1
|
Xie AX, Iguchi N, Malykhina AP. Long-term follow-up of TREK-1 KO mice reveals the development of bladder hypertrophy and impaired bladder smooth muscle contractility with age. Am J Physiol Renal Physiol 2024; 326:F957-F970. [PMID: 38601986 PMCID: PMC11386977 DOI: 10.1152/ajprenal.00382.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stretch-activated two-pore domain K+ (K2P) channels play important roles in many visceral organs, including the urinary bladder. The TWIK-related K+ channel TREK-1 is the predominantly expressed K2P channel in the urinary bladder of humans and rodents. Downregulation of TREK-1 channels was observed in the urinary bladder of patients with detrusor overactivity, suggesting their involvement in the pathogenesis of voiding dysfunction. This study aimed to characterize the long-term effects of TREK-1 on bladder function with global and smooth muscle-specific TREK-1 knockout (KO) mice. Bladder morphology, bladder smooth muscle (BSM) contractility, and voiding patterns were evaluated up to 12 mo of age. Both sexes were included in this study to probe the potential sex differences. Smooth muscle-specific TREK-1 KO mice were used to distinguish the effects of TREK-1 downregulation in BSM from the neural pathways involved in the control of bladder contraction and relaxation. TREK-1 KO mice developed enlarged urinary bladders (by 60.0% for males and by 45.1% for females at 6 mo; P < 0.001 compared with the age-matched control group) and had a significantly increased bladder capacity (by 137.7% at 12 mo; P < 0.0001) and compliance (by 73.4% at 12 mo; P < 0.0001). Bladder strips isolated from TREK-1 KO mice exhibited decreased contractility (peak force after KCl at 6 mo was 1.6 ± 0.7 N/g compared with 3.4 ± 2.0 N/g in the control group; P = 0.0005). The lack of TREK-1 channels exclusively in BSM did not replicate the bladder phenotype observed in TREK-1 KO mice, suggesting a strong neurogenic origin of TREK-1-related bladder dysfunction.NEW & NOTEWORTHY This study compared voiding function and bladder phenotypes in global and smooth muscle-specific TREK-1 KO mice. We found significant age-related changes in bladder contractility, suggesting that the lack of TREK-1 channel activity might contribute to age-related changes in bladder smooth muscle physiology.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| | - Nao Iguchi
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| | - Anna P Malykhina
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| |
Collapse
|
2
|
Sun W, Yang F, Wang Y, Yang Y, Du R, Wang X, Luo Z, Wu J, Chen J. Sortilin-Mediated Inhibition of TREK1/2 Channels in Primary Sensory Neurons Promotes Prediabetic Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310295. [PMID: 38626370 PMCID: PMC11187941 DOI: 10.1002/advs.202310295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Indexed: 04/18/2024]
Abstract
Neuropathic pain can occur during the prediabetic stage, even in the absence of hyperglycemia. The presence of prediabetic neuropathic pain (PDNP) poses challenges to the management of individuals with prediabetes. However, the mechanisms underlying this pain remain unclear. This study aims to investigate the underlying mechanism and identify potential therapeutic targets of PDNP. A prediabetic animal model induced by a high-energy diet exhibits both mechanical allodynia and thermal hyperalgesia. Furthermore, hyperexcitability and decreased potassium currents are observed in the dorsal root ganglion (DRG) neurons of these rats. TREK1 and TREK2 channels, which belong to the two-pore-domain K+ channel (K2P) family and play an important role in controlling cellular excitability, are downregulated in DRG neurons. Moreover, this alteration is modulated by Sortilin, a molecular partner that modulates the expression of TREK1. The overexpression of Sortilin negatively affects the expression of TREK1 and TREK2, leading to increased neuronal excitability in the DRG and enhanced peripheral pain sensitivity in rats. Moreover, the downregulation of Sortilin or activation of TREK1 and TREK2 channels by genetic or pharmacological approaches can alleviate PDNP. Therefore, targeting the Sortilin-mediated TREK1/2 pathway may provide a therapeutic approach for ameliorating PDNP.
Collapse
Affiliation(s)
- Wei Sun
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Fan Yang
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Yan Wang
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Yan Yang
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Rui Du
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Xiao‐Liang Wang
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Zhi‐Xin Luo
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Jun‐Jie Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of Orthodontics, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi Province710032P. R. China
| | - Jun Chen
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
- Present address:
Sanhang Institute for Brain Science and Technology (SiBST)School of Medical Research, Northwestern Polytechnical University (NPU)Xi'an Shaanxi710129P. R. China
| |
Collapse
|
3
|
Türkaydin B, Schewe M, Riel EB, Schulz F, Biedermann J, Baukrowitz T, Sun H. Atomistic mechanism of coupling between cytosolic sensor domain and selectivity filter in TREK K2P channels. Nat Commun 2024; 15:4628. [PMID: 38821927 PMCID: PMC11143257 DOI: 10.1038/s41467-024-48823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
The two-pore domain potassium (K2P) channels TREK-1 and TREK-2 link neuronal excitability to a variety of stimuli including mechanical force, lipids, temperature and phosphorylation. This regulation involves the C-terminus as a polymodal stimulus sensor and the selectivity filter (SF) as channel gate. Using crystallographic up- and down-state structures of TREK-2 as a template for full atomistic molecular dynamics (MD) simulations, we reveal that the SF in down-state undergoes inactivation via conformational changes, while the up-state structure maintains a stable and conductive SF. This suggests an atomistic mechanism for the low channel activity previously assigned to the down state, but not evident from the crystal structure. Furthermore, experimentally by using (de-)phosphorylation mimics and chemically attaching lipid tethers to the proximal C-terminus (pCt), we confirm the hypothesis that moving the pCt towards the membrane induces the up-state. Based on MD simulations, we propose two gating pathways by which movement of the pCt controls the stability (i.e., conductivity) of the filter gate. Together, these findings provide atomistic insights into the SF gating mechanism and the physiological regulation of TREK channels by phosphorylation.
Collapse
Affiliation(s)
- Berke Türkaydin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Insitute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Marcus Schewe
- Institute of Physiology, Kiel University, Kiel, Germany.
| | - Elena Barbara Riel
- Institute of Physiology, Kiel University, Kiel, Germany
- Department of Anesthesiology, Weill Cornell Medical College, New York, USA
| | | | - Johann Biedermann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Insitute of Chemistry, Technical University of Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
5
|
Gernez E, Lee GR, Niguet JP, Zerimech F, Bennis A, Grzych G. Nitrous Oxide Abuse: Clinical Outcomes, Pharmacology, Pharmacokinetics, Toxicity and Impact on Metabolism. TOXICS 2023; 11:962. [PMID: 38133363 PMCID: PMC10747624 DOI: 10.3390/toxics11120962] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The recreational use of nitrous oxide (N2O), also called laughing gas, has increased significantly in recent years. In 2022, the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) recognized it as one of the most prevalent psychoactive substances used in Europe. Chronic nitrous oxide (N2O) exposure can lead to various clinical manifestations. The most frequent symptoms are neurological (sensitive or motor disorders), but there are also other manifestations like psychiatric manifestations or cardiovascular disorders (thrombosis events). N2O also affects various neurotransmitter systems, leading to its anesthetic, analgesic, anxiolytic and antidepressant properties. N2O is very challenging to measure in biological matrices. Thus, in cases of N2O intoxication, indirect biomarkers such as vitamin B12, plasma homocysteine and plasma MMA should be explored for diagnosis and assessment. Others markers, like oxidative stress markers, could be promising but need to be further investigated.
Collapse
Affiliation(s)
- Emeline Gernez
- CHU de Lille, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (E.G.); (F.Z.)
| | | | - Jean-Paul Niguet
- Service de Neurologie, Hôpital Saint Vincent de Paul–GHICL, 59000 Lille, France;
| | - Farid Zerimech
- CHU de Lille, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (E.G.); (F.Z.)
| | - Anas Bennis
- Assistance Publique—Hôpitaux de Paris, Service de Neurologie, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France;
| | - Guillaume Grzych
- CHU de Lille, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (E.G.); (F.Z.)
| |
Collapse
|
6
|
Lee EH, Park JE, Gotina L, Han YE, Viswanath ANI, Yoo S, Moon B, Hwang JY, Park WK, Cho Y, Song C, Min SJ, Hwang EM, Lee H, Pae AN, Roh EJ, Oh SJ. Novel potent blockers for TWIK-1/TREK-1 heterodimers as potential antidepressants. Biomed Pharmacother 2023; 165:115139. [PMID: 37454597 DOI: 10.1016/j.biopha.2023.115139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
TREK-1 (TWIK-related potassium channel-1) is a subunit of the two-pore domain potassium (K2p) channel and is widely expressed in the brain. TREK-1 knockout mice were shown to have antidepressant-like effects, providing evidence for the channel's potential as a therapeutic target. However, currently there is no good pharmacological inhibitor specifically targeting TREK-1 containing K2p channels that also displays similar antidepressant-like effects. Here, we sought to find selective and potent inhibitors for TREK-1 related dimers both in vitro and in vivo. We synthesized and evaluated 2-hydroxy-3-phenoxypropyl piperidine derivatives yielding a library from which many TREK-1 targeting candidates emerged. Among these, hydroxyl-phenyl- (2a), piperidino- (2g), and pyrrolidino- (2h) piperidinyl substituted compounds showed high potencies to TREK-1 homodimers with significant antidepressant-like effects in forced swim test and tail suspension test. Interestingly, these compounds were found to have high potencies to TWIK-1/TREK-1 heterodimers. Contrastingly, difluoropiperidinyl-4-fluorophenoxy (3e) and 4-hydroxyphenyl-piperidinyl-4-fluorophenoxy (3j) compounds had high potencies to TREK-1 homodimer but lower potency to TWIK-1/TREK-1 heterodimers without significant antidepressant-like effects. We observed positive correlation between inhibition potency to TWIK-1/TREK-1 and immobility time, and no correlation between inhibition potency to TREK-1 homodimer and immobility time. This was consistent with molecular docking simulations of selected compounds to TREK-1 homodimeric and TWIK-1/TREK-1 heterodimeric models. Existing antidepressant fluoxetine was also found to potently inhibit TWIK-1/TREK-1 heterodimers. Our study reveals novel potent TWIK-1/TREK-1 inhibitors 2a, 2g, and 2h as potential antidepressants and suggest that the TWIK-1/TREK-1 heterodimer could be a potential novel molecular therapeutic target for antidepressants.
Collapse
Affiliation(s)
- Elliot H Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jung-Eun Park
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Chemistry, Sogang University, Baekbeomno 35, Mapo-gu, Seoul, Republic of Korea
| | - Lizaveta Gotina
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ambily Nath Indu Viswanath
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seonguk Yoo
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Baekbeomno 35, Mapo-gu, Seoul, Republic of Korea
| | - Jin-Young Hwang
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo Kyu Park
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yoonjeong Cho
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun-Joon Min
- Department of Chemical & Molecular Engineering/Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Ae Nim Pae
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Xu H, Ding Y, Qi X, Zhang ZJ, Su J. Ameliorated Neurogenesis Deficits in Dentate Gyrus May Underly the Pronounced Antidepressant Effect of TREK-1 Potassium Channel Blockade in Rats with Depressive-like Behavior. ACS Chem Neurosci 2022; 13:3068-3077. [PMID: 36269040 DOI: 10.1021/acschemneuro.2c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Depression is considered to be the most common mental disorder and is probed by several studies that chronic mild stress contributes to depression, and fortunately, most antidepressants ameliorate depressive-like behavior accompanied with reversed hippocampal neurogenesis defects. In our present study, we confirmed that different antidepressants repaired the stress-induced neuronal and behavioral deficits by modulating adult hippocampal neurogenesis. Antidepressant treatment restored the adult hippocampal neurodegeneration, which was impaired by chronic unpredicted mild stress displaying decreased proliferation and neuronal differentiation but increased apoptosis of newly formed neurons in dentate gyrus. Notably, sucrose preference ratio significantly correlated with both neuronal differentiation proportion and newborn apoptosis proportion, suggesting a mechanistic relationship between neurogenesis and behavior. Indeed, the neotype TREK-1 potassium channel blocker expressed an earlier and pronounced antidepressant manifestation compared to the traditional selective serotonin-reuptake inhibitors fluoxetine. We therefore conclude that the administration of TREK-1 potassium channel antagonism can reverse the depressive deficits caused by chronic stress quickly via regulation of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hua Xu
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou, Jiangsu 213200, China.,Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yingpeng Ding
- Department of Cardiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou 213200, Jiangsu, China
| | - Xinyang Qi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,The Brain Cognition and Brain Disease Institute (BCBDI), CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jianhua Su
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou, Jiangsu 213200, China
| |
Collapse
|
9
|
Chuang YC, Chen CC. Force From Filaments: The Role of the Cytoskeleton and Extracellular Matrix in the Gating of Mechanosensitive Channels. Front Cell Dev Biol 2022; 10:886048. [PMID: 35586339 PMCID: PMC9108448 DOI: 10.3389/fcell.2022.886048] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
The senses of proprioception, touch, hearing, and blood pressure on mechanosensitive ion channels that transduce mechanical stimuli with high sensitivity and speed. This conversion process is usually called mechanotransduction. From nematode MEC-4/10 to mammalian PIEZO1/2, mechanosensitive ion channels have evolved into several protein families that use variant gating models to convert different forms of mechanical force into electrical signals. In addition to the model of channel gating by stretching from lipid bilayers, another potent model is the opening of channels by force tethering: a membrane-bound channel is elastically tethered directly or indirectly between the cytoskeleton and the extracellular molecules, and the tethering molecules convey force to change the channel structure into an activation form. In general, the mechanical stimulation forces the extracellular structure to move relative to the cytoskeleton, deforming the most compliant component in the system that serves as a gating spring. Here we review recent studies focusing on the ion channel mechanically activated by a tethering force, the mechanotransduction-involved cytoskeletal protein, and the extracellular matrix. The mechanosensitive channel PIEZO2, DEG/ENaC family proteins such as acid-sensing ion channels, and transient receptor potential family members such as NompC are discussed. State-of-the-art techniques, such as polydimethylsiloxane indentation, the pillar array, and micropipette-guided ultrasound stimulation, which are beneficial tools for exploring the tether model, are also discussed.
Collapse
Affiliation(s)
- Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
- Taiwan Mouse Clinic, BioTReC, Academia Sinica, Taipei, Taiwan
- *Correspondence: Chih-Cheng Chen,
| |
Collapse
|
10
|
Miles L, Powell J, Kozak C, Song Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2022:10738584221088575. [PMID: 35414308 PMCID: PMC9556659 DOI: 10.1177/10738584221088575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.
Collapse
Affiliation(s)
- Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Casey Kozak
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuanquan Song
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Voss LJ, Harvey MG, Sleigh JW. Non-NMDA Mechanisms of Analgesia in Ketamine Analogs. FRONTIERS IN PAIN RESEARCH 2022; 3:827372. [PMID: 35295807 PMCID: PMC8915584 DOI: 10.3389/fpain.2022.827372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Despite 50 years of clinical use and experimental endeavor the anesthetic, analgesic, and psychomimetic effects of ketamine remain to be fully elucidated. While NMDA receptor antagonism has been long held as ketamine's fundamental molecular action, interrogation of bespoke ketamine analogs with known absent NMDA binding, yet profound anesthetic and analgesia fingerprints, suggests alternative targets are responsible for these effects. Herein we describe experimental findings utilizing such analogs as probes to explore ketamine-based analgesic molecular targets. We have focused on two-pore potassium leak channels, identifying TWIK channels as a rational target to pursue further. While the totality of ketamine's mechanistic action is yet to be fully determined, these investigations raise the intriguing prospect of separating out analgesia and anesthetic effects from ketamine's undesirable psychomimesis—and development of more specific analgesic medications.
Collapse
Affiliation(s)
- Logan J. Voss
- Anaesthesia Department, Waikato District Health Board, Hamilton, New Zealand
- *Correspondence: Logan J. Voss
| | - Martyn G. Harvey
- Emergency Department, Waikato District Health Board, Hamilton, New Zealand
| | - James W. Sleigh
- Anaesthesia Department, Waikato District Health Board, Hamilton, New Zealand
| |
Collapse
|
12
|
Zuccolini P, Ferrera L, Remigante A, Picco C, Barbieri R, Bertelli S, Moran O, Gavazzo P, Pusch M. The VRAC blocker DCPIB directly gates the BK channels and increases intracellular Ca 2+ in Melanoma and Pancreatic Duct Adenocarcinoma (PDAC) cell lines. Br J Pharmacol 2022; 179:3452-3469. [PMID: 35102550 DOI: 10.1111/bph.15810] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The Volume Regulated Anion Channel (VRAC) is known to be involved in different aspects of cancer cell behavior and response to therapies. For this reason, we investigated the effect of DCPIB, a presumably specific blocker of VRAC, in two types of cancer: pancreatic duct adenocarcinoma (PDAC) and melanoma. EXPERIMENTAL APPROACH For this investigation, we used patch-clamp electrophysiology, supported by Ca2+ imaging, gene expression analysis, docking simulation and mutagenesis. We employed two PDAC lines (Panc-1 and MiaPaCa-2), as well as a primary (IGR39) and a metastatic (IGR37) melanoma line. KEY RESULTS Surprisingly, DCPIB induced a dramatic increase of whole-cell currents in Panc-1, MiaPaca2 and IGR39, but not in IGR37 cells. The currents were mostly mediated by the KCa1.1 channel, commonly known as BK. We verified DCPIB activation of BK also in HEK293 cells transfected with the α subunit of the channel. Further experiments showed that in IGR39, and to a smaller degree also in Panc-1 cells, DCPIB induces a rapid Ca2+ influx. This, in turn, indirectly potentiates BK and, in IGR39 cells, additionally activates other Ca2+ -dependent channels. However, the Ca2+ influx is not required for BK activation by DCPIB: indeed, we found that the activation of BK by DCPIB involves the extracellular part of the protein and identified two residues crucial for binding. CONCLUSION AND IMPLICATIONS DCPIB directly targets BK channels and, in addition, can acutely increase intracellular Ca2+ . Our findings elongate the list of DCPIB effects that have to be taken into consideration for future development of DCPIB-based modulators of ion channels and other membrane proteins.
Collapse
Affiliation(s)
- Paolo Zuccolini
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Loretta Ferrera
- Institute of Biophysics, National Research Council, Genova, Italy.,U.O.C. Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | | | - Cristiana Picco
- Institute of Biophysics, National Research Council, Genova, Italy
| | | | - Sara Bertelli
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Oscar Moran
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Genova, Italy
| |
Collapse
|
13
|
Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H. Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult Scler Relat Disord 2022; 59:103557. [PMID: 35092946 PMCID: PMC8785368 DOI: 10.1016/j.msard.2022.103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Ana Maria Teixeira
- University of Coimbra, Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes F-35000, France; Institut International des Sciences du Sport (2I2S), Irodouer 35850, France.
| |
Collapse
|
14
|
Jang MW, Kim TY, Sharma K, Kwon J, Yi E, Lee CJ. A Deafness Associated Protein TMEM43 Interacts with KCNK3 (TASK-1) Two-pore Domain K + (K2P) Channel in the Cochlea. Exp Neurobiol 2021; 30:319-328. [PMID: 34737237 PMCID: PMC8572660 DOI: 10.5607/en21028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
The TMEM43 has been studied in human diseases such as arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC5) and auditory neuropathy spectrum disorder (ANSD). In the heart, the p.(Ser358Leu) mutation has been shown to alter intercalated disc protein function and disturb beating rhythms. In the cochlea, the p.(Arg372Ter) mutation has been shown to disrupt connexin-linked function in glia-like supporting cells (GLSs), which maintain inner ear homeostasis for hearing. The TMEM43-p.(Arg372Ter) mutant knock-in mice displayed a significantly reduced passive conductance current in the cochlear GLSs, raising a possibility that TMEM43 is essential for mediating the passive conductance current in GLSs. In the brain, the two-pore-domain potassium (K2P) channels are generally known as the “leak channels” to mediate background conductance current, raising another possibility that K2P channels might contribute to the passive conductance current in GLSs. However, the possible association between TMEM43 and K2P channels has not been investigated yet. In this study, we examined whether TMEM43 physically interacts with one of the K2P channels in the cochlea, KCNK3 (TASK-1). Utilizing co-immunoprecipitation (IP) assay and Duolink proximity ligation assay (PLA), we revealed that TMEM43 and TASK-1 proteins could directly interact. Genetic modifications further delineated that the intracellular loop domain of TMEM43 is responsible for TASK-1 binding. In the end, gene-silencing of Task-1 resulted in significantly reduced passive conductance current in GLSs. Together, our findings demonstrate that TMEM43 and TASK-1 form a protein-protein interaction in the cochlea and provide the possibility that TASK-1 is a potential contributor to the passive conductance current in GLSs.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Mokpo 58554, Korea
| | - Jea Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Mokpo 58554, Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
15
|
Magalhães KS, da Silva MP, Mecawi AS, Paton JFR, Machado BH, Moraes DJA. Intrinsic and synaptic mechanisms controlling the expiratory activity of excitatory lateral parafacial neurones of rats. J Physiol 2021; 599:4925-4948. [PMID: 34510468 DOI: 10.1113/jp281545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Active expiration is essential for increasing pulmonary ventilation during high chemical drive (hypercapnia). The lateral parafacial (pFL ) region, which contains expiratory neurones, drives abdominal muscles during active expiration in response to hypercapnia. However, the electrophysiological properties and synaptic mechanisms determining the activity of pFL expiratory neurones, as well as the specific conditions for their emergence, are not fully understood. Using whole cell electrophysiology and single cell quantitative RT-PCR techniques, we describe the intrinsic electrophysiological properties, the phenotype and the respiratory-related synaptic inputs to the pFL expiratory neurones, as well as the mechanisms for the expression of their expiratory activity under conditions of hypercapnia-induced active expiration, using in situ preparations of juvenile rats. We also evaluated whether these neurones possess intrinsic CO2 /[H+ ] sensitivity and burst generating properties. GABAergic and glycinergic inhibition during inspiration and expiration suppressed the activity of glutamatergic pFL expiratory neurones in normocapnia. In hypercapnia, these neurones escape glycinergic inhibition and generate burst discharges at the end of expiration. Evidence for the contribution of post-inhibitory rebound, CaV 3.2 isoform of T-type Ca2+ channels and intracellular [Ca2+ ] is presented. Neither intrinsic bursting properties, mediated by persistent Na+ current, nor CO2 /[H+ ] sensitivity or expression of CO2 /[H+ ] sensitive ion channels/receptors (TASK or GPR4) were observed. On the other hand, hyperpolarisation-activated cyclic nucleotide-gated and twik-related K+ leak channels were recorded. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats. KEY POINTS: Hypercapnia induces active expiration in rats and the recruitment of a specific population of expiratory neurones in the lateral parafacial (pFL ) region. Post-synaptic GABAergic and glycinergic inhibition both suppress the activity of glutamatergic pFL neurones during inspiratory and expiratory phases in normocapnia. Hypercapnia reduces glycinergic inhibition during expiration leading to burst generation by pFL neurones; evidence for a contribution of post-inhibitory rebound, voltage-gated Ca2+ channels and intracellular [Ca2+ ] is presented. pFL glutamatergic expiratory neurones are neither intrinsic burster neurones, nor CO2 /[H+ ] sensors, and do not express CO2 /[H+ ] sensitive ion channels or receptors. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones both play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats.
Collapse
Affiliation(s)
- Karolyne S Magalhães
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André S Mecawi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Huang W, Ke Y, Zhu J, Liu S, Cong J, Ye H, Guo Y, Wang K, Zhang Z, Meng W, Gao TM, Luhmann HJ, Kilb W, Chen R. TRESK channel contributes to depolarization-induced shunting inhibition and modulates epileptic seizures. Cell Rep 2021; 36:109404. [PMID: 34289346 DOI: 10.1016/j.celrep.2021.109404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Abstract
Glutamatergic and GABAergic synaptic transmission controls excitation and inhibition of postsynaptic neurons, whereas activity of ion channels modulates neuronal intrinsic excitability. However, it is unclear how excessive neuronal excitation affects intrinsic inhibition to regain homeostatic stability under physiological or pathophysiological conditions. Here, we report that a seizure-like sustained depolarization can induce short-term inhibition of hippocampal CA3 neurons via a mechanism of membrane shunting. This depolarization-induced shunting inhibition (DShI) mediates a non-synaptic, but neuronal intrinsic, short-term plasticity that is able to suppress action potential generation and postsynaptic responses by activated ionotropic receptors. We demonstrate that the TRESK channel significantly contributes to DShI. Disruption of DShI by genetic knockout of TRESK exacerbates the sensitivity and severity of epileptic seizures of mice, whereas overexpression of TRESK attenuates seizures. In summary, these results uncover a type of homeostatic intrinsic plasticity and its underlying mechanism. TRESK might represent a therapeutic target for antiepileptic drugs.
Collapse
Affiliation(s)
- Weiyuan Huang
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Ke
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianping Zhu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuai Liu
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Cong
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hailin Ye
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian-Ming Gao
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Collaborative Innovation Center for Brain Science, Southern Medical University, Guangzhou 510515, China
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55120, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55120, Germany.
| | - Rongqing Chen
- Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
17
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
18
|
Effects of urethane and isoflurane on the sensory evoked response and local blood flow in the early postnatal rat somatosensory cortex. Sci Rep 2021; 11:9567. [PMID: 33953244 PMCID: PMC8099888 DOI: 10.1038/s41598-021-88461-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Functional studies in the central nervous system are often conducted using anesthesia. While the dose-dependent effects of anesthesia on neuronal activity have been extensively characterized in adults, little is known about the effects of anesthesia on cortical activity and cerebral blood flow in the immature central nervous system. Substitution of electrophysiological recordings with the less-invasive technique of optical intrinsic signal imaging (OIS) in vivo allowed simultaneous recordings of sensory-evoked functional response and local blood flow changes in the neonatal rat barrel cortex. Using OIS we characterize the effects of two widely used anesthetics—urethane and isoflurane. We found that both anesthetics suppressed the sensory-evoked optical intrinsic signal in a dose-dependent manner. Dependence of the cortical response suppression matched the exponential decay model. At experimental levels of anesthesia, urethane affected the evoked cortical response less than isoflurane, which is in agreement with the results of electrophysiological recordings demonstrated by other authors. Changes in oxygenation and local blood flow also showed negative correlation with both anesthetics. The high similarity in immature patterns of activity recorded in different regions of the developing cortex suggested similar principles of development regardless of the cortical region. Therefore the indicated results should be taken into account during functional explorations in the entire developing cortex. Our results also point to urethane as the anesthetic of choice in non-survival experimental recordings in the developing brain as it produces less prominent impairment of cortical neuronal activity in neonatal animals.
Collapse
|
19
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
20
|
McCoy MT, Jayanthi S, Cadet JL. Potassium Channels and Their Potential Roles in Substance Use Disorders. Int J Mol Sci 2021; 22:1249. [PMID: 33513859 PMCID: PMC7865894 DOI: 10.3390/ijms22031249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/12/2023] Open
Abstract
Substance use disorders (SUDs) are ubiquitous throughout the world. However, much remains to be done to develop pharmacotherapies that are very efficacious because the focus has been mostly on using dopaminergic agents or opioid agonists. Herein we discuss the potential of using potassium channel activators in SUD treatment because evidence has accumulated to support a role of these channels in the effects of rewarding drugs. Potassium channels regulate neuronal action potential via effects on threshold, burst firing, and firing frequency. They are located in brain regions identified as important for the behavioral responses to rewarding drugs. In addition, their expression profiles are influenced by administration of rewarding substances. Genetic studies have also implicated variants in genes that encode potassium channels. Importantly, administration of potassium agonists have been shown to reduce alcohol intake and to augment the behavioral effects of opioid drugs. Potassium channel expression is also increased in animals with reduced intake of methamphetamine. Together, these results support the idea of further investing in studies that focus on elucidating the role of potassium channels as targets for therapeutic interventions against SUDs.
Collapse
Affiliation(s)
| | | | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, USA; (M.T.M.); (S.J.)
| |
Collapse
|
21
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Mukherjee S, Sikdar SK. Intracellular activation of full-length human TREK-1 channel by hypoxia, high lactate, and low pH denotes polymodal integration by ischemic factors. Pflugers Arch 2020; 473:167-183. [PMID: 33025137 DOI: 10.1007/s00424-020-02471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
TREK-1, a two-pore domain potassium channel, responds to ischemic levels of intracellular lactate and acidic pH to provide neuroprotection. There are two splice variants of hTREK1: the shorter splice variant having a shorter N-terminus compared with the full-length hTREK1 with similar C-terminus sequence that is widely expressed in the brain. The shorter variant was reported to be irresponsive to hypoxia-a condition attributed to ischemia, which has put the neuroprotective role of hTREK-1 channel into question. Since interaction between N- and C-terminus of different ion channels shapes their gating, we re-examined the sensitivity of the full-length as well as the shorter hTREK-1 channel to intracellular hypoxia along with lactate. Single-channel data obtained from the excised inside-out patches of the full-length channel expressed in HEK293 cells indicated an increase in activity as opposed to a decrease in activity in the shorter isoform. However, both the isoforms showed an increase in activity under combined hypoxia, 20mM lactate, and low pH 6 condition, albeit with subtle differences in their individual actions, confirming the neuroprotective role played by hTREK-1 irrespective of the differences in the N-terminus among the splice variants. Furthermore, E321A mutant that disrupts the interaction of the C-terminus with the membrane showed a decrease in activity with hypoxia indicating the importance of the C-terminus in the hypoxic response of the full-length hTREK-1. We propose an increase in activity of both the splice variants of hTREK-1 in combined hypoxia, high lactate, and low pH conditions typically associated with ischemia provides neuroprotection.
Collapse
Affiliation(s)
- Sourajit Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
23
|
Xu W, Wang L, Yuan XS, Wang TX, Li WX, Qu WM, Hong ZY, Huang ZL. Sevoflurane depresses neurons in the medial parabrachial nucleus by potentiating postsynaptic GABA A receptors and background potassium channels. Neuropharmacology 2020; 181:108249. [PMID: 32931816 DOI: 10.1016/j.neuropharm.2020.108249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Despite persistent clinical use for over 170 years, the neuronal mechanisms by which general anesthetics produce hypnosis remain unclear. Previous studies suggest that anesthetics exert hypnotic effects by acting on endogenous arousal circuits. Recently, it has been shown that the medial parabrachial nucleus (MPB) is a novel wake-promoting component in the dorsolateral pons. However, it is not known whether and how the MPB contributes to anesthetic-induced hypnosis. Here, we investigated the action of sevoflurane, a widely used volatile anesthetic agent that best represents the drug class of halogenated ethers, on MPB neurons in mice. Using in vivo fiber photometry, we found that the population activities of MPB neurons were inhibited during sevoflurane-induced loss of consciousness. Using in vitro whole-cell patch-clamp recordings, we revealed that sevoflurane suppressed the firing rate of MPB neurons in concentration-dependent and reversible manners. At a concentration equal to MAC of hypnosis, sevoflurane potentiated synaptic GABAA receptors (GABAA-Rs), and the inhibitory effect of sevoflurane on the firing rate of MPB neurons was completely abolished by picrotoxin, which is a selective GABAA-R antagonist. At a concentration equivalent to MAC of immobility, sevoflurane directly hyperpolarized MPB neurons and induced a significant decrease in membrane input resistance by increasing a basal potassium conductance. Moreover, pharmacological blockade of GABAA-Rs in the MPB prolongs induction and shortens emergence under sevoflurane inhalation at MAC of hypnosis. These results indicate that sevoflurane inhibits MPB neurons through postsynaptic GABAA-Rs and background potassium channels, which contributes to sevoflurane-induced hypnosis.
Collapse
Affiliation(s)
- Wei Xu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lu Wang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiang-Shan Yuan
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tian-Xiao Wang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wen-Xian Li
- Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zong-Yuan Hong
- Laboratory of Quantitative Pharmacology, Department of Pharmacology, Wannan Medical College, Wuhu, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
25
|
The Background K + Channel TRESK in Sensory Physiology and Pain. Int J Mol Sci 2020; 21:ijms21155206. [PMID: 32717813 PMCID: PMC7432782 DOI: 10.3390/ijms21155206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
TRESK belongs to the K2P family of potassium channels, also known as background or leak potassium channels due to their biophysical properties and their role regulating membrane potential of cells. Several studies to date have highlighted the role of TRESK in regulating the excitability of specific subtypes of sensory neurons. These findings suggest TRESK could be involved in pain sensitivity. Here, we review the different evidence available that involves the channel in pain and sensory perception, from studies knocking out the channel or overexpressing it to identified mutations that link the channel to migraine pain. In addition, the therapeutic possibilities are discussed, as targeting the channel seems an interesting therapeutic approach to reduce nociceptor activation and to decrease pain.
Collapse
|
26
|
Mathie A, Veale EL, Cunningham KP, Holden RG, Wright PD. Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annu Rev Pharmacol Toxicol 2020; 61:401-420. [PMID: 32679007 DOI: 10.1146/annurev-pharmtox-030920-111536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two-pore domain potassium (K2P) channels stabilize the resting membrane potential of both excitable and nonexcitable cells and, as such, are important regulators of cell activity. There are many conditions where pharmacological regulation of K2P channel activity would be of therapeutic benefit, including, but not limited to, atrial fibrillation, respiratory depression, pulmonary hypertension, neuropathic pain, migraine, depression, and some forms of cancer. Up until now, few if any selective pharmacological regulators of K2P channels have been available. However, recent publications of solved structures with small-molecule activators and inhibitors bound to TREK-1, TREK-2, and TASK-1 K2P channels have given insight into the pharmacophore requirements for compound binding to these sites. Together with the increasing availability of a number of novel, active, small-molecule compounds from K2P channel screening programs, these advances have opened up the possibility of rational activator and inhibitor design to selectively target K2P channels.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Emma L Veale
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Kevin P Cunningham
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Robyn G Holden
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | | |
Collapse
|
27
|
Clozapine, nimodipine and endosulfan differentially suppress behavioral defects caused by gain-of-function mutations in a two-pore domain K + channel (UNC-58). Neurosci Res 2020; 170:41-49. [PMID: 32681854 DOI: 10.1016/j.neures.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022]
Abstract
Two-pore domain K+ channels (K2Ps) regulate the resting membrane potential in excitable cells and determine ease of depolarization. Gain-of-function (gf) mutations in one of these channels (unc-58) in C. elegans switch it to a Na+ conductance channel and cause tremors, paralysis and other defects. We hypothesized that it should be possible to identify drugs that corrected these defects in unc-58(gf) mutant animals by blocking or modulating the over-active channels. We examined dispersal of animals on food because the absence of effective forward locomotion is the most obvious defect. In addition, we quantified egg release over 24 h. Starting with a known inhibitor of mammalian K2Ps and directed structure-based screening, we evaluated numerous drugs in these assays. Loratadine, which inhibits human KCNK18, significantly improved movement as did methiothepin. We confirmed that endosulfan, a GABA-A receptor antagonist, corrected locomotion in the unc-58(gf) strains. Based on structural similarities to other hits, we found that clozapine, loxapine and amoxapine potently suppressed abnormal phenotypes. Curiously, nimodipine, a Ca++-channel blocker, dramatically improved movement and egg laying in unc-58(e665), but not unc-58(n495) animals. Molecular modeling provided initial insights into a possible basis for this difference based on the location of the e665 and n495 mutations. This research may lead to identification of novel K2P modulators and potential leads for drug discovery.
Collapse
|
28
|
Li QQ, Wan KX, Xu MS, Wang LM, Zhang YY, Wang CT, Mao FX, Zhu JL, Pan ZM, Gao R. The pH-Sensitive Potassium Channel TASK-1 Is a Chemosensor for Central Respiratory Regulation in Rats. Mol Biol 2020. [DOI: 10.1134/s0026893320030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Rivas-Ramírez P, Reboreda A, Rueda-Ruzafa L, Herrera-Pérez S, Lamas JA. PIP 2 Mediated Inhibition of TREK Potassium Currents by Bradykinin in Mouse Sympathetic Neurons. Int J Mol Sci 2020; 21:ijms21020389. [PMID: 31936257 PMCID: PMC7014146 DOI: 10.3390/ijms21020389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022] Open
Abstract
Bradykinin (BK), a hormone inducing pain and inflammation, is known to inhibit potassium M-currents (IM) and to increase the excitability of the superior cervical ganglion (SCG) neurons by activating the Ca2+-calmodulin pathway. M-current is also reduced by muscarinic agonists through the depletion of membrane phosphatidylinositol 4,5-biphosphate (PIP2). Similarly, the activation of muscarinic receptors inhibits the current through two-pore domain potassium channels (K2P) of the “Tandem of pore-domains in a Weakly Inward rectifying K+ channel (TWIK)-related channels” (TREK) subfamily by reducing PIP2 in mouse SCG neurons (mSCG). The aim of this work was to test and characterize the modulation of TREK channels by bradykinin. We used the perforated-patch technique to investigate riluzole (RIL) activated currents in voltage- and current-clamp experiments. RIL is a drug used in the palliative treatment of amyotrophic lateral sclerosis and, in addition to blocking voltage-dependent sodium channels, it also selectively activates the K2P channels of the TREK subfamily. A cell-attached patch-clamp was also used to investigate TREK-2 single channel currents. We report here that BK reduces spike frequency adaptation (SFA), inhibits the riluzole-activated current (IRIL), which flows mainly through TREK-2 channels, by about 45%, and reduces the open probability of identified single TREK-2 channels in cultured mSCG cells. The effect of BK on IRIL was precluded by the bradykinin receptor (B2R) antagonist HOE-140 (d-Arg-[Hyp3, Thi5, d-Tic7, Oic8]BK) but also by diC8PIP2 which prevents PIP2 depletion when phospholipase C (PLC) is activated. On the contrary, antagonizing inositol triphosphate receptors (IP3R) using 2-aminoethoxydiphenylborane (2-APB) or inhibiting protein kinase C (PKC) with bisindolylmaleimide did not affect the inhibition of IRIL by BK. In conclusion, bradykinin inhibits TREK-2 channels through the activation of B2Rs resulting in PIP2 depletion, much like we have demonstrated for muscarinic agonists. This mechanism implies that TREK channels must be relevant for the capture of information about pain and visceral inflammation.
Collapse
|
31
|
Martinac B, Nikolaev YA, Silvani G, Bavi N, Romanov V, Nakayama Y, Martinac AD, Rohde P, Bavi O, Cox CD. Cell membrane mechanics and mechanosensory transduction. CURRENT TOPICS IN MEMBRANES 2020; 86:83-141. [DOI: 10.1016/bs.ctm.2020.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Johnson LR, Battle AR, Martinac B. Remembering Mechanosensitivity of NMDA Receptors. Front Cell Neurosci 2019; 13:533. [PMID: 31866826 PMCID: PMC6906178 DOI: 10.3389/fncel.2019.00533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
An increase in post-synaptic Ca2+ conductance through activation of the ionotropic N-methyl-D-aspartate receptor (NMDAR) and concomitant structural changes are essential for the initiation of long-term potentiation (LTP) and memory formation. Memories can be initiated by coincident events, as occurs in classical conditioning, where the NMDAR can act as a molecular coincidence detector. Binding of glutamate and glycine, together with depolarization of the postsynaptic cell membrane to remove the Mg2+ channel pore block, results in NMDAR opening for Ca2+ conductance. Accumulating evidence has implicated both force-from-lipids and protein tethering mechanisms for mechanosensory transduction in NMDAR, which has been demonstrated by both, membrane stretch and application of amphipathic molecules such as arachidonic acid (AA). The contribution of mechanosensitivity to memory formation and consolidation may be to increase activity of the NMDAR leading to facilitated memory formation. In this review we look back at the progress made toward understanding the physiological and pathological role of NMDA receptor channels in mechanobiology of the nervous system and consider these findings in like of their potential functional implications for memory formation. We examine recent studies identifying mechanisms of both NMDAR and other mechanosensitive channels and discuss functional implications including gain control of NMDA opening probability. Mechanobiology is a rapidly growing area of biology with many important implications for understanding form, function and pathology in the nervous system.
Collapse
Affiliation(s)
- Luke R Johnson
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.,Division of Psychology, School of Medicine, University of Tasmania, Launceston, TAS, Australia.,Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew R Battle
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia.,Prince Charles Hospital Northside Clinical Unit, School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
33
|
Ketamine Action in the In Vitro Cortical Slice Is Mitigated by Potassium Channel Blockade. Anesthesiology 2019; 128:1167-1174. [PMID: 29509582 DOI: 10.1097/aln.0000000000002147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Ketamine is a general anesthetic thought to act by antagonizing N-methyl-D-aspartate receptors. However, ketamine acts on multiple channels, many of which are potential targets-including hyperpolarization-activated cyclic nucleotide-gated and potassium channels. In this study we tested the hypothesis that potassium leak channels contribute to the anesthetic action of ketamine. METHODS Adult mouse cortical slices (400 µm) were exposed to no-magnesium artificial cerebrospinal fluid to generate seizure-like event activity. The reduction in seizure-like event frequency after exposure to ketamine (n = 14) was quantified as a signature of anesthetic effect. Pharmacologic manipulation of hyperpolarization-activated cyclic nucleotide-gated and potassium channels using ZD7288 (n = 11), cesium chloride (n = 10), barium chloride (n = 10), low-potassium (1.5 mM) artificial cerebrospinal fluid (n = 10), and urethane (n = 7) were investigated. RESULTS Ketamine reduced the frequency of seizure-like events (mean [SD], -62 [22]%, P < 0.0001). Selective hyperpolarization-activated cyclic nucleotide-gated channel block with ZD7288 did not significantly alter the potency of ketamine to inhibit seizure-like event activity. The inhibition of seizure-like event frequency by ketamine was fully antagonized by the potassium channel blockers cesium chloride and barium chloride (8 [26]% and 39 [58%] increase, respectively, P < 0.0001, compared to ketamine control) and was facilitated by the potassium leak channel opener urethane (-93 [8]%, P = 0.002 compared to ketamine control) and low potassium artificial cerebrospinal fluid (-86 [11]%, P = 0.004 compared to ketamine control). CONCLUSIONS The results of this study show that mechanisms additional to hyperpolarization-activated cyclic nucleotide-gated channel block are likely to explain the anesthetic action of ketamine and suggest facilitatory action at two-pore potassium leak channels.
Collapse
|
34
|
Pineda RH, Hypolite J, Lee S, Carrasco A, Iguchi N, Meacham RB, Malykhina AP. Altered detrusor contractility and voiding patterns in mice lacking the mechanosensitive TREK-1 channel. BMC Urol 2019; 19:40. [PMID: 31113422 PMCID: PMC6528348 DOI: 10.1186/s12894-019-0475-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previously published results from our laboratory identified a mechano-gated two-pore domain potassium channel, TREK-1, as a main mechanosensor in the smooth muscle of the human urinary bladder. One of the limitations of in vitro experiments on isolated human detrusor included inability to evaluate in vivo effects of TREK-1 on voiding function, as the channel is also expressed in the nervous system, and may modulate micturition via neural pathways. Therefore, in the present study, we aimed to assess the role of TREK-1 channel in bladder function and voiding patterns in vivo by using TREK-1 knockout (KO) mice. METHODS Adult C57BL/6 J wild-type (WT, N = 32) and TREK-1 KO (N = 33) mice were used in this study. The overall phenotype and bladder function were evaluated by gene and protein expression of TREK-1 channel, in vitro contractile experiments using detrusor strips in response to stretch and pharmacological stimuli, and cystometry in unanesthetized animals. RESULTS TREK-1 KO animals had an elevated basal muscle tone and enhanced spontaneous activity in the detrusor without detectable changes in bladder morphology/histology. Stretch applied to isolated detrusor strips increased the amplitude of spontaneous contractions by 109% in the TREK-1 KO group in contrast to a 61% increase in WT mice (p ≤ 0.05 to respective baseline for each group). The detrusor strips from TREK-1 KO mice also generated more contractile force in response to electric field stimulation and high potassium concentration in comparison to WT group (p ≤ 0.05 for both tests). However, cystometric recordings from TREK-1 KO mice revealed a significant increase in the duration of the intermicturition interval, enhanced bladder capacity and increased number of non-voiding contractions in comparison to WT mice. CONCLUSIONS Our results provide evidence that global down-regulation of TREK-1 channels has dual effects on detrusor contractility and micturition patterns in vivo. The observed differences are likely due to expression of TREK-1 channel not only in detrusor myocytes but also in afferent and efferent neural pathways involved in regulation of micturition which may underly the "mixed" voiding phenotype in TREK-1 KO mice.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA
| | - Joseph Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA
| | - Sanghee Lee
- Department of Urology, University of California San Diego, 3855 Health Science Drive, Room 4345, Bay 4LL, La Jolla, CA, 92093, USA
| | - Alonso Carrasco
- Children's Mercy Hospital, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA
| | - Randall B Meacham
- Division of Urology, Department of Surgery, University of Colorado Denver, Academic Office One Bldg., Rm 5602, 12631 East 17th Ave., M/S C319, Aurora, CO, 80045, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA.
| |
Collapse
|
35
|
Lamas JA, Rueda-Ruzafa L, Herrera-Pérez S. Ion Channels and Thermosensitivity: TRP, TREK, or Both? Int J Mol Sci 2019; 20:ijms20102371. [PMID: 31091651 PMCID: PMC6566417 DOI: 10.3390/ijms20102371] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Controlling body temperature is a matter of life or death for most animals, and in mammals the complex thermoregulatory system is comprised of thermoreceptors, thermosensors, and effectors. The activity of thermoreceptors and thermoeffectors has been studied for many years, yet only recently have we begun to obtain a clear picture of the thermosensors and the molecular mechanisms involved in thermosensory reception. An important step in this direction was the discovery of the thermosensitive transient receptor potential (TRP) cationic channels, some of which are activated by increases in temperature and others by a drop in temperature, potentially converting the cells in which they are expressed into heat and cold receptors. More recently, the TWIK-related potassium (TREK) channels were seen to be strongly activated by increases in temperature. Hence, in this review we want to assess the hypothesis that both these groups of channels can collaborate, possibly along with other channels, to generate the wide range of thermal sensations that the nervous system is capable of handling.
Collapse
Affiliation(s)
- J Antonio Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Lola Rueda-Ruzafa
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Salvador Herrera-Pérez
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| |
Collapse
|
36
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
37
|
Canella R, Martini M, Cavicchio C, Cervellati F, Benedusi M, Valacchi G. Involvement of the TREK-1 channel in human alveolar cell membrane potential and its regulation by inhibitors of the chloride current. J Cell Physiol 2019; 234:17704-17713. [PMID: 30805940 DOI: 10.1002/jcp.28396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
K+ channels of the alveolar epithelium control the driving force acting on the ionic and solvent flow through the cell membrane contributing to the maintenance of cell volume and the constitution of epithelial lining fluid. In the present work, we analyze the effect of the Cl- channel inhibitors: (4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-inden-5-yl)oxy] butanoic acid (DCPIB) and 9-anthracenecarboxylic acid (9-AC) on the total current in a type II pneumocytes (A549 cell line) model by patch clamp, immunocytochemical, and gene knockdown techniques. We noted that DCPIB and 9-AC promote the activation of K conductance. In fact, they significantly increase the intensity of the current and shift its reversal potential to values more negative than the control. By silencing outward rectifier channel in its anoctamin 6 portion, we excluded a direct involvement of Cl- ions in modulation of IK and, by means of functional tests with its specific inhibitor spadin, we identified the TREK-1 channel as the presumable target of both drugs. As the activity of TREK-1 has a key role for the correct functioning of the alveolar epithelium, the identification of DCPIB and 9-AC molecules as its activators suggests their possible use to build new pharmacological tools for the modulation of this channel.
Collapse
Affiliation(s)
- Rita Canella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Martini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlotta Cavicchio
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| |
Collapse
|
38
|
Lamas JA, Fernández-Fernández D. Tandem pore TWIK-related potassium channels and neuroprotection. Neural Regen Res 2019; 14:1293-1308. [PMID: 30964046 PMCID: PMC6524494 DOI: 10.4103/1673-5374.253506] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TWIK-related potassium channels (TREK) belong to a subfamily of the two-pore domain potassium channels family with three members, TREK1, TREK2 and TWIK-related arachidonic acid-activated potassium channels. The two-pore domain potassium channels is the last big family of channels being discovered, therefore it is not surprising that most of the information we know about TREK channels predominantly comes from the study of heterologously expressed channels. Notwithstanding, in this review we pay special attention to the limited amount of information available on native TREK-like channels and real neurons in relation to neuroprotection. Mainly we focus on the role of free fatty acids, lysophospholipids and other neuroprotective agents like riluzole in the modulation of TREK channels, emphasizing on how important this modulation may be for the development of new therapies against neuropathic pain, depression, schizophrenia, epilepsy, ischemia and cardiac complications.
Collapse
Affiliation(s)
- J Antonio Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| | - Diego Fernández-Fernández
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| |
Collapse
|
39
|
Djillani A, Pietri M, Mazella J, Heurteaux C, Borsotto M. Fighting against depression with TREK-1 blockers: Past and future. A focus on spadin. Pharmacol Ther 2018; 194:185-198. [PMID: 30291907 DOI: 10.1016/j.pharmthera.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Depression is a devastating mood disorder and a leading cause of disability worldwide. Depression affects approximately one in five individuals in the world and represents heavy economic and social burdens. The neurobiological mechanisms of depression are not fully understood, but evidence highlights the role of monoamine neurotransmitter balance. Several antidepressants (ADs) are marketed to treat depression and related mood disorders. However, despite their efficacy, they remain nonspecific and unsafe because they trigger serious adverse effects. Therefore, developing new molecules for new targets in depression has become a real necessity. Eight years ago, spadin was described as a natural peptide with AD properties. This 17-amino acid peptide blocks TREK-1 channels, an original target in depression. Compared to the classical AD drugs such as fluoxetine, which requires 3-4 weeks for the AD effect to manifest, spadin acts rapidly within only 4 days of treatment. The AD properties are associated with increased neurogenesis and synaptogenesis in the brain. Despite the advantages of this fast-acting AD, the in vivo stability is weak and does not last for >7 h. The present review summarizes different strategies such as retro-inverso strategy, cyclization, and shortening the spadin sequence that has led to the development and optimization of spadin as an AD. Shortened spadin analogs present increased inhibition potency for TREK-1, an improved AD activity, and prolonged in vivo bioavailability. Finally, we also discuss about other inhibitors of TREK-1 channels with a proven efficacy in treating depression in the clinic, such as fluoxetine.
Collapse
Affiliation(s)
- Alaeddine Djillani
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Mariel Pietri
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France; Université Côte d'Azur, CNRS, IPMC, France.
| |
Collapse
|
40
|
Maleckar MM, Clark RB, Votta B, Giles WR. The Resting Potential and K + Currents in Primary Human Articular Chondrocytes. Front Physiol 2018; 9:974. [PMID: 30233381 PMCID: PMC6131720 DOI: 10.3389/fphys.2018.00974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022] Open
Abstract
Human transplant programs provide significant opportunities for detailed in vitro assessments of physiological properties of selected tissues and cell types. We present a semi-quantitative study of the fundamental electrophysiological/biophysical characteristics of human chondrocytes, focused on K+ transport mechanisms, and their ability to regulate to the resting membrane potential, Em. Patch clamp studies on these enzymatically isolated human chondrocytes reveal consistent expression of at least three functionally distinct K+ currents, as well as transient receptor potential (TRP) currents. The small size of these cells and their exceptionally low current densities present significant technical challenges for electrophysiological recordings. These limitations have been addressed by parallel development of a mathematical model of these K+ and TRP channel ion transfer mechanisms in an attempt to reveal their contributions to Em. In combination, these experimental results and simulations yield new insights into: (i) the ionic basis for Em and its expected range of values; (ii) modulation of Em by the unique articular joint extracellular milieu; (iii) some aspects of TRP channel mediated depolarization-secretion coupling; (iv) some of the essential biophysical principles that regulate K+ channel function in “chondrons.” The chondron denotes the chondrocyte and its immediate extracellular compartment. The presence of discrete localized surface charges and associated zeta potentials at the chondrocyte surface are regulated by cell metabolism and can modulate interactions of chondrocytes with the extracellular matrix. Semi-quantitative analysis of these factors in chondrocyte/chondron function may yield insights into progressive osteoarthritis.
Collapse
Affiliation(s)
- Mary M Maleckar
- Simula Research Laboratory, Center for Biomedical Computing and Center for Cardiological Innovation, Oslo, Norway.,Allen Institute for Cell Science, Seattle, WA, United States
| | - Robert B Clark
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Sonoda T, Lee SK, Birnbaumer L, Schmidt TM. Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits. Neuron 2018; 99:754-767.e4. [PMID: 30017393 PMCID: PMC6107377 DOI: 10.1016/j.neuron.2018.06.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/07/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Melanopsin is expressed in distinct types of intrinsically photosensitive retinal ganglion cells (ipRGCs), which drive behaviors from circadian photoentrainment to contrast detection. A major unanswered question is how the same photopigment, melanopsin, influences such vastly different functions. Here we show that melanopsin's role in contrast detection begins in the retina, via direct effects on M4 ipRGC (ON alpha RGC) signaling. This influence persists across an unexpectedly wide range of environmental light levels ranging from starlight to sunlight, which considerably expands the functional reach of melanopsin on visual processing. Moreover, melanopsin increases the excitability of M4 ipRGCs via closure of potassium leak channels, a previously unidentified target of the melanopsin phototransduction cascade. Strikingly, this mechanism is selective for image-forming circuits, as M1 ipRGCs (involved in non-image forming behaviors), exhibit a melanopsin-mediated decrease in excitability. Thus, melanopsin signaling is repurposed by ipRGC subtypes to shape distinct visual behaviors.
Collapse
Affiliation(s)
- Takuma Sonoda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Seul Ki Lee
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA; Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
42
|
Joseph A, Thuy TTT, Thanh LT, Okada M. Antidepressive and anxiolytic effects of ostruthin, a TREK-1 channel activator. PLoS One 2018; 13:e0201092. [PMID: 30110354 PMCID: PMC6093650 DOI: 10.1371/journal.pone.0201092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
We screened a library of botanical compounds purified from plants of Vietnam for modulators of the activity of a two-pore domain K+ channel, TREK-1, and we identified a hydroxycoumarin-related compound, ostruthin, as an activator of this channel. Ostruthin increased whole-cell TREK-1 channel currents in 293T cells at a low concentration (EC50 = 5.3 μM), and also activity of the TREK-2 channel (EC50 = 3.7 mM). In contrast, ostruthin inhibited other K+ channels, e.g. human ether-à-go-go-related gene (HERG1), inward-rectifier (Kir2.1), voltage-gated (Kv1.4), and two-pore domain (TASK-1) at higher concentrations, without affecting voltage-gated potassium channel (KCNQ1 and 3). We tested the effect of this compound on mouse anxiety- and depression-like behaviors and found anxiolytic activity in the open-field, elevated plus maze, and light/dark box tests. Of note, ostruthin also showed antidepressive effects in the forced swim and tail suspension tests, although previous studies reported that inhibition of TREK-1 channels resulted in an antidepressive effect. The anxiolytic and antidepressive effect was diminished by co-administration of a TREK-1 blocker, amlodipine, indicating the involvement of TREK-1 channels. Administration of ostruthin suppressed the stress-induced increase in anti-c-Fos immunoreactivity in the lateral septum, without affecting immunoreactivity in other mood disorder-related nuclei, e.g. the amygdala, paraventricular nuclei, and dorsal raphe nucleus. Ostruthin may exert its anxiolytic and antidepressive effects through a different mechanism from current drugs.
Collapse
Affiliation(s)
- Ancy Joseph
- Department of Physiology, Kansai Medical University, Osaka, Japan
| | - Tran Thi Thu Thuy
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Le Tat Thanh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Masayoshi Okada
- Department of Physiology, Kansai Medical University, Osaka, Japan
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, Kurashiki, Okayama, Japan
- * E-mail:
| |
Collapse
|
43
|
Sugasawa Y, Fukuda M, Ando N, Inoue R, Nakauchi S, Miura M, Nishimura K. Modulation of hyperpolarization-activated cation current I h by volatile anesthetic sevoflurane in the mouse striatum during postnatal development. Neurosci Res 2018; 132:8-16. [DOI: 10.1016/j.neures.2017.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
|
44
|
Regulatory Effect of General Anesthetics on Activity of Potassium Channels. Neurosci Bull 2018; 34:887-900. [PMID: 29948841 PMCID: PMC6129254 DOI: 10.1007/s12264-018-0239-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
General anesthesia is an unconscious state induced by anesthetics for surgery. The molecular targets and cellular mechanisms of general anesthetics in the mammalian nervous system have been investigated during past decades. In recent years, K+ channels have been identified as important targets of both volatile and intravenous anesthetics. This review covers achievements that have been made both on the regulatory effect of general anesthetics on the activity of K+ channels and their underlying mechanisms. Advances in research on the modulation of K+ channels by general anesthetics are summarized and categorized according to four large K+ channel families based on their amino-acid sequence homology. In addition, research achievements on the roles of K+ channels in general anesthesia in vivo, especially with regard to studies using mice with K+ channel knockout, are particularly emphasized.
Collapse
|
45
|
Cabanos C, Wang M, Han X, Hansen SB. A Soluble Fluorescent Binding Assay Reveals PIP 2 Antagonism of TREK-1 Channels. Cell Rep 2018; 20:1287-1294. [PMID: 28793254 PMCID: PMC5586213 DOI: 10.1016/j.celrep.2017.07.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Lipid regulation of ion channels by low-abundance signaling lipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid (PA) has emerged as a central cellular mechanism for controlling ion channels and the excitability of nerves. A lack of robust assays suitable for facile detection of a lipid bound to a channel has hampered the probing of the lipid binding sites and measuring the pharmacology of putative lipid agonists for ion channels. Here, we show a fluorescent PIP2 competition assay for detergent-purified potassium channels, including TWIK-1-related K+-channel (TREK-1). Anionic lipids PA and phosphatidylglycerol (PG) bind dose dependently (9.1 and 96 mM, respectively) and agonize the channel. Our assay shows PIP2 binds with high affinity (0.87 mM) but surprisingly can directly antagonize TREK-1 in liposomes. We propose a model for TREK-1 lipid regulation where PIP2 can compete with PA and PG agonism based on the affinity of the lipid for a site within the channel.
Collapse
Affiliation(s)
- Cerrone Cabanos
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Miao Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Scott B Hansen
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
46
|
Sachs F. Mechanical Transduction and the Dark Energy of Biology. Biophys J 2018; 114:3-9. [PMID: 29320693 PMCID: PMC5984904 DOI: 10.1016/j.bpj.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
47
|
Schmidt C, Peyronnet R. Voltage-gated and stretch-activated potassium channels in the human heart : Pathophysiological and clinical significance. Herzschrittmacherther Elektrophysiol 2018; 29:36-42. [PMID: 29305705 DOI: 10.1007/s00399-017-0541-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Ion channels are essential for electrical signaling and contractility in cardiomyocytes. Detailed knowledge about the molecular function and regulation of cardiac ion channels is crucial for understanding cardiac physiology and pathophysiology especially in the field of arrhythmias. This review aims at providing a general overview on the identity, functional characteristics, and roles of voltage-gated as well as stretch-activated potassium selective channels in the heart. In particular, we will highlight potential therapeutic targets as well as the emerging fields of future investigations.
Collapse
Affiliation(s)
- Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Elsässer Straße 2q, 79110, Freiburg, Germany.
| |
Collapse
|
48
|
Cho CH, Hwang EM, Park JY. Emerging Roles of TWIK-1 Heterodimerization in the Brain. Int J Mol Sci 2017; 19:E51. [PMID: 29295556 PMCID: PMC5796001 DOI: 10.3390/ijms19010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Two-pore domain K⁺ (K2P) channels play essential roles in regulating resting membrane potential and cellular excitability. Although TWIK-1 (TWIK-tandem of pore domains in a weak inward rectifying K⁺ channel) was the first identified member of the K2P channel family, it is only in recent years that the physiological roles of TWIK-1 have been studied in depth. A series of reports suggest that TWIK-1 may underlie diverse functions, such as intrinsic excitability of neurons, astrocytic passive conductance, and astrocytic glutamate release, as a homodimer or heterodimer with other K2P isotypes. Here, we summarize expression patterns and newly identified functions of TWIK-1 in the brain.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea.
| | - Eun Mi Hwang
- Korea Institute of Science and Technology (KIST), Center for Functional Connectomics, Seoul 02792, Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 136-703, Korea.
| |
Collapse
|
49
|
Loganathan K, Moriya S, Sivalingam M, Ng KW, Parhar IS. Sequence and localization of kcnk10a in the brain of adult zebrafish (Danio rerio). J Chem Neuroanat 2017; 86:92-99. [DOI: 10.1016/j.jchemneu.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 10/21/2017] [Indexed: 01/16/2023]
|
50
|
Woo J, Jun YK, Zhang YH, Nam JH, Shin DH, Kim SJ. Identification of critical amino acids in the proximal C-terminal of TREK-2 K + channel for activation by acidic pH i and ATP-dependent inhibition. Pflugers Arch 2017; 470:327-337. [PMID: 28988317 DOI: 10.1007/s00424-017-2072-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
TWIK-related two-pore domain K+ channels (TREKs) are regulated by intracellular pH (pHi) and Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Previously, Glu306 in proximal C-terminal (pCt) of mouse TREK-1 was identified as the pHi-sensing residue. The direction of PI(4,5)P2 sensitivity is controversial, and we have recently shown that TREKs are inhibited by intracellular ATP via endogenous PI(4,5)P2 formation. Here we investigate the anionic and cationic residues of pCt for the pHi and ATP-sensitivity in human TREK-2 (hTREK-2). In inside-out patch clamp recordings (ITREK-2,i-o), acidic pHi-induced activation was absent in E332A and was partly attenuated in E335A. Neutralization of cationic Lys (K330A) also eliminated the acidic pHi sensitivity of ITREK-2,i-o. Unlike the inhibition of wild-type (WT) ITREK-2,i-o by intracellular ATP, neither E332A nor K330A was sensitive to ATP. Nevertheless, exogenous PI(4,5)P2 (10 μM) abolished ITREK-2 i-o in all the above mutants as well as in WT, indicating unspecific inhibition by exogenous PI(4,5)P2. In whole-cell recordings of TREK-2 (ITREK-2,w-c), K330A and E332A showed higher or fully active basal activity, showing attenuated or insignificant activation by 2-APB, arachidonic acid, or acidic pHe 6.9. ITREK-1,w-c of WT is largely suppressed by pHe 6.9, and the inhibition is slightly attenuated in K312A and E315A. The results show concerted roles of the oppositely charged Lys and Glu in pCt for the ATP-dependent low basal activity and pHi sensitivity.
Collapse
Affiliation(s)
- Joohan Woo
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-Gu, Seoul, 03080, Korea
| | - Young Keul Jun
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-Gu, Seoul, 03080, Korea
| | - Yin-Hua Zhang
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-Gu, Seoul, 03080, Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Dong Hoon Shin
- Department of Pharmacology, Yonsei University, Seoul, Korea.
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-Gu, Seoul, 03080, Korea.
| |
Collapse
|