1
|
Ivashkin VT, Drapkina OM, Maevskaya MV, Raikhelson KL, Okovityi SV, Zharkova MS, Grechishnikova VR, Abdulganieva DI, Alekseenko SA, Ardatskaya MD, Bakulin IG, Bakulina NV, Bogomolov PO, Breder VV, Vinnitskaya EV, Geyvandova NI, Golovanova EV, Grinevich VB, Doshchitsin VL, Dudinskaya EN, Ershova EV, Kodzoeva KB, Kozlova IV, Komshilova KA, Konev YV, Korochanskaya NV, Kotovskaya YV, Kravchuk YA, Loranskaya ID, Maev IV, Martynov AI, Mekhtiev SN, Mishina EE, Nadinskaia MY, Nikitin IG, Osipenko MF, Ostroumova OD, Pavlov CS, Pogosova NV, Radchenko VG, Roytberg GE, Saifutdinov RG, Samsonov AA, Seliverstov PV, Sitkin SI, Tarasova LV, Tarzimanova AI, Tkacheva ON, Tkachenko EI, Troshina EA, Turkina SV, Uspenskiy YP, Fominykh YA, Khlynova OV, Tsyganova YV, Shamkhalova MS, Sharkhun OO, Shestakova MV. Clinical Guidelines of the Russian Society for the Study of the Liver, Russian Gastroenterological Association, Russian Society for the Prevention of Non-Communicable Diseases, Russian Association of Endocrinologists, Russian Scientific Medical Society of Therapists, National Society of Preventive Cardiology, Russian Association of Gerontologists and Geriatricians on Non-Alcoholic Fatty Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2025; 35:94-152. [DOI: 10.22416/1382-4376-2025-35-1-94-152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2025]
Abstract
Aim. The clinical guidelines are intended to provide information support for making decisions by gastroenterologists, general practitioners and internists that will improve the quality of medical care for patients with non-alcoholic fatty liver disease, taking into account the latest clinical data and principles of evidence-based medicine. Key points. Clinical guidelines contain information about current views on etiology, risk factors and pathogenesis of nonalcoholic fatty liver disease, peculiarities of its clinical course. Also given recommendations provide information on current methods of laboratory and instrumental diagnostics, invasive and non-invasive tools for nonalcoholic fatty liver disease and its clinical phenotypes assessment, approaches to its treatment, considering the presence of comorbidities, features of dispensary monitoring and prophylaxis. The information is illustrated with algorithms of differential diagnosis and physician's actions. In addition, there is information for the patient and criteria for assessing the quality of medical care. Conclusion. Awareness of specialists in the issues of diagnosis, treatment and follow-up of patients with nonalcoholic fatty liver disease contributes to the timely diagnosis and initiation of treatment, which in the long term will significantly affect their prognosis and quality of life.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. V. Maevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. L. Raikhelson
- Saint Petersburg State University;
Academician I.P. Pavlov First Saint Petersburg State Medical University
| | - S. V. Okovityi
- Saint Petersburg State Chemical Pharmaceutical University
| | - M. S. Zharkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - M. D. Ardatskaya
- Central State Medical Academy of the Department of Presidential Affairs
| | - I. G. Bakulin
- North-Western State Medical University named after I.I. Mechnikov
| | - N. V. Bakulina
- North-Western State Medical University named after I.I. Mechnikov
| | - P. O. Bogomolov
- Russian University of Medicine;
Moscow Regional Research Clinical Institute
| | - V. V. Breder
- National Medical Research Center of Oncology named after N.N. Blokhin
| | | | | | | | | | | | | | | | - K. B. Kodzoeva
- National Medical Research Center for Transplantology and Artificial Organs named after Academician V.I. Shumakov
| | - I. V. Kozlova
- Saratov State Medical University named after V.I. Razumovsky
| | | | | | | | | | | | | | | | | | - S. N. Mekhtiev
- Academician I.P. Pavlov First Saint Petersburg State Medical University
| | | | - M. Yu. Nadinskaia
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. G. Nikitin
- N.I. Pirogov Russian National Research Medical University;
National Medical Research Center “Treatment and Rehabilitation Center”
| | | | | | - Ch. S. Pavlov
- I.M. Sechenov First Moscow State Medical University (Sechenov University);
Moscow Multidisciplinary Scientific and Clinical Center named after S.P. Botkin
| | - N. V. Pogosova
- National Medical Research Center of Cardiology named after Academician E.I. Chazov
| | | | - G. E. Roytberg
- N.I. Pirogov Russian National Research Medical University
| | - R. G. Saifutdinov
- Kazan State Medical Academy — Branch Campus of the Russian Medical Academy of Continuous Professional Education
| | | | | | - S. I. Sitkin
- North-Western State Medical University named after I.I. Mechnikov;
V.A. Almazov National Medical Research Center
| | | | - A. I. Tarzimanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. N. Tkacheva
- N.I. Pirogov Russian National Research Medical University
| | | | | | | | - Yu. P. Uspenskiy
- Academician I.P. Pavlov First Saint Petersburg State Medical University;
Saint Petersburg State Pediatric Medical University
| | - Yu. A. Fominykh
- V.A. Almazov National Medical Research Center; Saint Petersburg State Pediatric Medical University
| | - O. V. Khlynova
- Perm State Medical University named after Academician E.A. Wagner
| | | | | | - O. O. Sharkhun
- N.I. Pirogov Russian National Research Medical University
| | | |
Collapse
|
2
|
Bishnolia M, Yadav P, Singh SK, Manhar N, Rajput S, Khurana A, Bhatti JS, Navik U. Methyl donor ameliorates CCl 4-induced liver fibrosis by inhibiting inflammation, and fibrosis through the downregulation of EGFR and DNMT-1 expression. Food Chem Toxicol 2025; 196:115230. [PMID: 39736447 DOI: 10.1016/j.fct.2024.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Methyl donors regulate the one-carbon metabolism and have significant potential to reduce oxidative stress and inflammation. Therefore, this study aims to investigate the protective effect of methyl donors against CCl4-induced liver fibrosis. Liver fibrosis was induced in male Sprague Dawley rats using CCl4 at a dose of 1 ml/kg (twice a week for a 4-week, via intraperitoneal route). Subsequently, methyl donor treatments were given orally for the next six weeks while continuing CCl4 administration. After 10 weeks, biochemical, histopathology, immunohistochemistry, western blotting, and qRT-PCR were performed. Methyl donor treatment significantly ameliorated ALT, AST, ALP levels, and oxidative stress associated with CCl4-induced liver injury. The histopathological investigation also demonstrated the hepatoprotective effect of methyl donors against CCl4-induced liver fibrosis, showing reduced tissue damage, collagen deposition, and attenuating the expression of the COL1A1 gene. Further, methyl donors inhibited the CCl4-induced increase in DNMT-1 and NF-κB p65 expression with an upregulation of AMPK. Methyl donor downregulated the CCl4-induced increase in inflammatory and fibrosis related gene expression and inhibited the apoptosis with a downregulation of EGFR expression. Here, we provide the first evidence that methyl donor combinations prevent liver fibrosis by attenuating oxidative stress, inflammation, and fibrosis through DNMT-1 and EGFR downregulation.
Collapse
Affiliation(s)
- Manish Bishnolia
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Nirmal Manhar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
3
|
Mullish BH, Thursz MR. Alcohol-associated liver disease: Emerging therapeutic strategies. Hepatology 2024; 80:1372-1389. [PMID: 38922808 DOI: 10.1097/hep.0000000000000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The large and growing burden of alcohol-associated liver disease-and the considerable burden of morbidity and mortality associated with it-has been a drive toward ongoing research into novel strategies for its treatment, with a particular focus upon alcohol-associated hepatitis (AH). Management of alcohol-use disorder forms the central pillar of alcohol-associated liver disease care, with evidence-based psychological and pharmacological approaches being well established, and certain models demonstrating improved clinical outcomes when hepatology and addiction services are co-located. Corticosteroids have previously been used somewhat indiscriminately in patients with severe AH, but effective tools now exist to assess early response (and limit futile ongoing exposure). Techniques to predict risk of corticosteroid-related infection are also available, although current clinical strategies to mitigate this risk are limited. A variety of novel therapeutic approaches to AH are at different phases of trials and evidence gathering, with some of the most promising signals related to cytokine manipulation, epigenetic modulation, and targeting of the gut microbiota (ie, by means of fecal microbiota transplant). While remaining an ongoing source of debate, early liver transplant in severe AH has grown in interest and acceptability over the past decade as evidence supporting its efficacy builds, in the process challenging paradigms about mandatory pretransplant sobriety periods. However, uncertainty remains regarding the optimal selection criteria, and whether liver transplant has a role for only a highly limited proportion of patients with AH or more widespread application. This review aims to provide an overview of this fast-moving field.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Mark R Thursz
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
4
|
Hardesty JE, McClain CJ. Current Pharmacotherapy and Nutrition Therapy of Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:731-745. [PMID: 39362718 PMCID: PMC11529778 DOI: 10.1016/j.cld.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Patients with alcohol-associated liver disease (ALD) consume large amounts of empty calories and are at risk for malnutrition. Malnutrition can present with micro- or macro-nutrient deficiencies. The standard-of-care drug treatment for severe alcohol-associated hepatitis (AH) is corticosteroids. While still in the standard treatment there are limitations in efficacy and certain patients do not respond to treatment (Lille score ≥.45). This article will focus on important concepts related to nutrition and ALD and on recent findings on predicting corticosteroid response and prognosis for AH patients.
Collapse
Affiliation(s)
- Josiah E Hardesty
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, USA; University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY, USA; Robley Rex Veterans Medical Center, Louisville, KY, USA; University of Louisville Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
5
|
Torres S, Hardesty J, Barrios M, Garcia-Ruiz C, Fernandez-Checa JC, Singal AK. Mitochondria and Alcohol-Associated Liver Disease: Pathogenic Role and Target for Therapy. Semin Liver Dis 2024. [PMID: 39317216 DOI: 10.1055/a-2421-5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Alcohol-associated liver disease (ALD) is one of the leading causes of chronic liver disease and a major cause of liver-related death. ALD is a multifactorial disease triggered by the oxidative metabolism of alcohol which leads to the activation of multiple factors that promote the progression from steatosis to more advanced stages like alcohol-associated steatohepatitis (AH) that culminate in alcohol-associated cirrhosis and hepatocellular carcinoma. Poor understanding of the complex heterogeneous pathology of ALD has limited drug development for this disease. Alterations in mitochondrial performance are considered a crucial event in paving the progression of ALD due to the crucial role of mitochondria in energy production, intermediate metabolism, calcium homeostasis, and cell fate decisions. Therefore, understanding the role of mitochondria in eliciting steatosis and progression toward AH may open the door to new opportunities for treatment. In this review, we will cover the physiological function of mitochondria, its contribution to ALD in experimental models and human disease, and explore whether targeting mitochondria may represent a game changer in the treatment of ALD.
Collapse
Affiliation(s)
- Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Josiah Hardesty
- Division of Gastroenterology and Hepatology, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Monica Barrios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic i Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ashwani K Singal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Unidad Associada IMIM/IIBB-CSIC, Barcelona, Spain
- Division of Gastroenterology and Hepatology, University of Louisville, Louisville, Kentucky
- Transplant Hepatology, Trager Transplant Center and Jewish Hospital, University of Health, Louisville, Kentucky
- Department of Clinical Research, Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
6
|
Patel S, Tareen K, Patel C, Rosinski A. Herbal and Non-Herbal Dietary Supplements for Psychiatric Indications: Considerations in Liver Transplantation. Curr Psychiatry Rep 2024; 26:436-446. [PMID: 38941032 DOI: 10.1007/s11920-024-01517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE OF REVIEW Traditional, complementary, and integrative medicine (TCIM) modalities are widely employed. However, TCIM, specifically herbal and non-herbal dietary supplements, can pose challenges in the context of organ transplantation. In this review, we discuss common supplements used for psychiatric purposes and highlight important considerations for candidates and recipients of liver transplants. RECENT FINDINGS Ashwagandha, kava kava, green tea extract, skullcap, turmeric, and valerian have known idiosyncratic hepatotoxic potential and may complicate the liver transplantation course. Multiple supplements reportedly carry a lower risk of hepatotoxicity, though evidence for widespread use in those at risk for or with hepatic impairment is limited. Psychiatrists caring for candidates and recipients of liver transplants must recognize that patients may find supplements helpful in alleviating psychiatric symptoms, despite an overall limited evidence base. Evaluating benefit versus risk ratios and reviewing drug-drug interactions is essential to promote transplant candidacy and mitigate the possibility of native or graft liver dysfunction.
Collapse
Affiliation(s)
- Shivali Patel
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
- Department of Psychiatry, Henry Ford Health, 2799 W Grand Blvd., Detroit, MI, 48202, USA.
| | - Kinza Tareen
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Chandni Patel
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH, USA
| | - Amy Rosinski
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Brown MG, Feller LE, Trupkiewicz JG, Hutchinson EK, Izzi JM. Comparing different strategies to reduce hepatocellular damage in obese common marmosets (Callithrix jacchus). J Med Primatol 2024; 53:e12683. [PMID: 37946549 DOI: 10.1111/jmp.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Obesity in common marmosets (Callithrix jacchus) can lead to various liver pathologies. In other species, reduced caloric intake and weight loss improve prognosis, and, often, hepatoprotectants are used to halt or reverse hepatocellular damage from fat deposition in the liver. There are no published therapies for reducing hepatocellular damage in obese marmosets. METHODS Fifteen obese marmosets were used to evaluate the ability of caloric restriction and pharmacologic therapy (S-adenosylmethionine + milk thistle extract, or SMT), alone and combined, to reduce elevated liver enzymes. Body weight and serum chemistries were measured every 4 weeks for 6 months. RESULTS Across treatment groups, there was a significant reduction in liver enzymes ALT and AST over time. SMT alone significantly reduced liver enzymes ALT and AST at 6 months from baseline. CONCLUSIONS Caloric restriction and SMT, alone and combined, are effective at reducing liver enzyme levels in obese marmosets.
Collapse
Affiliation(s)
- Mallory Gwendolyn Brown
- Research Animal Resources, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laine Elizabeth Feller
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Gregory Trupkiewicz
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Kenneth Hutchinson
- Research Animal Resources, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jessica Marie Izzi
- Research Animal Resources, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Abstract
Alcohol-related liver disease (ALD) is a major cause of liver-related morbidity and mortality. Epidemiological trends indicate recent and predicted increases in the burden of disease. Disease progression is driven by continued alcohol exposure on a background of genetic predisposition together with environmental cofactors. Most individuals present with advanced disease despite a long history of excessive alcohol consumption and multiple missed opportunities to intervene. Increasing evidence supports the use of non-invasive tests to screen for and identify disease at earlier stages. There is a definite role for public health measures to reduce the overall burden of disease. At an individual level, however, the ability to influence subsequent disease course by modifying alcohol consumption or the underlying pathogenic mechanisms remains limited due to a comparative lack of effective, disease-modifying medical interventions. Abstinence from alcohol is the key determinant of outcome in established ALD and the cornerstone of clinical management. In those with decompensated ALD, liver transplant has a clear role. There is consensus that abstinence from alcohol for an arbitrary period should not be the sole determinant in a decision to transplant. An increasing understanding of the mechanisms by which alcohol causes liver disease in susceptible individuals offers the prospect of new therapeutic targets for disease-modifying drugs. Successful translation will require significant public and private investment in a disease area which has traditionally been underfunded when compared to its overall prevalence.
Collapse
Affiliation(s)
- Mark Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | |
Collapse
|
10
|
Tsukanov VV, Osipenko MF, Beloborodova EV, Livzan MA, Khlynov IB, Alekseenko SA, Sivolap YP, Tonkikh JL, Vasyutin AV. Practical Aspects of Clinical Manifestations, Pathogenesis and Therapy of Alcoholic Liver Disease and Non-alcoholic Fatty Liver Disease: Expert Opinion. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2023; 33:7-13. [DOI: 10.22416/1382-4376-2023-33-4-7-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Aim:to present the results of an expert discussion of modern aspects of the clinical manifestations, pathogenesis and treatment of alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD).Key points.ALD and NAFLD are characterized by high prevalence and have a significant impact on public health. For the diagnosis of liver pathology, it is important to determine the stage of fibrosis and the severity of the exacerbation of the disease. In the treatment of ALD, it is recommended to achieve abstinence, proper nutrition, the appointment of B vitamins, drugs with cytoprotective activity. In severe hepatitis, corticosteroids may be prescribed. In the treatment of NAFLD, diet and lifestyle modification, weight loss, the use of insulin sensitizers, vitamin E, statins (in the presence of hyperlipidemia) and drugs with metabolic activity are effective.Currently, a point of view is being actively expressed about the synergism of the action of alcohol and the metabolic syndrome on the development of fibrosis, cirrhosis, and hepatocellular carcinoma. The current international consensus recommends a change in the nomenclature of NAFLD and ALD and proposes the terms “metabolically associated steatotic liver disease” and “metabolically associated alcoholic liver disease”.Conclusion.The closeness of the clinical manifestations and pathogenesis of NAFLD and ALD justifies attention to drugs with metabolic activity, which are recommended by the Russian Gastroenterological Association and Russian Scientific Liver Society for the treatment of these diseases. The experts support the suggestion to quantify alcohol consumption in patients with NAFLD in order to change the management of patients, if necessary.
Collapse
Affiliation(s)
- V. V. Tsukanov
- Federal Research Centre “Krasnoyarsk Science Centre” of the Siberian Branch of Russian Academy of Science”, Scientific Research Institute of Medical Problems of the North
| | | | | | | | | | | | | | - J. L. Tonkikh
- Federal Research Centre “Krasnoyarsk Science Centre” of the Siberian Branch of Russian Academy of Science”, Scientific Research Institute of Medical Problems of the North
| | - A. V. Vasyutin
- Federal Research Centre “Krasnoyarsk Science Centre” of the Siberian Branch of Russian Academy of Science”, Scientific Research Institute of Medical Problems of the North
| |
Collapse
|
11
|
Raikhelson KL, Kondrashina EA, Pazenko EV. Principles of treatment of different forms of alcoholic liver disease: A review. TERAPEVT ARKH 2023; 95:187-192. [PMID: 37167136 DOI: 10.26442/00403660.2023.02.202071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The review considers the principles of treatment of various forms of alcoholic liver disease from the point of view of the evidence base and clinical recommendations. The main therapy for severe alcoholic hepatitis is systemic glucocorticosteroids, their effect on survival is increased by the addition of antioxidants (N-acetylcysteine, ademethionine). The effect of ademetionine on the life expectancy of patients with alcoholic cirrhosis of ChildPugh class A and B has been proven. The treatment of patients with mild forms of alcoholic liver disease is not well developed, and the evidence base for most of the drugs used is modest.
Collapse
|
12
|
Wakil A, Niazi M, Meybodi MA, Pyrsopoulos NT. Emerging Pharmacotherapies in Alcohol-Associated Hepatitis. J Clin Exp Hepatol 2023; 13:116-126. [PMID: 36647403 PMCID: PMC9840076 DOI: 10.1016/j.jceh.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The incidence of alcoholic-associated hepatitis (AH) is increasing. The treatment options for severe AH (sAH) are scarce and limited to corticosteroid therapy which showed limited mortality benefit in short-term use only. Therefore, there is a dire need for developing safe and effective therapies for patients with sAH and to improve their high mortality rates.This review article focuses on the current novel therapeutics targeting various mechanisms in the pathogenesis of alcohol-related hepatitis. Anti-inflammatory agents such as IL-1 inhibitor, Pan-caspase inhibitor, Apoptosis signal-regulating kinase-1, and CCL2 inhibitors are under investigation. Other group of agents include gut-liver axis modulators, hepatic regeneration, antioxidants, and Epigenic modulators. We describe the ongoing clinical trials of some of the new agents for alcohol-related hepatitis. CONCLUSION A combination of therapies was investigated, possibly providing a synergistic effect of drugs with different mechanisms. Multiple clinical trials of novel therapies in AH remain ongoing. Their result could potentially make a difference in the clinical course of the disease. DUR-928 and granulocyte colony-stimulating factor had promising results and further trials are ongoing to evaluate their efficacy in the large patient sample.
Collapse
Key Words
- AH, alcohol-Associated hepatitis
- ALD, Alcohol-associated liver disease
- ASK-1, Apoptosis signal-regulating kinase-1
- AUD, alcohol use disorder
- CCL2, C–C chemokine ligand type 2
- CVC, Cenicriviroc
- ELAD, Extracorporeal liver assist device
- FMT, Fecal Microbiota Transplant
- G-CSF, Granulocyte colony-stimulating factor
- HA35, Hyaluronic Acid 35KD
- IL-1, interleukin 1
- IL-6, interleukin 6
- LCFA, saturated long-chain fatty acids
- LDL, low-density lipoprotein cholesterol
- LPS, Lipopolysaccharides
- MCP-1, monocyte chemoattractant protein −1
- MDF, Maddrey's discriminant function
- MELD, Model for end-stage disease
- NAC, N-acetylcysteine
- NLRs, nucleotide-binding oligomerization domain-like receptors
- PAMPs, Pathogen-associated molecular patterns
- RCT, Randomized controlled trial
- SAM, S-Adenosyl methionine
- SCFA, short-chain fatty acids. 5
- TLRs, Toll-like receptors
- TNF, tumor necrotic factor
- alcohol-associated hepatitis
- anti-inflammatory
- antioxidants
- liver-gut axis
- microbiome
- sAH, severe alcohol-associated hepatitis
Collapse
Affiliation(s)
- Ali Wakil
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, New York, New Jersey, USA
| | - Mumtaz Niazi
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, New York, New Jersey, USA
| | - Mohamad A. Meybodi
- Department of Internal Medicine, Rutgers New Jersey Medical School, New York, New Jersey, USA
| | - Nikolaos T. Pyrsopoulos
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, New York, New Jersey, USA
| |
Collapse
|
13
|
Adekunle AD, Adejumo A, Singal AK. Therapeutic targets in alcohol-associated liver disease: progress and challenges. Therap Adv Gastroenterol 2023; 16:17562848231170946. [PMID: 37187673 PMCID: PMC10176580 DOI: 10.1177/17562848231170946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is a complex disease with rapidly increasing prevalence. Although there are promising therapeutic targets on the horizon, none of the newer targets is currently close to an Food and Drug Administration approval. Strategies are needed to overcome challenges in study designs and conducting clinical trials and provide impetus to the field of drug development in the landscape of ALD and alcoholic hepatitis. Management of ALD is complex and should include therapies to achieve and maintain alcohol abstinence, preferably delivered by a multidisciplinary team. Although associated with clear mortality benefit in select patients, the use of early liver transplantation still requires refinement to create uniformity in selection protocols across transplant centers. There is also a need for reliable noninvasive biomarkers for prognostication. Last but not the least, strategies are urgently needed to implement integrated multidisciplinary care models for treating the dual pathology of alcohol use disorder and of liver disease for improving the long-term outcomes of patients with ALD.
Collapse
Affiliation(s)
- Ayooluwatomiwa Deborah Adekunle
- Department of Internal Medicine, St. Luke’s
Hospital, Chesterfield, Missouri, USA
- Division of Hepatology, University of
Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Transplant Hepatology, University
of South Dakota Sanford Medical School, Sioux Falls, SD
| | - Adeyinka Adejumo
- Department of Internal Medicine, St. Luke’s
Hospital, Chesterfield, Missouri, USA
- Division of Hepatology, University of
Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Transplant Hepatology, University
of South Dakota Sanford Medical School, Sioux Falls, SD
| | | |
Collapse
|
14
|
Fernández-Ramos D, Lopitz-Otsoa F, Millet O, Alonso C, Lu SC, Mato JM. One Carbon Metabolism and S-Adenosylmethionine in Non-Alcoholic Fatty Liver Disease Pathogenesis and Subtypes. LIVERS 2022; 2:243-257. [PMID: 37123053 PMCID: PMC10137169 DOI: 10.3390/livers2040020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
One carbon metabolism (1CM) can be defined as the transfer of a carbon unit from one metabolite to another and its replenishment by different sources of labile methyl-group nutrients: primarily choline, methionine, betaine, and serine. This flow of carbon units allows the biosynthesis of nucleotides, amino acids, formylated methionyl-tRNA, polyamines, glutathione, phospholipids, detoxification reactions, maintenance of the redox status and the concentration of NAD, and methylation reactions including epigenetic modifications. That is, 1CM functions as a nutrient sensor and integrator of cellular metabolism. A critical process in 1CM is the synthesis of S-adenosylmethionine (SAMe), the source of essentially all the hundreds of millions of daily methyl transfer reactions in a cell. This versatility of SAMe imposes a tight control in its synthesis and catabolism. Much of our knowledge concerning 1CM has been gained from studies in the production and prevention of nonalcoholic fatty liver disease (NAFLD). Here, we discuss in detail the function of the most important enzymes for their quantitative contribution to maintaining the flux of carbon units through 1CM in the liver and discuss how alterations in their enzymatic activity contribute to the development of NAFLD. Next, we discuss NAFLD subtypes based on serum lipidomic profiles with different risk of cardiovascular disease. Among the latter, we highlight the so-called subtype A for its serum lipidomic profile phenocopying that of mice deficient in SAMe synthesis and because its high frequency (about 50% of the NAFLD patients).
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Cristina Alonso
- OWL Metabolomics, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - José M. Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
- Correspondence: ; Tel.: +34-944-061300; Fax: +34-944-0611301
| |
Collapse
|
15
|
Guerrero L, Paradela A, Corrales FJ. Targeted Proteomics for Monitoring One-Carbon Metabolism in Liver Diseases. Metabolites 2022; 12:779. [PMID: 36144184 PMCID: PMC9501948 DOI: 10.3390/metabo12090779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Liver diseases cause approximately 2 million deaths per year worldwide and had an increasing incidence during the last decade. Risk factors for liver diseases include alcohol consumption, obesity, diabetes, the intake of hepatotoxic substances like aflatoxin, viral infection, and genetic determinants. Liver cancer is the sixth most prevalent cancer and the third in mortality (second in males). The low survival rate (less than 20% in 5 years) is partially explained by the late diagnosis, which remarks the need for new early molecular biomarkers. One-carbon metabolism integrates folate and methionine cycles and participates in essential cell processes such as redox homeostasis maintenance and the regulation of methylation reactions through the production of intermediate metabolites such as cysteine and S-Adenosylmethionine. One-carbon metabolism has a tissue specific configuration, and in the liver, the participating enzymes are abundantly expressed-a requirement to maintain hepatocyte differentiation. Targeted proteomics studies have revealed significant differences in hepatocellular carcinoma and cirrhosis, suggesting that monitoring one-carbon metabolism enzymes can be useful for stratification of liver disease patients and to develop precision medicine strategies for their clinical management. Here, reprogramming of one-carbon metabolism in liver diseases is described and the role of mass spectrometry to follow-up these alterations is discussed.
Collapse
Affiliation(s)
- Laura Guerrero
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Fernando J. Corrales
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
16
|
Alagawany M, Elnesr SS, Farag MR, El-Naggar K, Taha AE, Khafaga AF, Madkour M, Salem HM, El-Tahan AM, El-Saadony MT, Abd El-Hack ME. Betaine and related compounds: Chemistry, metabolism and role in mitigating heat stress in poultry. J Therm Biol 2022; 104:103168. [DOI: 10.1016/j.jtherbio.2021.103168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
|
17
|
Barbier-Torres L, Murray B, Yang JW, Wang J, Matsuda M, Robinson A, Binek A, Fan W, Fernández-Ramos D, Lopitz-Otsoa F, Luque-Urbano M, Millet O, Mavila N, Peng H, Ramani K, Gottlieb R, Sun Z, Liangpunsakul S, Seki E, Van Eyk JE, Mato JM, Lu SC. Depletion of mitochondrial methionine adenosyltransferase α1 triggers mitochondrial dysfunction in alcohol-associated liver disease. Nat Commun 2022; 13:557. [PMID: 35091576 PMCID: PMC8799735 DOI: 10.1038/s41467-022-28201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
MATα1 catalyzes the synthesis of S-adenosylmethionine, the principal biological methyl donor. Lower MATα1 activity and mitochondrial dysfunction occur in alcohol-associated liver disease. Besides cytosol and nucleus, MATα1 also targets the mitochondria of hepatocytes to regulate their function. Here, we show that mitochondrial MATα1 is selectively depleted in alcohol-associated liver disease through a mechanism that involves the isomerase PIN1 and the kinase CK2. Alcohol activates CK2, which phosphorylates MATα1 at Ser114 facilitating interaction with PIN1, thereby inhibiting its mitochondrial localization. Blocking PIN1-MATα1 interaction increased mitochondrial MATα1 levels and protected against alcohol-induced mitochondrial dysfunction and fat accumulation. Normally, MATα1 interacts with mitochondrial proteins involved in TCA cycle, oxidative phosphorylation, and fatty acid β-oxidation. Preserving mitochondrial MATα1 content correlates with higher methylation and expression of mitochondrial proteins. Our study demonstrates a role of CK2 and PIN1 in reducing mitochondrial MATα1 content leading to mitochondrial dysfunction in alcohol-associated liver disease.
Collapse
Affiliation(s)
- Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ben Murray
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jin Won Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- College of Pharmacy, Woosuk University, Wanju, South Korea
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Aaron Robinson
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Aleksandra Binek
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - David Fernández-Ramos
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Maria Luque-Urbano
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hui Peng
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Roberta Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Zhaoli Sun
- Department of Surgery and Transplant Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jose M Mato
- Precision Medicine and Metabolism, CIC bioGUNE, BRTA, CIBERehd, Technology Park of Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
18
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
19
|
Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23020774. [PMID: 35054960 PMCID: PMC8775426 DOI: 10.3390/ijms23020774] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.
Collapse
|
20
|
A Collaborative Integrative and Ayurvedic Approach to Cirrhosis in the setting of Autoantibody Negative Autoimmune Hepatitis. ADVANCES IN INTEGRATIVE MEDICINE 2021. [DOI: 10.1016/j.aimed.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Raikhelson KL, Kondrashina EA, Pazenko EV. Mixed steatohepatitis: more questions than answers (part 2). TERAPEVT ARKH 2021; 93:516-520. [DOI: 10.26442/00403660.2021.04.200755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
In this review, we discussed the epidemiological and pathogenetic aspects of mixed steatohepatitis (SH), developed due to non-alcoholic fatty liver disease, metabolic associated fatty liver disease, drug-induced liver injury. We discussed the mechanisms of the mutually aggravating influence of etiological factors. Drugs can cause steatosis and SH, as well as contribute to the progressive course of existing SH, primarily of metabolic origin. The issues of interaction of pathogenetic factors, peculiarities of diagnostics and perspectives of pathogenetic and symptomatic treatment are considered. Therapy of mixed SH is based on avoidance of hepatotoxic drugs and lifestyle modification, medications with demonstrated efficacy (such as ademetionine) in certain SH might be used.
Collapse
|
22
|
Kirk NM, Vieson MD, Selting KA, Reinhart JM. Cytotoxicity of Cultured Canine Primary Hepatocytes Exposed to Itraconazole Is Decreased by Pre-treatment With Glutathione. Front Vet Sci 2021; 8:621732. [PMID: 33681327 PMCID: PMC7930617 DOI: 10.3389/fvets.2021.621732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/25/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: To identify the effect of glutathione (GSH) on cell survival in a novel in vitro model of itraconazole (ITZ)-associated hepatotoxicity using canine primary hepatocytes. Sample: Commercially sourced, cryopreserved male dog (Beagle) primary hepatocytes from a single donor. Procedures: Using a sandwich culture technique, canine primary hepatocytes were exposed to serial dilutions of ITZ. Calcein AM, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and neutral red were investigated as potential cell viability assays. Hepatocytes were then pre-incubated with GSH, exposed to serial dilutions of ITZ, and cell viability determined at 4 and 24 h post-ITZ exposure. Each condition was performed in technical triplicate and the effect of time, GSH concentration, and ITZ concentration on % cytotoxicity assessed using a multivariate linear regression model. Tukey's post-hoc test was used to detect individual differences. Results: The neutral red cell cytotoxicity assay was chosen based on its superior ability to detect dose-dependent changes in viability. Hepatocyte cytotoxicity significantly increased with ITZ concentration (P < 0.001) and time (P = 0.004) and significantly decreased with GSH treatment (P < 0.001). Conclusions and Clinical Relevance: This in vitro model demonstrates dose- and time-dependent ITZ-induced cytotoxicity, which is similar to clinical changes observed in canine patients and in in vivo rodent studies. Pre-treating with GSH is protective against in vitro cell death. These results suggest that GSH precursors may have a role in the management or prevention of ITZ-associated hepatotoxicity in dogs. Clinical trials are needed to evaluate their utility for this adverse drug reaction.
Collapse
Affiliation(s)
- Natalie M Kirk
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States.,Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| | - Miranda D Vieson
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| | - Kim A Selting
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| | - Jennifer M Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| |
Collapse
|
23
|
Lee-Law PY, Olaizola P, Caballero-Camino FJ, Izquierdo-Sanchez L, Rodrigues PM, Santos-Laso A, Azkargorta M, Elortza F, Martinez-Chantar ML, Perugorria MJ, Aspichueta P, Marzioni M, LaRusso NF, Bujanda L, Drenth JPH, Banales JM. Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models. J Hepatol 2021; 74:394-406. [PMID: 32950589 PMCID: PMC8157180 DOI: 10.1016/j.jhep.2020.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of multiple fluid-filled biliary cysts. Most PLD-causative genes participate in protein biogenesis and/or transport. Post-translational modifications (PTMs) are implicated in protein stability, localization and activity, contributing to human pathobiology; however, their role in PLD is unknown. Herein, we aimed to unveil the role of protein SUMOylation in PLD and its potential therapeutic targeting. METHODS Levels and functional effects of SUMOylation, along with response to S-adenosylmethionine (SAMe, inhibitor of the SUMOylation enzyme UBC9) and/or short-hairpin RNAs (shRNAs) against UBE2I (UBC9), were evaluated in vitro, in vivo and/or in patients with PLD. SUMOylated proteins were determined by immunoprecipitation and proteomic analyses by mass spectrometry. RESULTS Most SUMOylation-related genes were found overexpressed (mRNA) in polycystic human and rat liver tissue, as well as in cystic cholangiocytes in culture compared to controls. Increased SUMOylated protein levels were also observed in cystic human cholangiocytes in culture, which decreased after SAMe administration. Chronic treatment of polycystic (PCK: Pkdh1-mut) rats with SAMe halted hepatic cystogenesis and fibrosis, and reduced liver/body weight ratio and liver volume. In vitro, both SAMe and shRNA-mediated UBE2I knockdown increased apoptosis and reduced cell proliferation of cystic cholangiocytes. High-throughput proteomic analysis of SUMO1-immunoprecipitated proteins in cystic cholangiocytes identified candidates involved in protein biogenesis, ciliogenesis and proteasome degradation. Accordingly, SAMe hampered proteasome hyperactivity in cystic cholangiocytes, leading to activation of the unfolded protein response and stress-related apoptosis. CONCLUSIONS Cystic cholangiocytes exhibit increased SUMOylation of proteins involved in cell survival and proliferation, thus promoting hepatic cystogenesis. Inhibition of protein SUMOylation with SAMe halts PLD, representing a novel therapeutic strategy. LAY SUMMARY Protein SUMOylation is a dynamic post-translational event implicated in numerous cellular processes. This study revealed dysregulated protein SUMOylation in polycystic liver disease, which promotes hepatic cystogenesis. Administration of S-adenosylmethionine (SAMe), a natural UBC9-dependent SUMOylation inhibitor, halted polycystic liver disease in experimental models, thus representing a potential therapeutic agent for patients.
Collapse
Affiliation(s)
- Pui Y Lee-Law
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Department of Gastroenterology & Hepatology, Radboud University Nijmegen Medical Center, The Netherlands
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Francisco J Caballero-Camino
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Mikel Azkargorta
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Maria L Martinez-Chantar
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Liver Disease Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, Leioa, Spain; Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Marco Marzioni
- "Università Politecnica delle Marche", Department of Gastroenterology, Ancona, Italy
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Joost P H Drenth
- Department of Gastroenterology & Hepatology, Radboud University Nijmegen Medical Center, The Netherlands
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital -, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
24
|
Raikhelson KL, Kondrashina EA, Pazenko EV. [Mixed steatohepatitis: more questions than answers (Part 1)]. TERAPEVT ARKH 2020; 92:91-96. [PMID: 33720580 DOI: 10.26442/00403660.2020.12.200470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
The term steatohepatitis is used for a heterogeneous group of diseases of various etiologies, characterized by a similar morphological picture. Earlier the diagnosis of non-alcoholic fatty liver disease implied the exclusion of other causes of steatohepatitis, in recent years it has been suggested that a combination of various etiological variants of steatohepatitis is possible. The review considers the terminological, epidemiological and pathogenetic aspects of the most common combination: metabolic and alcoholic genesis, the issues of the mutual influence of etiopathogenetic factors and the identification of the predominant process. Issues of existing and prospective pathogenetic and symptomatic therapy are discussed in detail. Treatment of steatohepatitis is based on the elimination of known causal factors and lifestyle modification; therapy includes medications, that have been proven to be effective in certain types of steatohepatitis and symptomatic therapy as well.
Collapse
Affiliation(s)
- K L Raikhelson
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University
| | - E A Kondrashina
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University
| | - E V Pazenko
- Scientific, Clinical and Educational Center of Gastroenterology and Hepatology, Saint Petersburg State University
| |
Collapse
|
25
|
Methionine Supplementation Affects Metabolism and Reduces Tumor Aggressiveness in Liver Cancer Cells. Cells 2020; 9:cells9112491. [PMID: 33207837 PMCID: PMC7696226 DOI: 10.3390/cells9112491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common cancer worldwide with a high mortality. Methionine is an essential amino acid required for normal development and cell growth, is mainly metabolized in the liver, and its role as an anti-cancer supplement is still controversial. Here, we evaluate the effects of methionine supplementation in liver cancer cells. An integrative proteomic and metabolomic analysis indicates a rewiring of the central carbon metabolism, with an upregulation of the tricarboxylic acid (TCA) cycle and mitochondrial adenosine triphosphate (ATP) production in the presence of high methionine and AMP-activated protein kinase (AMPK) inhibition. Methionine supplementation also reduces growth rate in liver cancer cells and induces the activation of both the AMPK and mTOR pathways. Interestingly, in high methionine concentration, inhibition of AMPK strongly impairs cell growth, cell migration, and colony formation, indicating the main role of AMPK in the control of liver cancer phenotypes. Therefore, regulation of methionine in the diet combined with AMPK inhibition could reduce liver cancer progression.
Collapse
|
26
|
Mukherjee S. Role of betaine in liver disease-worth revisiting or has the die been cast? World J Gastroenterol 2020; 26:5745-5748. [PMID: 33132631 PMCID: PMC7579752 DOI: 10.3748/wjg.v26.i38.5745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/25/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is an important indication for liver transplantation in many Western countries due to the epidemic of obesity and insulin resistance. Unfortunately, no medication is approved for NASH and risk factor modification is often advised. Over the last decade, several clinical trials on NASH have been conducted with several ongoing and the future looks promising. Although betaine (trimethyl glycine) was evaluated for NASH, results were mixed in the clinical trials in large part due to the quality of the studies. It seems reasonable to re-evaluate betaine in clinical trials for NASH and alcoholic liver disease due to its low cost, tolerability and mechanism of action.
Collapse
Affiliation(s)
- Sandeep Mukherjee
- Department of Medicine, Creighton University Medical Center, Division of Gastroenterology, Omaha, NE 68124, United States
| |
Collapse
|
27
|
Oxidative stress in alcohol-related liver disease. World J Hepatol 2020. [DOI: 10.4254/wjh.v12.i7.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Tan HK, Yates E, Lilly K, Dhanda AD. Oxidative stress in alcohol-related liver disease. World J Hepatol 2020; 12:332-349. [PMID: 32821333 PMCID: PMC7407918 DOI: 10.4254/wjh.v12.i7.332] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is one of the leading causes of the global burden of disease and results in high healthcare and economic costs. Heavy alcohol misuse leads to alcohol-related liver disease, which is responsible for a significant proportion of alcohol-attributable deaths globally. Other than reducing alcohol consumption, there are currently no effective treatments for alcohol-related liver disease. Oxidative stress refers to an imbalance in the production and elimination of reactive oxygen species and antioxidants. It plays important roles in several aspects of alcohol-related liver disease pathogenesis. Here, we review how chronic alcohol use results in oxidative stress through increased metabolism via the cytochrome P450 2E1 system producing reactive oxygen species, acetaldehyde and protein and DNA adducts. These trigger inflammatory signaling pathways within the liver leading to expression of pro-inflammatory mediators causing hepatocyte apoptosis and necrosis. Reactive oxygen species exposure also results in mitochondrial stress within hepatocytes causing structural and functional dysregulation of mitochondria and upregulating apoptotic signaling. There is also evidence that oxidative stress as well as the direct effect of alcohol influences epigenetic regulation. Increased global histone methylation and acetylation and specific histone acetylation inhibits antioxidant responses and promotes expression of key pro-inflammatory genes. This review highlights aspects of the role of oxidative stress in disease pathogenesis that warrant further study including mitochondrial stress and epigenetic regulation. Improved understanding of these processes may identify novel targets for therapy.
Collapse
Affiliation(s)
- Huey K Tan
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, United Kingdom
| | - Euan Yates
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
| | - Kristen Lilly
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- Department of Clinical Immunology, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, United Kingdom
| | - Ashwin D Dhanda
- Hepatology Research Group, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, United Kingdom
| |
Collapse
|
29
|
Taylor Levine M, Gao J, Satyanarayanan SK, Berman S, Rogers JT, Mischoulon D. S-adenosyl-l-methionine (SAMe), cannabidiol (CBD), and kratom in psychiatric disorders: Clinical and mechanistic considerations. Brain Behav Immun 2020; 85:152-161. [PMID: 31301401 DOI: 10.1016/j.bbi.2019.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022] Open
Abstract
Given the limitations of prescription antidepressants, many individuals have turned to natural remedies for the management of their mood disorders. We review three selected natural remedies that may be of potential use as treatments for depressive disorders and other psychiatric or neurological conditions. The best studied and best supported of these three remedies is S-adenosyl-l-methionine (SAMe), a methyl donor with a wide range of physiological functions in the human organism. With the increasing legalization of cannabis-related products, cannabidiol (CBD) has gained popularity for various potential indications and has even obtained approval in the United States and Canada for certain neurological conditions. Kratom, while potentially useful for certain individuals with psychiatric disorders, is perhaps the most controversial of the three remedies, in view of its greater potential for abuse and dependence. For each remedy, we will review indications, doses and delivery systems, potential anti-inflammatory and immunomodulatory action, adverse effects, and will provide recommendations for clinicians who may be considering prescribing these remedies in their practice.
Collapse
Affiliation(s)
- M Taylor Levine
- Depression Clinical and Research Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jin Gao
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Clinical Psychology, Qilu Hospital of Shandong University, Qingdao, Shandong Province, China
| | - Senthil Kumaran Satyanarayanan
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Sarah Berman
- Depression Clinical and Research Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Mischoulon
- Depression Clinical and Research Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019; 25:4300-4319. [PMID: 31496615 PMCID: PMC6710175 DOI: 10.3748/wjg.v25.i31.4300] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferases (MATs) are essential enzymes for life as they produce S-adenosylmethionine (SAMe), the biological methyl donor required for a plethora of reactions within the cell. Mammalian systems express two genes, MAT1A and MAT2A, which encode for MATα1 and MATα2, the catalytic subunits of the MAT isoenzymes, respectively. A third gene MAT2B, encodes a regulatory subunit known as MATβ which controls the activity of MATα2. MAT1A, which is mainly expressed in hepatocytes, maintains the differentiated state of these cells, whilst MAT2A and MAT2B are expressed in extrahepatic tissues as well as non-parenchymal cells of the liver (e.g., hepatic stellate and Kupffer cells). The biosynthesis of SAMe is impaired in patients with chronic liver disease and liver cancer due to decreased expression and inactivation of MATα1. A switch from MAT1A to MAT2A/MAT2B occurs in multiple liver diseases and during liver growth and dedifferentiation, but this change in the expression pattern of MATs results in reduced hepatic SAMe level. Decades of study have utilized the Mat1a-knockout (KO) mouse that spontaneously develops non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) to elucidate a variety of mechanisms by which MAT proteins dysregulation contributes to liver carcinogenesis. An increasing volume of work indicates that MATs have SAMe-independent functions, distinct interactomes and multiple subcellular localizations. Here we aim to provide an overview of MAT biology including genes, isoenzymes and their regulation to provide the context for understanding consequences of their dysregulation. We will highlight recent breakthroughs in the field and underscore the importance of MAT’s in liver tumorigenesis as well as their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucia Barbier-Torres
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Wei Fan
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
31
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
32
|
Li YM, Fan JG. Guidelines of prevention and treatment for alcoholic liver disease (2018, China). J Dig Dis 2019; 20:174-180. [PMID: 30450822 DOI: 10.1111/1751-2980.12687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- You Ming Li
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jian Gao Fan
- Department of Gastroenterology, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Children's Digestion and Nutrition, Shanghai, China
| |
Collapse
|
33
|
Thuy LTT, Hai H, Hieu VN, Dat NQ, Hoang DV, Kawada N. Antifibrotic Therapy for Liver Cirrhosis. THE EVOLVING LANDSCAPE OF LIVER CIRRHOSIS MANAGEMENT 2019:167-189. [DOI: 10.1007/978-981-13-7979-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Abstract
Alcohol consumption is one of the main risks to public health. Alcohol use disorders (AUDs) cause 80% of hepatotoxic deaths, and approximately 50% of cirrhosis is alcohol-related. The acceptable daily intake (ADI) for ethanol is 2.6 g/day, deduced from morbidity and mortality rates due to liver fibrosis. The relative risk of cirrhosis increases significantly for doses above 60 g/day for men and 20 g/day for women over a period of around 10 years. Twenty to 40% of steatosis cases will evolve into steatohepatitis/steatofibrosis, and 8 to 20% will evolve directly into liver cirrhosis. About 20 to 40% of steatohepatitis cases will evolve into cirrhosis, and 4 to 5% into hepatocellular carcinoma. This cascade of events evolves in 5 to 40 years, with the temporal variability caused by the subjects' genetic patterns and associated risk/comorbidity factors. Steatohepatitis should be considered "the rate limiting step:" usually, it can be resolved through abstinence, although for some patients, once this situation develops, it is not substantially modified by abstention and there is a risk of fibrotic evolution. Early detection of fibrosis, obtained by hepatic elastography, is a crucial step in patients with AUDs. Such strategy allows patients to be included in a detoxification program in order to achieve abstention. Drugs such as silybin, metadoxine, and adenosylmethionine can be used. Other drugs, with promising antifibrotic effects, are currently under study. In this review, we discuss clinical and pathogenetic aspects of alcohol-related liver fibrosis and present and future strategies to prevent cirrhosis.
Collapse
Affiliation(s)
- Gianni Testino
- Alcohological Regional Center, Ligurian Region, ASL3, San Martino Hospital, Genoa, Italy -
| | - Silvia Leone
- Alcohological Regional Center, Ligurian Region, ASL3, San Martino Hospital, Genoa, Italy
| | - Sharmila Fagoonee
- Institute for Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | | |
Collapse
|
35
|
Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. LIVER RESEARCH 2018; 2:161-172. [PMID: 31214376 PMCID: PMC6581514 DOI: 10.1016/j.livres.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy alcohol use is the cause of alcoholic liver disease (ALD). The ALD spectrum ranges from alcoholic steatosis to steatohepatitis, fibrosis, and cirrhosis. In Western countries, approximately 50% of cirrhosis-related deaths are due to alcohol use. While alcoholic cirrhosis is no longer considered a completely irreversible condition, no effective anti-fibrotic therapies are currently available. Another significant clinical aspect of ALD is alcoholic hepatitis (AH). AH is an acute inflammatory condition that is often comorbid with cirrhosis, and severe AH has a high mortality rate. Therapeutic options for ALD are limited. The established treatment for AH is corticosteroids, which improve short-term survival but do not affect long-term survival. Liver transplantation is a curative treatment option for alcoholic cirrhosis and AH, but patients must abstain from alcohol use for 6 months to qualify. Additional effective therapies are needed. The molecular mechanisms underlying ALD are complex and have not been fully elucidated. Various molecules, signaling pathways, and crosstalk between multiple hepatic and extrahepatic cells contribute to ALD progression. This review highlights established and emerging concepts in ALD clinicopathology, their underlying molecular mechanisms, and current and future ALD treatment options.
Collapse
Affiliation(s)
- Koichiro Ohashi
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Pimienta
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA,Corresponding author. Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA., (E. Seki)
| |
Collapse
|
36
|
García-Ruiz C, Fernández-Checa JC. Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. Hepatol Commun 2018; 2:1425-1439. [PMID: 30556032 PMCID: PMC6287487 DOI: 10.1002/hep4.1271] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Fatty liver disease is one of the most prevalent forms of chronic liver disease that encompasses both alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH) are intermediate stages of ALD and NAFLD, which can progress to more advanced forms, including cirrhosis and hepatocellular carcinoma. Oxidative stress and particularly alterations in mitochondrial function are thought to play a significant role in both ASH and NASH and recognized to contribute to the generation of reactive oxygen species (ROS), as documented in experimental models. Despite the evidence of ROS generation, the therapeutic efficacy of treatment with antioxidants in patients with fatty liver disease has yielded poor results. Although oxidative stress is considered to be the disequilibrium between ROS and antioxidants, there is evidence that a subtle balance among antioxidants, particularly in mitochondria, is necessary to avoid the generation of ROS and hence oxidative stress. Conclusion: As mitochondria are a major source of ROS, the present review summarizes the role of mitochondrial oxidative stress in ASH and NASH and presents emerging data indicating the need to preserve mitochondrial antioxidant balance as a potential approach for the treatment of human fatty liver disease, which may pave the way for the design of future trials to test the therapeutic role of antioxidants in fatty liver disease.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Cell Death and Proliferation Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior Investigaciones Científicas Barcelona Spain.,Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD Barcelona Spain
| | - José C Fernández-Checa
- Cell Death and Proliferation Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior Investigaciones Científicas Barcelona Spain.,Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD Barcelona Spain.,University of Southern California Research Center for ALPD Keck School of Medicine Los Angeles CA
| |
Collapse
|
37
|
Zhao N, Guo FF, Xie KQ, Zeng T. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell Mol Life Sci 2018; 75:3143-3157. [PMID: 29947925 PMCID: PMC11105722 DOI: 10.1007/s00018-018-2852-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate-cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
38
|
Chronic liver diseases and the potential use of S-adenosyl-L-methionine as a hepatoprotector. Eur J Gastroenterol Hepatol 2018; 30:893-900. [PMID: 29683981 DOI: 10.1097/meg.0000000000001141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic liver diseases result in overall deterioration of health status and changes in metabolism. The search for strategies to control and combat these hepatic diseases has witnessed a great boom in the last decades. Nutritional therapy for controlling and managing liver diseases may be a positive influence as it improves the function of the liver. In this review, we focus mainly on describing liver conditions such as nonalcoholic fatty liver disease, and intrahepatic cholestasis as well as using S-adenosyl-L-methionine as a dietary supplement and its potential alternative therapeutic effect to correct the hepatic dysfunction associated with these conditions.
Collapse
|
39
|
Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab J Gastroenterol 2018; 19:56-64. [PMID: 29853428 DOI: 10.1016/j.ajg.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 12/09/2016] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of various chronic liver diseases (CLD) and increasing evidence have confirmed the contributory role of oxidative stress in the pathogenesis of drugs and chemical-induced CLD. Chronic liver injury is manifested as necrosis, cholestasis, fibrosis, and cirrhosis. Chronic administration of anti-tubercular, anti-retroviral, immunosuppressive drugs is reported to induce free radical generation during their biotransformation in the liver. Further, these reactive intermediates are said to induce profibrogenic cytokines, several inflammatory markers, collagen synthesis during the progression of hepatic fibrosis. Oxidative stress and free radicals are reported to induce activation and proliferation of hepatic stellate cells in the injured liver leading to the progression of CLD. Hence, to counteract or to scavenge these reactive intermediates, several plant-derived antioxidant principles have been effectively employed against oxidative stress and came out with promising results in human and experimental models of CLD. This review summarizes the relationships between oxidative stress and different liver pathogenesis induced by drugs and xenobiotics, focusing upon different chronic liver injury induced by alcohol, antitubercular drugs and hyperactivity of antiretroviral drugs in HIV patients, viral hepatitis infection induced oxidative stress.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institue of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu-600 077, India.
| |
Collapse
|
40
|
|
41
|
St. John TM. Chronic Hepatitis. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Abstract
Methionine adenosyltransferases (MATs) are essential for cell survival because they catalyze the biosynthesis of the biological methyl donor S-adenosylmethionine (SAMe) from methionine and adenosine triphosphate (ATP). Mammalian cells express two genes, MAT1A and MAT2A, which encode two MAT catalytic subunits, α1 and α2, respectively. The α1 subunit organizes into dimers (MATIII) or tetramers (MATI). The α2 subunit is found in the MATII isoform. A third gene MAT2B, encodes a regulatory subunit β, that regulates the activity of MATII by lowering the inhibition constant (Ki) for SAMe and the Michaelis constant (Km) for methionine. MAT1A expressed mainly in hepatocytes maintains the differentiated state of these cells whereas MAT2A and MAT2B are expressed in non-parenchymal cells of the liver (hepatic stellate cells [HSCs] and Kupffer cells) and extrahepatic tissues. A switch from the liver-specific MAT1A to MAT2A has been observed during conditions of active liver growth and de-differentiation. Liver injury, fibrosis, and cancer are associated with MAT1A silencing and MAT2A/MAT2B induction. Even though both MAT1A and MAT2A are involved in SAMe biosynthesis, they exhibit distinct molecular interactions in liver cells. This review provides an update on MAT genes and their roles in liver pathologies.
Collapse
Affiliation(s)
- Komal Ramani
- Corresponding authors: Division of Digestive and Liver
Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA,
USA (K.Ramani)
| | | |
Collapse
|
43
|
Sharma A, Gerbarg P, Bottiglieri T, Massoumi L, Carpenter LL, Lavretsky H, Muskin PR, Brown RP, Mischoulon D. S-Adenosylmethionine (SAMe) for Neuropsychiatric Disorders: A Clinician-Oriented Review of Research. J Clin Psychiatry 2017; 78:e656-e667. [PMID: 28682528 PMCID: PMC5501081 DOI: 10.4088/jcp.16r11113] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A systematic review on S-adenosylmethionine (SAMe) for treatment of neuropsychiatric conditions and comorbid medical conditions. DATA SOURCES Searches were conducted in PubMed, EMBASE, PsycINFO, Cochrane Library, CINAHL, and Google Scholar databases between July 15, 2015, and September 28, 2016, by combining search terms for SAMe (s-adenosyl methionine or s-adenosyl-l-methionine) with terms for relevant disease states (major depressive disorder, MDD, depression, perinatal depression, human immunodeficiency virus, HIV, Parkinson's, Alzheimer's, dementia, anxiety, schizophrenia, psychotic, 22q11.2, substance abuse, fibromyalgia, osteoarthritis, hepatitis, or cirrhosis). Additional studies were identified from prior literature. Ongoing clinical trials were identified through clinical trial registries. STUDY SELECTION Of the 174 records retrieved, 21 were excluded, as they were not original investigations. An additional 21 records were excluded for falling outside the scope of this review. Of the 132 studies included in this review, 115 were clinical trials and 17 were preclinical studies. DATA EXTRACTION A wide range of studies was included in this review to capture information that would be of interest to psychiatrists in clinical practice. RESULTS This review of SAMe in the treatment of major depressive disorder found promising but limited evidence of efficacy and safety to support its use as a monotherapy and as an augmentation for other antidepressants. Additionally, preliminary evidence suggests that SAMe may ameliorate symptoms in certain neurocognitive, substance use, and psychotic disorders and comorbid medical conditions. CONCLUSIONS S-adenosylmethionine holds promise as a treatment for multiple neuropsychiatric conditions, but the body of evidence has limitations. The encouraging findings support further study of SAMe in both psychiatric and comorbid medical illnesses.
Collapse
Affiliation(s)
- Anup Sharma
- Department of Psychiatry, University of Pennsylvania School of Medicine, 10th Floor Gates Bldg, 3400 Spruce St, Philadelphia, PA 19104.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia Gerbarg
- Department of Psychiatry, New York Medical College, Vahalla, New York, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, USA
| | - Lila Massoumi
- Department of Psychiatry, Michigan State University, East Lansing, Michigan, USA
| | - Linda L Carpenter
- Butler Hospital, Brown Department of Psychiatry and Human Behavior, Providence, Rhode Island, USA
| | - Helen Lavretsky
- Department of Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA
| | | | | | - David Mischoulon
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Tumor-suppressive effect of S-adenosylmethionine supplementation in a murine model of inflammation-mediated hepatocarcinogenesis is dependent on treatment longevity. Oncotarget 2017; 8:104772-104784. [PMID: 29285212 PMCID: PMC5739599 DOI: 10.18632/oncotarget.18300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/03/2017] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation precedes the majority of hepatocellular carcinoma (HCC) cases. We investigated the chemopreventive potential of S-adenosylmethionine (SAM), an essential donor for all methylation reactions in the cell, at the late precancerous stage of HCC development using the Mdr2-knockout (Mdr2-KO, Abcb4−/−) mice, a model of inflammation-mediated hepatocarcinogenesis. Previously, we revealed down-regulation of the genes regulating SAM metabolism in the liver of these mice at the precancerous stages. Now, we have supplied Mdr2-KO mice at the late precancerous stage with SAM during either a short-term (17 days) or a long-term (51 days) period and explored the effects of such supplementation on tumor development, DNA methylation and gene expression in the liver. The short-term SAM supplementation significantly decreased the number of small tumor nodules, proliferating hepatocytes and the total DNA methylation level, while it increased expression of the tumor suppressor proteins Mat1a and p21. Surprisingly, the long-term SAM supplementation did not affect tumor growth and hepatocyte proliferation, while it increased the total liver DNA methylation. Our results demonstrate that the short-term SAM supplementation in the Mdr2-KO mice inhibited liver tumor development potentially by increasing multiple tumor suppressor mechanisms resulting in cell cycle arrest. The long-term SAM supplementation resulted in a bypass of the cell cycle arrest in this HCC model by a yet unknown mechanism.
Collapse
|
45
|
Dirksen K, Spee B, Penning LC, van den Ingh TSGAM, Burgener IA, Watson AL, Groot Koerkamp M, Rothuizen J, van Steenbeek FG, Fieten H. Gene expression patterns in the progression of canine copper-associated chronic hepatitis. PLoS One 2017; 12:e0176826. [PMID: 28459846 PMCID: PMC5411060 DOI: 10.1371/journal.pone.0176826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
Copper is an essential trace element, but can become toxic when present in abundance. The severe effects of copper-metabolism imbalance are illustrated by the inherited disorders Wilson disease and Menkes disease. The Labrador retriever dog breed is a novel non-rodent model for copper-storage disorders carrying mutations in genes known to be involved in copper transport. Besides disease initiation and progression of copper accumulation, the molecular mechanisms and pathways involved in progression towards copper-associated chronic hepatitis still remain unclear. Using expression levels of targeted candidate genes as well as transcriptome micro-arrays in liver tissue of Labrador retrievers in different stages of copper-associated hepatitis, pathways involved in progression of the disease were studied. At the initial phase of increased hepatic copper levels, transcriptomic alterations in livers mainly revealed enrichment for cell adhesion, developmental, inflammatory, and cytoskeleton pathways. Upregulation of targeted MT1A and COMMD1 mRNA shows the liver's first response to rising intrahepatic copper concentrations. In livers with copper-associated hepatitis mainly an activation of inflammatory pathways is detected. Once the hepatitis is in the chronic stage, transcriptional differences are found in cell adhesion adaptations and cytoskeleton remodelling. In view of the high similarities in copper-associated hepatopathies between men and dog extrapolation of these dog data into human biomedicine seems feasible.
Collapse
Affiliation(s)
- Karen Dirksen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Iwan A. Burgener
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department für Kleintiere und Pferde, Veterinärmedizinische Universität Wien, Vienna, Austria
| | | | | | - Jan Rothuizen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hille Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Sidhu SS, Goyal O, Kishore H, Sidhu S. New paradigms in management of alcoholic hepatitis: a review. Hepatol Int 2017; 11:255-267. [PMID: 28247264 DOI: 10.1007/s12072-017-9790-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
Severe alcoholic hepatitis (SAH) is defined by modified Maddrey discriminant function ≥32 or Model for End-Stage Liver Disease (MELD) >21 and/or hepatic encephalopathy. It has a 3-month mortality rate ≥30-70 %. Patients with severe alcoholic hepatitis need combined, i.e., static (MELD score) and dynamic (Lille's score), prognostication. Systemic inflammation and poor regeneration are hallmarks of SAH, rather than intrahepatic inflammation. SAH is characterized by dysregulated and uncontrolled systemic inflammatory response followed by weak compensatory antiinflammatory response that leads to increased susceptibility to infection and multiple organ failure. Massive necrosis of hepatocytes exceeds the proliferative capacity of hepatocytes. Liver progenitor cells proliferate to form narrow ductules which radiate out into the damaged liver parenchyma. Corticosteroids have been the standard-of-care therapy, albeit controversial. However, the recent Steroids or Pentoxifylline for Alcoholic Hepatitis (STOPAH) trial revealed that prednisolone was not associated with a significant reduction in 28-day mortality, with no improvement in outcomes at 90 days or 1 year. A paradigm shift from antiinflammatory therapy such as corticosteroids to liver regeneration treatment, e.g., granulocyte-colony stimulating factor, molecular targeted treatments, and fecal microbiota transplantation, for severe alcoholic hepatitis is taking place. Liver transplantation should be offered to select patients with severe alcoholic hepatitis who are nonresponsive to medical treatment.
Collapse
Affiliation(s)
- Sandeep Singh Sidhu
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India.
| | - Omesh Goyal
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Harsh Kishore
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Simran Sidhu
- Himalayan Institute of Medical Sciences, Dehradun, Uttarakhand, India
| |
Collapse
|
47
|
Buzzetti E, Kalafateli M, Thorburn D, Davidson BR, Thiele M, Gluud LL, Del Giovane C, Askgaard G, Krag A, Tsochatzis E, Gurusamy KS, Cochrane Hepato‐Biliary Group. Pharmacological interventions for alcoholic liver disease (alcohol-related liver disease): an attempted network meta-analysis. Cochrane Database Syst Rev 2017; 3:CD011646. [PMID: 28368093 PMCID: PMC6464309 DOI: 10.1002/14651858.cd011646.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alcohol-related liver disease is due to excessive alcohol consumption. It includes a spectrum of liver diseases such as alcohol-related fatty liver, alcoholic hepatitis, and alcoholic cirrhosis. Mortality associated with alcoholic hepatitis is high. The optimal pharmacological treatment of alcoholic hepatitis and other alcohol-related liver disease remains controversial. OBJECTIVES To assess the comparative benefits and harms of different pharmacological interventions in the management of alcohol-related liver disease through a network meta-analysis and to generate rankings of the available pharmacological interventions according to their safety and efficacy in order to identify potential treatments. However, even in the subgroup of participants when the potential effect modifiers appeared reasonably similar across comparisons, there was evidence of inconsistency by one or more methods of assessment of inconsistency. Therefore, we did not report the results of the network meta-analysis and reported the comparative benefits and harms of different interventions using standard Cochrane methodology. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded, World Health Organization International Clinical Trials Registry Platform and randomised controlled trials registers until February 2017 to identify randomised clinical trials on pharmacological treatments for alcohol-related liver diseases. SELECTION CRITERIA Randomised clinical trials (irrespective of language, blinding, or publication status) including participants with alcohol-related liver disease. We excluded trials that included participants who had previously undergone liver transplantation and those with co-existing chronic viral diseases. We considered any of the various pharmacological interventions compared with each other or with placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently identified trials and independently extracted data. We calculated the odds ratio (OR) and rate ratio with 95% confidence intervals (CIs) using both fixed-effect and random-effects models based on available-participant analysis with Review Manager. We assessed risk of bias according to Cochrane, controlled risk of random errors with Trial Sequential Analysis, and assessed the quality of the evidence using GRADE. MAIN RESULTS We identified a total of 81 randomised clinical trials. All the trials were at high risk of bias, and the overall quality of the evidence was low or very low for all outcomes. Alcoholic hepatitisFifty randomised clinical trials included 4484 participants with alcoholic hepatitis. The period of follow-up ranged from one to 12 months. Because of concerns about transitivity assumption, we did not perform the network meta-analysis. None of the active interventions showed any improvement in any of the clinical outcomes reported in the trials, which includes mortality (at various time points), cirrhosis, decompensated cirrhosis, liver transplantation. None of the trials reported health-related quality of life or incidence of hepatocellular carcinoma. Severe alcoholic hepatitisOf the trials on alcoholic hepatitis, 19 trials (2545 participants) included exclusively participants with severe alcoholic hepatitis (Maddrey Discriminat Function > 32). The period of follow-up ranged from one to 12 months. There was no alteration in the conclusions when only people with severe alcoholic hepatitis were included in the analysis. SOURCE OF FUNDING Eleven trials were funded by parties with vested interest in the results. Sixteen trials were funded by parties without vested interest in the results. The source of funding was not reported in 23 trials. Other alcohol-related liver diseasesThirty-one randomised clinical trials included 3695 participants with other alcohol-related liver diseases (with a wide spectrum of alcohol-related liver diseases). The period of follow-up ranged from one to 48 months. The mortality at maximal follow-up was lower in the propylthiouracil group versus the no intervention group (OR 0.45, 95% CI 0.26 to 0.78; 423 participants; 2 trials; low-quality evidence). However, this result is based on two small trials at high risk of bias and further confirmation in larger trials of low risk of bias is necessary to recommend propylthiouracil routinely in people with other alcohol-related liver diseases. The mortality at maximal follow-up was higher in the ursodeoxycholic acid group versus the no intervention group (OR 2.09, 95% CI 1.12 to 3.90; 226 participants; 1 trial; low-quality evidence). SOURCE OF FUNDING Twelve trials were funded by parties with vested interest in the results. Three trials were funded by parties without vested interest in the results. The source of funding was not reported in 16 trials. AUTHORS' CONCLUSIONS Because of very low-quality evidence, there is uncertainty in the effectiveness of any pharmacological intervention versus no intervention in people with alcoholic hepatitis or severe alcoholic hepatitis. Based on low-quality evidence, propylthiouracil may decrease mortality in people with other alcohol-related liver diseases. However, these results must be confirmed by adequately powered trials with low risk of bias before propylthiouracil can be considered effective.Future randomised clinical trials should be conducted with approximately 200 participants in each group and follow-up of one to two years in order to compare the benefits and harms of different treatments in people with alcoholic hepatitis. Randomised clinical trials should include health-related quality of life and report serious adverse events separately from adverse events. Future randomised clinical trials should have a low risk of bias and low risk of random errors.
Collapse
Affiliation(s)
- Elena Buzzetti
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUK
| | - Maria Kalafateli
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUK
| | - Douglas Thorburn
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUK
| | - Brian R Davidson
- Royal Free Campus, UCL Medical SchoolDepartment of SurgeryPond StreetLondonUKNW3 2QG
| | - Maja Thiele
- Odense University HospitalDepartment of Gastroenterology and HepatologySdr. Boulevard 29, Entrance 126OdenseDenmark5000
| | - Lise Lotte Gluud
- Copenhagen University Hospital HvidovreGastrounit, Medical DivisionKettegaards AlleHvidovreDenmark2650
| | - Cinzia Del Giovane
- University of Modena and Reggio EmiliaCochrane Italy, Department of Diagnostic, Clinical and Public Health MedicineVia del Pozzo 71ModenaItaly41124
| | - Gro Askgaard
- RigshospitaletDepartment of HepatologyBlegdamsvej 9København ØDenmark2100
| | - Aleksander Krag
- Odense University HospitalDepartment of Gastroenterology and HepatologySdr. Boulevard 29, indgang 126Odense CDenmark5000
| | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUK
| | | | | |
Collapse
|
48
|
Feasibility and Efficacy of S-Adenosyl-L-methionine in Patients with HBV-Related HCC with Different BCLC Stages. Gastroenterol Res Pract 2016; 2016:4134053. [PMID: 28003820 PMCID: PMC5149688 DOI: 10.1155/2016/4134053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
Aims. To understand the feasibility and efficacy of treatment with SAMe in patients with hepatitis B-related HCC with different Barcelona Clinic Liver Cancer (BCLC) stages. Methods. We retrospectively enrolled 697 patients with BCLC early-stage (stages 0-A) and advanced-stage (stages B-C) HCC who underwent SAMe therapy (354 cases) or no SAMe therapy (343 cases). The baseline characteristics, postoperative recoveries, and 24-month overall survival rates of the patients in the 2 groups were compared. Cox regression model analysis was performed to confirm the independent variables influencing the survival rate. Results. For patients in the early-stage (BCLC stages A1–A4) group, little benefit of SAMe therapy was observed. For advanced-stage (BCLC B-C) patients, SAMe therapy reduced alanine aminotransferase (ALT) and aspartate transaminase (AST) levels and effectively delayed the recurrence time and enhanced the 24-month survival rate. Cox regression model analysis in the advanced-stage group revealed that treatment with SAMe, preoperative viral load, and Child-Pugh grade were independent variables influencing survival time. Conclusion. SAMe therapy exhibited protective and therapeutic efficacy for BCLC advanced-stage HBV-related HCC patients. And the efficacy of SAMe therapy should be further explored in randomized prospective clinical trials.
Collapse
|
49
|
Kalgutkar AS. Liabilities Associated with the Formation of “Hard” Electrophiles in Reactive Metabolite Trapping Screens. Chem Res Toxicol 2016; 30:220-238. [DOI: 10.1021/acs.chemrestox.6b00332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amit S. Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism − New Chemical
Entities, Pfizer Worldwide Research and Development, 610 Main
Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Montano-Loza AJ, Thandassery RB, Czaja AJ. Targeting Hepatic Fibrosis in Autoimmune Hepatitis. Dig Dis Sci 2016; 61:3118-3139. [PMID: 27435327 DOI: 10.1007/s10620-016-4254-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
Hepatic fibrosis develops or progresses in 25 % of patients with autoimmune hepatitis despite corticosteroid therapy. Current management regimens lack reliable noninvasive methods to assess changes in hepatic fibrosis and interventions that disrupt fibrotic pathways. The goals of this review are to indicate promising noninvasive methods to monitor hepatic fibrosis in autoimmune hepatitis and identify anti-fibrotic interventions that warrant evaluation. Laboratory methods can differentiate cirrhosis from non-cirrhosis, but their accuracy in distinguishing changes in histological stage is uncertain. Radiological methods include transient elastography, acoustic radiation force impulse imaging, and magnetic resonance elastography. Methods based on ultrasonography are comparable in detecting advanced fibrosis and cirrhosis, but their performances may be compromised by hepatic inflammation and obesity. Magnetic resonance elastography has excellent performance parameters for all histological stages in diverse liver diseases, is uninfluenced by inflammatory activity or body habitus, has been superior to other radiological methods in nonalcoholic fatty liver disease, and may emerge as the preferred instrument to evaluate fibrosis in autoimmune hepatitis. Promising anti-fibrotic interventions are site- and organelle-specific agents, especially inhibitors of nicotinamide adenine dinucleotide phosphate oxidases, transforming growth factor beta, inducible nitric oxide synthase, lysyl oxidases, and C-C chemokine receptors types 2 and 5. Autoimmune hepatitis has a pro-fibrotic propensity, and noninvasive radiological methods, especially magnetic resonance elastography, and site- and organelle-specific interventions, especially selective antioxidants and inhibitors of collagen cross-linkage, may emerge to strengthen current management strategies.
Collapse
Affiliation(s)
- Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | - Ragesh B Thandassery
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | - Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|