1
|
Shen S, Deng Y, Shen C, Chen H, Cheng L, Wu C, Zhao C, Yang Z, Hou H, Wang K, Shao Z, Deng C, Ye F, Yan W. Structural basis of neuropeptide Y signaling through Y 1 and Y 2 receptors. MedComm (Beijing) 2024; 5:e565. [PMID: 38882210 PMCID: PMC11179954 DOI: 10.1002/mco2.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 06/18/2024] Open
Abstract
Neuropeptide Y (NPY), a 36-amino-acid peptide, functions as a neurotransmitter in both the central and peripheral nervous systems by activating the NPY receptor subfamily. Notably, NPY analogs display varying selectivity and exert diverse physiological effects through their interactions with this receptor family. [Pro34]-NPY and [Leu31, Pro34]-NPY, mainly acting on Y1R, reportedly increases blood pressure and postsynaptically potentiates the effect of other vasoactive substances above all, while N-terminal cleaved NPY variants in human body primary mediates angiogenesis and neurotransmitter release inhibition through Y2R. However, the recognition mechanisms of Y1R and Y2R with specific agonists remain elusive, thereby hindering subtype receptor-selective drug development. In this study, we report three cryo-electron microscopy (cryo-EM) structures of Gi2-coupled Y1R and Y2R in complexes with NPY, as well as Y1R bound to a selective agonist [Leu31, Pro34]-NPY. Combined with cell-based assays, our study not only reveals the conserved peptide-binding mode of NPY receptors but also identifies an additional sub-pocket that confers ligand selectivity. Moreover, our analysis of Y1R evolutionary dynamics suggests that this sub-pocket has undergone functional adaptive evolution across different species. Collectively, our findings shed light on the molecular underpinnings of neuropeptide recognition and receptor activation, and they present a promising avenue for the design of selective drugs targeting the NPY receptor family.
Collapse
Affiliation(s)
- Siyuan Shen
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
- Frontiers Medical Center Tianfu Jincheng Laboratory Chengdu China
| | - Yue Deng
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Haidi Chen
- Institutes for Systems Genetics Frontiers Science Centre for Disease‑Related Molecular Network West China Hospital Sichuan University Chengdu Sichuan China
| | - Lin Cheng
- Department of Otolaryngology Head and Neck Surgery Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Kexin Wang
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
- Frontiers Medical Center Tianfu Jincheng Laboratory Chengdu China
| | - Cheng Deng
- Institutes for Systems Genetics Frontiers Science Centre for Disease‑Related Molecular Network West China Hospital Sichuan University Chengdu Sichuan China
| | - Feng Ye
- Department of Pathology Institute of Clinical Pathology Frontiers Science Center for Disease-related Molecular Network West China Hospital of Sichuan University Chengdu China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
2
|
Lin J, Scullion L, Garland CJ, Dora K. Gβγ subunit signalling underlies neuropeptide Y-stimulated vasoconstriction in rat mesenteric and coronary arteries. Br J Pharmacol 2023; 180:3045-3058. [PMID: 37460913 PMCID: PMC10953346 DOI: 10.1111/bph.16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Raised serum concentrations of the sympathetic co-transmitter neuropeptide Y (NPY) are linked to cardiovascular diseases. However, the signalling mechanism for vascular smooth muscle (VSM) constriction to NPY is poorly understood. Therefore, the present study investigated the mechanisms of NPY-induced vasoconstriction in rat small mesenteric (RMA) and coronary (RCA) arteries. EXPERIMENTAL APPROACH Third-order mesenteric or intra-septal arteries from male Wistar rats were assessed in wire myographs for isometric tension, VSM membrane potential and VSM intracellular Ca2+ events. KEY RESULTS NPY stimulated concentration-dependent vasoconstriction in both RMA and RCA, which was augmented by blocking NO synthase or endothelial denudation in RMA. NPY-mediated vasoconstriction was blocked by the selective Y1 receptor antagonist BIBO 3304 and Y1 receptor protein expression was detected in both the VSM and endothelial cells in RMA and RCA. The selective Gβγ subunit inhibitor gallein and the PLC inhibitor U-73122 attenuated NPY-induced vasoconstriction. Signalling via the Gβγ-PLC pathway stimulated VSM Ca2+ waves and whole-field synchronised Ca2+ flashes in RMA and increased the frequency of Ca2+ flashes in myogenically active RCA. Furthermore, in RMA, the Gβγ pathway linked NPY to VSM depolarization and generation of action potential-like spikes associated with intense vasoconstriction. This depolarization activated L-type voltage-gated Ca2+ channels, as nifedipine abolished NPY-mediated vasoconstriction. CONCLUSIONS AND IMPLICATIONS These data suggest that the Gβγ subunit, which dissociates upon Y1 receptor activation, initiates VSM membrane depolarization and Ca2+ mobilisation to cause vasoconstriction. This model may help explain the development of microvascular vasospasm during raised sympathetic nerve activity.
Collapse
Affiliation(s)
- JinHeng Lin
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - Kim Dora
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Kang H, Park C, Choi YK, Bae J, Kwon S, Kim J, Choi C, Seok C, Im W, Choi HJ. Structural basis for Y2 receptor-mediated neuropeptide Y and peptide YY signaling. Structure 2023; 31:44-57.e6. [PMID: 36525977 DOI: 10.1016/j.str.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are expressed in various human tissues including the brain where they regulate appetite and emotion. Upon NPY stimulation, the neuropeptide Y1 and Y2 receptors (Y1R and Y2R, respectively) activate GI signaling, but their physiological responses to food intake are different. In addition, deletion of the two N-terminal amino acids of peptide YY (PYY(3-36)), the endogenous form found in circulation, can stimulate Y2R but not Y1R, suggesting that Y1R and Y2R may have distinct ligand-binding modes. Here, we report the cryo-electron microscopy structures of the PYY(3-36)‒Y2R‒Gi and NPY‒Y2R‒Gi complexes. Using cell-based assays, molecular dynamics simulations, and structural analysis, we revealed the molecular basis of the exclusive binding of PYY(3-36) to Y2R. Furthermore, we demonstrated that Y2R favors G protein signaling over β-arrestin signaling upon activation, whereas Y1R does not show a preference between these two pathways.
Collapse
Affiliation(s)
- Hyunook Kang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaehee Park
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeol Kyo Choi
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulwon Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Smith NK, Kondev V, Hunt TR, Grueter BA. Neuropeptide Y modulates excitatory synaptic transmission and promotes social behavior in the mouse nucleus accumbens. Neuropharmacology 2022; 217:109201. [PMID: 35917875 PMCID: PMC9836361 DOI: 10.1016/j.neuropharm.2022.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 01/14/2023]
Abstract
Social interactions define the human experience, but these integral behaviors are disrupted in many psychiatric disorders. Social behaviors have evolved over millennia, and neuromodulatory systems that promote social behavior in invertebrates are also present in mammalian brains. One such conserved neuromodulator, neuropeptide Y (NPY), acts through several receptors including the Y1r, Y2r, and Y5r. These receptors are present in brain regions that control social behavior, including the nucleus accumbens (NAc). However, whether NPY modulates NAc neurotransmission is unknown. Using whole-cell patch-clamp electrophysiology of NAc neurons, we find that multiple NPY receptors regulate excitatory synaptic transmission in a cell-type specific manner. At excitatory synapses onto D1+ MSNs, Y1r activity enhances transmission while Y2r suppresses transmission. At excitatory synapses onto D1- MSNs, Y5r activity enhances transmission while Y2r suppresses transmission. Directly infusing NPY or the Y1r agonist [Leu31, Pro34]-NPY into the NAc significantly increases social interaction with an unfamiliar conspecific. Inhibition of an enzyme that breaks down NPY, dipeptidyl peptidase IV (DPP-IV), shifts the effect of NPY on D1+ MSNs to a Y1r dominated phenotype. Together, these results increase our understanding of how NPY regulates neurotransmission in the NAc and identify a novel mechanism underlying the control of social behavior. Further, they reveal a potential strategy to shift NPY signaling for therapeutic gain.
Collapse
Affiliation(s)
- Nicholas K. Smith
- Neuroscience Graduate Program, Vanderbilt University; Nashville, TN 37232, USA
| | - Veronika Kondev
- Neuroscience Graduate Program, Vanderbilt University; Nashville, TN 37232, USA
| | - Thomas R. Hunt
- College of Arts and Sciences, Vanderbilt University; Nashville, TN 37232, USA
| | - Brad A. Grueter
- Vanderbilt Brain Institute, Vanderbilt University; Nashville, TN 37232, USA,Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, TN 37232, USA,Vanderbilt Center for Addiction Research, Vanderbilt University; Nashville, TN 37232, USA,Department of Molecular Physiology and Biophysics, Vanderbilt University; Nashville, TN 37232, USA,Department of Pharmacology, Vanderbilt University; Nashville, TN, 37232, USA,Corresponding author. 1161 21st Avenue South * T4202-MCN Nashville, TN, 37232-2520, USA, (B.A. Grueter)
| |
Collapse
|
5
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
6
|
Melo FJ, Pinto-Lopes P, Estevinho MM, Magro F. The Role of Dipeptidyl Peptidase 4 as a Therapeutic Target and Serum Biomarker in Inflammatory Bowel Disease: A Systematic Review. Inflamm Bowel Dis 2021; 27:1153-1165. [PMID: 33295607 DOI: 10.1093/ibd/izaa324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The roles dipeptidyl peptidase 4 (DPP4), aminopeptidase N (APN), and their substrates in autoimmune diseases are being increasingly recognized. However, their significance in inflammatory bowel diseases (IBD) is not entirely understood. This systematic review aims to discuss the pathophysiological processes related to these ectopeptidases while comparing findings from preclinical and clinical settings. METHODS This review was conducted according to the PRISMA guidelines. We performed a literature search in PubMed, SCOPUS, and Web of Science to identify all reports from inception until February 2020. The search included validated animal models of intestinal inflammation and studies in IBD patients. Quality assessment was performed using SYRCLE's risk of bias tool and CASP qualitative and cohort checklists. RESULTS From the 45 included studies, 36 were performed in animal models and 12 in humans (3 reports included both). Overall, the methodological quality of preclinical studies was acceptable. In animal models, DPP4 and APN inhibition significantly improved intestinal inflammation.Glucagon-like peptide (GLP)-1 and GLP-2 analogs and GLP-2-relase-inducing drugs also showed significant benefits in recovery from inflammatory damage. A nonsignificant trend toward disease remission with the GLP-2 analog teduglutide was observed in the sole interventional human study. All human studies reported an inverse correlation between soluble DPP4/CD26 levels and disease severity, in accordance with the proposal of DPP4 as a biomarker for IBD. CONCLUSIONS The use of DPP4 inhibitors and analogs of its substrates has clear benefits in the treatment of experimentally induced intestinal inflammation. Further research is warranted to validate their potential diagnostic and therapeutic applications in IBD patients.
Collapse
Affiliation(s)
- Francisco Jorge Melo
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Pinto-Lopes
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Internal Medicine, Tâmega e Sousa Hospital Center, Padre Américo Hospital, Penafiel, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal
| | - Fernando Magro
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Unit of Clinical Pharmacology, São João Hospital Center, Porto, Portugal
| |
Collapse
|
7
|
Cattaneo S, Verlengia G, Marino P, Simonato M, Bettegazzi B. NPY and Gene Therapy for Epilepsy: How, When,... and Y. Front Mol Neurosci 2021; 13:608001. [PMID: 33551745 PMCID: PMC7862707 DOI: 10.3389/fnmol.2020.608001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is a neuropeptide abundantly expressed in the mammalian central and peripheral nervous system. NPY is a pleiotropic molecule, which influences cell proliferation, cardiovascular and metabolic function, pain and neuronal excitability. In the central nervous system, NPY acts as a neuromodulator, affecting pathways that range from cellular (excitability, neurogenesis) to circuit level (food intake, stress response, pain perception). NPY has a broad repertoire of receptor subtypes, each activating specific signaling pathways in different tissues and cellular sub-regions. In the context of epilepsy, NPY is thought to act as an endogenous anticonvulsant that performs its action through Y2 and Y5 receptors. In fact, its overexpression in the brain with the aid of viral vectors can suppress seizures in animal models of epilepsy. Therefore, NPY-based gene therapy may represent a novel approach for the treatment of epilepsy patients, particularly for pharmaco-resistant and genetic forms of the disease. Nonetheless, considering all the aforementioned aspects of NPY signaling, the study of possible NPY applications as a therapeutic molecule is not devoid of critical aspects. The present review will summarize data related to NPY biology, focusing on its anti-epileptic effects, with a critical appraisal of key elements that could be exploited to improve the already existing NPY-based gene therapy approaches for epilepsy.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Verlengia
- San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Pietro Marino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Elmansi AM, Awad ME, Eisa NH, Kondrikov D, Hussein KA, Aguilar-Pérez A, Herberg S, Periyasamy-Thandavan S, Fulzele S, Hamrick MW, McGee-Lawrence ME, Isales CM, Volkman BF, Hill WD. What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands. Pharmacol Ther 2019; 198:90-108. [PMID: 30759373 PMCID: PMC7883480 DOI: 10.1016/j.pharmthera.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4's role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Mohamed E Awad
- Department of Oral Biology, School of Dentistry, Augusta University, Augusta, GA 30912, United States
| | - Nada H Eisa
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Khaled A Hussein
- Department of Surgery and Medicine, National Research Centre, Cairo, Egypt
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine in Indianapolis, IN, United States; Department of Cellular and Molecular Biology, School of Medicine, Universidad Central del Caribe, Bayamon, 00956, Puerto Rico; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Samuel Herberg
- Departments of Ophthalmology & Cell and Dev. Bio., SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Mark W Hamrick
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Meghan E McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Division of Endocrinology, Diabetes and Metabolism, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Brian F Volkman
- Biochemistry Department, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States; Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States; Center for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
9
|
Barkley-Levenson AM, Ryabinin AE, Crabbe JC. Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication. Behav Brain Res 2016; 302:160-70. [PMID: 26779672 DOI: 10.1016/j.bbr.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/06/2015] [Accepted: 01/05/2016] [Indexed: 11/17/2022]
Abstract
The High Drinking in the Dark (HDID) mice have been selectively bred for drinking to intoxicating blood alcohol levels and represent a genetic model of risk for binge-like drinking. Presently, little is known about the specific genetic factors that promote excessive intake in these mice. Previous studies have identified neuropeptide Y (NPY) as a potential target for modulating alcohol intake. NPY expression differs in some rodent lines that have been selected for high and low alcohol drinking phenotypes, as well as inbred mouse strains that differ in alcohol preference. Alcohol drinking and alcohol withdrawal also produce differential effects on NPY expression in the brain. Here, we assessed brain NPY protein levels in HDID mice of two replicates of selection and control heterogeneous stock (HS) mice at baseline (water drinking) and after binge-like alcohol drinking to determine whether selection is associated with differences in NPY expression and its sensitivity to alcohol. NPY levels did not differ between HDID and HS mice in any brain region in the water-drinking animals. HS mice showed a reduction in NPY levels in the nucleus accumbens (NAc) - especially in the shell - in ethanol-drinking animals vs. water-drinking controls. However, HDID mice showed a blunted NPY response to alcohol in the NAc core and shell compared to HS mice. These findings suggest that the NPY response to alcohol has been altered by selection for drinking to intoxication in a region-specific manner. Thus, the NPY system may represent a potential target for altering binge-like alcohol drinking in these mice.
Collapse
Affiliation(s)
- Amanda M Barkley-Levenson
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, Portland, OR 97239, United States; VA Portland Health Care System, Portland, OR 97239, United States.
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, Portland, OR 97239, United States
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Portland Alcohol Research Center, Portland, OR 97239, United States; VA Portland Health Care System, Portland, OR 97239, United States
| |
Collapse
|
10
|
Abstract
A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.
Collapse
Affiliation(s)
- Matthew S Glover
- †Department of Chemistry, ‡Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| | - Earl P Bellinger
- †Department of Chemistry, ‡Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| | - Predrag Radivojac
- †Department of Chemistry, ‡Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- †Department of Chemistry, ‡Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Domin H, Pięta E, Piergies N, Święch D, Kim Y, Proniewicz LM, Proniewicz E. Neuropeptide Y and its C-terminal fragments acting on Y2 receptor: Raman and SERS spectroscopy studies. J Colloid Interface Sci 2014; 437:111-118. [PMID: 25313473 DOI: 10.1016/j.jcis.2014.09.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
In this paper, we present spectroscopic studies of neuropeptide Y (NPY) and its native NPY(3-36), NPY(13-36), and NPY(22-36) and mutated acetyl-(Leu(28,31))-NPY(24-36)C-terminal fragments acting on Y2 receptor. Since there is some evidence for the correlation between the SERS patterns and the receptor binding ability, we performed a detailed analysis for these compounds at the metal/water interface using Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) methods. Many studies have suggested that interactions of this kind are crucial for a variety of biomedical and biochemical phenomena. The identification of amino acids in these peptide sequences by SERS allowed us to determine which molecular fragments were responsible for the interaction with the silver nanoparticle surface. Our findings demonstrated that in all of the investigated compounds, the NPY(32-36)C-terminal fragment (Thr(32)-Arg(33)-Gln(34)-Arg(35)-Tyr(36)NH2) was involved in the adsorption process onto metal substrate. The results of the present study suggest that the same molecular fragment interacts with the Y2 receptor, what proved the usefulness of the SERS method in the study of these biologically active compounds. The search for analogs acting on Y2 receptor may be important from the viewpoint of possible future clinical applications.
Collapse
Affiliation(s)
- Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Ewa Pięta
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Natalia Piergies
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Dominika Święch
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Younkyoo Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin, Kyunggi-Do 449-791, Republic of Korea
| | - Leonard M Proniewicz
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, ul. Reymonta 23, 30-059 Kraków, Poland.
| |
Collapse
|
12
|
Santos-Carvalho A, Álvaro AR, Martins J, Ambrósio AF, Cavadas C. Emerging novel roles of neuropeptide Y in the retina: from neuromodulation to neuroprotection. Prog Neurobiol 2013; 112:70-9. [PMID: 24184719 DOI: 10.1016/j.pneurobio.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the central nervous system, including the retina. Retinal cells, in particular neurons, astrocytes, and Müller, microglial and endothelial cells express this peptide and its receptors (Y1, Y2, Y4 and/or Y5). Several studies have shown that NPY is expressed in the retina of various mammalian and non-mammalian species. However, studies analyzing the distribution of NPY receptors in the retina are still scarce. Although the physiological roles of NPY in the retina have not been completely elucidated, its early expression strongly suggests that NPY may be involved in the development of retinal circuitry. NPY inhibits the increase in [Ca(2+)]i triggered by elevated KCl in retinal neurons, protects retinal neural cells against toxic insults and induces the proliferation of retinal progenitor cells. In this review, we will focus on the roles of NPY in the retina, specifically proliferation, neuromodulation and neuroprotection. Alterations in the NPY system in the retina might contribute to the pathogenesis of retinal degenerative diseases, such as diabetic retinopathy and glaucoma, and NPY and its receptors might be viewed as potentially novel therapeutic targets.
Collapse
Affiliation(s)
- Ana Santos-Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
| | - João Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - António Francisco Ambrósio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal; AIBILI-Association for Innovation and Biomedical Research on Light and Image, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Cláudia Cavadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
13
|
Heard KR, Wu W, Li Y, Zhao P, Woznica I, Lai JH, Beinborn M, Sanford DG, Dimare MT, Chiluwal AK, Peters DE, Whicher D, Sudmeier JL, Bachovchin WW. A General Method for Making Peptide Therapeutics Resistant to Serine Protease Degradation: Application to Dipeptidyl Peptidase IV Substrates. J Med Chem 2013; 56:8339-51. [DOI: 10.1021/jm400423p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kathryn R. Heard
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Wengen Wu
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Youhua Li
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Peng Zhao
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Iwona Woznica
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Jack H. Lai
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Martin Beinborn
- Molecular Pharmacology
Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts 02111, United States
| | - David G. Sanford
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Matthew T. Dimare
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Amrita K. Chiluwal
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Diane E. Peters
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Danielle Whicher
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - James L. Sudmeier
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - William W. Bachovchin
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| |
Collapse
|
14
|
Keire DA, Whitelegge JP, Bassilian S, Faull KF, Wiggins BW, Mehdizadeh OB, Reidelberger RD, Haver AC, Sayegh AI, Reeve JR. A new endogenous form of PYY isolated from canine ileum: Gly-extended PYY(1-36). ACTA ACUST UNITED AC 2008; 151:61-70. [PMID: 18501442 DOI: 10.1016/j.regpep.2008.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/21/2008] [Accepted: 04/01/2008] [Indexed: 11/30/2022]
Abstract
We purified and identified the peptide YY (PYY) forms present and determined their levels from a portion of the canine ileum directly adjacent to the cecum by a new extraction method designed to prevent and evaluate degradation of endogenous peptides. We used three reverse phase chromatography steps with radioimmunoassay of fractions for PYY-like-immunoreactivity (PYY-LI). The purified fractions underwent intact protein/peptide mass spectrometry identification and sequencing (i.e. "top-down" MS analysis). This analysis confirmed the identity of a new form of PYY, PYY(1-36)-Gly, which co-elutes with PYY(1-36)-NH(2) through all three of separation steps used. The PYY(1-36)-Gly form represents approximately 20% of the total PYY found in this region of the canine intestine. In addition, we also found that the PYY(3-36)-NH(2) form represents 6% of the total PYY in the canine ileo-cecal junction. The physiological implication of the Gly-extended form of PYY(1-36) warrants further investigation.
Collapse
Affiliation(s)
- David A Keire
- CURE: Digestive Diseases Research Center, VA GLAHS, Los Angeles, CA 90073 and Digestive Diseases Division, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
16
|
Callanan EY, Lee EW, Tilan JU, Winaver J, Haramati A, Mulroney SE, Zukowska Z. Renal and cardiac neuropeptide Y and NPY receptors in a rat model of congestive heart failure. Am J Physiol Renal Physiol 2007; 293:F1811-7. [PMID: 17804485 DOI: 10.1152/ajprenal.00191.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropeptide Y (NPY) is coreleased with norepinephrine and stimulates vasoconstriction, vascular and cardiomyocyte hypertrophy via Y1 receptors (R) and angiogenesis via Y2R. Although circulating NPY is elevated in heart failure, NPY's role remains unclear. Activation of the NPY system was determined in Wistar rats with the aortocaval (A-V) fistula model of high-output heart failure. Plasma NPY levels were elevated in A-V fistula animals (115.7 +/- 15.3 vs. 63.1 +/- 17.4 pM in sham, P < 0.04). Animals either compensated [urinary Na(+) excretion returning to normal with moderate disease (COMP)] or remained decompensated with severe cardiac and renal failure (urinary Na(+) excretion <0.5 meq/day), increased heart weight, decreased mean arterial pressure and renal blood flow (RBF), and death within 5-7 days (DECOMP). Cardiac and renal tissue NPY decreased with heart failure, proportionate to the severity of renal complications. Cardiac and renal Y1R mRNA expression also decreased (1.5-fold, P < 0.005) in rats with heart failure. In contrast, Y2R expression increased up to 72-fold in the heart and 5.7-fold in the kidney (P < 0.001) proportionate to severity of heart failure and cardiac hypertrophy. Changes in receptor expression were confirmed since the Y1R agonist, [Leu31, Pro34]-NPY, had no effect on RBF, whereas the Y2R agonist (13-36)-NPY increased RBF to compensate for disease. Thus, in this model of heart failure, cardiac and renal NPY Y1 receptors decrease and Y2 receptors increase, suggesting an increased effect of NPY on the receptors involved in cardiac remodeling and angiogenesis, and highlighting an important regulatory role of NPY in congestive heart failure.
Collapse
Affiliation(s)
- Ean Y Callanan
- Dept. of Physiology and Biophysics, Georgetown Univ. Medical Center, Box 571460, 3900 Reservoir Rd NW, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Sah R, Parker SL, Sheriff S, Eaton K, Balasubramaniam A, Sallee FR. Interaction of NPY compounds with the rat glucocorticoid-induced receptor (GIR) reveals similarity to the NPY-Y2 receptor. Peptides 2007; 28:302-9. [PMID: 17240481 PMCID: PMC1876793 DOI: 10.1016/j.peptides.2006.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
The rat glucocorticoid-induced receptor (rGIR) is an orphan G protein-coupled receptor awaiting pharmacological characterization. Among known receptors, rGIR exhibits highest sequence similarity to the neuropeptide Y (NPY)-Y(2) receptor (38-40%). The pharmacological profile of rGIR was investigated using (125)I-PYY(3-36), a Y(2)-preferring radioligand and several NPY analogs. rGIR displayed a similar displacement profile as reported for the Y(2) receptor, in that the Y(2)-selective C terminus fragments of NPY and PYY (NPY(3-36) and PYY(3-36)) showed high affinity binding and activation of rGIR (low nanomolar range). The rank order potency for displacement was NPY(3-36)>PYY(3-36)=NPY>NPY(13-36)>Ac, Leu NPY(24-36)>[D-Trp(32)]-NPY>Leu(31), Pro(34)-NPY=hPP. NPY and Y(2)-selective agonists NPY(3-36) and PYY(3-36) led to significant activation of (35)S-GTPgammaS binding to rGIR transfected cells. BIIE0246, a specific Y(2) antagonist, displaced (125)I-PYY(3-36) binding to rGIR with high affinity (95nM). Activation of (35)S-GTPgammaS binding by Y(2)-selective agonist in rGIR transfected cells was also completely abolished by BIIE0246. Our data report, for the first time, an interaction of NPY ligands with rGIR expressed in vitro, and indicate similarities between GIR and the NPY-Y(2) receptor.
Collapse
Affiliation(s)
- Renu Sah
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- * Corresponding Author, Renu Sah, Department of Psychiatry, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, Ohio 45229-0559, Tel: +1 513-558-5129, Fax: +1 513-558-2288,
| | - Steven L. Parker
- Department of Pharmacology, University of Tennessee, Memphis, TN 38163, USA
| | - Sulaiman Sheriff
- Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Katherine Eaton
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | - Floyd R. Sallee
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| |
Collapse
|
19
|
Allen AR, Kelso EJ, Bell D, Zhao Y, Dickson P, McDermott BJ. Modulation of contractile function through neuropeptide Y receptors during development of cardiomyocyte hypertrophy. J Pharmacol Exp Ther 2006; 319:1286-96. [PMID: 16973886 DOI: 10.1124/jpet.106.110445] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severity of left ventricular hypertrophy (LVH) correlates with elevated plasma levels of neuropeptide Y (NPY) in hypertension. NPY elicits positive and negative contractile effects in cardiomyocytes through Y(1) and Y(2) receptors, respectively. This study tested the hypothesis that NPY receptor-mediated contraction is altered during progression of LVH. Ventricular cardiomyocytes were isolated from spontaneously hypertensive rats (SHRs) pre-LVH (12 weeks), during development (16 weeks), and at established LVH (20 weeks) and age-matched normotensive Wistar Kyoto (WKY) rats. Electrically stimulated (60 V, 0.5 Hz) cell shortening was measured using edge detection and receptor expression determined at mRNA and protein level. The NPY and Y(1) receptor-selective agonist, Leu(31)Pro(34)NPY, stimulated increases in contractile amplitude, which were abolished by the Y(1) receptor-selective antagonist, BIBP3226 [R-N(2)-(diphenyl-acetyl)-N-(4-hydroxyphenyl)methyl-argininamide)], confirming Y(1) receptor involvement. Potencies of both agonists were enhanced in SHR cardiomyocytes at 20 weeks (2300- and 380-fold versus controls). Maximal responses were not attenuated. BIBP3226 unmasked a negative contraction effect of NPY, elicited over the concentration range (10(-12) to 3 x 10(-9) M) in which NPY and PYY(3-36) attenuated the positive contraction effects of isoproterenol, the potencies of which were increased in cardiomyocytes from SHRs at 20 weeks (175- and 145-fold versus controls); maximal responses were not altered. Expression of NPY-Y(1) and NPY-Y(2) receptor mRNAs was decreased (55 and 69%) in left ventricular cardiomyocytes from 20-week-old SHRs versus age-matched WKY rats; parallel decreases (32 and 80%) were observed at protein level. Enhancement of NPY potency, producing (opposing) contractile effects on cardiomyocytes together with unchanged maximal response despite reduced receptor number, enables NPY to contribute to regulating cardiac performance during compensatory LVH.
Collapse
MESH Headings
- Animals
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Calcium/pharmacology
- Cardiotonic Agents/pharmacology
- Cell Differentiation/drug effects
- Cell Separation
- Cell Size/drug effects
- Electric Stimulation
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/pathology
- Isoproterenol/pharmacology
- Male
- Membrane Proteins/metabolism
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Peptide Fragments
- Peptide YY/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Neuropeptide Y/agonists
- Receptors, Neuropeptide Y/antagonists & inhibitors
- Receptors, Neuropeptide Y/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Adrian R Allen
- Cardiovascular Research Group, School of Medicine and Dentistry, Queen's University Belfast, Belfast, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Fernandez-Fernandez R, Martini AC, Navarro VM, Castellano JM, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M. Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol 2006; 254-255:127-32. [PMID: 16759792 DOI: 10.1016/j.mce.2006.04.026] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although the close link between body weight and fertility has been known for eons, only recently have the peripheral signals and neuroendocrine networks responsible for such a phenomenon begun to be identified. A key event in this field was the cloning of the adipocyte-derived hormone leptin, which has been demonstrated as a pivotal regulator for the integration of energy homeostasis and reproduction. In addition, other metabolic hormones, such as insulin, contribute to this physiological integration. Moreover, compelling experimental evidence implicates hormonal products of the gastrointestinal tract as adjuncts in the complex coordination and regulation of body weight and reproduction. Here, we review recent studies evaluating the reproductive effects and sites of action of ghrelin and PYY3-36, two hormonal signals of gastrointestinal origin involved in the control food intake and energy balance. In addition, we summarize the potential contribution of kisspeptin, the recently characterized gatekeeper of the GnRH system encoded by Kiss1 gene, to integrating reproductive function and energy status. Evidence suggests that besides having direct gonadal effects, ghrelin may participate in the regulation of gonadotropin secretion and it may influence the timing of puberty. Likewise, PYY3-36 modulates GnRH and gonadotropin release. In addition, the hypothalamic KiSS-1 system is sensitive to nutritional status, and its diminished expression during states of negative energy balance might contribute to the suppression of reproductive function in such conditions. We propose that the peripheral hormones, ghrelin and PYY3-36, and the central neuropeptide, kisspeptin, are 'novel' players in the neuroendocrine networks that integrate energy balance and reproduction.
Collapse
Affiliation(s)
- R Fernandez-Fernandez
- Physiology Section, Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Aldegunde M, Mancebo M. Effects of neuropeptide Y on food intake and brain biogenic amines in the rainbow trout (Oncorhynchus mykiss). Peptides 2006; 27:719-27. [PMID: 16253390 DOI: 10.1016/j.peptides.2005.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 09/20/2005] [Accepted: 09/23/2005] [Indexed: 10/25/2022]
Abstract
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in mammals, but very little is known about NPY actions in fish. The present study investigated the role of NPY in food intake in the rainbow trout (Oncorhynchus mykiss). Food intake was monitored at different times after intracerebroventricular administration of porcine NPY (4 or 8 microg). Both doses significantly increased food intake at 2 and 3 h, and this effect was dose-dependent. However, 50 h after administration of NPY, food intake was significantly lower than in control fish, and cumulative food intake had returned to levels similar to those seen in the control group. The NPY antagonist (D-Tyr27,36, D-Thr32)-NPY (10 microg) inhibited food intake 2 h after icv administration, but did not block the orexigenic effect of NPY when administered jointly with 4 microg NPY. To identify the NPY receptor subtypes involved in the effects of NPY on food intake, we studied the effects of the Y1 receptor agonist (Leu31, Pro34)-NPY (4 microg), the Y2 receptor agonist NPY(3-36) (4 microg), and the highly specific Y5 receptor agonist (cPP(1-7), NPY19-23, Ala31, Aib32, Gln34)-hPP (4 microg). Short-term (2 h) food intake was moderately stimulated by the Y1 agonist, more strongly stimulated by the Y2 agonist, and unaffected by the Y5 agonist. We found that administration of NPY (8 microg icv) had no effect on aminergic systems in several brain regions 2 and 50 h after NPY administration. These results indicate that NPY stimulates feeding in the rainbow trout, and suggest that this effect is cooperatively mediated by Y2- and Y1-like NPY receptors, not by Y5-like receptors.
Collapse
Affiliation(s)
- M Aldegunde
- Laboratorio de Fisioloxía Animal, Dpto. de Fisioloxía, Facultade de Bioloxía, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | | |
Collapse
|
22
|
Lavebratt C, Alpman A, Persson B, Arner P, Hoffstedt J. Common neuropeptide Y2 receptor gene variant is protective against obesity among Swedish men. Int J Obes (Lond) 2005; 30:453-9. [PMID: 16331299 DOI: 10.1038/sj.ijo.0803188] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gut hormones and their receptors are considered important in the control of feeding behavior. The gut hormone peptide-YY (PYY) has anorexic effects via the inhibitory neuropeptide Y2 receptor (Y2R) highly expressed in orexigenic NPY/AGRP neurons within the arcuate nucleus, a major integrator of appetite control in the hypothalamus. DESIGN Genetic case-control association study of single nucleotide polymorphisms (SNPs) in Y2R and PYY. SUBJECTS Swedish Caucasians comprising 148 lean, 129 overweight/obese and 226 morbidly obese men. MEASUREMENTS Genotypes of the common, silent and conserved SNP Y2R 585T>C and the common SNP PYY Arg72Thr, as well as various obesity-related clinical parameters. RESULTS Obese men had a lower allele and homozygosity frequency of the common allele 585T>C:T which was particularly evident comparing morbidly obese with lean men (P = 0.002), and analyzing dependence between continuous body mass index (BMI) and genotype (P = 0.002). In agreement, systolic blood pressure tended to be lower in those homozygous for allele T, which was not explained by the BMI - genotype dependence. We found no association to obesity for the PYY Arg72Thr polymorphism, which is located nearby the essential carboxy terminal. CONCLUSION A common and conserved variant of the PYY and NPY receptor Y2R is less prevalent among obese compared to among lean Swedish men. This suggests that the common Y2R variant is protective against obesity. Our findings further implicate Y2R in food intake regulation.
Collapse
Affiliation(s)
- C Lavebratt
- Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Koegler FH, Enriori PJ, Billes SK, Takahashi DL, Martin MS, Clark RL, Evans AE, Grove KL, Cameron JL, Cowley MA. Peptide YY(3-36) inhibits morning, but not evening, food intake and decreases body weight in rhesus macaques. Diabetes 2005; 54:3198-204. [PMID: 16249445 DOI: 10.2337/diabetes.54.11.3198] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peptide YY(3-36) [PYY(3-36)] is a hormone that is released after meal ingestion that is currently being investigated for the treatment of obesity; however, there are conflicting reports of the effects of PYY(3-36) on energy balance in rodent models. To shed light on this controversy, we studied the effect of PYY(3-36) on food intake and body weight in a nonhuman primate. Intravenous PYY(3-36) infusions before a morning meal transiently suppressed the rate of food intake but did not suppress the evening meal or 24-h intake. Twice-daily or continuous intravenous PYY(3-36) infusions to supraphysiological levels (levels that exceeded normal physiological levels) again suppressed the rate of feeding for the morning but not the evening meal. Twice-daily intravenous PYY(3-36) infusions for 2 weeks significantly decreased body weight in all test animals (average weight loss 1.9%) without changing insulin response to glucose infusion. These results show that endogenous PYY(3-36) may alter morning but not evening meal intake, and supraphysiological doses are required for effective suppression of food intake.
Collapse
Affiliation(s)
- Frank H Koegler
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tu B, Timofeeva O, Jiao Y, Nadler JV. Spontaneous release of neuropeptide Y tonically inhibits recurrent mossy fiber synaptic transmission in epileptic brain. J Neurosci 2005; 25:1718-29. [PMID: 15716408 PMCID: PMC6725947 DOI: 10.1523/jneurosci.4835-04.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the pilocarpine model of temporal lobe epilepsy, mossy fibers coexpress the inhibitory transmitter neuropeptide Y (NPY) with glutamate. The effects of endogenous and applied NPY on recurrent mossy fiber synaptic transmission were investigated with the use of whole-cell voltage-clamp and field recordings in rat hippocampal slices. Applied NPY reversibly inhibited synaptic transmission at recurrent mossy fiber synapses on dentate granule cells but not at perforant path or associational-commissural synapses. It also reduced the frequency of miniature EPSCs (mEPSCs) in granule cells from epileptic, but not control, rats and depressed granule cell epileptiform activity dependent on the recurrent mossy fiber pathway. These actions of NPY were mediated by activation of presynaptic Y2 receptors. The Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]argininamide (BIIE0246) not only blocked the effects of NPY but also enhanced recurrent mossy fiber synaptic transmission, the frequency of mEPSCs, and the magnitude of mossy fiber-evoked granule cell epileptiform activity when applied by itself. Several observations supported the selectivity of BIIE0246. These results suggest that even the spontaneous release of NPY (or an active metabolite) from recurrent mossy fibers is sufficient to depress glutamate release from this pathway. Tonic release of NPY accounts at least partially for the low probability of glutamate release from recurrent mossy fiber terminals, impedes the ability of these fibers to synchronize granule cell discharge, and may protect the hippocampus from seizures that involve the entorhinal cortex. This pathway may synchronize granule cell discharge more effectively in human brain than in rat because of its lower expression of NPY.
Collapse
Affiliation(s)
- Bin Tu
- Department of Pharmacology and Cancer Biolog, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
25
|
Li JJ, Zhou X, Yu LC. Involvement of neuropeptide Y and Y1 receptor in antinociception in the arcuate nucleus of hypothalamus, an immunohistochemical and pharmacological study in intact rats and rats with inflammation. Pain 2005; 118:232-42. [PMID: 16216414 DOI: 10.1016/j.pain.2005.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 08/04/2005] [Accepted: 08/18/2005] [Indexed: 01/31/2023]
Abstract
Neuropeptide Y (NPY) plays an important role in pain modulation at different levels in the central nervous system. In the brain, NPY and NPY receptors distribute abundantly in the arcuate nucleus of hypothalamus (ARC), a structure involved in pain processing. The present study was undertaken to investigate the role of NPY in nociceptive modulation in the ARC of intact rats and rats with carrageenan-induced inflammation. Intra-ARC administration of NPY induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulation in intact rats, which was attenuated by the Y1 receptor antagonist NPY28-36. Intra-ARC administration of NPY also induced dose-dependent increases in HWLs to noxious stimulation in rats with inflammation. Furthermore, intra-ARC injection of either the antiserum against NPY or NPY28-36 induced decreases in HWLs in rats with inflammation, while both of them produced no effects in intact ones. Additionally, there were marked increases of Y1 receptor in the bilateral ARC of rats with inflammation tested by immunohistochemistry, while no significant changes of NPY were observed, implicating that the increased Y1 receptor has an important effect in the NPY-induced antinociception. We also found that intra-ARC injection of Y2 receptor agonist NPY3-36 produced no significant antinociception in either intact rats or rats with inflammation. Together, we demonstrate that NPY exerts an antinociceptive effect in the ARC of intact rats and rats with inflammation. Both Y1 receptor and endogenous released NPY in the ARC are involved in the nociceptive modulation during inflammation.
Collapse
Affiliation(s)
- Jin-Ju Li
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
26
|
Ma L, Tataranni PA, Hanson RL, Infante AM, Kobes S, Bogardus C, Baier LJ. Variations in peptide YY and Y2 receptor genes are associated with severe obesity in Pima Indian men. Diabetes 2005; 54:1598-602. [PMID: 15855352 PMCID: PMC1350723 DOI: 10.2337/diabetes.54.5.1598] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peptide YY (PYY) and Y2 receptor (Y2R) may be important in the central regulation of body weight and food intake. To determine whether genetic variation in PYY and/or Y2R may contribute to morbid obesity in humans, these genes were sequenced in 83 extremely obese Pima Indians (BMI > or = 50 kg/m2). Sequencing of PYY identified three single nucleotide polymorphisms (SNPs) in the untranslated region. Sequencing of the Y2R coding region identified one missense (Ala172Thr) substitution and two silent substitutions. Eight additional SNPs in the 5' untranslated region of Y2R were identified from public databases. These SNPs were genotyped in 489 full-heritage adult Pimas (362 severely obese and 127 nondiabetic, nonobese subjects), who are not first-degree relatives, for association analysis. The PYY variants were not associated with obesity, whereas four variants from two haplotype blocks in Y2R were marginally associated (P = 0.054-0.067) with obesity. However, if the analysis was restricted to men (n = 167, 100 obese and 67 lean), the PYY variants and two SNPs in Y2R that were in complete linkage disequilibrium were significantly associated with severe obesity (P = 0.001 and P = 0.002, respectively). Our data suggest that the PYY-Y2R pathway may influence body weight through a sex-specific mechanism, but this finding requires confirmation in other populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leslie J. Baier
- Address correspondence and reprint requests to Leslie J. Baier, PhD, Diabetes Molecular Genetics Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 North 16th St., Phoenix, AZ 85016, E-mail:
| |
Collapse
|
27
|
Abstract
The cell surface has various functions: communicating with other cells, integrating into the tissue, and interacting with the extracellular matrix. Proteases play a key role in these processes. This review focuses on cell-surface peptidases (ectopeptidases, oligopeptidases) that are involved in the inactivation or activation of extracellular regulatory peptides, hormones, paracrine peptides, cytokines, and neuropeptides. The nomenclature of cell-surface peptidases is explained in relation to other proteases, and information is provided on membrane anchoring, catalytic sites, regulation, and, in particular, on their physiological and pharmacological importance. Furthermore, nonenzymatic (binding) functions and participation in intracellular signal transduction of cell surfaces peptidases are described. An overview on the different cell-surface peptidases is given, and their divergent functions are explained in detail. An example of actual pharmacological importance, dipeptidyl-peptidase IV (CD26), is discussed.
Collapse
Affiliation(s)
- Rolf Mentlein
- Department of Anatomy, University of Kiel, 24098 Kiel, Germany
| |
Collapse
|
28
|
Lin Q, Zou X, Ren Y, Wang J, Fang L, Willis WD. Involvement of peripheral neuropeptide y receptors in sympathetic modulation of acute cutaneous flare induced by intradermal capsaicin. Neuroscience 2004; 123:337-47. [PMID: 14698742 DOI: 10.1016/j.neuroscience.2003.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In a recent study, we have demonstrated that the dorsal root reflex (DRR)-mediated acute cutaneous neurogenic inflammation following intradermal injection of capsaicin (CAP) is sympathetically dependent and subject to modulation by peripheral alpha(1)-adrenoceptors. Postganglionic sympathetic neurons contain not only adrenergic neurotransmitters, but also non-adrenergic substances, including neuropeptide Y (NPY). In this study, we examined if peripheral NPY receptors participate in the flare following CAP injection. Different NPY receptor subtypes were studied by using relatively specific agonists and antagonists for the Y(1) and Y(2) subtypes. Changes in cutaneous blood flow on the plantar surface of the foot were measured using a laser Doppler flowmeter. Following CAP injection, cutaneous flare spread more than 20 mm away from the site of CAP injection. Removal of the postganglionic sympathetic nerves by surgical sympathectomy reduced dramatically the CAP-evoked flare. If the foot of sympathectomized rats was pretreated with either NPY or Y(2) receptor agonists by intra-arterial injection, the spread of flare induced by CAP injection could be restored and prolonged. However, if the spinal cord was pretreated with a GABA(A) receptor antagonist, bicuculline, to prevent DRRs, NPY or an Y(2) receptor agonist no longer restored the CAP-evoked flare. A Y(1) receptor agonist did not affect the CAP-evoked flare in sympathectomized rats. In sympathetically intact rats, blockade of either peripheral NPY or Y(2) receptors with [D-Trp(32)]-NPY or BIIE0246 markedly reduced the flare induced by CAP injection, whereas blockade of peripheral Y(1) receptors by BIBP3226 did not obviously affect the flare. It is suggested that NPY is co-released with NE from the postganglionic sympathetic terminals to activate NPY Y(2) and alpha(1) receptors following CAP injection. Both substances are involved, at least in part, in modulation of the responses of CAP sensitive afferents thereby affecting their ability to evoke the release of inflammatory agents from primary afferents.
Collapse
Affiliation(s)
- Q Lin
- Department of Anatomy and Neuroscience, Marine Biomedical Institute, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Chen SH, Cheung RTF. Intracerebroventricular injection of a neuropeptide Y-Y1 receptor agonist increases while BIBP3226, a Y1 antagonist, reduces the infarct volume following transient middle cerebral artery occlusion in rats. Neuroscience 2003; 116:119-26. [PMID: 12535945 DOI: 10.1016/s0306-4522(02)00576-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies using middle cerebral artery occlusion in the rat have suggested a role of neuropeptide Y in ischemic pathophysiology. In this study, we investigated the effects of an i.c.v. injection of a neuropeptide Y-Y2 receptor agonist, neuropeptide Y 3-36, a Y1 receptor agonist, [Leu(31),Pro(34)]-neuropeptide Y, or a Y1 receptor antagonist, BIBP3226, on infarct volume and hemodynamic parameters following middle cerebral artery occlusion. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 2 h. A single i.c.v. injection of neuropeptide Y 3-36 (15 microg/kg), [Leu(31),Pro(34)]-neuropeptide Y (30 microg/kg), or BIBP3226 (5, 15, or 45 microg/kg) was given at 30 min of ischemia. Blood pressure, heart rate, and regional cerebral perfusion were monitored during ischemia and reperfusion. The rats were decapitated after 70 h of reperfusion, and their brains were cut into 2-mm-thick coronal slices before reaction with a 2% solution of 2,3,5-triphenyltetrazolium chloride to reveal the infarct. When compared with an infarct volume of 17.4+/-4.4% of the ipsilateral hemisphere following injection of neuropeptide Y 3-36, administration of the Y1 receptor analogs significantly modified the infarct volume (ordinary one-way analysis of variance (ANOVA), P<0.0001). [Leu(31),Pro(34)]-neuropeptide Y increased the infarct volume to 32.0+/-4.1% (Student-Newman-Keuls post-test, P<0.01), whereas BIBP3226 at 15 microg/kg decreased the infarct volume to 6.5+/-1.0% (post-test P<0.05). Although there was no major difference in the hemodynamic parameters among the groups, injection of [Leu(31),Pro(34)]-neuropeptide Y tended to further reduce cerebral perfusion during ischemia, while injection of BIBP3226 at 15 microg/kg appeared to have the opposite effect. In addition to glutamate, calcium ion and nitric oxide, activation of the neuropeptide Y-Y1 receptors may mediate cerebral damage during focal ischemia. Conversely, inhibiting the Y1 receptors may protect the brain against ischemic injury. Further studies are warranted to confirm the neuroprotective potential of neuropeptide Y-Y1 receptor inhibition.
Collapse
Affiliation(s)
- S H Chen
- Division of Neurology, University Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
30
|
Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228:217-44. [PMID: 12626767 DOI: 10.1177/153537020322800301] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.
Collapse
Affiliation(s)
- Magnus M Berglund
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
31
|
Depreitere J, Durinx C, Wang Z, Coen E, Lambeir AM, Scharpé S, De Potter W, Nouwen EJ. Presence and release of SR-17 (chromogranin B(586-602)) in the porcine splenic nerve and its enzymatic degradation by CD26/dipeptidyl peptidase IV. REGULATORY PEPTIDES 2002; 106:71-9. [PMID: 12047913 DOI: 10.1016/s0167-0115(02)00038-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using the pig splenic nerve as a model, we investigated the proteolytic processing of porcine chromogranin B (CgB) during its axonal transport. An ELISA was developed for SR-17 (CgB(586-602)), a novel CgB-derived peptide, originally found in the adrenal medulla. The results demonstrate that CgB is processed in an early stage during its axonal transport. Immunohistochemical data, based on a rabbit anti-SR-17 antiserum, show that the spleen CgB/SR-17 is exclusively present in the nerve endings. No SR-17 immunoreactivity (IR) was found in splenocytes. We also provide evidence that SR-17 is co-released with noradrenaline (NA) upon electrical stimulation of the splenic nerve. Its release is frequency-dependent and strongly enhanced in the presence of the alpha-blocking agent phentolamine. In addition, we show that the new CgB-peptide can serve as a substrate for the lymphocyte surface glycoprotein CD26, also known as dipeptidyl peptidase IV (DPP IV), generating a new peptide ER-15 (CgB(588-602)).
Collapse
Affiliation(s)
- Jan Depreitere
- Laboratory of Neurobiology and Neuropharmacology, University of Antwerp, UIA, Universiteitsplein 1, B-2610 Wilrijk, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Deacon CF, Plamboeck A, Møller S, Holst JJ. GLP-1-(9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am J Physiol Endocrinol Metab 2002; 282:E873-9. [PMID: 11882507 DOI: 10.1152/ajpendo.00452.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a potent anti-hyperglycemic hormone currently under investigation for its therapeutic potential. However, due to rapid degradation by dipeptidyl peptidase IV (DPP IV), which limits its metabolic stability and eliminates its insulinotropic activity, it has been impossible to assess its true efficacy in vivo. In chloralose-anesthetized pigs given valine-pyrrolidide (to block endogenous DPP IV activity), the independent effects of GLP-1-(7-36) amide on glucose and insulin responses to intravenous glucose were assessed, and the metabolite generated by DPP IV, GLP-1-(9-36) amide, was investigated for any ability to influence these responses. GLP-1-(7-36) amide enhanced insulin secretion (P < 0.03 vs. vehicle), but GLP-1-(9-36) amide was without effect, either alone or when coinfused with GLP-1-(7-36) amide. In contrast, GLP-1-(9-36) amide did affect glucose responses (P < 0.03). Glucose excursions were greater after saline (121 +/- 17 mmol x l(-1) x min) than after GLP-1-(9-36) amide (73 +/- 19 mmol x l(-1) x min; P < 0.05), GLP-1-(7-36) amide (62 +/- 13 mmol x l(-1) x min; P < 0.02) or GLP-1-(7-36) amide + GLP-1-(9-36) amide (50 +/-13 mmol x l(-1) x min; P < 0.005). Glucose elimination rates were faster after GLP-1-(7-36) amide + (9-36) amide (10.3 +/- 1.2%/min) than after GLP-1-(7-36) amide (7.0 +/- 0.9%/min; P < 0.04), GLP-1-(9-36) amide (6.8 +/- 1.0%/min; P < 0.03), or saline (5.4 +/- 1.2%/min; P < 0.005). Glucagon concentrations were unaffected. These results demonstrate that GLP-1-(9-36) amide neither stimulates insulin secretion nor antagonizes the insulinotropic effect of GLP-1-(7-36) amide in vivo. Moreover, the metabolite itself possesses anti-hyperglycemic effects, supporting the hypothesis that selective DPP IV action is important in glucose homeostasis.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
33
|
Abstract
Differences in the structure of PYY and two important analogs, PYY [3-36] and [Pro34]PYY, are evaluated. Y-receptor subtype ligand binding data are used in conjunction with structural data to develop a model for receptor subtype selective agonists. For PYY it is proposed that potent binding to Y1, Y4 and Y5 receptors requires the juxtaposition of the two termini while Y2 binding only requires the C-terminal helix. Further experiments that delineate between primary and tertiary structure contributions for receptor binding and activation are required to support the hypothesis that tertiary structure is stable enough to influence the expression of PYY's bioactivity.
Collapse
Affiliation(s)
- D A Keire
- CURE Digestive Diseases Research Center, Greater Los Angeles Veterans Health Care System, Los Angeles, CA 90073, USA.
| | | | | | | |
Collapse
|
34
|
The neuropeptide Y Y5 receptor mediates the blockade of "photic-like" NMDA-induced phase shifts in the golden hamster. J Neurosci 2001. [PMID: 11438613 DOI: 10.1523/jneurosci.21-14-05367.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Circadian or daily rhythms generated from the mammalian suprachiasmatic nuclei (SCN) of the hypothalamus can be synchronized by light and nonphotic stimuli. Whereas glutamate mediates photic information, nonphotic information can in some cases be mediated by neuropeptide Y (NPY) or serotonin. NPY or serotonin can reduce the phase-resetting effect of light or glutamate; however, the mechanisms and level of interaction of these two kinds of stimuli are unknown. Here we investigate the effect of NPY on the NMDA-induced phase shift of the hamster SCN circadian neural activity rhythm by means of single-unit recording techniques. NMDA (10-100 microm) applied in the early subjective night induced phase delays in the time of peak firing, whereas doses in the millimolar range disrupted firing patterns. The NMDA-induced phase delay was blocked by coapplication of NPY (0.02-200 microm). NPY Y1/Y5 and Y5 receptor agonists, but not the Y2 receptor agonist, blocked the NMDA-induced phase delay in a similar manner as NPY. The coapplication of a Y5 but not Y1 receptor antagonist eliminated NPY blockade of NMDA-induced phase delays, suggesting that the Y5 receptor is capable of mediating the inhibitory effect of NPY on photic responses. These results indicate that nonphotic and photic stimuli may interact at a level at or beyond NMDA receptor response and indicate that the Y5 receptor is involved in this interaction. Alteration of Y5 receptor function may therefore be expected to alter synchronization of circadian rhythms to light.
Collapse
|
35
|
Abrahamsson C. Neuropeptide Y1- and Y2-receptor-mediated cardiovascular effects in the anesthetized guinea pig, rat, and rabbit. J Cardiovasc Pharmacol 2000; 36:451-8. [PMID: 11026645 DOI: 10.1097/00005344-200010000-00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuropeptide Y (NPY) causes vasoconstriction through Y1-receptors and inhibits vagal bradycardia through presynaptic Y2-receptors. These effects of NPY were investigated in anesthetized guinea pigs, rats, and rabbits to find the most suitable species for evaluation of Y1- and Y2-active agents in vivo. The increase in blood pressure (through Y1) of lower doses of NPY was similar in the three species (ED50, 0.9 +/- 0.13, 0.8 +/- 0.39, and 0.6 +/- 0.09 nmol/kg, respectively), but higher doses had depressor effects in four of six rats. Vagal bradycardia, induced by electrical stimulation of the right cervical vagus nerve, was inhibited by NPY in the guinea pig and in the rat (ED35, 3.5 +/- 0.46 and 11.2 +/- 1.79 nmol/kg, respectively; p < 0.05) but not in the rabbit. In the guinea pig, the Y2-receptor-preferring fragment NPY(3-36) and the selective Y1-receptor antagonist H 409/22 were used to confirm that the increase in blood pressure was mediated solely through the Y1-receptor and the vagal inhibition solely through the Y2-receptor. Aside from the cardiovascular effects, NPY caused a decrease in the body temperature and inhibited vagal bronchoconstriction in this species. Considering that NPY may cause depressor effects in the rat and has no effect on the vagal bradycardia in the rabbit, the guinea pig is preferable to both these species for assessment of Y1- and Y2-receptor-active agents in vivo.
Collapse
|
36
|
Keire DA, Kobayashi M, Solomon TE, Reeve JR. Solution structure of monomeric peptide YY supports the functional significance of the PP-fold. Biochemistry 2000; 39:9935-42. [PMID: 10933813 DOI: 10.1021/bi992576a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide YY (PYY) belongs to a family of peptides including neuropeptide Y (NPY) and pancreatic peptide (PP) that regulate numerous functions through both central and peripheral receptors. The solution structure of these peptides is hypothesized to be critically important in receptor selectivity and activation, based on prior demonstration of a stable tertiary conformation of PP called the "PP-fold". Circular dichroism (CD) spectra show a pH-dependent structural transition in the pH range 3-4. Thus we describe the tertiary structure of porcine PYY in water at pH 5.5, 25 degrees C, and 150 mM NaCl, as determined from 2D (1)H NMR data recorded at 500 MHz. A constraint set consisting of 396 interproton distances from NOE data was used as input for distance geometry, simulated annealing, and restrained energy minimization calculations in X-PLOR. The RMSDs of the 20 X-PLOR-generated structures were 0.71 +/- 0.14 and 1.16 +/- 0.17 A, respectively, for backbone and heavy atom overlays of residues 1-34. The resulting structure consists of two C-terminal helical segments from residues 17 to 22 and 25 to 33 separated by a kink at residues 23, 24, and 25, a turn centered around residues 12-14, and the N-terminus folded near residues 30 and 31. The well-defined portions of the PYY structure reported here bear a marked similarity to the structure of PP. Our findings strongly support the importance of the stable folded structure of this family of peptides for binding and activation of Y receptor subtypes.
Collapse
Affiliation(s)
- D A Keire
- CURE Digestive Diseases Research Center, Greater Los Angeles Veterans Healthcare System, Los Angeles, California 90073, USA.
| | | | | | | |
Collapse
|
37
|
Bjellerup P, Theodorsson E, Jörnvall H, Kogner P. Limited neuropeptide Y precursor processing in unfavourable metastatic neuroblastoma tumours. Br J Cancer 2000; 83:171-6. [PMID: 10901366 PMCID: PMC2363490 DOI: 10.1054/bjoc.2000.1234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropeptide Y (NPY) is found at high concentrations in neural crest-derived tumours and has been implicated as a regulatory peptide in tumour growth and differentiation. Neuroblastomas, ganglioneuromas and phaeochromocytomas with significant concentrations of NPY-like immunoreactivity were investigated for different molecular forms of NPY and for significance of proNPY processing. Gel-permeation chromatography identified intact NPY (1-36) in all tumours, whereas proNPY (69 amino acids) was detected only in control adrenal tissue and malignant neuroblastomas. Purification of NPY-like immunoreactivity in tumour extracts and structural characterization revealed that both NPY (1-36) and the truncated form NPY (3-36) was present. The degree of processing of proNPY to NPY in tumour tissue was lower in advanced neuroblastomas with regional or metastatic spread (stage 3 and 4) (n = 6), (41%, 12-100%, median, range), compared to the less aggressive stage 1, 2 and 4S tumours (n = 12), (93%; 69-100%), (P= 0.012). ProNPY processing of less than 50% was correlated with poor clinical outcome (P = 0.004). MYCN oncogene amplification was also correlated to a low degree of proNPY processing (P = 0.025). In summary, a low degree of proNPY processing was correlated to clinical advanced stage and poor outcome in neuroblastomas. ProNPY/NPY processing generated molecular forms of NPY with known differences in NPY-receptor selectivity, implicating a potential for in vivo modulation of NPY-like effects in tumour tissue.
Collapse
Affiliation(s)
- P Bjellerup
- Department of Clinical Chemistry, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
38
|
Davis B, Goepel M, Bein S, Chess-Williams R, Chapple CR, Michel MC. Lack of neuropeptide Y receptor detection in human bladder and prostate. BJU Int 2000; 85:918-24. [PMID: 10792177 DOI: 10.1046/j.1464-410x.2000.00573.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the presence of functional neuropeptide Y (NPY) receptors in human bladder and prostate (both richly endowed with NPY-containing nerve fibers) using peptide YY (PYY) as the agonist. Materials and methods Binding studies were conducted using [125I]PYY as the radioligand. Organ-bath studies were performed on isolated tissue strips for direct (postjunctional) contractile effects and for (prejunctional) inhibition of field stimulation effects. Any possible degradation of PYY was determined using high-performance liquid chromatography (HPLC). RESULTS In the radioligand binding studies no quantifiable specific [125I]PYY binding was detected in human bladder or prostate, while specific high-affinity binding was readily seen in rat cerebral cortex. In organ-bath experiments, PYY (up to 1 micromol/L) caused no contraction of human prostate or bladder, whereas noradrenaline and carbachol, respectively, were effective; the potency or efficacy of noradrenaline and carbachol were not altered by PYY. Field stimulation-induced contraction was not affected by PYY in either human bladder or prostate, but was readily inhibited in rat vas deferens. HPLC detected no relevant PYY degradation by human bladder or prostate homogenates. CONCLUSION Human bladder and prostate express only very few if any functional NPY receptors.
Collapse
Affiliation(s)
- B Davis
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | | | | | | | | |
Collapse
|
39
|
Mentlein R. Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides. REGULATORY PEPTIDES 1999; 85:9-24. [PMID: 10588446 DOI: 10.1016/s0167-0115(99)00089-0] [Citation(s) in RCA: 962] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dipeptidyl-peptidase IV (DPP IV/CD26) has a dual function as a regulatory protease and as a binding protein. Its role in the inactivation of bioactive peptides was recognized 20 years ago due to its unique ability to liberate Xaa-Pro or Xaa-Ala dipeptides from the N-terminus of regulatory peptides, but further examples are now emerging from in vitro and vivo experiments. Despite the minimal N-terminal truncation by DPP IV, many mammalian regulatory peptides are inactivated--either totally or only differentially--for certain receptor subtypes. Important DPP IV substrates include neuropeptides like neuropeptide Y or endomorphin, circulating peptide hormones like peptide YY, growth hormone-releasing hormone, glucagon-like peptides(GLP)-1 and -2, gastric inhibitory polypeptide as well as paracrine chemokines like RANTES (regulated on activation normal T cell expressed and secreted), stromal cell-derived factor, eotaxin and macrophage-derived chemokine. Based on these findings the potential clinical uses of selective DPP IV inhibitors or DPP IV-resistant analogues, especially for the insulinotropic hormone GLP-1, have been tested to enhance insulin secretion and to improve glucose tolerance in diabetic animals. Thus, DPP IV appears to be a major physiological regulator for some regulatory peptides, neuropeptides, circulating hormones and chemokines.
Collapse
Affiliation(s)
- R Mentlein
- Anatomisches Institut der Universität Kiel, Germany.
| |
Collapse
|
40
|
Abstract
The 36-amino-acid peptide, neuropeptide Y (NPY), is the most abundant peptide in the rat brain. When administered into the brain, NPY produces a variety of physiological actions including a pronounced stimulation of feeding in satiated rats. Elevations in hypothalamic NPY have been reported after food deprivation and in genetically obese rodents. NPY is believed to produce its actions through a portfolio of G-protein coupled receptors, Y1, Y2, Y4 and Y5. Studies using peptide analogs, receptor knockout animals and specific receptor antagonists suggest the Y1 and Y5 receptors are important in mediating the effects of NPY on food intake in rats. Development of specific receptor antagonists with improved pharmacokinetic properties will be required to determine the importance of NPY in human obesity and appetite disorders.
Collapse
Affiliation(s)
- D R Gehlert
- Lilly Neuroscience, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| |
Collapse
|
41
|
Protas L, Robinson RB. Neuropeptide Y contributes to innervation-dependent increase in I(Ca, L) via ventricular Y2 receptors. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H940-6. [PMID: 10484414 DOI: 10.1152/ajpheart.1999.277.3.h940] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The developmental increase in L-type Ca current (I(Ca,L)) density in the rat ventricle is reproduced in vitro by culturing neonatal myocytes with sympathetic neurons. We tested whether this effect of sympathetic innervation results from a chronic or sustained action of neurally released neuropeptide Y (NPY). Ventricular myocytes from newborn rats were cultured in serum-free medium with or without sympathetic neurons, NPY, or NPY analogs. Ca currents were measured in single myocytes at room temperature using the perforated patch clamp. In all cell groups (control, innervated, or NPY treated), the current-voltage relation for I(Ca,L) was represented by a bell-shaped curve with maximal value near 0 mV. The current density at 0 mV normalized to that of corresponding mean control values was 1.63 +/- 0.12 and 1.52 +/- 0.16 for innervated and NPY-treated myocytes, respectively. Both groups differed significantly from control (P < 0.05). NPY analogs exhibited the following rank order of effectiveness: NPY >/= NPY-(13-36) >/= PYY >> [Leu31Pro34]NPY, suggesting that the NPY effect occurs via a Y2-receptor subtype. In confirmation, chronic treatment of innervated cultures with a Y2-selective NPY antagonist prevented the innervation-dependent increase in I(Ca,L). These results indicate that sympathetic innervation contributes to the developmental increase in I(Ca,L) via neurally released NPY acting at Y2 receptors on the ventricular myocytes.
Collapse
Affiliation(s)
- L Protas
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
42
|
Modin A, Malmström RE, Meister B. Vascular neuropeptide Y Y1-receptors in the rat kidney: vasoconstrictor effects and expression of Y1-receptor mRNA. Neuropeptides 1999; 33:253-9. [PMID: 10657500 DOI: 10.1054/npep.1999.0755] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuropeptide Y (NPY) -receptor subtypes were studied in the rat kidney in vivo by systemic administration of NPY, the two agonists [Leu(31), Pro(34)]NPY (Y1-receptor agonist) and NPY (13-36) (Y2-receptor agonist), or the Y1-receptor antagonist BIBP 3226. Effects on mean arterial blood pressure (MAP) and renal arterial blood flow were recorded. The Y1-receptor agonist evoked a dose-dependent increase in MAP concomitantly with a reduction in renal blood flow. At the largest dose administered (1.42 pmol/g), the Y1-agonist [Leu(31), Pro(34)] NPY increased MAP by 20 +/- 6 mmHg and reduced the renal vascular conductance by more than 50%. The same dose of the Y2-agonist NPY (13-36) did not evoke any clear-cut effects on the renal blood flow or MAP. Furthermore, administration of the Y1-receptor antagonist BIBP 3226 reduced the NPY-induced renal vasoconstriction, but did not affect the response to angiotensin II or phenylephrine. The effects evoked by 0.71 pmol/g NPY were almost abolished by 3 mg/kg BIBP 3226. In situ hybridization histochemistry was used to study the expression of Y1-receptor mRNA in the developing rat kidney. The levels of Y1-receptor mRNA expression in the vascular smooth muscle of the rat kidney varied at different ages, with low levels at postnatal day 10 and high levels at 20 days and again low levels at 40 days. In summary, the present study show a maturation-specific expression pattern of NPY Y1-receptor mRNA as well as functional effects of vascular NPY receptors of the Y1-subtype in the rat kidney.
Collapse
Affiliation(s)
- A Modin
- Department of Physiology, Karolinska Institute, Stockholm, SE-171 77, Sweden.
| | | | | |
Collapse
|
43
|
Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 1999; 20:1035-42. [PMID: 10499420 DOI: 10.1016/s0196-9781(99)00097-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A neuropeptide F (NPF) was isolated from the fruit fly, Drosophila mellanogaster, based on a radioimmunoassay for a gut peptide from the corn earworm, Helicoverpa zea. A partial sequence was obtained from the fly peptide, and a genomic sequence coding for NPF was cloned after inverse polymerase chain reaction and shown to exist as a single genomic copy. The encoded, putative prepropeptide can be processed into an amidated NPF with 36 residues that is related to invertebrate NPF's and the neuropeptide Y family of vertebrates. In situ hybridization and immunocytochemistry showed that Drosophila NPF was expressed in the brain and midgut of fly larvae and adults.
Collapse
Affiliation(s)
- M R Brown
- Department of Entomology, University of Georgia, Athens 30602, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Neuropeptide Y (NPY) and related compounds increase short-term feeding. Previous studies have used different animal models, feeding schedules, sources of the compounds, and time and routes of administration. These differences in methodology are important in the variability reported on the potency of NPY-related compounds. To obtain reliable data on the relative efficacy, we tested NPY, NPY 3-36, and pancreatic polypeptide (PP) using an identical protocol and the same commercial source. These three NPY-related compounds were tested using the intracerebroventricular (i.c.v., into the third ventricle) administration, and the profile of the feeding enhancement including the dose response and potency was determined. Compounds were tested in parallel on at least 2 successive days. NPY, NPY 3-36, and PP exhibited different potencies in enhancing 2-h food intake. Comparison of their dose responses (using 0.1, 0.25, 0.5, 1.0, 2.5, and 5.0 microg/rat) demonstrated an overall potency of NPY 3-36 > NPY > PP for the high doses. To study ligand interactions, we examined the effects of various combinations of NPY-related compounds administered concomitantly. These combinations were justified based on the data obtained from the individual dose responses. The data show that the effects of NPY plus NPY 3-36 or NPY 3-36 plus PP were less than additive. When compared to the individual responses, the effects of NPY 3-36 were almost identical to those induced by the combinations using low doses of NPY plus NPY 3-36, or low and high doses of PP plus NPY 3-36. The results support the notion that NPY and its analogues induce a short-term feeding response by activating multiple receptor subtypes.
Collapse
Affiliation(s)
- M C Flynn
- Division of Molecular Biology, School of Life and Health Sciences, University of Delaware, Newark 19716-2590, USA
| | | | | |
Collapse
|
45
|
Haynes AC, Arch JR, Wilson S, McClue S, Buckingham RE. Characterisation of the neuropeptide Y receptor that mediates feeding in the rat: a role for the Y5 receptor? REGULATORY PEPTIDES 1998; 75-76:355-61. [PMID: 9802429 DOI: 10.1016/s0167-0115(98)00088-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Food intake was measured in freely fed rats following intracerebroventricular administration of neuropeptide Y (NPY) and several of its analogues and antagonists to investigate the hypothesis that the NPY Y5 receptor mediates feeding. Rat NPY (rNPY), rNPY(2-36) and rNPY(3-36) produced similar feeding responses over the dose range 0.7-7.0 nmol. Rat peptide YY (rPYY) was more potent and at least as efficacious as rNPY. [Leu31 Pro34]-rNPY (agonist potency: Y1 > Y5 > Y4 = y6) and human pancreatic polypeptide (hPP) produced flatter dose-response curves, suggesting partial agonism at the receptor(s). rNPY(13-36) (agonist potency: Y2 > Y5) had little activity and rPP was inactive. [D-Trp32]-NPY was a weak orexigenic agent given alone and, consistent with partial agonism, it markedly antagonised the response to porcine NPY (pNPY). Similarly, the receptor antagonist (Y1 > Y4) 1229U91 stimulated feeding slightly, and markedly inhibited rNPY-induced feeding. In contrast to a previous report, BIBP 3226 (70 nmol), another Y1 receptor antagonist, failed to inhibit the response to rNPY. Our data in vivo are inconsistent with findings that hPP, [Leu31 Pro34]-rNPY and [D-Trp32]-rNPY are full agonists at the rat cloned Y5 receptor. Thus, whilst the Y5 receptor may be involved, its participation as the sole receptor mediating the orexigenic action of NPY in the rat remains unproven.
Collapse
Affiliation(s)
- A C Haynes
- Department of Vascular Biology, SmithKline Beecham Pharmaceuticals, Harlow, Essex, UK.
| | | | | | | | | |
Collapse
|
46
|
Abstract
The existence of neurogenic mediator candidates apart from noradrenaline and acetylcholine involved in the control of vascular tone has attracted enormous attention during the past few decades. One such mediator is neuropeptide Y (NPY), which is co-localized with noradrenaline in sympathetic perivascular nerves. Stimulation of sympathetic nerves in vitro and in vivo causes non-adrenergic vasoconstriction which can be blocked by experimental manipulations that inhibit NPY mechanisms. Thus, the vasopressor response to stimulation of sympathetic nerves can be attenuated by chemical or surgical sympathectomy, treatment with reserpine or other pharmacological agents, and tachyphylaxis to NPY or by NPY antagonists. The NPY field was long plagued by a lack of specific antagonists, but with the recently developed, selective, non-peptide and stable NPY antagonists it has now become possible to study subtypes of this receptor family. For instance, it has become clear that the NPY Y1 receptor mediates most of the direct peripheral effects of NPY on vascular tone. These antagonists promise to stimulate NPY research and will likely unravel the true significance of NPY in cardiovascular control under physiological conditions as well as in pathophysiological states.
Collapse
Affiliation(s)
- A Franco-Cereceda
- Department of Thoracic Surgery, Karolinska Hospital, Stockholm, Sweden.
| | | |
Collapse
|
47
|
Frühbeck G, García-Granero M, Martínez JA. Age-related differences in the thermogenic and ponderal effects following the administration of fragment peptides from the rat ob protein. REGULATORY PEPTIDES 1998; 73:83-7. [PMID: 9533811 DOI: 10.1016/s0167-0115(97)01061-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ob gene encodes a protein, which regulates satiety, metabolic rate and fat storage. The administration of a pool of five 20-amino-acid fragment peptides derived from the carboxy-terminal region of the ob protein produced a statistically significant reduction in body weight gain in adult rats, while rectal temperature showed a statistically significant increase. Administration of the same pool of peptides to young rats did not produce changes in body weight gain, although a statistically significant transient increase in rectal temperature was observed. These results envisage the possibility that small sequences of amino acids derived from the ob protein may mimic the effects of the whole protein on temperature and ponderal regulation. Furthermore, data suggest possible age-related differences in the response to leptin administration.
Collapse
Affiliation(s)
- G Frühbeck
- Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|