1
|
Nie J, Ueda Y, Solivais AJ, Hashino E. CHD7 regulates otic lineage specification and hair cell differentiation in human inner ear organoids. Nat Commun 2022; 13:7053. [PMID: 36396635 PMCID: PMC9672366 DOI: 10.1038/s41467-022-34759-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Mutations in CHD7 cause CHARGE syndrome, affecting multiple organs including the inner ear in humans. We investigate how CHD7 mutations affect inner ear development using human pluripotent stem cell-derived organoids as a model system. We find that loss of CHD7 or its chromatin remodeling activity leads to complete absence of hair cells and supporting cells, which can be explained by dysregulation of key otic development-associated genes in mutant otic progenitors. Further analysis of the mutant otic progenitors suggests that CHD7 can regulate otic genes through a chromatin remodeling-independent mechanism. Results from transcriptome profiling of hair cells reveal disruption of deafness gene expression as a potential underlying mechanism of CHARGE-associated sensorineural hearing loss. Notably, co-differentiating CHD7 knockout and wild-type cells in chimeric organoids partially rescues mutant phenotypes by restoring otherwise severely dysregulated otic genes. Taken together, our results suggest that CHD7 plays a critical role in regulating human otic lineage specification and hair cell differentiation.
Collapse
Affiliation(s)
- Jing Nie
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yoshitomo Ueda
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexander J Solivais
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Contreras X, Amberg N, Davaatseren A, Hansen AH, Sonntag J, Andersen L, Bernthaler T, Streicher C, Heger A, Johnson RL, Schwarz LA, Luo L, Rülicke T, Hippenmeyer S. A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Rep 2021; 35:109274. [PMID: 34161767 PMCID: PMC8317686 DOI: 10.1016/j.celrep.2021.109274] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022] Open
Abstract
Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division.
Collapse
Affiliation(s)
- Ximena Contreras
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Johanna Sonntag
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Lill Andersen
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Tina Bernthaler
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Heger
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX 77030, USA
| | - Lindsay A Schwarz
- HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- HHMI and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
3
|
Thomas HR, Frank MH. Connecting the pieces: uncovering the molecular basis for long-distance communication through plant grafting. THE NEW PHYTOLOGIST 2019; 223:582-589. [PMID: 30834529 DOI: 10.1111/nph.15772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/19/2019] [Indexed: 05/23/2023]
Abstract
Vascular plants are wired with a remarkable long-distance communication system. This network can span from as little as a few centimeters (or less) in species like Arabidopsis, up to 100 m in the tallest giant sequoia, linking distant organ systems into a unified, multicellular organism. Grafting is a fundamental technique that allows researchers to physically break apart and reassemble the long-distance transport system, enabling the discovery of molecular signals that underlie intraorganismal communication. In this review, we highlight how plant grafting has facilitated the discovery of new long-distance signaling molecules that function in coordinating developmental transitions, abiotic and biotic responses, and cross-species interactions. This rapidly expanding area of research offers sustainable approaches for improving plant performance in the laboratory, the field, the orchard, and beyond.
Collapse
Affiliation(s)
- Hannah R Thomas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Song Y, Zhang Y, Chen M, Deng J, Sui T, Lai L, Li Z. Functional validation of the albinism-associated tyrosinase T373K SNP by CRISPR/Cas9-mediated homology-directed repair (HDR) in rabbits. EBioMedicine 2018; 36:517-525. [PMID: 30274819 PMCID: PMC6197749 DOI: 10.1016/j.ebiom.2018.09.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background Oculocutaneous albinism (OCA) is a group of autosomal recessive disorders characterized by reduced melanin that are caused by mutations in the gene encoding tyrosinase (TYR), which is the rate-limiting enzyme in the production of the pigment melanin. Many studies or meta-analyses have suggested an association between the TYR T373K SNP and OCA1, but there is limited biochemical and genetic evidence to support this association. Methods We overexpressed TYR-WT and TYR-T373K mutants on HK293T cells and tested the changes of melanin production and tyrosinase activity. Then we generated TYR-K373T knock-in (KI) rabbits by microinjection of ssDNA and synthesized RNAs targeting C1118A using CRISPR/Cas9-HDR to observe the formation of melanin. Findings We demonstrated that the T373K mutation in TYR can reduce tyrosinase activity, leading to an absence of melanin synthesis at the cell-level. The gene-edited TYR-K373T rabbits exhibited rescued melanin production in hair follicles and irises, as inferred from the evident decrease in pigmentation in TYR-T373K rabbits, thus providing functional validation of the albinism-associated T373K SNP at the animal level. Interpretation Our study provides the first animal-level functional validation of the albinism-associated TYR K373T SNP in rabbits, and these results will facilitate gene therapy of OCA1 in pre-clinical settings in the future. Fund The National Key Research and Development Program of China Stem Cell and Translational Research, the Strategic Priority Research Program of the Chinese Academy of Sciences, the Guangdong Province Science and Technology Plan Project, and the Program for JLU Science and Technology Innovative Research Team.
Collapse
Affiliation(s)
- Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Yuxin Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Mao Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Jichao Deng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China; Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
CRISPR/Cas9-mediated mosaic mutation of SRY gene induces hermaphroditism in rabbits. Biosci Rep 2018; 38:BSR20171490. [PMID: 29439141 PMCID: PMC5861328 DOI: 10.1042/bsr20171490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
Hermaphroditism is a rare disorder that affects sexual development, resulting in individuals with both male and female sexual organs. Hermaphroditism is caused by anomalies in genes regulating sex determination, gonad development, or expression of hormones and their receptors during embryonic development during sexual differentiation. SRY is a sex-determination gene on the Y chromosome that is responsible for initiating male sex determination in mammals. In this study, we introduced CRISPR/Cas9-mediated mutations in the high-mobility-group (HMG) region of the rabbit SRY. As expected, SRY-mutant chimeric rabbits were diagnosed with hermaphroditism, characterized by possessing ovotestis, testis, ovary and uterus simultaneously. Histopathology analysis revealed that the testicular tissue was immature and lacked spermatogenic cells, while the ovarian portion appeared normal and displayed follicles at different stages. This is the first report of a rabbit hermaphroditism model generated by the CRISPR/Cas9 system. This novel rabbit model could advance our understanding of the pathogenesis of hermaphroditism, and identify novel therapies for human clinical treatment of hermaphroditism.
Collapse
|
6
|
Phenotyping first-generation genome editing mutants: a new standard? Mamm Genome 2017; 28:377-382. [PMID: 28756587 PMCID: PMC5569115 DOI: 10.1007/s00335-017-9711-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022]
Abstract
The unprecedented efficiency of the CRISPR/Cas9 system in genome engineering has opened the prospect of employing mutant founders for phenotyping cohorts, thus accelerating research projects by circumventing the requirement to generate cohorts using conventional two- or three-generation crosses. However, these first-generation mutants are often genetic mosaics, with a complex and difficult to define genetic make-up. Here, we discuss the potential benefits, challenges and scientific validity of such models.
Collapse
|
7
|
Abstract
Tissue or cell transplantation is an invaluable technique with a multitude of applications including studying the developmental potential of certain cell populations, dissecting cell-environment interactions, and identifying stem cells. One key technical requirement for performing transplantation assays is the capability of distinguishing the transplanted donor cells from the endogenous host cells and tracing the donor cells over time. The zebrafish has emerged as an excellent model organism for performing transplantation assays, thanks in part to the transparency of embryos and even adults when pigment mutants are employed. Using transgenic techniques and fast-evolving imaging technology, fluorescence-labeled donor cells can be readily identified and studied during development in vivo. In this chapter, we will discuss the rationale of different types of zebrafish transplantation in both embryos and adults and then focus on four detailed methods of transplantation: blastula/gastrula transplantation for mosaic analysis, hematopoietic stem cell transplantation, chemical screening using a transplantation model, and tumor transplantation.
Collapse
Affiliation(s)
- J M Gansner
- Harvard Medical School, Boston, MA, United States
| | - M Dang
- Harvard Medical School, Boston, MA, United States
| | - M Ammerman
- Harvard Medical School, Boston, MA, United States
| | - L I Zon
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Frank MH, Chitwood DH. Plant chimeras: The good, the bad, and the 'Bizzaria'. Dev Biol 2016; 419:41-53. [PMID: 27381079 DOI: 10.1016/j.ydbio.2016.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/25/2016] [Accepted: 07/01/2016] [Indexed: 01/10/2023]
Abstract
Chimeras - organisms that are composed of cells of more than one genotype - captured the human imagination long before they were formally described and used in the laboratory. These organisms owe their namesake to a fire-breathing monster from Greek mythology that has the head of a lion, the body of a goat, and the tail of a serpent. The first description of a non-fictional chimera dates back to the middle of the seventeenth century when the Florentine gardener Pietro Nati discovered an adventitious shoot growing from the graft junction between sour orange (Citrus aurantium) and citron (Citrus medica). This perplexing chimera that grows with sectors phenotypically resembling each of the citrus progenitors inspired discussion and wonder from the scientific community and was fittingly named the 'Bizzaria'. Initially, the 'Bizzaria' was believed to be an asexual hybrid that formed from a cellular fusion between the grafted parents; however, in-depth cellular analyses carried out centuries later demonstrated that the 'Bizzaria', along with other chimeras, owe their unique sectored appearance to a conglomeration of cells from the two donors. Since this pivotal discovery at the turn of the twentieth century, chimeras have served both as tools and as unique biological phenomena that have contributed to our understanding of plant development at the cellular, tissue, and organismal level. Rapid advancements in genome sequencing technologies have enabled the establishment of new model species with novel morphological and developmental features that enable the generation of chimeric organisms. In this review, we show that genetic mosaic and chimera studies provide a technologically simple way to delve into the organismal, genetic, and genomic inner workings underlying the development of diverse model organisms. Moreover, we discuss the unique opportunity that chimeras present to explore universal principles governing intercellular communication and the coordination of organismal biology in a heterogenomic landscape.
Collapse
Affiliation(s)
- Margaret H Frank
- Donald Danforth Plant Science Center, 975 North Warson Rd, Saint Louis, MO 63132, United States.
| | - Daniel H Chitwood
- Donald Danforth Plant Science Center, 975 North Warson Rd, Saint Louis, MO 63132, United States
| |
Collapse
|
9
|
De Santis F, Di Donato V, Del Bene F. Clonal analysis of gene loss of function and tissue-specific gene deletion in zebrafish via CRISPR/Cas9 technology. Methods Cell Biol 2016; 135:171-88. [DOI: 10.1016/bs.mcb.2016.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Norton WB, Scavizzi F, Smith CN, Dong W, Raspa M, Parker-Thornburg JV. Refinements for embryo implantation surgery in the mouse: comparison of injectable and inhalant anesthesias - tribromoethanol, ketamine and isoflurane - on pregnancy and pup survival. Lab Anim 2015; 50:335-43. [PMID: 26566637 DOI: 10.1177/0023677215616530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An essential aspect of genetically-engineered mice (GEM) is the ability to produce live animals after the appropriate injection procedure. Animals are produced by implantation of manipulated embryos into pseudopregnant females for gestation, parturition, and growth to the weaning stage. This study was carried out to test whether the anesthesia used during surgery could affect the number of pups produced. Anesthetics commonly used for implant surgery include tribromoethanol (Avertin) delivered by intraperitoneal (IP) injection, IP-injected ketamine:xylazine or ketamine:medetomidine mix, and inhaled isoflurane. To determine if the anesthesia used might affect the number of animals produced, each anesthetic agent was tested in implant surgeries and the numbers of pups produced using both wild-type and GEM embryos were assessed. Parallel studies were conducted in institutions in the EU and in the USA. Based on a direct comparison of pregnancy status, number of pups born, and number of pups weaned for each agent, we found no statistical differences among the three anesthetics. We conclude that all three anesthetic agents tested are equally useful for implantation surgery.
Collapse
Affiliation(s)
- William B Norton
- Department of Veterinary Medicine and Surgery, MD Anderson Cancer Center, Houston, Texas, USA
| | - Ferdinando Scavizzi
- CNR Institute of Cell Biology and Neurobiology - Campus International Development (EMMA-INFRAFRONTIER-IMPC), Rome, Italy
| | - Chad N Smith
- Department of Genetics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenli Dong
- Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Marcello Raspa
- CNR Institute of Cell Biology and Neurobiology - Campus International Development (EMMA-INFRAFRONTIER-IMPC), Rome, Italy
| | | |
Collapse
|
11
|
Lessons from mouse chimaera experiments with a reiterated transgene marker: revised marker criteria and a review of chimaera markers. Transgenic Res 2015; 24:665-91. [PMID: 26048593 PMCID: PMC4504987 DOI: 10.1007/s11248-015-9883-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/21/2015] [Indexed: 11/12/2022]
Abstract
Recent reports of a new generation of ubiquitous transgenic chimaera markers prompted us to consider the criteria used to evaluate new chimaera markers and develop more objective assessment methods. To investigate this experimentally we used several series of fetal and adult chimaeras, carrying an older, multi-copy transgenic marker. We used two additional independent markers and objective, quantitative criteria for cell selection and cell mixing to investigate quantitative and spatial aspects of developmental neutrality. We also suggest how the quantitative analysis we used could be simplified for future use with other markers. As a result, we recommend a five-step procedure for investigators to evaluate new chimaera markers based partly on criteria proposed previously but with a greater emphasis on examining the developmental neutrality of prospective new markers. These five steps comprise (1) review of published information, (2) evaluation of marker detection, (3) genetic crosses to check for effects on viability and growth, (4) comparisons of chimaeras with and without the marker and (5) analysis of chimaeras with both cell populations labelled. Finally, we review a number of different chimaera markers and evaluate them using the extended set of criteria. These comparisons indicate that, although the new generation of ubiquitous fluorescent markers are the best of those currently available and fulfil most of the criteria required of a chimaera marker, further work is required to determine whether they are developmentally neutral.
Collapse
|
12
|
CRISPR-engineered mosaicism rapidly reveals that loss of Kcnj13 function in mice mimics human disease phenotypes. Sci Rep 2015; 5:8366. [PMID: 25666713 PMCID: PMC4322368 DOI: 10.1038/srep08366] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/07/2015] [Indexed: 01/26/2023] Open
Abstract
The era of genomics has demanded the development of more efficient and timesaving approaches to validate gene function in disease. Here, we utilized the CRISPR-Cas9 system to generate Kcnj13 mutant mice by zygote injection to verify the pathogenic role of human KCNJ13, mutations of which are thought to cause Leber congenital amaurosis (LCA), an early-onset form of blindness. We found that complete loss of Kcnj13 is likely postnatal lethal. Among surviving F0-generation mice examined, 80% show mosaic KCNJ13 expression in the retinal pigment epithelium (RPE). Mosaic expression correlates with decreased response to light and photoreceptor degeneration, indicating that Kcnj13 mutant mice mimic human KCNJ13-related LCA disease. Importantly, mosaic animals enable us to directly compare Kcnj13 mutant and wild-type RPE cells in the same eye. We found that RPE cells lacking KCNJ13 protein still survive but overlying photoreceptors exhibit cell degeneration. At the same time, wild-type RPE cells can rescue neighboring photoreceptor cells that overlie mutant RPE cells. These results suggest that KCNJ13 expression is required for RPE cells to maintain photoreceptor survival. Moreover, we show that CRISPR-Cas9 engineered mosaicism can be used to rapidly test candidate gene function in vivo.
Collapse
|
13
|
Johnston LA. Socializing with MYC: cell competition in development and as a model for premalignant cancer. Cold Spring Harb Perspect Med 2014; 4:a014274. [PMID: 24692189 DOI: 10.1101/cshperspect.a014274] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies in Drosophila and mammals have made it clear that genetic mutations that arise in somatic tissues are rapidly recognized and eliminated, suggesting that cellular fitness is tightly monitored. During development, damaged, mutant, or otherwise unfit cells are prevented from contributing to the tissue and are instructed to die, whereas healthy cells benefit and populate the animal. This cell selection process, known as cell competition, eliminates somatic genetic heterogeneity and promotes tissue fitness during development. Yet cell competition also has a dark side. Super competition can be exploited by incipient cancers to subvert cellular cooperation and promote selfish behavior. Evidence is accumulating that MYC plays a key role in regulation of social behavior within tissues. Given the high number of tumors with deregulated MYC, studies of cell competition promise to yield insight into how the local environment yields to and participates in the early stages of tumor formation.
Collapse
Affiliation(s)
- Laura A Johnston
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
14
|
Ohtsuka M, Miura H, Gurumurthy CB, Kimura M, Inoko H, Yoshimura S, Sato M. Fluorescent transgenic mice suitable for multi-color aggregation chimera studies. Cell Tissue Res 2012; 350:251-60. [PMID: 22868913 DOI: 10.1007/s00441-012-1470-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/21/2012] [Indexed: 12/24/2022]
Abstract
We recently reported a novel method of mouse transgenesis called Pronuclear Injection-based Targeted Transgenisis (PITT) using which a series of fluorescent transgenic (Tg) mice lines were generated. These lines, unlike those generated using conventional random integration methods, express the transgenes faithfully and reproducibly generation after generation. Because of this superior nature, these lines are ideal for the generation of multi-colored aggregation chimeras that can be used to study cell-cell interactions and lineage analyses in living embryos/organs, where the transgenes can be detected and the clonal origin of a given cell population easily traced by its distinct fluorescence. In this study, to verify if Tg fluorescent mice generated through PITT were suitable for such applications, we sought to generate chimeric blastocysts and chimeric-Tg mice by aggregating two- or three-colored 8-cell embryos. Our analyses using these models led to the following observations. First, we noticed that cell mixing was infrequent during the stages of morula to early blastocyst. Second, chimeric fetuses obtained after aggregation of the two-colored 8-cell embryos exhibited uniform cell mixing. And third, in the organs of adult chimeric mice, the mode of cell distribution could be either clonal or polyclonal, as previously pointed out by others. Implications of our novel and improved Tg-chimeric mice approach for clonal cell lineage and developmental studies are discussed.
Collapse
Affiliation(s)
- Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Tissue or cell transplantation has been an extremely valuable technique for studying developmental potential of certain cell population, dissecting cell-environment interaction relationship, identifying stem cells, and many other applications. One key technical requirement for performing transplantation assay is the capability of distinguishing the transplanted donor cells from the endogenous host cells, and tracing the donor cells over time. Zebrafish has emerged as an excellent model organism for performing transplantation assay, thanks to the transparency of embryos during development and even certain adults. Using transgenic techniques and fast-evolving imaging technology, fluorescence-labeled donor cells can be easily identified and studied in vivo. In this chapter, we will first discuss the rationale of different types of zebrafish transplantation in both embryos and adults, and then focus on detailed methods of three types of transplantation: blastula/gastrula transplantation for mosaic analysis, stem cell transplantation, and tumor transplantation.
Collapse
Affiliation(s)
- Pulin Li
- Harvard Medical School, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Children's Hospital Boston, Boston, Massachusetts, USA
| | | | | |
Collapse
|
16
|
Chimeras and Hybrids – How to Approach Multifaceted Research? TRANSLATIONAL STEM CELL RESEARCH 2011. [DOI: 10.1007/978-1-60761-959-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
17
|
Fisher EMC, Lana-Elola E, Watson SD, Vassiliou G, Tybulewicz VLJ. New approaches for modelling sporadic genetic disease in the mouse. Dis Model Mech 2010; 2:446-53. [PMID: 19726804 DOI: 10.1242/dmm.001644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sporadic diseases, which occur as single, scattered cases, are among the commonest causes of human morbidity and death. They result in a variety of diseases, including many cancers, premature aging, neurodegeneration and skeletal defects. They are often pathogenetically complex, involving a mosaic distribution of affected cells, and are difficult to model in the mouse. Faithful models of sporadic diseases require innovative forms of genetic manipulation to accurately recreate their initiation and pathogenesis. Such modelling is crucial to understanding these diseases and, by extension, to the development of therapeutic approaches to treat them. This article focuses on sporadic diseases with a genetic aetiology, the challenges they pose to biomedical researchers, and the different current and developing approaches used to model such disorders in the mouse.
Collapse
Affiliation(s)
- Elizabeth M C Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N3BG, UK.
| | | | | | | | | |
Collapse
|
18
|
Hammond VE, So E, Cate HS, Britto JM, Gunnersen JM, Tan SS. Cortical layer development and orientation is modulated by relative contributions of reelin-negative and -positive neurons in mouse chimeras. ACTA ACUST UNITED AC 2010; 20:2017-26. [PMID: 20053715 DOI: 10.1093/cercor/bhp287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Reelin is an important protein that is indispensable for cortical lamination. In the absence of Reelin, cortical layers fail to form due to inappropriate neuron migration and positioning. The inversion of cortical layers is attributed to failure of neurons to migrate past earlier-generated neurons although how Reelin-insufficiency causes this is unclear. The issue is complicated by recent studies showing that very little Reelin is required for cortical layering. To test how variation in the number of Reelin-producing cells is linked to cortical lamination, we have employed Reelin(+/+) <--> Reelin(-/-) chimeras in which the number of Reelin-expressing neurons is adjusted. We found that the Reeler phenotype was rescued in chimeras with a large contribution of Reelin(+/+) neurons; conversely in chimeras with a weak contribution by Reelin(+/+) neurons, the mutant phenotype remained. However, increasing the number of Reelin(+/+) neurons beyond an unknown threshold resulted in partial rescue, with the formation of a correctly layered secondary cortex lying on top of an inverted mutant cortex. Therefore, the development of cortical layers in the correct order requires a minimal level of Reelin protein to be present although paradoxically, this is insufficient to prevent the simultaneous formation of inverted cortical layers in the same hemisphere.
Collapse
Affiliation(s)
- Vicki E Hammond
- Howard Florey Institute, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Xu J, Anuar F, Ali SM, Ng MY, Phua DCY, Hunziker W. Zona occludens-2 is critical for blood-testis barrier integrity and male fertility. Mol Biol Cell 2009; 20:4268-77. [PMID: 19692573 DOI: 10.1091/mbc.e08-12-1236] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tight junction integral membrane proteins such as claudins and occludin are tethered to the actin cytoskeleton by adaptor proteins, notably the closely related zonula occludens (ZO) proteins ZO-1, ZO-2, and ZO-3. All three ZO proteins have recently been inactivated in mice. Although ZO-3 knockout mice lack an obvious phenotype, animals deficient in ZO-1 or ZO-2 show early embryonic lethality. Here, we rescue the embryonic lethality of ZO-2 knockout mice by injecting ZO-2(-/-) embryonic stem (ES) cells into wild-type blastocysts to generate viable ZO-2 chimera. ZO-2(-/-) ES cells contribute extensively to different tissues of the chimera, consistent with an extraembryonic requirement for ZO-2 rather than a critical role in epiblast development. Adult chimera present a set of phenotypes in different organs. In particular, male ZO-2 chimeras show reduced fertility and pathological changes in the testis. Lanthanum tracer experiments show a compromised blood-testis barrier. Expression levels of ZO-1, ZO-3, claudin-11, and occludin are not apparently affected. ZO-1 and occludin still localize to the blood-testis barrier region, but claudin-11 is less well restricted and the localization of connexin-43 is perturbed. The critical role of ZO-2 for male fertility and blood-testis barrier integrity thus provides a first example for a nonredundant role of an individual ZO protein in adult mice.
Collapse
Affiliation(s)
- Jianliang Xu
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
| | | | | | | | | | | |
Collapse
|
20
|
Research on Human-animal Entities: Ethical and Regulatory Aspects in Europe. Stem Cell Rev Rep 2009; 5:181-94. [DOI: 10.1007/s12015-009-9079-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|
21
|
Nguyen D, Xu T. The expanding role of mouse genetics for understanding human biology and disease. Dis Model Mech 2009; 1:56-66. [PMID: 19048054 DOI: 10.1242/dmm.000232] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has taken about 100 years since the mouse first captured our imagination as an intriguing animal for it to become the premier genetic model organism. An expanding repertoire of genetic technology, together with sequencing of the genome and biological conservation, place the mouse at the foremost position as a model to decipher mechanisms underlying biological and disease processes. The combined approaches of embryonic stem cell-based technologies, chemical and insertional mutagenesis have enabled the systematic interrogation of the mouse genome with the aim of creating, for the first time, a library of mutants in which every gene is disrupted. The hope is that phenotyping the mutants will reveal novel and interesting phenotypes that correlate with genes, to define the first functional map of a mammalian genome. This new milestone will have a great impact on our understanding of mammalian biology, and could significantly change the future of medical diagnosis and therapeutic development, where databases can be queried in silico for potential drug targets or underlying genetic causes of illnesses. Emerging innovative genetic strategies, such as somatic genetics, modifier screens and humanized mice, in combination with whole-genome mutagenesis will dramatically broaden the utility of the mouse. More significantly, allowing genome-wide genetic interrogations in the laboratory, will liberate the creativity of individual investigators and transform the mouse as a model for making original discoveries and establishing novel paradigms for understanding human biology and disease.
Collapse
Affiliation(s)
- Duc Nguyen
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | |
Collapse
|
22
|
de Montera B. Genomics and ethics: the case of cloned and/or transgenic animals. Comp Funct Genomics 2008; 4:26-30. [PMID: 18629111 PMCID: PMC2447398 DOI: 10.1002/cfg.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2002] [Accepted: 11/29/2002] [Indexed: 11/10/2022] Open
Abstract
The point of the present study is to illustrate and, if possible, promote the existing link between genomics and ethics, taking the example of cloned and transgenic animals.
These ‘new animals’ raise theoretical and practical problems that concern applied
ethics. We will explore more particularly an original strategy showing that it is
possible, starting from philosophical questioning about the nature of identity, to use
a genomic approach, based on amplification fragment length polymorphism (AFLP)
and methylation-sensitive amplification polymorphism (MSAP) detection, to provide
useful tools to define more rigorously what cloned animals are, by testing their genetic
and epigenetic identity. We expect from the future results of this combined approach
to stimulate the creativity of the philosophical and ethical reflection about the impact
of biotechnology on animals, and to increase scientific involvement in such issues.
Collapse
Affiliation(s)
- Béatrice de Montera
- Laboratoire de Biologie du Développement et Biotechnologies, INRA, Domaine de Vilvert, 78 352 Jouy-en-Josas cedex, France.
| |
Collapse
|
23
|
Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol 2008; 321:77-87. [PMID: 18585375 DOI: 10.1016/j.ydbio.2008.06.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 01/05/2023]
Abstract
FGF signaling is associated with breast cancer and is required for mammary placode formation in the mouse. In this study, we employed a genetic mosaic analysis based on Cre-mediated recombination to investigate FGF receptor 2 (Fgfr2) function in the postnatal mammary gland. Mosaic inactivation of Fgfr2 by the MMTV-Cre transgene enabled us to compare the behavior of Fgfr2 null and Fgfr2 heterozygous cells in the same gland. Fgfr2 null cells were at a competitive disadvantage to their Fgfr2 heterozygous neighbors in the highly proliferative terminal end buds (TEBs) at the invasion front, owing to a negative effect of loss of Fgfr2 function on cell proliferation. However, Fgfr2 null cells were tolerated in mature ducts. In these genetic mosaic mammary glands, the epithelial network is apparently built by TEBs that over time are composed of a progressively larger proportion of Fgfr2-positive cells. However, subsequently, most cells lose Fgfr2 function, presumably due to additional rounds of Cre-mediated recombination. Using an independent strategy to create mosaic mammary glands, which employed an adenovirus-Cre that acts only once, we confirmed that Fgfr2 null cells were out-competed by neighboring Fgfr2 heterozygous cells. Together, our data demonstrate that Fgfr2 functions in the proliferating and invading TEBs, but it is not required in the mature ducts of the pubertal mammary gland.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Anatomy and Program in Developmental Biology, University of California at San Francisco, San Francisco, CA 94143-0452, USA
| | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
Autosomal recessive cutaneous disorders, including various types of epidermolysis bullosa (EB), usually manifest shortly after birth. The clinical course of these diseases is often characterized by severe complications, limited therapeutic options, and a poor prognosis. A study by Pasmooij et al. reported in this issue of the JCI unravels the molecular mechanisms by which germline mutations in non-Herlitz junctional EB can be corrected in vivo by multiple spontaneously occurring somatic mutational events, a phenomenon known as revertant mosaicism (see the related article beginning on page 1240). These insights open new avenues of thinking for the design of future gene therapy strategies for skin diseases.
Collapse
Affiliation(s)
- Jorge Frank
- Department of Dermatology and Maastricht University Centre for Molecular Dermatology, University Hospital, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands.
| | | |
Collapse
|
26
|
Schenke-Layland K, Angelis E, Rhodes KE, Heydarkhan-Hagvall S, Mikkola HK, Maclellan WR. Collagen IV Induces Trophoectoderm Differentiation of Mouse Embryonic Stem Cells. Stem Cells 2007; 25:1529-38. [PMID: 17363553 DOI: 10.1634/stemcells.2006-0729] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The earliest segregation of lineages in the developing embryo is the commitment of cells to the inner cell mass or the trophoectoderm in preimplantation blastocysts. The exogenous signals that control commitment to a particular cell lineage are poorly understood; however, it has been suggested that extracellular "niche" and extracellular matrix, in particular, play an important role in determining the developmental fate of stem cells. Collagen IV (ColIV) has been reported to direct embryonic stem (ES) cell differentiation to mesodermal lineages in both mouse and human ES cells. To define the effects of ColIV on ES cell differentiation and to identify the resulting heterogeneous cell types, we performed microarray analyses and determined global gene expression. We observed that ColIV induced the expression of mesodermal genes specific to hematopoietic, endothelial, and smooth muscle cells and, surprisingly, also a panel of trophoectoderm-restricted markers. This effect was specific to collagen IV, as no trophoblast differentiation was seen on collagen I, laminin, or fibronectin. Stimulation with basic fibroblast growth factor (FGF) or FGF4 increased the number of trophoectodermal cells. These cells were isolated under clonal conditions and successfully differentiated into a variety of trophoblast derivatives. Interestingly, differentiation of ES cells to trophoblastic lineages was only seen in ES cell lines maintained on embryonic feeder layers and was caudal-type homeobox protein 2 (Cdx2)-dependent, consistent with Cdx2's postulated role in trophoectoderm commitment. Our data suggest that, given the appropriate extracellular stimuli, mouse embryonic stem cells can differentiate into trophoectoderm. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Katja Schenke-Layland
- Cardiovascular Research Laboratory, UCLA School of Medicine, 675 C.E. Young Dr., MRL 3-645, Los Angeles, California 90095-1760, USA
| | | | | | | | | | | |
Collapse
|
27
|
Muers MR, Sharpe JA, Garrick D, Sloane-Stanley J, Nolan PM, Hacker T, Wood WG, Higgs DR, Gibbons RJ. Defining the cause of skewed X-chromosome inactivation in X-linked mental retardation by use of a mouse model. Am J Hum Genet 2007; 80:1138-49. [PMID: 17503331 PMCID: PMC1867101 DOI: 10.1086/518369] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/22/2007] [Indexed: 11/03/2022] Open
Abstract
Extreme skewing of X-chromosome inactivation (XCI) is rare in the normal female population but is observed frequently in carriers of some X-linked mutations. Recently, it has been shown that various forms of X-linked mental retardation (XLMR) have a strong association with skewed XCI in female carriers, but the mechanisms underlying this skewing are unknown. ATR-X syndrome, caused by mutations in a ubiquitously expressed, chromatin-associated protein, provides a clear example of XLMR in which phenotypically normal female carriers virtually all have highly skewed XCI biased against the X chromosome that harbors the mutant allele. Here, we have used a mouse model to understand the processes causing skewed XCI. In female mice heterozygous for a null Atrx allele, we found that XCI is balanced early in embryogenesis but becomes skewed over the course of development, because of selection favoring cells expressing the wild-type Atrx allele. Unexpectedly, selection does not appear to be the result of general cellular-viability defects in Atrx-deficient cells, since it is restricted to specific stages of development and is not ongoing throughout the life of the animal. Instead, there is evidence that selection results from independent tissue-specific effects. This illustrates an important mechanism by which skewed XCI may occur in carriers of XLMR and provides insight into the normal role of ATRX in regulating cell fate.
Collapse
Affiliation(s)
- Mary R Muers
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The disarrayed mutation results in cell cycle and neurogenesis defects during retinal development in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2007; 7:28. [PMID: 17411431 PMCID: PMC1854893 DOI: 10.1186/1471-213x-7-28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 04/05/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND The vertebrate retina is derived from proliferative neuroepithelial cells of the optic cup. During retinal development, cell proliferation and the processes of cell cycle exit and neurogenesis are coordinated in neuroepithelial progenitor cells. Previous studies have demonstrated reciprocal influences between the cell cycle and neurogenesis. However the specific mechanisms and exact relationships of cell cycle regulation and neurogenesis in the vertebrate retina remain largely unknown. RESULTS We have isolated and characterized a zebrafish mutant, disarrayed (drya64), which exhibits retinal defects in cell cycle regulation and neurogenesis. By 42 hours post fertilization, disarrayed mutants show small eyes and a reduced forebrain. Other aspects of development appear normal. Although retinogenesis is delayed, mutant retinal cells eventually differentiate to all major cell types. Examination of the disarrayed mitotic cycle using BrdU and direct imaging techniques revealed that retinal neuroepithelial cells have an extended cell cycle period and reduced rate of cell cycle exit and neurogenesis, despite the fact that neurogenesis initiates at the appropriate time of development. Genetic mosaic analyses indicate that the cell cycle phenotype of disarrayed is cell-non-autonomous. CONCLUSION The disarrayed mutant shows defects in both cell cycle regulation and neurogenesis and provides insights into the coordinated regulation of these processes during retinal development.
Collapse
|
29
|
Carmany-Rampey A, Moens CB. Modern mosaic analysis in the zebrafish. Methods 2006; 39:228-38. [PMID: 16829130 DOI: 10.1016/j.ymeth.2006.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 02/20/2006] [Indexed: 02/02/2023] Open
Abstract
One of the most powerful tools used to gain insight into complex developmental processes is the analysis of mosaic embryos. A mosaic is defined as an organism that contains cells of more than one genotype, usually wild-type and mutant. It is the interplay between wild-type and mutant cells in the mosaic that reveals information about the normal function of the mutated gene. Mosaic analysis has been utilized extensively in Caenorhabditis elegans, Drosophila, mice, and zebrafish to elucidate when, where, and how a gene acts during development. In the zebrafish, mosaic analysis has been used to dissect a number of different developmental processes, including gastrulation movements, mesoderm and endoderm specification, neuronal patterning and migration, axon pathfinding, angiogenesis, and cardiac, retinal, and neural crest development. Mosaic analysis is a particularly effective method for understanding gene function in the zebrafish, a model organism particularly suited to forward genetic, molecular, and classical embryological approaches. These attributes, when combined with the accessibility and optical clarity of the zebrafish embryo, facilitate the real time observation of individual cell behaviors and interactions within mosaic embryos.
Collapse
Affiliation(s)
- Amanda Carmany-Rampey
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, B2-152, 1100 Fairview Ave., N. Seattle, WA 98115, USA
| | | |
Collapse
|
30
|
Latvala-Kilby SMH, Kilby NJ. Uncovering the post-embryonic role of embryo essential genes in Arabidopsis using the controlled induction of visibly marked genetic mosaics: EMB506, an illustration. PLANT MOLECULAR BIOLOGY 2006; 61:179-94. [PMID: 16786300 DOI: 10.1007/s11103-006-6268-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 12/30/2005] [Indexed: 05/10/2023]
Abstract
The embryo essential gene EMB506 plays a crucial role in the transition of the Arabidopsis embryo from radial symmetry to bilateral symmetry just prior to the early heart stage of development. In addition to influencing embryo development EMB506 also affects chloroplast biogenesis. To further investigate the role of EMB506 gene expression in Arabidopsis we have generated green fluorescent protein (GFP) marked emb506 mosaic sectors at temporally defined stages during embryogenesis and additionally during various stages of vegetative growth, in otherwise phenotypically wild-type plants. We confirm the essential requirement for EMB506 gene expression in chloroplast biogenesis as reflected by the decreased chlorophyll content in emb506 mosaic sectors. We also show that the influence of EMB506 gene expression as it impinges on chloroplast biogenesis is first relevant at an intermediate stage in embryogenesis and that the role of EMB506 gene expression in chloroplast biogenesis is distinct from the essential role of EMB506 gene expression during early embryo development. By inducing emb506 mosaicism after the essential requirement for EMB506 gene expression in embryogenesis and also during vegetative growth we reveal that EMB506 gene expression additionally is required for correct cotyledon-, true leaf- and cauline leaf margin development. The strategy that we describe can be tailored to the mosaic analysis of any cloned EMB gene for which a corresponding mutant exists and can be applied to the mosaic analysis of mutant lethal genes in general.
Collapse
|
31
|
Tolkunova E, Cavaleri F, Eckardt S, Reinbold R, Christenson LK, Schöler HR, Tomilin A. TheCaudal-Related Protein Cdx2 Promotes Trophoblast Differentiation of Mouse Embryonic Stem Cells. Stem Cells 2006; 24:139-44. [PMID: 16210407 DOI: 10.1634/stemcells.2005-0240] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Besides holding great promise in clinics, embryonic stem (ES) cells represent a valuable tool for studying regulation of early developmental processes, such as cell differentiation in preimplantation embryos. The caudal-related homeobox protein Cdx2 is a transcriptional regulator essential for trophoblast lineage, functioning as early as implantation. Using an inducible system, we show that gain of Cdx2 function in ES cells triggers trophoblast-like morphological differentiation, accompanied by ploidy increase, onset of expression of trophoblast-specific markers, and loss of pluripotency-associated gene expression. These data provide an insight into the genetic network that controls lineage specification and functioning in early mammalian development.
Collapse
Affiliation(s)
- Elena Tolkunova
- Department of Developmental Biology, Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Mackay GE, West JD. Fate of tetraploid cells in 4n<-->2n chimeric mouse blastocysts. Mech Dev 2005; 122:1266-81. [PMID: 16274964 DOI: 10.1016/j.mod.2005.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/02/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
Previous studies have shown that tetraploid (4n) cells rarely contribute to the derivatives of the epiblast lineage of mid-gestation 4n<-->2n mouse chimeras. The aim of the present study was to determine when and how 4n cells were excluded from the epiblast lineage of such chimeras. The contributions of GFP-positive cells to different tissues of 4n<-->2n chimeric blastocysts labelled with tauGFP were analysed at E3.5 and E4.5 using confocal microscopy. More advanced E5.5 and E7.5 chimeric blastocysts were analysed after a period of diapause to allow further growth without implantation. Tetraploid cells were not initially excluded from the epiblast in 4n<-->2n chimeric blastocysts and they contributed to all four blastocyst tissues at all of the blastocyst stages examined. Four steps affected the allocation and fate of 4n cells in chimeras, resulting in their exclusion from the epiblast lineage by mid-gestation. (1) Fewer 4n cells were allocated to the inner cell mass than trophectoderm. (2) The blastocyst cavity tended to form among the 4n cells, causing more 4n cells to be allocated to the hypoblast and mural trophectoderm than the epiblast and polar trophectoderm, respectively. (3) 4n cells were depleted from the hypoblast and mural trophectoderm, where initially they were relatively enriched. (4) After implantation 4n cells must be lost preferentially from the epiblast lineage. Relevance of these results to the aetiology of human confined placental mosaicism and possible implications for the interpretation of mouse tetraploid complementation studies of the site of gene action are discussed.
Collapse
Affiliation(s)
- Gillian E Mackay
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK
| | | |
Collapse
|
33
|
Parker-Thornburg JV, Alana JL, Smith CN, Detry M, Rojas ML, Baskin KK. Cryopreserved Morulae can be used to Efficiently Generate Germline-transmitting Chimeras by Blastocyst Injection. Transgenic Res 2005; 14:685-90. [PMID: 16245159 DOI: 10.1007/s11248-005-7022-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
The production of chimeric mice is a complex process, requiring the careful coordination of tissue culture cell growth, production of a large number (30-75) of competent blastocysts and the availability of appropriately timed pseudo pregnant female mice. Failure at any of these steps can impinge upon the rapid production of chimeras. One potential improvement for the efficient generation of chimeric mice would be the utilization of cryopreserved embryos suitable for injection. C57Bl/6 morulae were frozen using a standard 2-step protocol with ethylene glycol as the cryopreservation agent. We determined that cryopreserved morulae could thaw, culture to blastocyst stage in KSOM media and survive injection at rates equivalent to control embryos. Cryopreserved morulae were also equivalent to controls at all later stages in the process of production of chimeric mice, including birth rate, percentage chimerism of resulting animals and ability to produce germline progeny. Hence, cryopreservation of morulae for blastocyst injection is a suitable option to enhance the efficiency of chimeric mouse generation.
Collapse
Affiliation(s)
- Janice V Parker-Thornburg
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center Genetically Engineered Mouse Facility, 1515 Holcombe Blvd., Houston, Texas, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Bodó S, Gócza E, Révay T, Hiripi L, Carstea B, Kovács A, Bodrogi L, Bösze Z. Production of transgenic chimeric rabbits and transmission of the transgene through the germline. Mol Reprod Dev 2005; 68:435-40. [PMID: 15236327 DOI: 10.1002/mrd.20109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Here we report that improved reproductive technologies combined with an efficient microinjection method and in vitro cultivation medium enabled us to create germ line chimeric rabbits. To follow the fate of the chimeric embryo a blastomere marked with the human blood coagulation factor VIII (hFVIII) transgene was microinjected into a morula stage wild type embryo. The degree of chimerism in different tissues was estimated by real-time PCR and was found to be in the range of 0.1-42%. Among the four chimeric animals, one was identified as a chromosomal intersex and two were germline chimeras.
Collapse
Affiliation(s)
- Szilárd Bodó
- Department of Animal Biology, Agricultural Biotechnology Center, Gödöllö, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Perkins BD, Nicholas CS, Baye LM, Link BA, Dowling JE. dazed gene is necessary for late cell type development and retinal cell maintenance in the zebrafish retina. Dev Dyn 2005; 233:680-94. [PMID: 15844196 DOI: 10.1002/dvdy.20375] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Several molecules, such as growth factors and neurotrophic factors, are required both for the differentiation of specific retinal cell types and the long-term cell survival of all retinal neurons. As diffusible factors, these molecules act non-cell-autonomously. Here, we describe the loss of function phenotype for dazed (dzd), a gene that acts cell-autonomously for retinal cell survival and affects the differentiation of rod photoreceptors and the Muller glia. By 3 days after fertilization, dazed mutant embryos have small eyes and slight heart edema. Acridine orange staining indicated a significant degree of retinal cell death occurring by 48 hr after fertilization, and histological analysis revealed that dying cells were found in the inner and outer nuclear layers and near the marginal zones. Although molecular and morphological differentiation of the inner retina and cone photoreceptors occurred, rod photoreceptors failed to differentiate beyond a small patch in the ventral retina and rod precursors failed to respond to exogenously added retinoic acid, which normally potentiated rod differentiation. Mosaic analysis indicated that the dazed gene acts cell-autonomously for rod production and cell survival, as dazed clones failed to produce rods outside the ventral patch and dazed cells were not maintained in wild-type hosts. Raising mutants under constant light resulted in severe retinal degeneration, whereas raising embryos under constant darkness did not provide any additional protection from cell death. Behavioral analysis showed that a subpopulation of adult fish that were heterozygous for the dazed mutation had elevated visual thresholds and were night blind, suggesting that dazed may also be required for long-term dim-light vision. Taken together, our studies suggest a role for the dazed gene in rod and Muller cell development and overall retinal cell survival and maintenance.
Collapse
Affiliation(s)
- Brian D Perkins
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
36
|
Lee CT, Li L, Takamoto N, Martin JF, Demayo FJ, Tsai MJ, Tsai SY. The nuclear orphan receptor COUP-TFII is required for limb and skeletal muscle development. Mol Cell Biol 2004; 24:10835-43. [PMID: 15572686 PMCID: PMC533959 DOI: 10.1128/mcb.24.24.10835-10843.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear orphan receptor COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development, suggesting that COUP-TFII is involved in multiple aspects of embryogenesis. Because of the early embryonic lethality of COUP-TFII knockout mice, the role of COUP-TFII during limb development has not been determined. COUP-TFII is expressed in lateral plate mesoderm of the early embryo prior to limb bud formation. In addition, COUP-TFII is also expressed in the somites and skeletal muscle precursors of the limbs. Therefore, in order to study the potential role of COUP-TFII in limb and skeletal muscle development, we bypassed the early embryonic lethality of the COUP-TFII mutant by using two methods. First, embryonic chimera analysis has revealed an obligatory role for COUP-TFII in limb bud outgrowth since mutant cells are unable to contribute to the distally growing limb mesenchyme. Second, we used a conditional-knockout approach to ablate COUP-TFII specifically in the limbs. Loss of COUP-TFII in the limbs leads to hypoplastic skeletal muscle development, as well as shorter limbs. Taken together, our results demonstrate that COUP-TFII plays an early role in limb bud outgrowth but not limb bud initiation. Also, COUP-TFII is required for appropriate development of the skeletal musculature of developing limbs.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Schwartz PJ. Stillbirths, sudden infant deaths, and long-QT syndrome: puzzle or mosaic, the pieces of the Jigsaw are being fitted together. Circulation 2004; 109:2930-2. [PMID: 15210606 DOI: 10.1161/01.cir.0000133180.77213.43] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peter J Schwartz
- Department of Cardiology, IRCCS Policlinico S. Matteo, V.le Golgi, 19 27100 Pavia, Italy.
| |
Collapse
|
38
|
Nakanishi T, Isotani A, Yamaguchi R, Ikawa M, Baba T, Suarez SS, Okabe M. Selective Passage Through the Uterotubal Junction of Sperm from a Mixed Population Produced by Chimeras of Calmegin-Knockout and Wild-Type Male Mice1. Biol Reprod 2004; 71:959-65. [PMID: 15151931 DOI: 10.1095/biolreprod.104.028647] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Loss of calmegin, a testis-specific putative chaperone protein of the endoplasmic reticulum, leads to male sterility because the sperm show defects in migration into the oviduct and do not bind to the zona pellucida. To clarify the mechanism of defective migration, XY <--> XY chimeras were produced by aggregating wild-type embryos with embryos of transgenic mice lacking functional calmegin genes and expressing enhanced green fluorescent protein (EGFP) in their acrosomes. Chimeric ejaculates contained wild-type, nonfluorescent sperm as well as sperm with EGFP-tagged acrosomes and the defective calmegin gene. Transgenic, wild-type, and chimeric males were mated to wild-type females; however, only wild-type sperm were ever found within the oviducts. Calmegin-knockout sperm, even when they were combined in chimeric ejaculates with wild-type sperm, remained outside of the uterotubal junction. These findings indicate that the presence of wild-type sperm cannot compensate for the inability of calmegin-knockout sperm to enter the oviduct and that successful ascent into the oviduct depends on the capabilities of individual sperm.
Collapse
Affiliation(s)
- Tomoko Nakanishi
- Genome Information Research Center, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Hou L, Pavan WJ, Shin MK, Arnheiter H. Cell-autonomous and cell non-autonomous signaling through endothelin receptor B during melanocyte development. Development 2004; 131:3239-47. [PMID: 15201217 DOI: 10.1242/dev.01193] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endothelin receptor B gene (Ednrb) encodes a G-protein-coupled receptor that is expressed in a variety of cell types and is specifically required for the development of neural crest-derived melanocytes and enteric ganglia. In humans, mutations in this gene are associated with Waardenburg-Shah syndrome, a disorder characterized by pigmentation defects,deafness and megacolon. To address the question of whether melanocyte development depends entirely on a cell-autonomous action of Ednrb, we performed a series of tissue recombination experiments in vitro, using neural crest cell cultures from mouse embryos carrying a novel Ednrb-null allele characterized by the insertion of a lacZ marker gene. The results show that Ednrb is not required for the generation of early neural crest-derived melanoblasts but is required for the expression of the differentiation marker tyrosinase. Tyrosinase expression can be rescued,however, by the addition of Ednrb wild-type neural tubes. These Ednrb wild-type neural tubes need not be capable of generating melanocytes themselves, but must be capable of providing KIT ligand, the cognate ligand for the tyrosine kinase receptor KIT. In fact, soluble KIT ligand is sufficient to induce tyrosinase expression in Ednrb-deficient cultures. Nevertheless, these tyrosinase-expressing, Ednrb-deficient cells do not develop to terminally differentiated,pigmented melanocytes. Pigmentation can be induced, however, by treatment with tetradecanoyl phorbol acetate, which mimics EDNRB signaling, but not by treatment with endothelin 1, which stimulates the paralogous receptor EDNRA. The results suggest that Ednrb plays a significant role during melanocyte differentiation and effects melanocyte development by both cell non-autonomous and cell-autonomous signaling mechanisms.
Collapse
Affiliation(s)
- Ling Hou
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-4472, USA.
| | | | | | | |
Collapse
|
40
|
Eckardt S, McLaughlin KJ. Interpretation of reprogramming to predict the success of somatic cell cloning. Anim Reprod Sci 2004; 82-83:97-108. [PMID: 15271446 DOI: 10.1016/j.anireprosci.2004.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the context of mammalian somatic cell cloning, the term reprogramming refers to the processes that enable a somatic cell nucleus to adopt the role of a zygotic nucleus. Gene re-expression is one measure of reprogramming if correlated with subsequent developmental potential. This paper describes several experiments utilizing pre-implantation gene expression to evaluate reprogramming and clone viability. We have established a direct correlation between Oct4 expression in mouse clones at the blastocyst stage and their potential to maintain pluripotent embryonic cells essential for post-implantation development. Furthermore, the quality of gene expression in clones dramatically improves when genetically identical clones are combined in clone-clone aggregate chimeras. Clone--clone aggregates exhibit a higher developmental potential than single clones both in vitro and in vivo. This could be mediated by complementation between blastomeres from epigenetically different clones within the aggregate rather than by the increase in cell number resulting from aggregation. We also discuss the use of tetraploid embryos as a model to evaluate reprogramming using gene expression and demonstrate that somatic cell nuclei can be reprogrammed by blastomeres to re-express embryonic specific genes but not to contribute to post-implantation development.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research, New Bolton Center, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA
| | | |
Collapse
|
41
|
Chawengsaksophak K, de Graaff W, Rossant J, Deschamps J, Beck F. Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci U S A 2004; 101:7641-5. [PMID: 15136723 PMCID: PMC419659 DOI: 10.1073/pnas.0401654101] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inactivation of Cdx2 leads to preimplantation embryonic lethality. Rescue of the implantation defect by tetraploid fusion established that Cdx2 is necessary for trophoblastic development, vasculogenesis in the yolk sac mesoderm, allantoic growth, and chorioallantoic fusion. "Rescued" Cdx2 mutants die at late gastrulation stages because of failure of placental development. Cdx2 is also needed for the completion of the normal process of gastrulation and tail bud elongation. Presegmental paraxial mesoderm is severely restricted in amount and somites posterior to somite 5 are abnormal. The Cdx2 mutation, like mutations impairing Wnt and Fgf signaling, causes posterior truncations and disturbs axial patterning of the embryonic structures, indicated by changes in the Hox expression domains. The gene appears to be important in the integration of the pathways controlling embryonic axial elongation, and anterior-posterior patterning.
Collapse
Affiliation(s)
- Kallayanee Chawengsaksophak
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | | | | | | | | |
Collapse
|
42
|
Clouthier DE, Williams SC, Hammer RE, Richardson JA, Yanagisawa M. Cell-autonomous and nonautonomous actions of endothelin-A receptor signaling in craniofacial and cardiovascular development. Dev Biol 2003; 261:506-19. [PMID: 14499656 DOI: 10.1016/s0012-1606(03)00128-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Craniofacial and cardiac development relies on the proper patterning of the neural crest-derived ectomesenchyme of the pharyngeal arches, from which many craniofacial and great vessel structures arise. One of the intercellular signaling molecules that is involved in this process, endothelin-1 (ET-1), is expressed in the arch epithelium and influences arch development by binding to its cognate receptor, the endothelin A (ET(A)) receptor, found on ectomesenchymal cells. We have previously shown that absence of ET(A) signaling in ET(A)(-/-) mouse embryos disrupts neural crest cell development, resulting in craniofacial and cardiovascular defects similar in many aspects to those in mouse models of DiGeorge syndrome. These changes may reflect a cell-autonomous requirement for ET(A) signaling during crest cell development because the ET(A) receptor is an intracellular signaling molecule. However, it is also possible that some of the observed defects in ET(A)(-/-) embryos could arise from the absence of downstream signaling that act in a non-cell-autonomous manner. To address this question, we performed chimera analysis using ET(A)(-/-) embryonic stem cells. We observe that, in almost all early ET(A)(-/-) --> (+/+) chimeric embryos, ET(A)(-/-) cells are excluded from the caudoventral aspects of the pharyngeal arches, suggesting a cell-autonomous role for ET(A) signaling in crest cell migration and/or colonization. Interestingly, in the few embryos in which mutant cells do reach the ventral arch, structures derived from this area are either composed solely of wild type cells or are missing, suggesting a second cell-autonomous role for ET(A) signaling in postmigratory crest cell differentiation. In the cardiac outflow tract and great vessels, ET(A)(-/-) cells are excluded from the walls of the developing pharyngeal arch arteries, indicating that ET(A) signaling also acts cell-autonomously during cardiac neural crest cell development.
Collapse
Affiliation(s)
- David E Clouthier
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
43
|
Hadjantonakis AK, Dickinson ME, Fraser SE, Papaioannou VE. Technicolour transgenics: imaging tools for functional genomics in the mouse. Nat Rev Genet 2003; 4:613-25. [PMID: 12897773 DOI: 10.1038/nrg1126] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, a battery of powerful tools that encompass forward and reverse genetic approaches have been developed to dissect the molecular and cellular processes that regulate development and disease. The advent of genetically-encoded fluorescent proteins that are expressed in wild type and mutant mice, together with advances in imaging technology, make it possible to study these biological processes in many dimensions. Importantly, these technologies allow direct visual access to complex events as they happen in their native environment, which provides greater insights into mammalian biology than ever before.
Collapse
Affiliation(s)
- Anna-Katerina Hadjantonakis
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York 10032, USA
| | | | | | | |
Collapse
|
44
|
Collinson JM, Quinn JC, Hill RE, West JD. The roles of Pax6 in the cornea, retina, and olfactory epithelium of the developing mouse embryo. Dev Biol 2003; 255:303-12. [PMID: 12648492 DOI: 10.1016/s0012-1606(02)00095-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The roles of Pax6 were investigated in the murine eye and the olfactory epithelium by analysing gene expression and distribution of Pax6(-/-) cells in Pax6(+/+) <--> Pax6(-/-) chimeras. It was found that between embryonic days E10.5 and E16.5 Pax6 is autonomously required for cells to contribute fully not only to the corneal epithelium, where Pax6 is expressed at high levels, but also to the to the corneal stroma and endothelium, where the protein is detected at very low levels. Pax6(-/-) cells contributed only poorly to the neural retina, forming small clumps of cells that were normally restricted to the ganglion cell layer at E16.5. Pax6(-/-) cells in the retinal pigment epithelium could express Trp2, a component of the pigmentation pathway, at E14.5 and a small number went on to differentiate and produce pigment at E16.5. The segregation and near-exclusion of mutant cells from the nasal epithelium mirrored the behaviour of mutant cells in other developmental contexts, particularly the lens, suggesting that common primary defects may be responsible for diverse Pax6-related phenotypes.
Collapse
Affiliation(s)
- J Martin Collinson
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK.
| | | | | | | |
Collapse
|
45
|
Parichy DM, Turner JM. Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development. Development 2003; 130:817-33. [PMID: 12538511 DOI: 10.1242/dev.00307] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ectothermic vertebrates exhibit a diverse array of adult pigment patterns. A common element of these patterns is alternating dark and light stripes each comprising different classes of neural crest-derived pigment cells. In the zebrafish, Danio rerio, alternating horizontal stripes of black melanophores and yellow xanthophores are a prominent feature of the adult pigment pattern. In fms mutant zebrafish, however, xanthophores fail to develop and melanophore stripes are severely disrupted. fms encodes a type III receptor tyrosine kinase expressed by xanthophores and their precursors and is the closest known homologue of kit, which has long been studied for roles in pigment pattern development in amniotes. In this study we assess the cellular and temporal requirements for Fms activity in promoting adult pigment pattern development. By transplanting cells between fms mutants and either wild-type or nacre mutant zebrafish, we show that fms acts autonomously to the xanthophore lineage in promoting the striped arrangement of adult melanophores. To identify critical periods for fms activity, we isolated temperature sensitive alleles of fms and performed reciprocal temperature shift experiments at a range of stages from embryo to adult. These analyses demonstrate that Fms is essential for maintaining cells of the xanthophore lineage as well as maintaining the organization of melanophore stripes throughout development. Finally, we show that restoring Fms activity even at late larval stages allows essentially complete recovery of xanthophores and the development of a normal melanophore stripe pattern. Our findings suggest that fms is not required for establishing a population of precursor cells during embryogenesis but is required for recruiting pigment cell precursors to xanthophore fates, with concomitant effects on melanophore organization.
Collapse
Affiliation(s)
- David M Parichy
- Section of Integrative Biology, Section of Molecular, Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA.
| | | |
Collapse
|
46
|
Tallquist MD, Soriano P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells. Development 2003; 130:507-18. [PMID: 12490557 DOI: 10.1242/dev.00241] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac and cephalic neural crest cells (NCCs) are essential components of the craniofacial and aortic arch mesenchyme. Genetic disruption of the platelet-derived growth factor receptor alpha (PDGFRalpha) results in defects in multiple tissues in the mouse, including neural crest derivatives contributing to the frontonasal process and the aortic arch. Using chimeric analysis, we show that loss of the receptor in NCCs renders them inefficient at contributing to the cranial mesenchyme. Conditional gene ablation in NCCs results in neonatal lethality because of aortic arch defects and a severely cleft palate. The conotruncal defects are first observed at E11.5 and are consistent with aberrant NCC development in the third, fourth and sixth branchial arches, while the bone malformations present in the frontonasal process and skull coincide with defects of NCCs from the first to third branchial arches. Changes in cell proliferation, migration, or survival were not observed in PDGFRalpha NCC conditional embryos, suggesting that the PDGFRalpha may play a role in a later stage of NCC development. Our results demonstrate that the PDGFRalpha plays an essential, cell-autonomous role in the development of cardiac and cephalic NCCs and provides a model for the study of aberrant NCC development.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/abnormalities
- Aorta, Thoracic/embryology
- Cell Differentiation
- Cell Movement
- Fetal Heart/embryology
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heterozygote
- Homozygote
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Neural Crest/cytology
- Neural Crest/embryology
- Phenotype
- Receptor, Platelet-Derived Growth Factor alpha/deficiency
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Skull/abnormalities
- Skull/embryology
Collapse
Affiliation(s)
- Michelle D Tallquist
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
47
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
During human development, hematopoiesis is thought to be compartmentalized to the fetal circulation, liver, and bone marrow. Here, we show that combinations of cytokines together with bone morphogenetic protein-4 and erythropoietin could induce multiple blood lineages from human skeletal muscle or neural tissue. Under defined serum-free conditions, the growth factors requirements, proliferation, and differentiation capacity of muscle and neural hematopoiesis were distinct to that derived from committed hematopoietic sites and were uniquely restricted to CD45(-)CD34(-) cells expressing the prominin AC133. Our study defines epigenetic factors required for the emergence of hematopoiesis from unexpected tissue origins and illustrates that embyronically specified microenvironments do not limit cell fate in humans.
Collapse
MESH Headings
- AC133 Antigen
- Animals
- Antigens, CD
- Antigens, CD34/analysis
- Antigens, Differentiation/analysis
- Bone Morphogenetic Protein 4
- Bone Morphogenetic Proteins/pharmacology
- Brain/cytology
- Brain/embryology
- Cell Differentiation/drug effects
- Cell Division/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cells, Cultured/transplantation
- Colony-Forming Units Assay
- Cytokines/pharmacology
- Drug Synergism
- Erythropoietin/pharmacology
- Glycoproteins/analysis
- Granulocyte Colony-Stimulating Factor/pharmacology
- Hematopoiesis, Extramedullary/drug effects
- Humans
- Interleukin-3/pharmacology
- Interleukin-6/pharmacology
- Leukocyte Common Antigens/analysis
- Membrane Proteins/pharmacology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Cells/transplantation
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/transplantation
- Organ Specificity
- Peptides/analysis
- Radiation Chimera
- Stem Cell Factor/pharmacology
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Karen E Jay
- John P. Robarts Research Institute, Developmental Stem Cell Biology, The University of Western Ontario, St. Joseph's Hospital and London Health Sciences, 100 Perth Drive, London, Ontario N6A 5K8, Canada
| | | | | |
Collapse
|
49
|
Abstract
Chimaeric analysis is a powerful method to address questions about the cell-autonomous nature of defects in spermatogenesis. Symplastic spermatids (sys) mice have a recessive mutation that causes male sterility due to an arrest in germ-cell development during spermiogenesis. Chimaeric mice were generated by aggregation of eight-cell embryos from sys (FVB/N genetic background) and wild-type C57BL/6 (B6) mice to determine whether the male germ-cell defect is cell-autonomous. The resulting FVB/N<->B6 chimaeras (<-> denotes fusion of embryos) were mated with FVB/N mice and coat colour of offspring was used to identify transmission of FVB/N or B6 gametes. Regardless of the relative contribution of B6 to somatic tissues of the chimaeras, almost all (282 of 284; 99.3%) offspring of B6 XY<->XY FVB/N (+/+ or sys/+) males (n = 9) received a FVB/N-derived paternal gamete. After mating of female B6<->FVB/N chimaeras, 51 of 73 (69.9%) offspring received an FVB-derived maternal gamete. Southern blot analysis of different tissues from chimaeric males indicated that, despite the presence of balanced chimaerism in somatic tissues, the germ line in B6 XY<->XY FVB/N mice was essentially FVB/N in composition. Thus there is a strong selective advantage for FVB/N male germ cells over B6 male germ cells in B6<->FVB/N-aggregation chimaeras at some stage during development of the male germ line. Each of three male chimaeras that were either B6 XY<->XY FVB/N (sys/sys) or B6 XX<->XY FVB/N (sys/sys) in composition was sterile, and testis histology was essentially sysmutant. This finding indicates that the function of the gene(s) affected in the sys mutation may be required in the testis, although whether expression is required in germ cells, somatic cells or both remains unknown. The extreme bias in transmission of male gametes has implications for experimental design in studies that use chimaeric analysis to address questions regarding the cell-autonomous nature of germ-cell defects in mice.
Collapse
Affiliation(s)
- G R MacGregor
- Center for Molecular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
50
|
Wilkie AL, Jordan SA, Jackson IJ. Neural crest progenitors of the melanocyte lineage: coat colour patterns revisited. Development 2002; 129:3349-57. [PMID: 12091305 DOI: 10.1242/dev.129.14.3349] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural crest-derived melanoblasts are the progenitors of melanocytes, the pigment cells of the skin, hair and choroid. Previous studies of adult chimaeric mice carrying different coat colour markers have suggested that the total melanocyte population is derived from a small number of melanoblast progenitors, each of which generates a discrete unilateral transverse band of colour. This work also suggested minimal mixing of cells between clones. We have used two complementary approaches to assess the behaviour of migrating clones of melanoblasts directly in the developing embryo. First, we made aggregation chimaeras between transgenic Dct-lacZ and non-transgenic embryos, in which lacZ is a marker for melanoblasts. Second, we generated transgenic mice carrying a modified lacZ reporter construct containing a 289 base pair duplication (laacZ) under the control of the Dct promoter. The laacZ transgene is normally inactive, but reverts to wild-type lacZ at low frequency, labelling a cell and all of its progeny at random. Mosaic embryos containing labelled melanoblast clones were generated. In contrast to previous data, chimaeric and mosaic embryonic melanoblast patterns suggest that: (1) there is a large number of melanoblast progenitors; (2) there is a pool of melanoblasts in the cervical region; (3) different cell dispersion mechanisms may operate in the head and trunk regions; and (4) there is extensive axial mixing between clones.
Collapse
Affiliation(s)
- Alison L Wilkie
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | | |
Collapse
|