1
|
Arnanz MA, Ferrer M, Grande MT, de Martín Esteban SR, Ruiz-Pérez G, Cravatt BF, Mostany R, Lobo VJSA, Romero J, Martínez-Relimpio AM. Fatty acid amide hydrolase gene inactivation induces hetero-cellular potentiation of microglial function in the 5xFAD mouse model of Alzheimer's disease. Glia 2025; 73:352-367. [PMID: 39474846 DOI: 10.1002/glia.24638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/22/2024]
Abstract
Neuroinflammation has recently emerged as a crucial factor in Alzheimer's disease (AD) etiopathogenesis. Microglial cells play an important function in the inflammatory response; specifically, the emergence of disease-associated microglia (DAM) has offered new insights into the conflicting perspectives on the detrimental or beneficial roles of microglia. We previously showed that modulating the endocannabinoid tone by fatty acid amide hydrolase (FAAH) inactivation renders beneficial effects in an amyloidosis context, paradoxically accompanied by an exacerbated neuroinflammatory response and the enrichment of DAM population. Here, we aim to elucidate the role of microglial cells in FAAH-lacking mice in the 5xFAD mouse model of AD by using RNA-sequencing analysis, molecular determinations, and morphological studies by using in vivo multiphoton microscopy. FAAH-lacking AD mice displayed upregulated inflammatory genes and exhibited a DAM genetic profile. Conversely, genes linked to AD were downregulated. Depleting microglia using PLX5622 revealed that plaque-associated microglia in FAAH-deficient AD mice had a more stable, ramified morphology and increased Aβ uptake, leading to reduced plaque growth compared to control mice. Importantly, FAAH expression was negligible in microglial cells, thus suggesting a role for FAAH in the cellular interplay in the central nervous system. Our findings show that Faah gene inactivation triggers a hetero-cellular enhancement of microglial function that was paradoxically paralleled by an exacerbated inflammatory response. Taken together, the present data highlight FAAH as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- María Andrea Arnanz
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - María Ferrer
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - María Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Cell Biology, The Scripps Research Institute, San Diego, California, USA
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, San Diego, California, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Víctor Javier Sánchez-Arévalo Lobo
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | |
Collapse
|
2
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Demaili A, Portugalov A, Maroun M, Akirav I, Braun K, Bock J. Early life stress induces decreased expression of CB1R and FAAH and epigenetic changes in the medial prefrontal cortex of male rats. Front Cell Neurosci 2024; 18:1474992. [PMID: 39503008 PMCID: PMC11534599 DOI: 10.3389/fncel.2024.1474992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Several studies in both animal models and in humans have provided substantial evidence that early life stress (ELS) induces long-term changes in behavior and brain function, making it a significant risk factor in the aetiology of various mental disorders, including anxiety and depression. In this study, we tested the hypothesis that ELS in male rats (i) leads to increased anxiety and depressive-like symptoms; and (ii) that these behavioral changes are associated with functional alterations in the endocannabinoid system of the medial prefrontal cortex (mPFC). We further assessed whether the predicted changes in the gene expression of two key components of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and the fatty acid amide hydrolase (FAAH), are regulated by epigenetic mechanisms. Behavioral profiling revealed that the proportion of behaviorally affected animals was increased in ELS exposed male rats compared to control animals, specifically showing symptoms of anhedonia and impaired social behavior. On the molecular level we observed a decrease in CB1R and FAAH mRNA expression in the mPFC of adult ELS exposed animals. These gene expression changes were accompanied by reduced global histone 3 acetylation in the mPFC, while no significant changes in DNA methylation and no significant changes of histone-acetylation at the promoter regions of the analyzed genes were detected. Taken together, our data provide evidence that ELS induces a long-term reduction of CB1R and FAAH expression in the mPFC of adult male rats, which may partially contribute to the ELS-induced changes in adult socio-emotional behavior.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- PG Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Santoso AD, De Ridder D. Fatty Acid Amide Hydrolase: An Integrative Clinical Perspective. Cannabis Cannabinoid Res 2023; 8:56-76. [PMID: 35900294 DOI: 10.1089/can.2021.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fatty acid amide hydrolase (FAAH) is one of the main terminating enzymes of the endocannabinoid system (ECS). Since being discovered in 1996, the modulation of FAAH has been viewed as a compelling alternative strategy to obtain the beneficial effect of the ECS. With a considerable amount of FAAH-related publication over time, the next step would be to comprehend the proximity of this evidence for clinical application. Objective: This review intends to highlight the rationale of FAAH modulation and provide the latest evidence from clinical studies. Methods: Publication searches were conducted to gather information focused on FAAH-related clinical evidence with an extension to the experimental research to understand the biological plausibility. The subtopics were selected to be multidisciplinary to offer more perspective on the current state of the arts. Discussion: Experimental and clinical studies have demonstrated that FAAH was highly expressed not only in the central nervous system but also in the peripheral tissues. As the key regulator of endocannabinoid signaling, it would appear that FAAH plays a role in the modulation of mood and emotional response, reward system, pain perception, energy metabolism and appetite regulation, inflammation, and other biological processes. Genetic variants may be associated with some conditions such as substance/alcohol use disorders, obesity, and eating disorder. The advancement of functional neuroimaging has enabled the evaluation of the neurochemistry of FAAH in brain tissues and this can be incorporated into clinical trials. Intriguingly, the application of FAAH inhibitors in clinical trials seems to provide less striking results in comparison with the animal models, although some potential still can be seen. Conclusion: Modulation of FAAH has an immense potential to be a new therapeutic candidate for several disorders. Further exploration, however, is still needed to ensure who is the best candidate for the treatment strategy.
Collapse
Affiliation(s)
- Anugrah D Santoso
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Urology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Demaili A, Portugalov A, Dudai M, Maroun M, Akirav I, Braun K, Bock J. Epigenetic (re)programming of gene expression changes of CB1R and FAAH in the medial prefrontal cortex in response to early life and adolescence stress exposure. Front Cell Neurosci 2023; 17:1129946. [PMID: 36909279 PMCID: PMC9992175 DOI: 10.3389/fncel.2023.1129946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Environmental factors, including stress, that are experienced during early life (ELS) or adolescence are potential risk factors for the development of behavioral and mental disorders later in life. The endocannabinoid system plays a major role in the regulation of stress responses and emotional behavior, thereby acting as a mediator of stress vulnerability and resilience. Among the critical factors, which determine the magnitude and direction of long-term consequences of stress exposure is age, i.e., the maturity of brain circuits during stress exposure. Thus, the present study addressed the hypotheses that ELS and adolescent stress differentially affect the expression of regulatory elements of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) in the medial prefrontal cortex (mPFC) of adult female rats. We also tested the hypothesis that the proposed gene expression changes are epigenetically modulated via altered DNA-methylation. The specific aims were to investigate if (i) ELS and adolescent stress as single stressors induce changes in CB1R and FAAH expression (ii) ELS exposure influences the effect of adolescent stress on CB1R and FAAH expression, and (iii) if the proposed gene expression changes are paralleled by changes of DNA methylation. The following experimental groups were investigated: (1) non-stressed controls (CON), (2) ELS exposure (ELS), (3) adolescent stress exposure (forced swimming; FS), (4) ELS + FS exposure. We found an up-regulation of CB1R expression in both single-stressor groups and a reduction back to control levels in the ELS + FS group. An up-regulation of FAAH expression was found only in the FS group. The data indicate that ELS, i.e., stress during a very immature stage of brain development, exerts a buffering programming effect on gene expression changes induced by adolescent stress. The detected gene expression changes were accompanied by altered DNA methylation patterns in the promoter region of these genes, specifically, a negative correlation of mean CB1R DNA methylation with gene expression was found. Our results also indicate that ELS induces a long-term "(re)programming" effect, characterized by CpG-site specific changes within the promoter regions of the two genes that influence gene expression changes in response to FS at adolescence.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Michal Dudai
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.,Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Brain and Behavioral Science, Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Brain and Behavioral Science, Magdeburg, Germany.,Project Group (PG) Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Kolla NJ, Boileau I, Bagby RM. Higher trait neuroticism is associated with greater fatty acid amide hydrolase binding in borderline and antisocial personality disorders. Sci Rep 2022; 12:1126. [PMID: 35064143 PMCID: PMC8782862 DOI: 10.1038/s41598-022-04789-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/31/2021] [Indexed: 11/20/2022] Open
Abstract
Borderline personality disorder (BPD) and antisocial personality disorder (ASPD) are the two most frequently diagnosed and researched DSM-5 personality disorders, and both are characterized by high levels of trait neuroticism. Fatty acid amide hydrolase (FAAH), an enzyme of the endocannabinoid system (ECS), has been linked to regulation of mood through modulation of anandamide, an endocannabinoid. We hypothesized that prefrontal cortex (PFC) FAAH binding would relate to trait neuroticism in personality disorders. Thirty-one individuals with personality disorders (20 with BPD and 11 with ASPD) completed the investigation. All participants completed the revised NEO Personality Inventory, which yields standardized scores (e.g., T scores) for the traits of neuroticism, openness, conscientiousness, agreeableness, and extraversion. All participants were medication free and were not utilizing illicit substances as determined by drug urinalysis. Additionally, none of the participants had a comorbid major depressive episode, bipolar disorder, psychotic disorder, or substance use disorder. Each participant underwent one [11C]CURB PET scan. Consistent with our hypothesis, neuroticism was positively correlated with PFC FAAH binding (r = 0.42, p = 0.021), controlling for genotype. Neuroticism was also positively correlated with dorsal putamen FAAH binding (r = 0.53, p = 0.0024), controlling for genotype. Elevated brain FAAH is an endophenotype for high neuroticism in BPD and ASPD. Novel pharmacological therapeutics that inhibit FAAH could emerge as potential new treatments for BPD and ASPD with high neuroticism.
Collapse
Affiliation(s)
- Nathan J Kolla
- Centre for Addiction and Mental Health (CAMH), 250 College Street, Room 626, Toronto, ON, M5T 1R8, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada. .,Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada. .,Waypoint/University of Toronto Research Chair in Forensic Mental Health Science, Penetanguishene, ON, Canada.
| | - Isabelle Boileau
- Centre for Addiction and Mental Health (CAMH), 250 College Street, Room 626, Toronto, ON, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - R Michael Bagby
- Centre for Addiction and Mental Health (CAMH), 250 College Street, Room 626, Toronto, ON, M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Elevated Brain Fatty Acid Amide Hydrolase Induces Depressive-Like Phenotypes in Rodent Models: A Review. Int J Mol Sci 2021; 22:ijms22031047. [PMID: 33494322 PMCID: PMC7864498 DOI: 10.3390/ijms22031047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Altered activity of fatty acid amide hydrolase (FAAH), an enzyme of the endocannabinoid system, has been implicated in several neuropsychiatric disorders, including major depressive disorder (MDD). It is speculated that increased brain FAAH expression is correlated with increased depressive symptoms. The aim of this scoping review was to establish the role of FAAH expression in animal models of depression to determine the translational potential of targeting FAAH in clinical studies. A literature search employing multiple databases was performed; all original articles that assessed FAAH expression in animal models of depression were considered. Of the 216 articles that were screened for eligibility, 24 articles met inclusion criteria and were included in this review. Three key findings emerged: (1) FAAH expression is significantly increased in depressive-like phenotypes; (2) genetic knockout or pharmacological inhibition of FAAH effectively reduces depressive-like behavior, with a dose-dependent effect; and (3) differences in FAAH expression in depressive-like phenotypes were largely localized to animal prefrontal cortex, hippocampus and striatum. We conclude, based on the animal literature, that a positive relationship can be established between brain FAAH level and expression of depressive symptoms. In summary, we suggest that FAAH is a tractable target for developing novel pharmacotherapies for MDD.
Collapse
|
8
|
Workman CD, Fietsam AC, Sosnoff J, Rudroff T. Increased Likelihood of Falling in Older Cannabis Users vs. Non-Users. Brain Sci 2021; 11:brainsci11020134. [PMID: 33494171 PMCID: PMC7909838 DOI: 10.3390/brainsci11020134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cannabis is one of the most common drugs in the United States and is the third most prevalent substance consumed by adults aged 50 years and older. Normal aging is associated with physiological changes that make older adults vulnerable to impaired function and geriatric conditions (e.g., falls, cognitive impairment). However, the impact of medical cannabis use on fall risk in older adults remains unexplored. The purpose of this study was to investigate if cannabis use in older adults influences fall risk, cognitive function, and motor function. It was hypothesized that older chronic cannabis users would perform worse than non-users on gait, balance, and cognitive tests. Sixteen older adults, split into cannabis Users and age- and sex-matched Non-Users groups (n = 8/group), participated in the study. The results indicate a higher fall risk, worse one leg standing balance performance, and slower gait speed in Users vs. Non-Users. No significant differences in cognitive function were found. Thus, chronic cannabis use was purported to exacerbate the poorer balance control and slower gait velocity associated with normal aging. Future mechanistic (e.g., neuroimaging) investigations of the short- and long-term effects of using a variety of cannabis products (e.g., THC/CBD ratios, routes of administration) on cognitive function, motor function, and fall incidence in older adults are suggested.
Collapse
Affiliation(s)
- Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (C.D.W.); (A.C.F.)
| | - Alexandra C. Fietsam
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (C.D.W.); (A.C.F.)
| | - Jacob Sosnoff
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA;
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (C.D.W.); (A.C.F.)
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-319-467-0363
| |
Collapse
|
9
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Watts JJ, Jacobson MR, Lalang N, Boileau I, Tyndale RF, Kiang M, Ross RA, Houle S, Wilson AA, Rusjan P, Mizrahi R. Imaging Brain Fatty Acid Amide Hydrolase in Untreated Patients With Psychosis. Biol Psychiatry 2020; 88:727-735. [PMID: 32387132 PMCID: PMC8240477 DOI: 10.1016/j.biopsych.2020.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The brain's endocannabinoid system, the primary target of cannabis, has been implicated in psychosis. The endocannabinoid anandamide is elevated in cerebrospinal fluid of patients with schizophrenia. Fatty acid amide hydrolase (FAAH) controls brain anandamide levels; however, it is unknown if FAAH is altered in vivo in psychosis or related to positive psychotic symptoms. METHODS Twenty-seven patients with schizophrenia spectrum disorders and 36 healthy control subjects completed high-resolution positron emission tomography scans with the novel FAAH radioligand [11C]CURB and structural magnetic resonance imaging. Data were analyzed using the validated irreversible 2-tissue compartment model with a metabolite-corrected arterial input function. RESULTS FAAH did not differ significantly between patients with psychotic disorders and healthy control subjects (F1,62.85 = 0.48, p = .49). In contrast, lower FAAH predicted greater positive psychotic symptom severity, with the strongest effect observed for the positive symptom dimension, which includes suspiciousness, delusions, unusual thought content, and hallucinations (F1,26.69 = 12.42, p = .002; Cohen's f = 0.42, large effect). Shorter duration of illness (F1,26.95 = 13.78, p = .001; Cohen's f = 0.39, medium to large effect) and duration of untreated psychosis predicted lower FAAH (F1,26.95 = 6.03, p = .021, Cohen's f = 0.27, medium effect). These results were not explained by past cannabis exposure or current intake of antipsychotic medications. FAAH exhibited marked differences across brain regions (F7,112.62 = 175.85, p < 1 × 10-56; Cohen's f > 1). Overall, FAAH was higher in female subjects than in male subjects (F1,62.84 = 10.05, p = .002; Cohen's f = 0.37). CONCLUSIONS This first study of brain FAAH in psychosis indicates that FAAH may represent a biomarker of disease state of potential utility for clinical studies targeting psychotic symptoms or as a novel target for interventions to treat psychotic symptoms.
Collapse
Affiliation(s)
- Jeremy J Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Maya R Jacobson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nittha Lalang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Fernández-Ruiz J, Galve-Roperh I, Sagredo O, Guzmán M. Possible therapeutic applications of cannabis in the neuropsychopharmacology field. Eur Neuropsychopharmacol 2020; 36:217-234. [PMID: 32057592 DOI: 10.1016/j.euroneuro.2020.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties. These properties are mostly associated with their ability to modulate the activity of an intercellular communication system, the so-called endocannabinoid system, which is highly active in the CNS and has been found altered in many neurological disorders. Specifically, this includes the neuropsychopharmacology field, with diseases such as schizophrenia and related psychoses, anxiety-related disorders, mood disorders, addiction, sleep disorders, post-traumatic stress disorder, anorexia nervosa and other feeding-related disorders, dementia, epileptic syndromes, as well as autism, fragile X syndrome and other neurodevelopment-related disorders. Here, we gather, from a pharmacological and biochemical standpoint, the recent advances in the study of the therapeutic relevance of the endocannabinoid system in the CNS, with especial emphasis on the neuropsychopharmacology field. We also illustrate the efforts that are currently being made to investigate at the clinical level the potential therapeutic benefits derived from elevating or inhibiting endocannabinoid signaling in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Ismael Galve-Roperh
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Manuel Guzmán
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
12
|
Erdoğanoğlu Y, Sayaca Ç, Çalık M, Noyan CO, Çetin A, Yertutanol DK, Taşcılar LN, Kaya D. Evaluation of Plantar Foot Sensation, Balance, Physical Performance, and Fear of Movement in Substance Use Disorders. J Am Podiatr Med Assoc 2020; 110:436239. [PMID: 31566442 DOI: 10.7547/18-194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Neuropathologic changes may occur in the nervous system due to long-term substance use, leading to functional disability with altering of balance. We know little about substance-related mechanisms that can cause movement disorders. This study investigated the effects of plantar foot sensation and balance on physical performance as an effect of substance use in detoxified patients. METHODS Twenty-three users of cannabis, volatile agents, or narcotic/stimulant agents alone or in combination for at least 1 year (mean age, 27.6 years) and 20 healthy volunteers (mean age, 24.6 years) were included. Participant evaluations were implemented immediately after the detoxification process with psychiatrist approval. Depression, state-trait anxiety, and fear of movement levels were evaluated with the Beck Depression Inventory, State-Trait Anxiety Inventory, and Tampa Scale for Kinesiophobia, respectively. Plantar foot sensations were evaluated with light touch, two-point discrimination, and vibration examinations. Balance was assessed with balance software and a balance board and force platform. Balance path, balance path distance, and center of pressure were recorded. Physical performance was evaluated with the Timed Up and Go (TUG) test in the final step. RESULTS There was a significant difference in two-point discrimination of patients versus controls (P < .05). Significant differences were also found in balance values, particularly in the sagittal direction (P < .05). TUG test results of patients compared with controls showed a negative influence on physical function (P < .05). CONCLUSIONS Detailed examination should be performed to understand movement disorders in substance users. Herein, substance users had impaired two-point discrimination and sagittal balance reciprocally. Thus, customized physiotherapy approaches to substance users should be considered to improve their movement disorders.
Collapse
|
13
|
Fazio D, Criscuolo E, Piccoli A, Barboni B, Fezza F, Maccarrone M. Advances in the discovery of fatty acid amide hydrolase inhibitors: what does the future hold? Expert Opin Drug Discov 2020; 15:765-778. [PMID: 32292082 DOI: 10.1080/17460441.2020.1751118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme, that inactivates endogenous signaling lipids of the fatty acid amide family, including the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). The latter compound has been shown to regulate a number of important pathophysiological conditions in humans, like feeding, obesity, immune response, reproductive events, motor coordination, and neurological disorders. Hence, direct manipulation of the endocannabinoid tone is thought to have therapeutic potential. A new opportunity to develop effective drugs may arise from multi-target directed ligand (MTDL) strategies, which brings the concept that a single compound can recognize different targets involved in the cascade of pathophysiological events. AREAS COVERED This review reports the latest advances in the development of new single targeted and dual-targeted FAAH inhibitors over the past 5 years. EXPERT OPINION In recent years, several FAAH inhibitors have been synthesized and investigated, yet to date none of them has reached the market as a systemic drug. Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases.
Collapse
Affiliation(s)
- Domenico Fazio
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy.,European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy
| | - Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Alessandra Piccoli
- Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo , Teramo, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome , Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation , Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome , Rome, Italy
| |
Collapse
|
14
|
Assari S, Mistry R, Caldwell CH, Zimmerman MA. Marijuana Use and Depressive Symptoms; Gender Differences in African American Adolescents. Front Psychol 2018; 9:2135. [PMID: 30505287 PMCID: PMC6250838 DOI: 10.3389/fpsyg.2018.02135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: This study aimed to examine gender differences in the bidirectional associations between marijuana use and depressive symptoms among African American adolescents. The study also tested gender differences in the effects of socioeconomic status, maternal support, and friends' drug use on adolescents' depressive symptoms and marijuana use. Methods: This is a secondary analysis of the Flint Adolescent Study (FAS). Six hundred and eighty one African American adolescents (335 males and 346 females) were followed for 3 years, from 1995 (mean age 16) to 1997 (mean age 19). Depressive symptoms (Brief Symptom Inventory) and marijuana use were measured annually during the follow up. We used multi-group latent growth curve modeling to explore the reciprocal associations between depressive symptoms and marijuana use over time based on gender. Results: Baseline marijuana use was predictive of an increase in depressive symptoms over time among male but not female African American adolescents. Baseline depressive symptoms were not predictive of an increase in marijuana use among male or female adolescents. Conclusion: Study findings suggest that male African American adolescents who use marijuana are at an increased risk of subsequent depressive symptoms. Interventions that combine screening and treatment for marijuana use and depression may be indicated for African American male adolescents.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Psychiatry, School of Medicine, University of Michigan, Ann Arbor, MI, United States
- Center for Research on Ethnicity, Culture and Health, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Ritesh Mistry
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Cleopatra Howard Caldwell
- Center for Research on Ethnicity, Culture and Health, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Marc A. Zimmerman
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
History of cannabis use is associated with altered gait. Drug Alcohol Depend 2017; 178:215-222. [PMID: 28666180 DOI: 10.1016/j.drugalcdep.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Despite evidence that cannabinoid receptors are located in movement-related brain regions (e.g., basal ganglia, cerebral cortex, and cerebellum), and that chronic cannabis use is associated with structural and functional brain changes, little is known about the long-term effect of cannabis use on human movement. The aim of the current study was to investigate balance and walking gait in adults with a history of cannabis use. We hypothesised that cannabis use is associated with subtle changes in gait and balance that are insufficient in magnitude for detection in a clinical setting. METHODS Cannabis users (n=22, 24±6years) and non-drug using controls (n=22, 25±8years) completed screening tests, a gait and balance test (with a motion capture system and in-built force platforms), and a clinical neurological examination of movement. RESULTS Compared to controls, cannabis users exhibited significantly greater peak angular velocity of the knee (396±30 versus 426±50°/second, P=0.039), greater peak elbow flexion (53±12 versus 57±7°, P=0.038) and elbow range of motion (33±13 versus 36±10°, P=0.044), and reduced shoulder flexion (41±19 versus 26±16°, P=0.007) during walking gait. However, balance and neurological parameters did not significantly differ between the groups. CONCLUSIONS The results suggest that history of cannabis use is associated with long-lasting changes in open-chain elements of walking gait, but the magnitude of change is not clinically detectable. Further research is required to investigate if the subtle gait changes observed in this population become more apparent with aging and increased cannabis use.
Collapse
|
16
|
Rodríguez-Cueto C, Hernández-Gálvez M, Hillard CJ, Maciel P, García-García L, Valdeolivas S, Pozo MA, Ramos JA, Gómez-Ruiz M, Fernández-Ruiz J. Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3. Neuroscience 2016; 339:191-209. [PMID: 27717809 DOI: 10.1016/j.neuroscience.2016.09.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/15/2022]
Abstract
Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression. Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortem cerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option. Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease - cerebellum and brainstem. These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivo brain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters. Concerning the endocannabinoid signaling, our data indicated no changes in CB2 receptors. By contrast, CB1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus. We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleoylethanolamide in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered. Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mariluz Hernández-Gálvez
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Luis García-García
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Valdeolivas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense, Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - José A Ramos
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - María Gómez-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense, Madrid, Spain.
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.
| |
Collapse
|
17
|
Shimoda Y, Fujinaga M, Hatori A, Yui J, Zhang Y, Nengaki N, Kurihara Y, Yamasaki T, Xie L, Kumata K, Ishii H, Zhang MR. N-(3,4-Dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[(11)C]methylphenyl)thiazol-2-yl]-1-carboxamide: A promising positron emission tomography ligand for fatty acid amide hydrolase. Bioorg Med Chem 2015; 24:627-34. [PMID: 26740152 DOI: 10.1016/j.bmc.2015.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
To visualize fatty acid amide hydrolase (FAAH) in brain in vivo, we developed a novel positron emission tomography (PET) ligand N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[(11)C]methylphenyl)thiazol-2-yl]-1-carboxamide ([(11)C]DFMC, [(11)C]1). DFMC (1) was shown to have high binding affinity (IC50: 6.1nM) for FAAH. [(11)C]1 was synthesized by C-(11)C coupling reaction of arylboronic ester 2 with [(11)C]methyl iodide in the presence of Pd catalyst. At the end of synthesis, [(11)C]1 was obtained with a radiochemical yield of 20±10% (based on [(11)C]CO2, decay-corrected, n=5) and specific activity of 48-166GBq/μmol. After the injection of [(11)C]1 in mice, high uptake of radioactivity (>2% ID/g) was distributed in the lung, liver, kidney, and brain, organs with high FAAH expression. PET images of rat brains for [(11)C]1 revealed high uptakes in the cerebellar nucleus (SUV=2.4) and frontal cortex (SUV=2.0), two known brain regions with high FAAH expression. Pretreatment with the FAAH-selective inhibitor URB597 reduced the brain uptake. Higher than 90% of the total radioactivity in the rat brain was irreversible at 30min after the radioligand injection. The present results indicate that [(11)C]1 is a promising PET ligand for imaging of FAAH in living brain.
Collapse
Affiliation(s)
- Yoko Shimoda
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service Co. Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Yusuke Kurihara
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service Co. Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Tomoteru Yamasaki
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hideki Ishii
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
18
|
Vázquez C, Tolón RM, Pazos MR, Moreno M, Koester EC, Cravatt BF, Hillard CJ, Romero J. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies. Neurobiol Dis 2015; 79:41-50. [PMID: 25917763 DOI: 10.1016/j.nbd.2015.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022] Open
Abstract
Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions. In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult. Our data show that AEA modulates astroglial function in vivo by increasing connexin-43 hemichannel (HC) activity. Furthermore, the genetic inactivation of the AEA-degrading enzyme, fatty acid amide hydrolase (FAAH), also increased HC activity and enhanced the microglial response against an acute injury to the brain parenchyma, effects that were mediated by cannabinoid CB1 receptors. The contribution of ATP released through an astrocytic HC was critical for the microglial response, as this was prevented by the use of the HC blocker flufenamic acid and by apyrase. As could be expected, brain concentrations of AEA, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were elevated in FAAH-null mice, while 2-arachidonoylglycerol (2-AG) concentrations remained unaltered. In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain.
Collapse
Affiliation(s)
- Carmen Vázquez
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, 28922 Alcorcón, Madrid, Spain
| | - Rosa María Tolón
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, 28922 Alcorcón, Madrid, Spain
| | - María Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, 28922 Alcorcón, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Marta Moreno
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, 28922 Alcorcón, Madrid, Spain
| | - Erin C Koester
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Cecilia J Hillard
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Julián Romero
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, 28922 Alcorcón, Madrid, Spain; School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
19
|
Kumata K, Yui J, Hatori A, Maeda J, Xie L, Ogawa M, Yamasaki T, Nagai Y, Shimoda Y, Fujinaga M, Kawamura K, Zhang MR. Development of [(11)C]MFTC for PET imaging of fatty acid amide hydrolase in rat and monkey brains. ACS Chem Neurosci 2015; 6:339-46. [PMID: 25398123 DOI: 10.1021/cn500269g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We developed 2-methylpyridin-3-yl-4-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)piperidine-1-[(11)C]carboxylate ([(11)C]MFTC) as a promising PET tracer for in vivo imaging of fatty acid amide hydrolase (FAAH) in rat and monkey brains. [(11)C]MFTC was synthesized by reacting 3-hydroxy-2-methylpyridine (2) with [(11)C]phosgene ([(11)C]COCl2), followed by reacting with 4-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)piperidine (3), with a 20 ± 4.6% radiochemical yield (decay-corrected, n = 30) based on [(11)C]CO2 and 40 min synthesis time from the end of bombardment. A biodistribution study in mice showed high uptake of radioactivity in FAAH-rich organs, including the lung, liver, and kidneys. Positron emission tomography (PET) summation images of rat brains showed high radioactivity in the frontal cortex, cerebellum, and hippocampus, which was consistent with the regional distribution pattern of FAAH in rodent brain. Pretreatment with MFTC or FAAH-selective URB597 significantly reduced the uptake in the brain. PET imaging of monkey brain showed relatively high uptake in the whole brain, particularly in the occipital cortex, which was also inhibited by treatment with MFTC or URB597. More than 96% of the total radioactivity was irreversible in the brain homogenate of rats 5 min after the radiotracer injection. The specific in vivo FAAH binding indicates that [(11)C]MFTC is a promising PET tracer for visualizing FAAH in the brain.
Collapse
Affiliation(s)
- Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Akiko Hatori
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Jun Maeda
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masanao Ogawa
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
- SHI Accelerator Service Co. Ltd., Tokyo 141-8686, Japan
| | - Tomoteru Yamasaki
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yuji Nagai
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yoko Shimoda
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
20
|
Metna-Laurent M, Marsicano G. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors. Glia 2014; 63:353-64. [PMID: 25452006 DOI: 10.1002/glia.22773] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/13/2014] [Indexed: 01/03/2023]
Abstract
The type-1-cannabinoid (CB1 ) receptor is amongst the most widely expressed G protein-coupled receptors in the brain. In few decades, CB1 receptors have been shown to regulate a large array of functions from brain cell development and survival to complex cognitive processes. Understanding the cellular mechanisms underlying these functions of CB1 is complex due to the heterogeneity of the brain cell types on which the receptor is expressed. Although the large majority of CB1 receptors act on neurons, early studies pointed to a direct control of CB1 receptors over astroglial functions including brain energy supply and neuroprotection. In line with the growing concept of the tripartite synapse highlighting astrocytes as direct players in synaptic plasticity, astroglial CB1 receptor signaling recently emerged as the mediator of several forms of synaptic plasticity associated to important cognitive functions. Here, we shortly review the current knowledge on CB1 receptor-mediated astroglial functions. This functional spectrum is large and most of the mechanisms by which CB1 receptors control astrocytes, as well as their consequences in vivo, are still unknown, requiring innovative approaches to improve this new cannabinoid research field.
Collapse
|
21
|
Rotstein BH, Wey HY, Shoup TM, Wilson AA, Liang SH, Hooker JM, Vasdev N. PET imaging of fatty acid amide hydrolase with [(18)F]DOPP in nonhuman primates. Mol Pharm 2014; 11:3832-8. [PMID: 25004399 PMCID: PMC4224570 DOI: 10.1021/mp500316h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fatty acid amide hydrolase (FAAH) regulates endocannabinoid signaling. [(11)C]CURB, an irreversibly binding FAAH inhibitor, has been developed for clinical research imaging with PET. However, no fluorine-18 labeled radiotracer for FAAH has yet advanced to human studies. [(18)F]DOPP ([(18)F]3-(4,5-dihydrooxazol-2-yl)phenyl (5-fluoropentyl)carbamate) has been identified as a promising (18)F-labeled analogue based on rodent studies. The goal of this work is to evaluate [(18)F]DOPP in nonhuman primates to support its clinical translation. High specific activity [(18)F]DOPP (5-6 Ci·μmol(-1)) was administered intravenously (iv) to three baboons (2M/1F, 3-4 years old). The distribution and pharmacokinetics were quantified following a 2 h dynamic imaging session using a simultaneous PET/MR scanner. Pretreatment with the FAAH-selective inhibitor, URB597, was carried out at 200 or 300 μg/kg iv, 10 min prior to [(18)F]DOPP administration. Rapid arterial blood sampling for the first 3 min was followed by interval sampling with metabolite analysis to provide a parent radiotracer plasma input function that indicated ∼95% baseline metabolism at 60 min and a reduced rate of metabolism after pretreatment with URB597. Regional distribution data were analyzed with 1-, 2-, and 3-tissue compartment models (TCMs), with and without irreversible trapping since [(18)F]DOPP covalently links to the active site of FAAH. Consistent with previous findings for [(11)C]CURB, the 2TCM with irreversible binding was found to provide the best fit for modeling the data in all regions. The composite parameter λk3 was therefore used to evaluate whole brain (WB) and regional binding of [(18)F]DOPP. Pretreatment studies showed inhibition of λk3 across all brain regions (WB baseline: 0.112 mL/cm(3)/min; 300 μg/kg URB597: 0.058 mL/cm(3)/min), suggesting that [(18)F]DOPP binding is specific for FAAH, consistent with previous rodent data.
Collapse
Affiliation(s)
- Benjamin H Rotstein
- Division of Nuclear Medicine and Molecular Imaging & Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital , Boston, Massachusetts 02114, United States
| | | | | | | | | | | | | |
Collapse
|
22
|
Rodríguez-Cueto C, Benito C, Romero J, Hernández-Gálvez M, Gómez-Ruiz M, Fernández-Ruiz J. Endocannabinoid-hydrolysing enzymes in the post-mortem cerebellum of humans affected by hereditary autosomal dominant ataxias. Pathobiology 2014; 81:149-59. [PMID: 24642775 DOI: 10.1159/000358127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Spinocerebellar ataxias (SCAs) are characterized by a loss of balance and motor coordination due to degeneration of the cerebellum and its afferent and efferent connections. We recently found important changes in cannabinoid CB1 and CB2 receptors in the post-mortem cerebellum of patients affected by different SCAs. METHODS We wanted to further explore this issue by analysing the two major endocannabinoid-hydrolysing enzymes, fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL), in the post-mortem cerebellum of SCA patients and control subjects. RESULTS Immunoreactivity for the FAAH and MAGL enzymes was found in the granular layer, in Purkinje cells, in neurons of the dentate nucleus and in areas of white matter in the cerebellum of patients at levels frequently notably higher than those in control subjects. Using double-labelling procedures, we found co-localization of FAAH and MAGL with calbindin, supporting the presence of these enzymes in Purkinje neurons. CONCLUSIONS Degradative endocannabinoid enzymes are significantly increased in the cerebellum of SCA patients, which would presumably lead to reduced endocannabinoid levels. The identification of these enzymes in Purkinje neurons suggests a relationship with the pathogenesis of SCAs and suggests that the endocannabinoid system could provide potential therapeutic targets for the treatment of disease progression in SCAs.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Starowicz K, Przewlocka B. Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system. Philos Trans R Soc Lond B Biol Sci 2013; 367:3286-99. [PMID: 23108547 DOI: 10.1098/rstb.2011.0392] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain refers to chronic pain that results from injury to the nervous system. The mechanisms involved in neuropathic pain are complex and involve both peripheral and central phenomena. Although numerous pharmacological agents are available for the treatment of neuropathic pain, definitive drug therapy has remained elusive. Recent drug discovery efforts have identified an original neurobiological approach to the pathophysiology of neuropathic pain. The development of innovative pharmacological strategies has led to the identification of new promising pharmacological targets, including glutamate antagonists, microglia inhibitors and, interestingly, endogenous ligands of cannabinoids and the transient receptor potential vanilloid type 1 (TRPV1). Endocannabinoids (ECs), endovanilloids and the enzymes that regulate their metabolism represent promising pharmacological targets for the development of a successful pain treatment. This review is an update of the relationship between cannabinoid receptors (CB1) and TRPV1 channels and their possible implications for neuropathic pain. The data are focused on endogenous spinal mechanisms of pain control by anandamide, and the current and emerging pharmacotherapeutic approaches that benefit from the pharmacological modulation of spinal EC and/or endovanilloid systems under chronic pain conditions will be discussed.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, ul. Smetna 12, 31-343 Krakow, Poland.
| | | |
Collapse
|
24
|
Rusjan PM, Wilson AA, Mizrahi R, Boileau I, Chavez SE, Lobaugh NJ, Kish SJ, Houle S, Tong J. Mapping human brain fatty acid amide hydrolase activity with PET. J Cereb Blood Flow Metab 2013; 33:407-14. [PMID: 23211960 PMCID: PMC3587811 DOI: 10.1038/jcbfm.2012.180] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocannabinoid tone has recently been implicated in a number of prevalent neuropsychiatric conditions. [(11)C]CURB is the first available positron emission tomography (PET) radiotracer for imaging fatty acid amide hydrolase (FAAH), the enzyme which metabolizes the prominent endocannabinoid anandamide. Here, we sought to determine the most suitable kinetic modeling approach for quantifying [(11)C]CURB that binds selectively to FAAH. Six healthy volunteers were scanned with arterial blood sampling for 90 minutes. Kinetic parameters were estimated regionally using a one-tissue compartment model (TCM), a 2-TCM with and without irreversible trapping, and an irreversible 3-TCM. The 2-TCM with irreversible trapping provided the best identifiability of PET outcome measures among the approaches studied (coefficient of variation (COV) of the net influx constant K(i) and the composite parameter λk(3) (λ=K(1)/k(2)) <5%, and COV(k(3))<10%). Reducing scan time to 60 minutes did not compromise the identifiability of rate constants. Arterial spin labeling measures of regional cerebral blood flow were only slightly correlated with K(i), but not with k(3) or λk(3). Our data suggest that λk(3) is sensitive to changes in FAAH activity, therefore, optimal for PET quantification of FAAH activities with [(11)C]CURB. Simulations showed that [(11)C]CURB binding in healthy subjects is far from a flow-limited uptake.
Collapse
Affiliation(s)
- Pablo M Rusjan
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Füllhase C, Russo A, Castiglione F, Benigni F, Campeau L, Montorsi F, Gratzke C, Bettiga A, Stief C, Andersson KE, Hedlund P. Spinal cord FAAH in normal micturition control and bladder overactivity in awake rats. J Urol 2012; 189:2364-70. [PMID: 23219540 DOI: 10.1016/j.juro.2012.11.165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/15/2023]
Abstract
PURPOSE We assessed whether spinal inhibition of the cannabinoid degrading enzyme FAAH would have urodynamic effects in normal rats and rats with bladder overactivity induced by partial urethral obstruction or prostaglandin E2. We also determined the expression of FAAH, and the cannabinoid receptors CB1 and CB2 in the sacral spinal cord. MATERIALS AND METHODS We used 44 rats for functional (cystometry) and Western blot experiments. The FAAH inhibitor oleoyl ethyl amide (3 to 300 nmol) was administered intrathecally (subarachnoidally) or intravenously. The expression of FAAH and CB1/CB2 receptors was determined by Western blot. RESULTS Oleoyl ethyl amide given intrathecally affected micturition in normal rats and rats with bladder overactivity but effects were more pronounced in the latter. In normal rats oleoyl ethyl amide only decreased micturition frequency, while it decreased frequency and bladder pressures in rats with bladder overactivity. Intravenous oleoyl ethyl amide (3 to 300 nmol) had no urodynamic effect. FAAH and CB1/CB2 receptors were expressed in the rat sacral spinal cord. The expression of CB1/CB2 receptors but not FAAH was higher in obstructed than in normal rats. CONCLUSIONS FAAH inhibition in the sacral spinal cord by oleoyl ethyl amide resulted in urodynamic effects in normal rats and rats with bladder overactivity. The spinal endocannabinoid system may be involved in normal micturition control and it appears altered when there is bladder overactivity.
Collapse
Affiliation(s)
- Claudius Füllhase
- Department of Urology, Ludwig-Maximilians-Universitat, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Benito C, Tolón RM, Castillo AI, Ruiz-Valdepeñas L, Martínez-Orgado JA, Fernández-Sánchez FJ, Vázquez C, Cravatt BF, Romero J. β-Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-α, PPAR-γ and TRPV1, but not CB₁ or CB₂ receptors. Br J Pharmacol 2012; 166:1474-89. [PMID: 22321194 DOI: 10.1111/j.1476-5381.2012.01889.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid system may regulate glial cell functions and their responses to pathological stimuli, specifically, Alzheimer's disease. One experimental approach is the enhancement of endocannabinoid tone by blocking the activity of degradative enzymes, such as fatty acid amide hydrolase (FAAH). EXPERIMENTAL APPROACH We examined the role of FAAH in the response of astrocytes to the pathologic form of β-amyloid (Aβ). Astrocytes from wild-type mice (WT) and from mice lacking FAAH (FAAH-KO) were incubated with Aβ for 8, 24 and 48 h, and their inflammatory responses were quantified by elisa, western-blotting and real-time quantitative-PCR. KEY RESULTS FAAH-KO astrocytes were significantly more responsive to Aβ than WT astrocytes, as shown by the higher production of pro-inflammatory cytokines. Expression of COX-2, inducible NOS and TNF-α was also increased in Aβ-exposed KO astrocytes compared with that in WTs. These effects were accompanied by a differential pattern of activation of signalling cascades involved in mediating inflammatory responses, such as ERK1/2, p38MAPK and NFκB. PPAR-α and PPAR-γ as well as transient receptor potential vanilloid-1 (TRPV1), but not cannabinoid CB₁ or CB₂ receptors, mediate some of the differential changes observed in Aβ-exposed FAAH-KO astrocytes. The pharmacological blockade of FAAH did not render astrocytes more sensitive to Aβ. In contrast, exogenous addition of several acylethanolamides (anandamide, palmitoylethanolamide and oleoylethanolamide) induced an antiinflammatory response. CONCLUSIONS The genetic deletion of FAAH in astrocytes exacerbated their inflammatory phenotype against Aβ in a process involving PPAR-α, PPAR-γ and TRPV1 receptors.
Collapse
Affiliation(s)
- Cristina Benito
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Klumpers LE, Cole DM, Khalili-Mahani N, Soeter RP, Te Beek ET, Rombouts SARB, van Gerven JMA. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study. Neuroimage 2012; 63:1701-11. [PMID: 22885247 DOI: 10.1016/j.neuroimage.2012.07.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023] Open
Abstract
Resting state-functional magnetic resonance imaging (RS-FMRI) is a neuroimaging technique that allows repeated assessments of functional connectivity in resting state. While task-related FMRI is limited to indirectly measured drug effects in areas affected by the task, resting state can show direct CNS effects across all brain networks. Hence, RS-FMRI could be an objective measure for compounds affecting the CNS. Several studies on the effects of cannabinoid receptor type 1 (CB(1))-receptor agonist δ(9)-tetrahydrocannabinol (THC) on task-dependent FMRI have been performed. However, no studies on the effects of cannabinoids on resting state networks using RS-FMRI have been published. Therefore, we investigated the effects of THC on functional brain connectivity using RS-FMRI. Twelve healthy volunteers (9 male, 3 female) inhaled 2, 6 and 6 mg THC or placebo with 90-minute intervals in a randomized, double blind, cross-over trial. Eight RS-FMRI scans of 8 min were obtained per occasion. Subjects rated subjective psychedelic effects on a visual analog scale after each scan, as pharmacodynamic effect measures. Drug-induced effects on functional connectivity were examined using dual regression with FSL software (FMRIB Analysis Group, Oxford). Eight maps of voxel-wise connectivity throughout the entire brain were provided per RS-FMRI series with eight predefined resting-state networks of interest. These maps were used in a mixed effects model group analysis to determine brain regions with a statistically significant drug-by-time interaction. Statistical images were cluster-corrected, and results were Bonferroni-corrected across multiple contrasts. THC administration increased functional connectivity in the sensorimotor network, and was associated with dissociable lateralized connectivity changes in the right and left dorsal visual stream networks. The brain regions showing connectivity changes included the cerebellum and dorsal frontal cortical regions. Clear increases were found for feeling high, external perception, heart rate and cortisol, whereas prolactin decreased. This study shows that THC induces both increases and (to a lesser extent) decreases in functional brain connectivity, mainly in brain regions with high densities of CB(1)-receptors. Some of the involved regions could be functionally related to robust THC-induced CNS-effects that have been found in previous studies (Zuurman et al., 2008), such as postural stability, feeling high and altered time perception.
Collapse
|
28
|
D'Addario C, Di Francesco A, Arosio B, Gussago C, Dell'Osso B, Bari M, Galimberti D, Scarpini E, Altamura AC, Mari D, Maccarrone M. Epigenetic regulation of fatty acid amide hydrolase in Alzheimer disease. PLoS One 2012; 7:e39186. [PMID: 22720070 PMCID: PMC3373611 DOI: 10.1371/journal.pone.0039186] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/21/2012] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Alzheimer disease (AD) is a progressive, degenerative and irreversible neurological disorder with few therapies available. In search for new potential targets, increasing evidence suggests a role for the endocannabinoid system (ECS) in the regulation of neurodegenerative processes. METHODS We have studied the gene expression status and the epigenetic regulation of ECS components in peripheral blood mononuclear cells (PBMCs) of subjects with late-onset AD (LOAD) and age-matched controls (CT). RESULTS We found an increase in fatty acid amide hydrolase (faah) gene expression in LOAD subjects (2.30 ± 0.48) when compared to CT (1.00 ± 0.14; *p<0.05) and no changes in the mRNA levels of any other gene of ECS elements. Consistently, we also observed in LOAD subjects an increase in FAAH protein levels (CT: 0.75 ± 0.04; LOAD: 1.11 ± 0.15; *p<0.05) and activity (pmol/min per mg protein CT: 103.80 ± 8.73; LOAD: 125.10 ± 4.00; *p<0.05), as well as a reduction in DNA methylation at faah gene promoter (CT: 55.90 ± 4.60%; LOAD: 41.20 ± 4.90%; *p<0.05). CONCLUSIONS Present findings suggest the involvement of FAAH in the pathogenesis of AD, highlighting the importance of epigenetic mechanisms in enzyme regulation; they also point to FAAH as a new potential biomarker for AD in easily accessible peripheral cells.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
| | | | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Gussago
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Bernardo Dell'Osso
- Department of Psychiatry, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Bari
- Department of Experimental Medicine and Biochemical Sciences, Tor Vergata University, Rome, Italy
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Galimberti
- Department of Neurological Sciences, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Department of Neurological Sciences, “Dino Ferrari” Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - A. Carlo Altamura
- Department of Psychiatry, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Maccarrone
- Department of Biomedical Sciences, University of Teramo, Teramo, Italy
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
29
|
Oliviero A, Arevalo-Martin A, Rotondi M, García-Ovejero D, Mordillo-Mateos L, Lozano-Sicilia A, Panyavin I, Chiovato L, Aguilar J, Foffani G, Di Lazzaro V, Molina-Holgado E. CB1 receptor antagonism/inverse agonism increases motor system excitability in humans. Eur Neuropsychopharmacol 2012; 22:27-35. [PMID: 21571507 DOI: 10.1016/j.euroneuro.2011.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/14/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
CB1 receptor is highly expressed in cerebral structures related to motor control, such as motor cortex, basal ganglia and cerebellum. In the spinal cord, the expression of CB1 receptors has also been observed in ventral motor neurons, interneurons and primary afferents, i.e., in the cells that may be part of the circuits involved in motor control. It is known that the antagonist/inverse agonist of CB1 receptors Rimonabant penetrates the blood-brain barrier and produces a broad range of central psychoactive effects in humans. Based on the occurrence of central effects in humans treated with Rimonabant and on the location of CB1 receptors, we hypothesized that the application of Rimonabant can also affect the motor system. We tested the effects of a single dose of 20mg of Rimonabant on the excitability of motor cortex and of spinal motor neurons in order to detect a possible drug action on motor system at cortical and spinal levels. For this purpose we use classical protocols of transcranial magnetic and electrical stimulation (TMS and TES). Single and paired pulse TMS and TES were used to assess a number of parameters of cortical inhibition and cortical excitability as well as of the excitability of spinal motor neurons. We demonstrated that a single oral dose of 20mg of Rimonabant can increase motor system excitability at cortical and spinal levels. This opens new avenues to test the CB1R antagonists/inverse agonists for the treatment of a number of neurological dysfunctions in which can be useful to increase the excitability levels of motor system. Virtually all the disorders characterized by a reduced output of the motor cortex can be included in the list of the disorders that can be treated using CB1 antagonists/reverse agonists (e.g. stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, fatigue syndromes, parkinsonisms, etc.).
Collapse
Affiliation(s)
- A Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. Neuropharmacology 2011; 62:1746-55. [PMID: 22178705 DOI: 10.1016/j.neuropharm.2011.11.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022]
Abstract
The endocannabinoid anandamide (AEA) activates also transient receptor potential vanilloid-1 (TRPV1) channels. However, no data exist on the potential role of spinal TRPV1 activation by AEA in neuropathic pain. We tested the effect of: 1) AEA (5-100 μg), alone or in the presence of an inhibitor of its hydrolysis, and 2) elevated levels of endogenous AEA (following inhibition of AEA hydrolysis), in CCI rats, and the involvement of TRPV1 or cannabinoid CB(1) receptors in the observed effects. Levels of AEA in the spinal cord of CCI rats were measured following all treatments. AEA (50 μg) displayed anti-allodynic and anti-hyperalgesic effects which were abolished by previous antagonism of TRPV1, but not CB(1), receptors. Depending on the administered dose, the selective inhibitor of AEA enzymatic hydrolysis, URB597 (10-100 μg), reduced thermal and tactile nociception via CB(1) or CB(1)/TRPV1 receptors. The anti-nociceptive effects of co-administered per se ineffective doses of AEA (5 μg) and URB597 (5 μg) was abolished by antagonism of CB(1), but not TRPV1, receptors. Spinal AEA levels were increased after CCI, slightly increased further by URB597, 10 μg i.t., and strongly elevated by URB597, 100 μg. Injection of AEA (50 μg) into the lumbar spinal cord led to its dramatic elevation in this tissue, whereas, when a lower dose was used (5 μg) AEA endogenous levels were elevated only in the presence of URB597 (5 μg). We suggest that spinal AEA reduces neuropathic pain via CB(1) or TRPV1, depending on its local concentration.
Collapse
|
31
|
Expression and localization of the cannabinoid receptor type 1 and the enzyme fatty acid amide hydrolase in the retina of vervet monkeys. Neuroscience 2011; 202:117-30. [PMID: 22142900 DOI: 10.1016/j.neuroscience.2011.11.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/26/2011] [Accepted: 11/17/2011] [Indexed: 11/20/2022]
Abstract
The presence of a widespread endocannabinoid (eCB) system within the nervous system, including the retina, has been demonstrated in recent years. Expression patterns of the cannabinoid receptor type 1 (CB1R) and enzyme fatty acid amide hydrolase (FAAH) are available for rodents, but data for humans and monkeys are scarce. We, therefore, thoroughly examined the distribution pattern of CB1R and FAAH throughout the retina of the vervet monkey (Chlorocebus sabeus) using confocal microscopy. Our results demonstrate that CB1R and FAAH are expressed throughout the retina, from the foveal pit to the far periphery. CB1R and FAAH are present in the photoreceptor, outer plexiform, inner nuclear, inner plexiform, and retinal ganglion cell layers (PRL, OPL, INL, IPL, and RGCL, respectively). More specifically, in PRL, CB1R and FAAH are preferentially expressed in cones of the central retina. In OPL, these two components of the eCB system are concentrated not only in the cone pedicles but also in rod spherules with, however, a less intense staining pattern. Triple-labeling immunofluorescence revealed that both cone and rod bipolar cells express CB1R and FAAH. Heavy staining is detected in RGC somas and axons. Neither CB1R nor FAAH are found in the retinal glia, the Müller cells. These data indicate that the eCB system is present throughout the primate retina and is ideally positioned to modulate central and peripheral retinal functions.
Collapse
|
32
|
Esposito E, Paterniti I, Mazzon E, Genovese T, Di Paola R, Galuppo M, Cuzzocrea S. Effects of palmitoylethanolamide on release of mast cell peptidases and neurotrophic factors after spinal cord injury. Brain Behav Immun 2011; 25:1099-112. [PMID: 21354467 DOI: 10.1016/j.bbi.2011.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 11/27/2022] Open
Abstract
Spinal cord injury (SCI) has a significant impact on quality of life, expectancy, and economic burden, with considerable costs associated with primary care and loss of income. The complex pathophysiology of SCI may explain the difficulty in finding a suitable therapy for limiting neuronal injury and promoting regeneration. Although innovative medical care, advances in pharmacotherapy have been limited. The aim of the present study was to carefully investigate molecular pathways and subtypes of glial cells involved in the protective effect of PEA on inflammatory reaction associated with an experimental model of SCI. The compression model induced by applying an aneurysm clip to the spinal cord in mice is closer to the human situation, since it replicates the persistence of cord compression. Spinal cord trauma was induced in mice by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. Repeated PEA administration (10 mg/kg i.p., 6 and 12 h after SCI) significantly reduced the degree of the severity of spinal cord trauma through the reduction of mast cell infiltration and activation. Moreover, PEA treatment significantly reduced the activation of microglia and astrocytes expressing cannabinoid CB(2) receptor after SCI. Importantly, the protective effect of PEA involved changes in the expression of neurotrophic factors, and in spinal cord dopaminergic function. Our results enhance our understanding about mechanisms related to the anti-inflammatory property of the PEA suggesting that this N-acylethanolamine may represent a crucial therapeutic intervention both diminishing the immune/inflammatory response and promoting the initiation of neurotrophic substance after SCI.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR, Fernández-Llebrez P. Endocannabinoid system in the adult rat circumventricular areas: An immunohistochemical study. J Comp Neurol 2010; 518:3065-85. [DOI: 10.1002/cne.22382] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Vignali M, Benfenati V, Caprini M, Anderova M, Nobile M, Ferroni S. The endocannabinoid anandamide inhibits potassium conductance in rat cortical astrocytes. Glia 2009; 57:791-806. [PMID: 19031444 DOI: 10.1002/glia.20807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endocannabinoids are a family of endogenous signaling molecules that modulate neuronal excitability in the central nervous system (CNS) by interacting with cannabinoid (CB) receptors. In spite of the evidence that astroglial cells also possess CB receptors, there is no information on the role of endocannabinoids in regulating CNS function through the modulation of ion channel-mediated homeostatic mechanisms in astroglial cells. We provide electrophysiological evidence that the two brain endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) markedly depress outward conductance mediated by delayed outward rectifier potassium current (IK(DR)) in primary cultured rat cortical astrocytes. Pharmacological experiments suggest that the effect of AEA does not result from the activation of known CB receptors. Moreover, neither the production of AEA metabolites nor variations in free cytosolic calcium are involved in the negative modulation of IK(DR). We show that the action of AEA is mediated by its interaction with the extracellular leaflet of the plasma membrane. Similar experiments performed in situ in cortical slices indicate that AEA downregulates IK(DR) in complex and passive astroglial cells. Moreover, IK(DR) is also inhibited by AEA in NG2 glia. Collectively, these results support the notion that endocannabinoids may exert their modulation of CNS function via the regulation of homeostatic function of the astroglial syncytium mediated by ion channel activity.
Collapse
Affiliation(s)
- M Vignali
- Department of Human and General Physiology, University of Bologna, 40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Localization of the endocannabinoid-degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury. J Neurosci 2009; 29:3766-80. [PMID: 19321773 DOI: 10.1523/jneurosci.4071-08.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a degradative enzyme for a group of endogenous signaling lipids that includes anandamide (AEA). AEA acts as an endocannabinoid and an endovanilloid by activating cannabinoid and vanilloid type 1 transient receptor potential (TRPV1) receptors, respectively, on dorsal root ganglion (DRG) sensory neurons. Inhibition of FAAH activity increases AEA concentrations in nervous tissue and reduces sensory hypersensitivity in animal pain models. Using immunohistochemistry, Western blotting, and reverse transcription-PCR, we demonstrate the location of the FAAH in adult rat DRG, sciatic nerve, and spinal cord. In naive rats, FAAH immunoreactivity localized to the soma of 32.7 +/- 0.8% of neurons in L4 and L5 DRG. These were small-sized (mean soma area, 395.96 +/- 5.6 mum(2)) and predominantly colabeled with peripherin and isolectin B4 markers of unmyelinated C-fiber neurons; 68% colabeled with antibodies to TRPV1 (marker of nociceptive DRG neurons), and <2% colabeled with NF200 (marker of large myelinated neurons). FAAH-IR was also present in small, NF200-negative cultured rat DRG neurons. Incubation of these cultures with the FAAH inhibitor URB597 increased AEA-evoked cobalt uptake in a capsazepine-sensitive manner. After sciatic nerve axotomy, there was a rightward shift in the cell-size distribution of FAAH-immunoreactive (IR) DRG neurons ipsilateral to injury: FAAH immunoreactivity was detected in larger-sized cells that colabeled with NF200. An ipsilateral versus contralateral increase in both the size and proportion of FAAH-IR DRG occurred after spinal nerve transection injury but not after chronic inflammation of the rat hindpaw 2 d after injection of complete Freund's adjuvant. This study reveals the location of FAAH in neural tissue involved in peripheral nociceptive transmission.
Collapse
|
36
|
Abstract
Humans have used Cannabis sativa (marijuana) for at least 12,000 years, but researchers have only recently described an endogenous cannabinoid system. The endocannabinoid system modulates an array of physiological and psychological functions. Endocannabinoids are widely distributed throughout the body, including the central nervous system (CNS). This article gives a basic overview of endocannabinoid neuroanatomy and function. Several endocannabinoids have been discovered to date, and their roles are being elucidated. Two G-protein coupled cannabinoid receptors, CB1R and CB2R, have been identified, although other candidate receptors exist, including ion channel and nuclear receptors that might be components of the endocannabinoid system. It appears that cannabinoids are dysregulated in a number of psychiatric disorders and might be involved in their pathogenesis. There is now evidence that manipulation of the endocannabinoid system could be a therapeutic target for a variety of conditions.
Collapse
Affiliation(s)
- Chris S Breivogel
- Department of Pharmaceutical Sciences, Campbell University School of Pharmacy, Buies Creek, North Carolina 27506, USA.
| | | |
Collapse
|
37
|
The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J Neurosci 2009; 28:13532-41. [PMID: 19074027 DOI: 10.1523/jneurosci.0847-08.2008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the CNS, endocannabinoids are identified mainly as two endogenous lipids: anandamide, the ethanolamide of arachidonic acid, and 2-arachidonoylglycerol (2-AG). Endocannabinoids are known to inhibit transmitter release from presynaptic terminals; however we have recently demonstrated that they are also involved in slow self-inhibition (SSI) of layer V low-threshold spiking (LTS) interneurons in rat somatosensory cortex. SSI is induced by repetitive firing in LTS cells, which can express either cholecystokinin or somatostatin. SSI is triggered by an endocannabinoid-dependent activation of a prolonged somatodendritic K(+) conductance and associated hyperpolarization in the same cell. The synthesis of both endocannabinoids is dependent on elevated [Ca(2+)](i) such as occurs during sustained neuronal activity. To establish whether 2-AG mediates autocrine LTS-SSI, we blocked its biosynthesis from phospholipase C (PLC) and diacylglycerol lipases (DAGLs). Current-clamp recordings from LTS interneurons in acute neocortical slices showed that inclusion of DAGL inhibitors in the whole-cell pipette prevented the long-lasting hyperpolarization triggered by LTS cell repetitive firing. Similarly, extracellular applications of a PLC inhibitor prevented SSI in LTS interneurons. Moreover, metabotropic glutamate receptor-dependent activation of PLC produced a long-lasting hyperpolarization which was prevented by the CB1 antagonist AM251, as well as by PLC and DAGL inhibitors. The loss of SSI in the presence of intracellular DAGL blockers confirms that endocannabinoid production occurs in the same interneuron undergoing the persistent hyperpolarization. Since DAGLs produce no endocannabinoid other than 2-AG, these results identify this compound as the autocrine mediator responsible for the postsynaptic slow self-inhibition of neocortical LTS interneurons.
Collapse
|
38
|
The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiol Dis 2009; 33:57-71. [DOI: 10.1016/j.nbd.2008.09.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/03/2008] [Accepted: 09/09/2008] [Indexed: 01/22/2023] Open
|
39
|
Suárez J, Bermúdez-Silva FJ, Mackie K, Ledent C, Zimmer A, Cravatt BF, de Fonseca FR. Immunohistochemical description of the endogenous cannabinoid system in the rat cerebellum and functionally related nuclei. J Comp Neurol 2008; 509:400-21. [DOI: 10.1002/cne.21774] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
40
|
Horne EA, Stella N. The ins and outs of endocannabinoid signaling in healthy and diseased brain. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.4.435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Núñez E, Benito C, Tolón RM, Hillard CJ, Griffin WST, Romero J. Glial expression of cannabinoid CB(2) receptors and fatty acid amide hydrolase are beta amyloid-linked events in Down's syndrome. Neuroscience 2007; 151:104-10. [PMID: 18068305 DOI: 10.1016/j.neuroscience.2007.10.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/25/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Recent data suggest that the endocannabinoid system (ECS) may be involved in the glial response in different types of brain injury. Both acute and chronic insults seem to trigger a shift in the pattern of expression of some elements of this system from neuronal to glial. Specifically, data obtained in human brain tissue sections from Alzheimer's disease patients showed that the expression of cannabinoid receptors of the CB(2) type is induced in activated microglial cells while fatty acid amide hydrolase (FAAH) expression is increased in reactive astrocytes. The present study was designed to determine the time-course of the shift from neuronal to glial induction in the expression of these proteins in Down's syndrome, sometimes referred to as a human model of Alzheimer-like beta-amyloid (Abeta) deposition. Here we present immunohistochemical evidence that both CB(2) receptors and FAAH enzyme are induced in Abeta plaque-associated microglia and astroglia, respectively, in Down's syndrome. These results suggest that the induction of these elements of the ECS contributes to, or is a result of, amyloid deposition and subsequent plaque formation. In addition, they confirm a striking differential pattern of distribution of FAAH and CB(2) receptors.
Collapse
Affiliation(s)
- E Núñez
- Laboratorio de Apoyo a la Investigación, Fundación Hospital Alcorcón, 28922 Alcorcón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Medina KL, Nagel BJ, Park A, McQueeny T, Tapert SF. Depressive symptoms in adolescents: associations with white matter volume and marijuana use. J Child Psychol Psychiatry 2007; 48:592-600. [PMID: 17537075 PMCID: PMC2269707 DOI: 10.1111/j.1469-7610.2007.01728.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Depressed mood has been associated with decreased white matter and reduced hippocampal volumes. However, the relationship between brain structure and mood may be unique among adolescents who use marijuana heavily. The goal of this study was to examine the relationship between white matter and hippocampal volumes and depressive symptoms among adolescent marijuana users and controls. METHODS Data were collected from marijuana users (n = 16) and demographically similar controls (n = 16) aged 16-18. Extensive exclusionary criteria included psychiatric and neurologic disorders, including major depression. Substance use, mood, and anatomical measures were collected after 28 days of monitored abstinence. RESULTS Marijuana (MJ) users demonstrated more depressive symptoms than controls (p < .05). MJ use (beta = .42, p < .005) and smaller white matter volume (beta = -.34, p < .03) each predicted higher levels of depressive symptoms on the Hamilton Depression Rating Scale. MJ use interacted with white matter volume (beta = -.55, p < .03) in predicting depression scores on the Beck Depression Inventory: among MJ users, but not controls, white matter volume was negatively associated with depressive symptoms. CONCLUSIONS Marijuana use and white matter volume were additive and interactive in predicting depressive symptoms among adolescents. Subtle neurodevelopmental white matter abnormalities may disrupt the connections between areas involved in mood regulation.
Collapse
|
43
|
Abstract
Recent years have produced rapid and enormous growth in our understanding of endocannabinoid-mediated signaling in the CNS. While much of the recent progress has focused on other areas of the brain, a significant body of evidence has developed that indicates the presence of a robust system for endocannabinoid-mediated signaling in the dentate gyrus. This chapter will provide an overview of our current understanding of that system based on available anatomical and physiological data.
Collapse
Affiliation(s)
- Charles J Frazier
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, FL 32610, USA.
| |
Collapse
|
44
|
Abstract
Convincing evidence from preclinical studies demonstrates that cannabinoids can reduce pain responses in a range of inflammatory and neuropathic pain models. The anatomical and functional data reveal cannabinoid receptor-mediated analgesic actions operating at sites concerned with the transmission and processing of nociceptive signals in brain, spinal cord and the periphery. The precise signalling mechanisms by which cannabinoids produce analgesic effects at these sites remain unclear; however, significant clues point to cannabinoid modulation of the functions of neurone and immune cells that mediate nociceptive and inflammatory responses. Intracellular signalling mechanisms engaged by cannabinoid receptors-like the inhibition of calcium transients and adenylate cyclase, and pre-synaptic modulation of transmitter release-have been demonstrated in some of these cell types and are predicted to play a role in the analgesic effects of cannabinoids. In contrast, the clinical effectiveness of cannabinoids as analgesics is less clear. Progress in this area requires the development of cannabinoids with a more favourable therapeutic index than those currently available for human use, and the testing of their efficacy and side-effects in high-quality clinical trials.
Collapse
Affiliation(s)
- I J Lever
- Pain Research Group, Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK
| | | |
Collapse
|
45
|
Correa F, Docagne F, Mestre L, Loría F, Hernangómez M, Borrell J, Guaza C. Cannabinoid system and neuroinflammation: implications for multiple sclerosis. Neuroimmunomodulation 2007; 14:182-7. [PMID: 18073512 DOI: 10.1159/000110644] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There is a growing amount of evidence suggesting that cannabinoids may be neuroprotective in central nervous system inflammatory conditions. Advances in the understanding of the physiology and pharmacology of the cannabinoid system have potentiated the interest in cannabinoids as potential therapeutic targets. Here our aim was to update the actions of cannabinoids on immune system and glial cells and their implications on multiple sclerosis. We also show our results on the modulation of cytokines of the IL-12 family by cannabinoids in macrophages and brain microglia. We used murine primary cultures of macrophage and microglia activated by lipopolysaccharide/IFN-gamma and Theiler's virus to study the effects of cannabinoids on the regulation of IL-12 and IL-23 mRNA and protein IL-12p40, evaluated by RT-PCR and ELISA, respectively. Cannabinoids negatively regulate the production of these cytokines by microglial cells in part due to the activation of CB(2) receptors. The effects of cannabinoids on cytokine brain work and on the regulation of neuroinflammatory processes may affect chronic inflammatory demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Fernando Correa
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Hofmann ME, Nahir B, Frazier CJ. Endocannabinoid-Mediated Depolarization-Induced Suppression of Inhibition in Hilar Mossy Cells of the Rat Dentate Gyrus. J Neurophysiol 2006; 96:2501-12. [PMID: 16807350 DOI: 10.1152/jn.00310.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hilar mossy cells represent a unique population of local circuit neurons in the hippocampus and dentate gyrus. Here we use electrophysiological techniques in acute preparations of hippocampal slices to demonstrate that depolarization of a single hilar mossy cell can produce robust inhibition of local GABAergic afferents. This depolarization-induced suppression of inhibition (DSI) can be observed as a transient reduction in frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) or as a transient reduction in amplitude of evoked IPSCs (eIPSCs). We find that DSI of eIPSCs as observed in hilar mossy cells is enhanced by activation of muscarinic acetylcholine receptors, blocked by chelation of postsynaptic calcium, and critically dependent on retrograde activation of presynaptic cannabinoid type 1 (CB1) receptors. We further report that activation of CB1 receptors on GABAergic afferents to hilar mossy cells (by either endogenous or exogenous agonists) preferentially inhibits calcium-dependent exocytosis and that endocannabinoid-dependent retrograde signaling in this system is subject to tight spatial constraints.
Collapse
Affiliation(s)
- Mackenzie E Hofmann
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, JHMHC Box 100487, 1600 S.W. Archer Road, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
47
|
Smith PF, Ashton JC, Darlington CL. The endocannabinoid system: A new player in the neurochemical control of vestibular function? Audiol Neurootol 2006; 11:207-12. [PMID: 16601324 DOI: 10.1159/000092588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 12/28/2005] [Indexed: 11/19/2022] Open
Abstract
The results of recent clinical trials of medicinal cannabinoid drugs show that dizziness and vertigo are commonly reported adverse side-effects. Cannabinoid CB1 receptors were initially thought to be expressed in very low densities in the vestibular nucleus complex (VNC). Recent immunohistochemical studies have challenged this idea and suggested that CB1 receptors may exist in numbers similar to the granule cell layer of the cerebellum. This, together with evidence that brainstem CB1 receptors have a higher efficacy than those in many other parts of the brain and that application of cannabinoids can elicit potent electrophysiological effects in VNC neurons, suggests that CB1 receptors and their endogenous ligands may be important in central vestibular function. In this review, we consider the potential clinical significance of the endocannabinoid system for the development of vestibular disorders, the effects of recreational cannabis use and the therapeutic use of medicinal cannabinoids.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
48
|
Benito C, Kim WK, Kim WK, Chavarría I, Hillard CJ, Mackie K, Tolón RM, Williams K, Williams K, Romero J. A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci 2006; 25:2530-6. [PMID: 15758162 PMCID: PMC6725174 DOI: 10.1523/jneurosci.3923-04.2005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent evidence supports the notion that the endocannabinoid system may play a crucial role in neuroinflammation. We explored the changes that some elements of this system exhibit in a macaque model of encephalitis induced by simian immunodeficiency virus. Our results show that profound alterations in the distribution of specific components of the endocannabinoid system occur as a consequence of the viral infection of the brain. Specifically, expression of cannabinoid receptors of the CB2 subtype was induced in the brains of infected animals, mainly in perivascular macrophages, microglial nodules, and T-lymphocytes, most likely of the CD8 subtype. In addition, the endogenous cannabinoid-degrading enzyme fatty acid amide hydrolase was overexpressed in perivascular astrocytes as well as in astrocytic processes reaching cellular infiltrates. Finally, the pattern of CB1 receptor expression was not modified in the brains of infected animals compared with that in control animals. These results resemble previous data obtained in Alzheimer's disease human tissue samples and suggest that the endocannabinoid system may participate in the development of human immunodeficiency virus-induced encephalitis, because activation of CB2 receptors expressed by immune cells is likely to reduce their antiviral response and thus could favor the CNS entry of infected monocytes.
Collapse
Affiliation(s)
- Cristina Benito
- Laboratorio de Apoyo a la Investigación, Fundación Hospital Alcorcón, 28922 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ortega-Gutiérrez S, Molina-Holgado E, Guaza C. Effect of anandamide uptake inhibition in the production of nitric oxide and in the release of cytokines in astrocyte cultures. Glia 2005; 52:163-8. [PMID: 15920730 DOI: 10.1002/glia.20229] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes play a key role regulating aspects of inflammation in the central nervous system (CNS). Several enzymes, such as the inducible nitric oxide synthase (iNOS) or the cyclooxygenase-2 (COX-2), along with different inflammatory mediators such as the free radical nitric oxide (NO) or proinflammatory cytokines, have been proposed to be involved in the cell damage associated with neuroinflammation. Recent studies suggest that the endogenous cannabinoid system (ECS) may be involved in the regulation of neuroinflammation. Cannabinoid agonists decrease neurotoxicity and release of proinflammatory factors from activated glial cells and anandamide itself is able to promote antiinflammatory responses in astrocytes via CB1 cannabinoid receptors. The present study is aimed at studying whether UCM707, a potent and selective anandamide uptake inhibitor, is able to inhibit the production of proinflammatory mediators by LPS-stimulated astrocytes. Our findings indicate that UCM707 is able to reduce NO release, iNOS expression, and the production of the proinflammatory cytokines tumoral necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) in a significant manner, while producing a slight increase in IL-6 levels. These effects can be reproduced by administration of the synthetic agonist HU210 and partially or totally blocked by administration of CB1 or CB2 selective antagonists, further supporting the involvement of the ECS. These results confirm the ability of UCM707 to reinforce the beneficial effects induced by anandamide and make it an attractive candidate for the management of those pathologies with neuroinflammation as one of their hallmarks.
Collapse
|
50
|
Ullrich O, Schneider-Stock R. Endogenous cannabinoids ? a local message in and between the nervous and immune system. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|