for microglial depletion in mixed glial cultures is more effective than other existing methods and is non-toxic to non-microglial cells. CONCLUSIONS CSF-1R inhibitors are effective tools for depleting microglia in mixed glial cultures. Longer maturation of the cultures leads to a diminished sensitivity of microglia towards CSF-1. Thus, the treatment should start as early as possible after glial culture preparation.
Collapse
Affiliation(s)
- Sabrina Hupp
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland.
| | - Asparouh I Iliev
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland.
| |
Collapse
|
39
|
Raphael I, Gomez-Rivera F, Raphael RA, Robinson RR, Nalawade S, Forsthuber TG. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight 2019; 4:132527. [PMID: 31852844 DOI: 10.1172/jci.insight.132527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neuroinflammatory disease where the underlying mechanisms driving disease progression have remained unresolved. HLA-DR2b (DRB1*15:01) is the most common genetic risk factor for MS. Additionally, TNF and its receptors TNFR1 and TNFR2 play key roles in MS and its preclinical animal model, experimental autoimmune encephalomyelitis (EAE). TNFR2 is believed to ameliorate CNS pathology by promoting remyelination and Treg function. Here, we show that transgenic mice expressing the human MHC class II (MHC-II) allele HLA-DR2b and lacking mouse MHC-II and TNFR2 molecules, herein called DR2bΔR2, developed progressive EAE, while disease was not progressive in DR2b littermates. Mechanistically, expression of the HLA-DR2b favored Th17 cell development, whereas T cell-independent TNFR2 expression was critical for restraining of an astrogliosis-induced proinflammatory milieu and Th17 cell responses, while promoting remyelination. Our data suggest the TNFR2 signaling pathway as a potentially novel mechanism for curtailing astrogliosis and promoting remyelination, thus providing new insights into mechanisms limiting progressive MS.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, Pennsylvania, USA.,Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Francisco Gomez-Rivera
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca A Raphael
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
40
|
Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sci 2019; 9:brainsci9110318. [PMID: 31717556 PMCID: PMC6895909 DOI: 10.3390/brainsci9110318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common chronic consequence of traumatic brain injury (TBI), contributing to increased morbidity and mortality for survivors. As post-traumatic epilepsy (PTE) is drug-resistant in at least one-third of patients, there is a clear need for novel therapeutic strategies to prevent epilepsy from developing after TBI, or to mitigate its severity. It has long been recognized that seizure activity is associated with a local immune response, characterized by the activation of microglia and astrocytes and the release of a plethora of pro-inflammatory cytokines and chemokines. More recently, increasing evidence also supports a causal role for neuroinflammation in seizure induction and propagation, acting both directly and indirectly on neurons to promote regional hyperexcitability. In this narrative review, we focus on key aspects of the neuroinflammatory response that have been implicated in epilepsy, with a particular focus on PTE. The contributions of glial cells, blood-derived leukocytes, and the blood–brain barrier will be explored, as well as pro- and anti-inflammatory mediators. While the neuroinflammatory response to TBI appears to be largely pro-epileptogenic, further research is needed to clearly demonstrate causal relationships. This research has the potential to unveil new drug targets for PTE, and identify immune-based biomarkers for improved epilepsy prediction.
Collapse
|
41
|
Liu J, Wang J, Ning Y, Chen F. The inhibition of miR‑101a‑3p alleviates H/R injury in H9C2 cells by regulating the JAK2/STAT3 pathway. Mol Med Rep 2019; 21:89-96. [PMID: 31746349 PMCID: PMC6896302 DOI: 10.3892/mmr.2019.10793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) is used as an in vivo model of ischemia/reperfusion injury, and myocardial ischemia can lead to heart disease. Therefore, it is necessary to prevent myocardial H/R injury to avoid the risk of heart disease. The aim of the present study was to investigate whether inhibiting microRNA (miR)-101a-3p attenuated H9C2 cell H/R injury, apoptosis mechanisms and key target proteins. Cell viability and apoptosis were determined by Cell Counting Kit-8 assays and flow cytometry using a cell apoptosis kit, respectively. The contents of creatine kinase (CK) and lactate dehydrogenase (LDH) were detected using colorimetric assays. Dual luciferase assays were carried out to determine if miR-101a-3p inhibited Janus kinase (JAK)2. Western blot analysis and reverse transcription-quantitative PCR were used to determine proteins levels and mRNAs expression. It was found that the inhibition of miR-101a-3p increased the growth of H9C2 cells and decreased H9C2 cell apoptosis during H/R injury. The inhibition of miR-101a-3p reduced the amounts of CK and LDH in H/R model H9C2 cells. The inhibition of miR-101a-3p lowered the levels of Bax, interleukin-6 and tumor necrosis factor-α, but raised the levels of phosphorylated (p)-STAT3 and p-JAK2 in H9C2 cells subjected to H/R injury treatment. miR-101a-3p mimic was found to inhibit H9C2 cell viability, raise p-JAK2 level and slightly increase p-STAT3 during H/R injury. AG490 induced H9C2 cell apoptosis, and decreased the levels of p-JAK2 and p-STAT3 during H/R injury. The data indicated that inhibiting miR-101a-3p reduced H/R damage in H9C2 cells and decreased apoptosis via Bax/Bcl-2 signaling during H/R injury. In addition, it was suggested that the inhibition of miR-101a-3p decreased H/R injury in H9C2 cell by regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jingying Liu
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Juanjuan Wang
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yuzhen Ning
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Fengying Chen
- Emergency Department, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
42
|
Vitronectin mitigates stroke-increased neurogenesis only in female mice and through FAK-regulated IL-6. Exp Neurol 2019; 323:113088. [PMID: 31678139 DOI: 10.1016/j.expneurol.2019.113088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/03/2019] [Accepted: 10/20/2019] [Indexed: 12/18/2022]
Abstract
Vitronectin (VTN) is a blood protein produced mainly by the liver. We show that VTN leaks from the bloodstream into the injury site and neighboring subventricular zone (SVZ) following ischemic stroke (middle cerebral artery occlusion, MCAO) in adult mice. MCAO is known to increase neurogenesis after stroke. VTN inhibits this response in females, but not in males, as shown by ~70% more stroke-induced SVZ neurogenesis in female VTN-/- mice at 14 d. In female VTN-/- mice, stroke-induced expression of interleukin-6 (IL-6) at 24 h was reduced in the SVZ. The closely related leukemia inhibitory factor (LIF) or pro-neurogenic ciliary neurotrophic factor (CNTF) were not affected. The female-specific effect of VTN on IL-6 expression was not due to sex hormones, as shown by ovariectomy and castration. IL-6 injection next to the SVZ reversed the MCAO-induced increase in neurogenesis seen in VTN-/- mice. Our in vitro and vivo data suggest that plasma VTN activates focal adhesion kinase (FAK) in the SVZ following MCAO, which reduces IL-6 expression in astrocytes but increases it in other cells such as microglia/macrophages. Inducible conditional astrocytic FAK deletion increased MCAO-induced IL-6 expression in females at 24 h and blocked MCAO-induced neurogenesis at 14 d, confirming a key detrimental role of IL-6. Collectively, these data suggest that leakage of VTN into the SVZ reduces the neurogenic response to stroke in female mice by promoting IL-6 expression. Reducing VTN or VTN signaling may be an approach to promote neurogenesis for neuroprotection and cell replacement after stroke in females.
Collapse
|
43
|
Piotrowicz Z, Chalimoniuk M, Płoszczyca K K, Czuba M, Langfort J. Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS One 2019; 14:e0224207. [PMID: 31644554 PMCID: PMC6808427 DOI: 10.1371/journal.pone.0224207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Physical exercise has a neuromodulatory effect on the central nervous system (CNS) partially by modifying expression of neuropeptides produced and secreted by neurons and glial cells, among which the best examined are brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Because both neurotrophins can cross the brain-blood barrier (BBB), their blood levels indirectly reflect their production in the CNS. Moreover, both neuropeptides are involved in modulation of dopaminergic and serotoninergic system function. Because limited information is available on the effects of exercise to volition exhaustion and acute hypoxia on CNS, BDNF and GDNF formation, the aims of the present study were to verify whether 1) acute exercise to exhaustion in addition to neurons also activates glial cells and 2) additional exposure to acute normobaric moderate hypoxia affects their function. In this feasibility study we measured blood concentrations of BDNF, GDNF, and neuropeptides considered as biomarkers of brain damage (bFGF, NGF, S100B, GFAP) in seven sedentary healthy young men who performed a graded exercise test to volitional exhaustion on a cycle ergometer under normoxic (N) and hypoxic conditions: 2,000 m (H2; FiO2 = 16.6%) and 3,000 m altitude (H3; FiO2 = 14.7%). In all conditions serum concentrations of both BDNF and GDNF increased immediately after cessation of exercise (p<0.01). There was no effect of condition or interaction (condition x time of measurement) and exercise on any of the brain damage biomarkers: bFGF, NGF, S100B, GFAP. Moreover, in N (0<0.01) and H3 (p<0.05) exercise caused elevated serum 5-HT concentration. The results suggest that a graded effort to volitional exhaustion in normoxia, as well as hypoxia, simultaneously activates both neurons and astrocytes. Considering that s100B, GFAP, bFGF, and NGF (produced mainly by astrocytes) are markers of brain damage, it can be assumed that a maximum effort in both conditions is safe for the CNS.
Collapse
Affiliation(s)
- Zofia Piotrowicz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biała Podlaska, The Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, Warsaw, Poland
- Department of Sports Theory, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Józef Langfort
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
44
|
DiSano KD, Royce DB, Gilli F, Pachner AR. Central Nervous System Inflammatory Aggregates in the Theiler's Virus Model of Progressive Multiple Sclerosis. Front Immunol 2019; 10:1821. [PMID: 31428102 PMCID: PMC6687912 DOI: 10.3389/fimmu.2019.01821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022] Open
Abstract
Persistent central nervous system (CNS) inflammation, as seen in chronic infections or inflammatory demyelinating diseases such as Multiple Sclerosis (MS), results in the accumulation of various B cell subsets in the CNS, including naïve, activated, memory B cells (Bmem), and antibody secreting cells (ASC). However, factors driving heterogeneous B cell subset accumulation and antibody (Ab) production in the CNS compartment, including the contribution of ectopic lymphoid follicles (ELF), during chronic CNS inflammation remain unclear and is a major gap in our understanding of neuroinflammation. We sought to address this gap using the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of progressive MS. In this model, injection of the virus into susceptible mouse strains results in a persistent infection associated with demyelination and progressive disability. During chronic infection, the predominant B cell phenotypes accumulating in the CNS were isotype-switched B cells, including Bmem and ASC with naïve/early activated and transitional B cells present at low frequencies. B cell accumulation in the CNS during chronic TMEV-IDD coincided with intrathecal Ab synthesis in the cerebrospinal fluid (CSF). Mature and isotype-switched B cells predominately localized to the meninges and perivascular space, with IgG isotype-switched B cells frequently accumulating in the parenchymal space. Both mature and isotype-switched B cells and T cells occupied meningeal and perivascular spaces, with minimal evidence for spatial organization typical of ELF mimicking secondary lymphoid organs (SLO). Moreover, immunohistological analysis of immune cell aggregates revealed a lack of SLO-like ELF features, such as cell proliferation, cell death, and germinal center B cell markers. Nonetheless, flow cytometric assessment of B cells within the CNS showed enhanced expression of activation markers, including moderate upregulation of GL7 and expression of the costimulatory molecule CD80. B cell-related chemokines and trophic factors, including APRIL, BAFF, CXCL9, CXCL10, CCL19, and CXCL13, were elevated in the CNS. These results indicate that localization of heterogeneous B cell populations, including activated and isotype-switched B cell phenotypes, to the CNS and intrathecal Ab (ItAb) synthesis can occur independently of SLO-like follicles during chronic inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Krista D DiSano
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| | - Darlene B Royce
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| | - Andrew R Pachner
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| |
Collapse
|
45
|
Chen Y, Xia K, Chen L, Fan D. Increased Interleukin-6 Levels in the Astrocyte-Derived Exosomes of Sporadic Amyotrophic Lateral Sclerosis Patients. Front Neurosci 2019; 13:574. [PMID: 31231184 PMCID: PMC6560167 DOI: 10.3389/fnins.2019.00574] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022] Open
Abstract
Neuroinflammation plays an important role in amyotrophic lateral sclerosis (ALS) pathogenesis. However, it is difficult to evaluate inflammation of the central nervous system (CNS) or the relationship between neuroinflammation and disease progression in ALS patients. Recent advances in the field of exosomes and CNS-derived exosomes extraction technology provide the possibility of measuring the inflammatory status in the CNS without brain biopsy. In this pilot study, we extracted astrocyte-derived exosomes from the plasma of sporadic ALS patients and age-, sex-matched healthy controls and determined Interleukin-6 (IL-6) levels by an enzyme-linked immunosorbent assay (ELISA). The IL-6 levels in astrocyte-derived exosomes were increased in sALS patients and positively associated with the rate of disease progression. However, the association between IL-6 levels and disease progression rate was limited to patients whose disease duration were less than 12 months. These data suggest an increased inflammatory cascade in the CNS of sALS patients. Our pilot study demonstrates that CNS-derived exosomes could be useful to reveal neuroinflammation of the CNS in ALS patients.
Collapse
Affiliation(s)
- Yong Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Kailin Xia
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
46
|
Gorelenkova Miller O, Mieyal JJ. Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease. Antioxid Redox Signal 2019; 30:1352-1368. [PMID: 29183158 PMCID: PMC6391617 DOI: 10.1089/ars.2017.7411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Glutaredoxin (Grx)1, an evolutionarily conserved and ubiquitous enzyme, regulates redox signal transduction and protein redox homeostasis by catalyzing reversible S-glutathionylation. Grx1 plays different roles in different cell types. In Parkinson's disease (PD), Grx1 regulates apoptosis signaling in dopaminergic neurons, so that loss of Grx1 leads to increased cell death; in microglial cells, Grx1 regulates proinflammatory signaling, so that upregulation of Grx1 promotes cytokine production. Here we examine the regulatory roles of Grx1 in PD with a view toward therapeutic innovation. Recent Advances: In postmortem midbrain PD samples, Grx1 was decreased relative to controls, specifically within dopaminergic neurons. In Caenorhabditis elegans models of PD, loss of the Grx1 homologue led to exacerbation of the neurodegenerative phenotype. This effect was partially relieved by overexpression of neuroprotective DJ-1, consistent with regulation of DJ-1 content by Grx1. Increased GLRX copy number in PD patients was associated with earlier PD onset; and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-α in mouse and human brain samples. In vitro studies showed Grx1 to be upregulated on proinflammatory activation of microglia. Direct overexpression of Grx1 increased microglial activation; silencing Grx1 diminished activation. Grx1 upregulation in microglia corresponded to increased neuronal cell death in coculture. Overall, these studies identify competing roles of Grx1 in PD etiology. CRITICAL ISSUES The dilemma regarding Grx1 as a PD therapeutic target is whether to stimulate its upregulation for neuroprotection or inhibit its proinflammatory activity. FUTURE DIRECTIONS Further investigation is needed to understand the preponderant role of Grx1 regarding dopaminergic neuronal survival.
Collapse
Affiliation(s)
- Olga Gorelenkova Miller
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - John J Mieyal
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
47
|
Jia C, Keasey MP, Lovins C, Hagg T. Inhibition of astrocyte FAK-JNK signaling promotes subventricular zone neurogenesis through CNTF. Glia 2019; 66:2456-2469. [PMID: 30500112 DOI: 10.1002/glia.23498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
Abstract
Astrocyte-derived ciliary neurotrophic factor (CNTF) promotes adult subventricular zone (SVZ) neurogenesis. We found that focal adhesion kinase (FAK) and JNK, but not ERK or P38, repress CNTF in vitro. Here, we defined the FAK-JNK pathway and its regulation of CNTF in mice, and the related leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), which promote stem cell renewal at the expense of neurogenesis. Intrastriatal injection of FAK inhibitor, FAK14, in adult male C57BL/6 mice reduced pJNK and increased CNTF expression in the SVZ-containing periventricular region. Injection of a JNK inhibitor increased CNTF without affecting LIF and IL-6, and increased SVZ proliferation and neuroblast formation. The JNK inhibitor had no effect in CNTF-/- mice, suggesting that JNK inhibits SVZ neurogenesis by repressing CNTF. Inducible deletion of FAK in astrocytes increased SVZ CNTF and neurogenesis, but not LIF and IL-6. Intrastriatal injection of inhibitors suggested that P38 reduces LIF and IL-6 expression, whereas ERK induces CNTF and LIF. Intrastriatal FAK inhibition increased LIF, possibly through ERK, and IL-6 through another pathway that does not involve P38. Systemic injection of FAK14 also inhibited JNK while increasing CNTF, but did not affect P38 and ERK activation, or LIF and IL-6 expression. Importantly, systemic FAK14 increased SVZ neurogenesis in wild-type C57BL/6 and CNTF+/+ mice, but not in CNTF-/- littermates, indicating that it acts by upregulating CNTF. These data show a surprising differential regulation of related cytokines and identify the FAK-JNK-CNTF pathway as a specific target in astrocytes to promote neurogenesis and possibly neuroprotection in neurological disorders.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
48
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
49
|
Hotter B, Hoffmann S, Ulm L, Meisel C, Fiebach JB, Meisel A. IL-6 Plasma Levels Correlate With Cerebral Perfusion Deficits and Infarct Sizes in Stroke Patients Without Associated Infections. Front Neurol 2019; 10:83. [PMID: 30828313 PMCID: PMC6384225 DOI: 10.3389/fneur.2019.00083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: We aimed to investigate several blood-based biomarkers related to inflammation, immunity, and stress response in a cohort of patients without stroke-associated infections regarding their predictive abilities for functional outcome and explore whether they correlate with MRI markers, such as infarct size or location. Methods: We combined the clinical and radiological data of patients participating in two observational acute stroke cohorts: the PREDICT and 1000Plus studies. The following blood-based biomarkers were measured in these patients: monocytic HLA-DR, IL-6, IL-8, IL-10, LBP, MRproANP, MRproADM, CTproET, Copeptin, and PCT. Multiparametric stroke MRI was performed including T2*, DWI, FLAIR, TOF-MRA, and perfusion imaging. Standard descriptive sum statistics were used to describe the sample. Associations were analyzed using Fischer's exact test, independent samples t-test and Spearmans correlation, where appropriate. Results: Demographics and stroke characteristics were as follows: 94 patients without infections, mean age 68 years (SD 10.5), 32.2% of subjects were female, median NIHSS score at admission 3 (IQR 2-5), median mRS 3 months after stroke 1 (IQR 0-2), mean volume of DWI lesion at admission 5.7 ml (SD 12.8), mean FLAIR final infarct volume 10 ml (SD 14.9), cortical affection in 61% of infarctions. Acute DWI lesion volume on admission MRI was moderately correlated to admission/maximum IL-6 as well as maximum LBP. Extent of perfusion deficit and mismatch were moderately correlated to admission/maximum IL-6 levels. Final lesion volume on FLAIR was moderately correlated to admission IL-6 levels. Conclusion: We found IL-6 to be associated with several parameters from acute stroke MRI (acute DWI lesion, perfusion deficit, final infarct size, and affection of cortex) in a cohort of patients not influenced by infections. Clinical Trial Registration: www.ClinicalTrials.gov, identifiers NCT01079728 and NCT00715533.
Collapse
Affiliation(s)
- Benjamin Hotter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin, NeuroCure Clinical Research Center and Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Sarah Hoffmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin, NeuroCure Clinical Research Center and Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Lena Ulm
- Centre for Clinical Research, University of Queensland, Herston, QLD, Australia
| | - Christian Meisel
- Department of Medical Immunology, Charité University Medicine & Labor Berlin - Charité Vivantes, Berlin, Germany
| | - Jochen B Fiebach
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin, NeuroCure Clinical Research Center and Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Andreas Meisel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Center for Stroke Research Berlin, NeuroCure Clinical Research Center and Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| |
Collapse
|
50
|
Jia C, Keasey MP, Malone HM, Lovins C, Sante RR, Razskazovskiy V, Hagg T. Vitronectin from brain pericytes promotes adult forebrain neurogenesis by stimulating CNTF. Exp Neurol 2018; 312:20-32. [PMID: 30408465 DOI: 10.1016/j.expneurol.2018.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/17/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Vitronectin (VTN) is a glycoprotein in the blood and affects hemostasis. VTN is also present in the extracellular matrix of various organs but little is known about its function in healthy adult tissues. We show, in adult mice, that VTN is uniquely expressed by approximately half of the pericytes of subventricular zone (SVZ) where neurogenesis continues throughout life. Intracerebral VTN antibody injection or VTN knockout reduced neurogenesis as well as expression of pro-neurogenic CNTF, and anti-neurogenic LIF and IL-6. Conversely, injections of VTN, or plasma from VTN+/+, but not VTN-/- mice, increased these cytokines. VTN promoted SVZ neurogenesis when LIF and IL-6 were suppressed by co-administration of a gp130 inhibitor. Unexpectedly, VTN inhibited FAK signaling and VTN-/- mice had increased FAK signaling in the SVZ. Further, an FAK inhibitor or VTN increased CNTF expression, but not in conditional astrocytic FAK knockout mice, suggesting that VTN increases CNTF through FAK inhibition in astrocytes. These results identify a novel role of pericyte-derived VTN in the brain, where it regulates SVZ neurogenesis through co-expression of CNTF, LIF and IL-6. VTN-integrin-FAK and gp130 signaling may provide novel targets to induce neurogenesis for cell replacement therapies.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Hannah M Malone
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Richard R Sante
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Vlad Razskazovskiy
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|