1
|
Sánchez-Cano F, Hernández-Kelly LC, Ortega A. Silica Nanoparticles Decrease Glutamate Uptake in Blood-Brain Barrier Components. Neurotox Res 2024; 42:20. [PMID: 38436780 PMCID: PMC10912144 DOI: 10.1007/s12640-024-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain, playing an important role in most brain functions. It exerts its activity through plasma membrane receptors and transporters, expressed both in neurons and glia cells. Overstimulation of neuronal glutamate receptors is linked to cell death in a process known as excitotoxicity, that is prevented by the efficient removal of the neurotransmitter through glutamate transporters enriched in the glia plasma membrane and in the components of the blood-brain barrier (BBB). Silica nanoparticles (SiO2-NPs) have been widely used in biomedical applications and directed to enter the circulatory system; however, little is known about the potential adverse effects of SiO2-NPs exposure on the BBB transport systems that support the critical isolation function between the central nervous system (CNS) and the peripheral circulation. In this contribution, we investigated the plausible SiO2-NPs-mediated disruption of the glutamate transport system expressed by BBB cell components. First, we evaluated the cytotoxic effect of SiO2-NPs on human brain endothelial (HBEC) and Uppsala 87 Malignant glioma (U-87MG) cell lines. Transport kinetics were evaluated, and the exposure effect of SiO2-NPs on glutamate transport activity was determined in both cell lines. Exposure of the cells to different SiO2-NP concentrations (0.4, 4.8, 10, and 20 µg/ml) and time periods (3 and 6 h) did not affect cell viability. We found that the radio-labeled D-aspartate ([3H]-D-Asp) uptake is mostly sodium-dependent, and downregulated by its own substrate (glutamate). Furthermore, SiO2-NPs exposure on endothelial and astrocytes decreases [3H]-D-Asp uptake in a dose-dependent manner. Interestingly, a decrease in the transporter catalytic efficiency, probably linked to a diminution in the affinity of the transporter, was detected upon SiO2-NPs. These results favor the notion that exposure to SiO2-NPs could disrupt BBB function and by these means shed some light into our understanding of the deleterious effects of air pollution on the CNS.
Collapse
Affiliation(s)
- Fredy Sánchez-Cano
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México.
| |
Collapse
|
2
|
Rapid Regulation of Glutamate Transport: Where Do We Go from Here? Neurochem Res 2022; 47:61-84. [PMID: 33893911 PMCID: PMC8542062 DOI: 10.1007/s11064-021-03329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na+-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.
Collapse
|
3
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
4
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
|
6
|
Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int 2016; 98:29-45. [PMID: 27235987 DOI: 10.1016/j.neuint.2016.05.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
Abstract
Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox.
Collapse
Affiliation(s)
- N C Danbolt
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - D N Furness
- School of Life Sciences, Keele University, Keele, Staffs. ST5 5BG, UK
| | - Y Zhou
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Sakurai T, Akanuma SI, Usui T, Kubo Y, Tachikawa M, Hosoya KI. Excitatory Amino Acid Transporter 1-Mediated L-Glutamate Transport at the Inner Blood-Retinal Barrier: Possible Role in L-Glutamate Elimination from the Retina. Biol Pharm Bull 2016; 38:1087-91. [PMID: 26133720 DOI: 10.1248/bpb.b15-00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to elucidate the transport mechanism(s) of L-glutamate (L-Glu), a neuroexcitatory neurotransmitter, in the inner blood-retinal barrier (BRB). The L-Glu transport was evaluated by an in vitro uptake study with a conditionally-immortalized rat retinal capillary endothelial cell line, TR-iBRB2 cells. L-Glu uptake by TR-iBRB2 exhibited time- and concentration-dependence, and was composed of high- and low-affinity processes with Michaelis-Menten constants (Km) of 19.3 µM and 275 µM, respectively. Under Na(+)-free conditions, L-Glu uptake by TR-iBRB2 involved one-saturable kinetics with a Km of 190 µM, which is similar to that of the low-affinity process of L-Glu uptake under normal conditions. Moreover, substrates/inhibitors of system Xc(-), which is involved in blood-to-retina transport of compounds across the inner BRB, strongly inhibited the L-Glu uptake under Na(+)-free conditions, suggesting that Na(+)-independent low-affinity L-Glu transport at the inner BRB is carried out by system Xc(-). Regarding the Na(+)-dependent high affinity process of L-Glu transport at the inner BRB, L-Glu uptake by TR-iBRB2 under normal conditions was significantly inhibited by substrates/inhibitors of excitatory amino acid transporter (EAAT) 1-5, but not alanine-serine-cysteine transporters. Reverse-transcription polymerase chain reaction (RT-PCR) analysis and immunoblot analysis demonstrated that mRNA and protein of EAAT1 are expressed in TR-iBRB2 cells, whereas mRNAs and/or proteins of EAAT2-5 are not. Immunohistochemical analysis revealed that EAAT1 protein is localized on the abluminal membrane of the retinal capillaries. In conclusion, EAAT1 most likely mediates Na(+)-dependent high-affinity L-Glu transport at the inner BRB and appears to take part in L-Glu elimination from the retina across the inner BRB.
Collapse
Affiliation(s)
- Tatsuhiko Sakurai
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | | | | | |
Collapse
|
8
|
Akanuma SI, Zakoji N, Kubo Y, Hosoya KI. In Vitro Study of L-Glutamate and L-Glutamine Transport in Retinal Pericytes: Involvement of Excitatory Amino Acid Transporter 1 and Alanine-Serine-Cysteine Transporter 2. Biol Pharm Bull 2016; 38:901-8. [PMID: 26027831 DOI: 10.1248/bpb.b15-00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-Glutamate (L-Glu) is known to be a relaxant of pericytes and to induce changes in microcirculatory hemodynamics. Since the concentration of L-Glu which induces the dilation of retinal capillaries is reported to be high compared with the estimated concentration in the retinal interstitial fluid, it is hypothesized that some systems involving concentrative L-Glu release are present in retinal pericytes. The purpose of this study was to investigate the existence of L-Glu-storing systems, which contribute to autocrine L-Glu release, in retinal pericytes using conditionally immortalized rat retinal pericytes (TR-rPCT1 cells), which express mRNAs of L-Glu-synthesizing enzymes from L-glutamine (L-Gln). TR-rPCT1 cells express the mRNAs of vesicular L-Glu transporter 1 (VGLUT1), indicating that L-Glu in the cytoplasm is taken up into VGLUT1-expressing vesicles of retinal pericytes. L-Glu and L-Gln are taken up into TR-rPCT1 cells via Na(+)-dependent saturable process(es) with a Km value of 22.4 µM and 163 µM, respectively. The [(3)H]L-Glu uptake was inhibited by ca. 50% in the presence of D-aspartate, a substrate of excitatory amino acid transporter (EAAT) subtypes, whereas substrates of alanine-serine-cysteine transporter (ASCT) subtypes exhibited only a weak inhibitory effect on [(3)H]L-Glu uptake compared with D-aspartate. Regarding the L-Gln uptake by TR-rPCT1 cells, the inhibitory effect of ASCT substrates on the [(3)H]L-Gln uptake was stronger than that of substrates of other neutral amino acid transport systems. Consequently, it was determined that EAAT1 and ASCT2 play a role in the transport of L-Glu and L-Gln, respectively, from retinal interstitial fluid to the cytoplasm of retinal pericytes.
Collapse
Affiliation(s)
- Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | |
Collapse
|
9
|
Akanuma SI, Sakurai T, Tachikawa M, Kubo Y, Hosoya KI. Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells. Fluids Barriers CNS 2015; 12:11. [PMID: 25925580 PMCID: PMC4425921 DOI: 10.1186/s12987-015-0006-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/11/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND L-Glutamate (L-Glu) is the major excitatory neurotransmitter in the CNS, and its level in cerebrospinal fluid (CSF) is reported to be increased in neuroexcitatory diseases such as epilepsy. Since L-Glu concentration in the CSF is reported to be lower than that in plasma, it has been proposed that some mechanisms of L-Glu clearance from the CSF operate in the brain. The purpose of this study was to elucidate the major pathway of L-Glu elimination from rat CSF and the transporters responsible. METHODS Protein expression and localization of excitatory amino acid transporters were examined by immunohistochemical analysis using specific antibodies. In vivo elimination of L-Glu from rat CSF was evaluated by intracerebroventricular administration. An L-Glu uptake study by using primary-cultured rat ependymal cells and isolated rat choroid plexus was performed to characterize L-Glu transport mechanisms. RESULTS An immunohistochemical analysis has shown that excitatory amino acid transporter (EAAT) 1 and EAAT3, which are D-aspartate-sensitive and kainate-insensitive L-Glu transporters, are localized on the CSF-side of rat ependymal cells and choroid plexus epithelial cells, respectively. In contrast, the kainate-sensitive L-Glu transporter, EAAT2, is not expressed in these cells. In vivo L-Glu elimination clearance from the rat CSF (189 μL/(min · rat)) was 23-fold higher than the CSF bulk flow rate, indicating that facilitative process(es) are involved in L-Glu elimination from the CSF. The in vivo [(3)H]L-Glu elimination from the CSF was significantly inhibited by unlabeled L-Glu and D-aspartate, but not kainate. Moreover, unlabeled L-Glu and D-aspartate inhibited [(3)H]L-Glu uptake by rat ependymal cells and choroid plexus epithelial cells, whereas kainate had little effect. CONCLUSION It is suggested that EAAT1 in ependymal cells and EAAT3 in choroid plexus epithelial cells participate in L-Glu elimination from the CSF.
Collapse
Affiliation(s)
- Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Tatsuhiko Sakurai
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
10
|
Guitart K, Loers G, Schachner M, Kleene R. Prion protein regulates glutathione metabolism and neural glutamate and cysteine uptake via excitatory amino acid transporter 3. J Neurochem 2015; 133:558-71. [PMID: 25692227 DOI: 10.1111/jnc.13071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/29/2015] [Accepted: 02/08/2015] [Indexed: 01/02/2023]
Abstract
Prion protein (PrP) plays crucial roles in regulating antioxidant systems to improve cell defenses against cellular stress. Here, we show that the interactions of PrP with the excitatory amino acid transporter 3 (EAAT3), γ-glutamyl transpeptidase (γ-GT), and multi-drug resistance protein 1 (MRP1) in astrocytes and the interaction between PrP and EAAT3 in neurons regulate the astroglial and neuronal metabolism of the antioxidant glutathione. Ablation of PrP in astrocytes and cerebellar neurons leads to dysregulation of EAAT3-mediated uptake of glutamate and cysteine, which are precursors for the synthesis of glutathione. In PrP-deficient astrocytes, levels of intracellular glutathione are increased, and under oxidative stress, levels of extracellular glutathione are increased, due to (i) increased glutathione release via MRP1 and (ii) reduced activity of the glutathione-degrading enzyme γ-GT. In PrP-deficient cerebellar neurons, cell death is enhanced under oxidative stress and glutamate excitotoxicity, when compared to wild-type cerebellar neurons. These results indicate a functional interplay of PrP with EAAT3, MRP1 and γ-GT in astrocytes and of PrP and EAAT3 in neurons, suggesting that these interactions play an important role in the metabolic cross-talk between astrocytes and neurons and in protection of neurons by astrocytes from oxidative and glutamate-induced cytotoxicity. Interactions of prion protein (PrP) with excitatory amino acid transporter 3 (EAAT3), γ-glutamyl transpeptidase (GGT) and multi-drug resistance protein 1 (MRP1) regulate the astroglial and neuronal metabolism of glutathione (GSH) which protects cells against the cytotoxic oxidative stress. PrP controls the release of GSH from astrocytes via MRP1 and regulates the hydrolysis of extracellular GSH by GGT as well as the neuronal and astroglial glutamate and cysteine uptake via EAAT3.
Collapse
Affiliation(s)
- Kathrin Guitart
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
11
|
Roberts RC, Roche JK, McCullumsmith RE. Localization of excitatory amino acid transporters EAAT1 and EAAT2 in human postmortem cortex: a light and electron microscopic study. Neuroscience 2014; 277:522-40. [PMID: 25064059 PMCID: PMC4164610 DOI: 10.1016/j.neuroscience.2014.07.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 01/03/2023]
Abstract
The process of glutamate release, activity, and reuptake involves the astrocyte, the presynaptic and postsynaptic neurons. Glutamate is released into the synapse and may occupy and activate receptors on both neurons and astrocytes. Glutamate is rapidly removed from the synapse by a family of plasma membrane excitatory amino acid transporters (EAATs), also localized to neurons and astrocytes. The purpose of the present study was to examine EAAT labeling in the postmortem human cortex at the light and electron microscopic (EM) levels. The postmortem prefrontal cortex was processed for EAAT1 and EAAT2 immunohistochemistry. At the light microscopic level, EAAT1 and EAAT2 labeling was found in both gray and white matter. Most cellular labeling was in small cells which were morphologically similar to glia. In addition, EAAT1-labeled neurons were scattered throughout, some of which were pyramidal in shape. At the EM level, EAAT1 and EAAT2 labeling was found in astrocytic soma and processes surrounding capillaries. EAAT labeling was also found in small astrocytic processes adjacent to axon terminals forming asymmetric (glutamatergic) synapses. While EAAT2 labeling was most prevalent in astrocytic processes, EAAT1 labeling was also present in neuronal processes including the soma, axons, and dendritic spines. Expression of EAAT1 protein on neurons may be due to the hypoxia associated with the postmortem interval, and requires further confirmation. The localization of EAATs on the astrocytic plasma membrane and adjacent to excitatory synapses is consistent with the function of facilitating glutamate reuptake and limiting glutamate spillover. Establishment that EAAT1 and EAAT2 can be measured at the EM level in human postmortem tissues will permit testing of hypotheses related to these molecules in diseases lacking analogous animal models.
Collapse
Affiliation(s)
- R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - J K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Jones NC, O’Brien TJ, Powell KL. Morphometric changes and molecular mechanisms in rat models of idiopathic generalized epilepsy with absence seizures. Neurosci Lett 2011; 497:185-93. [DOI: 10.1016/j.neulet.2011.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/21/2011] [Accepted: 02/15/2011] [Indexed: 01/29/2023]
|
13
|
de Vivo L, Melone M, Bucci G, Rothstein JD, Conti F. Quantitative analysis of EAAT4 promoter activity in neurons and astrocytes of mouse somatic sensory cortex. Neurosci Lett 2010; 474:42-5. [PMID: 20211693 DOI: 10.1016/j.neulet.2010.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/22/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
EAAT4-eGFP BAC reporter transgenic adult mice were used to detect EAAT4 gene expression in individual cells of cerebral cortex, and eGFP fluorescence was measured to compare EAAT4 promoter activity in different cells. Most eGFP+ cells were neurons; only rare GFAP+ profiles were eGFP+. About 10% of NeuN+ cells was eGFP+, and the percentage of NeuN/eGFP co-localization varied from 2 to 20% of NeuN+ cells throughout cortical layers: layers I and II-III showed the highest values of co-localization, layer IV the lowest. The intensity of eGFP fluorescence did not exhibit laminar variations. Finally, we observed that EAAT4 promoter activity in cortical neurons was 10% of that measured in cerebellar Purkinje cells, i.e., the cells displaying the highest intensity in the CNS. These results extend our knowledge on EAAT4 expression in the cerebral cortex of adult mice, and suggest that the role of EAAT4 in cortical glutamatergic transmission may be more important than previously thought.
Collapse
Affiliation(s)
- Luisa de Vivo
- Dipartimento di Neuroscienze, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
14
|
Massie A, Cnops L, Smolders I, McCullumsmith R, Kooijman R, Kwak S, Arckens L, Michotte Y. High-affinity Na+/K+-dependent glutamate transporter EAAT4 is expressed throughout the rat fore- and midbrain. J Comp Neurol 2008; 511:155-72. [DOI: 10.1002/cne.21823] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophr Res 2008; 104:108-20. [PMID: 18678470 PMCID: PMC2656372 DOI: 10.1016/j.schres.2008.06.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 01/20/2023]
Abstract
Glutamate cycling is critically important for neurotransmission, and may be altered in schizophrenia. The excitatory amino acid transporters (EAATs) facilitate the reuptake of glutamate from the synaptic cleft and have a key role in glutamate cycling. We hypothesized that expression of the EAATs and the EAAT regulating proteins ARHGEF11, JWA, G-protein suppressor pathway 1 (GPS1), and KIAA0302 are altered in the brain in schizophrenia. To test this, we measured expression of EAAT1, EAAT2, EAAT3, and EAAT interacting proteins in postmortem tissue from the dorsolateral prefrontal and anterior cingulate cortex of patients with schizophrenia and a comparison group using in situ hybridization and Western blot analysis. We found increased EAAT1 transcripts and decreased protein expression, increased EAAT3 transcripts and protein, and elevated protein expression of both GPS1 and KIAA0302 protein. We did not find any changes in expression of EAAT2. These data indicate that proteins involved in glutamate reuptake and cycling are altered in the cortex in schizophrenia, and may provide potential targets for future treatment strategies.
Collapse
|
16
|
Yoo SY, Kim JH, Do SH, Zuo Z. Inhibition of the Activity of Excitatory Amino Acid Transporter 4 Expressed inXenopusOocytes After Chronic Exposure to Ethanol. Alcohol Clin Exp Res 2008; 32:1292-8. [DOI: 10.1111/j.1530-0277.2008.00697.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Park HY, Kim JH, Zuo Z, Do SH. Ethanol increases the activity of rat excitatory amino acid transporter type 4 expressed in Xenopus oocytes: role of protein kinase C and phosphatidylinositol 3-kinase. Alcohol Clin Exp Res 2008; 32:348-54. [PMID: 18226120 DOI: 10.1111/j.1530-0277.2007.00577.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glutamate is the major excitatory neurotransmitter in the central nervous system and is critical for essentially all physiological processes, such as learning, memory, central pain transduction, and control of motor function. Excitatory amino acid transporters (EAATs) play a key role in regulating glutamate neurotransmission by uptake of glutamate into cells. EAAT4 is the major EAAT in the cerebellar Purkinje cells. The authors investigated the effects of ethanol on EAAT4 and the mediatory effects of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) in this context. METHODS Excitatory amino acid transporter 4 was expressed in Xenopus oocytes by injecting EAAT4 mRNA. l-aspartate-induced membrane currents were measured using a two-electrode voltage clamp. Responses were quantified by integrating current traces and are represented in microCoulombs (microC). RESULTS Ethanol increased EAAT4 activity in a dose-dependent manner. At ethanol concentrations of 25, 50, 100, and 200 mM, the responses were significantly higher than untreated control values. Ethanol (25 mM) significantly increased the V(max) (1.5 +/- 0.1 microC for control vs. 2.0 +/- 0.1 microC for ethanol, p < 0.05), but did not affect K(m) (2.3 +/- 0.6 microM for control vs. 1.7 +/- 0.7 microM for ethanol, p > 0.05) of EAAT4 for l-aspartate. Preincubation of oocytes with phorbol-12-myristate-13-acetate (PMA, a PKC activator) significantly increased EAAT4 activity. However, combinations of PMA and ethanol versus PMA or ethanol alone did not increase responses further. Two PKC inhibitors, chelerythrine and staurosporine did not reduce basal EAAT4 activity but abolished ethanol-enhanced EAAT4 activity. Pretreatment with wortmannin (a PI3K inhibitor) also abolished ethanol-enhanced EAAT4 activity. CONCLUSIONS These results demonstrate that acute ethanol exposure increases EAAT4 activity at clinically relevant concentrations and that PKC and PI3K may mediate this. The effects of ethanol on EAAT4 may play a role in the cerebellar dysfunction caused by ethanol intoxication.
Collapse
Affiliation(s)
- Hee-Yeon Park
- Department of Anesthesiology & Pain Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | | | | | | |
Collapse
|
18
|
Yi JH, Herrero R, Chen G, Hazell AS. Glutamate transporter EAAT4 is increased in hippocampal astrocytes following lateral fluid-percussion injury in the rat. Brain Res 2007; 1154:200-5. [PMID: 17490622 DOI: 10.1016/j.brainres.2007.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 04/01/2007] [Accepted: 04/02/2007] [Indexed: 11/22/2022]
Abstract
Functional impairment of glutamate transporters contributes to excitotoxic damage and exacerbation of injury in certain neurodegenerative disorders. Several high-affinity sodium-dependent glutamate transporters have been cloned thus far. Of these, EAAT4 is abundantly expressed in Purkinje cells of the cerebellum in rats. However, little is currently known regarding levels of EAAT4 following traumatic brain injury (TBI). In this study, EAAT4 changes were examined for up to 7 days after moderate fluid-percussion by immunoblotting and immunohistochemistry. TBI caused a 20% and 25% increase in EAAT4 levels in the injured hippocampus at day 3 and day 7 following the insult. Immunohistochemical analysis revealed this increase to be localized in cells exhibiting morphological characteristics of astrocytes. In addition, increased EAAT4 immunoreactivity was observed in astrocytes in the ipsilateral cortex and cerebellum at day 3 post-injury that persisted up to 7 days after the insult. Given the reported novel characteristics of chloride conductance displayed by this transporter, our findings of increased EAAT4 levels suggest this protein may play an important role in the pathophysiology of TBI.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
19
|
Gincel D, Regan MR, Jin L, Watkins AM, Bergles DE, Rothstein JD. Analysis of cerebellar Purkinje cells using EAAT4 glutamate transporter promoter reporter in mice generated via bacterial artificial chromosome-mediated transgenesis. Exp Neurol 2007; 203:205-12. [PMID: 17022974 DOI: 10.1016/j.expneurol.2006.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 07/20/2006] [Accepted: 08/02/2006] [Indexed: 11/19/2022]
Abstract
The EAAT4 glutamate transporter helps regulate excitatory neurotransmission and prevents glutamate-mediated excitotoxicity in the cerebellum. Immunohistochemistry and in situ hybridization have previously defined a cerebellar cell population expressing this protein. These methods, however, are not well suited for evaluating the dynamic regulation of the transporter and its gene-especially in living tissues. To better study EAAT4 expression and regulation, we generated bacterial artificial chromosome (BAC) promoter eGFP reporter transgenic mice. Histological analysis of the transgenic mice revealed that the EAAT4 promoter is active predominantly in Purkinje cells, but can also be modestly detected in other neurons early postnatally. EAAT4 promoter activity was not present in non-neuronal cells. Cerebellar organotypic slice cultures prepared from BAC transgenic mice provided a unique reagent to study transporter and Purkinje cell expression and regulation in living tissue. The correlation of promoter activity to protein expression makes the EAAT4 BAC promoter reporter a valuable tool to study regulation of EAAT4 expression.
Collapse
Affiliation(s)
- Dan Gincel
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
20
|
Huang Y, Feng X, Sando JJ, Zuo Z. Critical role of serine 465 in isoflurane-induced increase of cell-surface redistribution and activity of glutamate transporter type 3. J Biol Chem 2006; 281:38133-8. [PMID: 17062570 DOI: 10.1074/jbc.m603885200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glutamate transporters (also called excitatory amino acid transporters, EAATs) bind extracellular glutamate and transport it to intracellular space to regulate glutamate neurotransmission and to maintain extracellular glutamate concentrations below neurotoxic levels. We previously showed that isoflurane, a commonly used anesthetic, enhanced the activity of EAAT3, a major neuronal EAAT. This effect required a protein kinase C (PKC) alpha-dependent EAAT3 redistribution to the plasma membrane. In this study, we prepared COS7 cells stably expressing EAAT3 with or without mutations of potential PKC phosphorylation sites in the putative intracellular domains. Here we report that mutation of threonine 5 or threonine 498 to alanine did not affect the isoflurane effects on EAAT3. However, the mutation of serine 465 to alanine abolished isoflurane-induced increase of EAAT3 activity and redistribution to the plasma membrane. The mutation of serine 465 to aspartic acid increased the expression of EAAT3 in the plasma membrane and also abolished the isoflurane effects on EAAT3. These results suggest an essential role of serine 465 in the isoflurane-increased EAAT3 activity and redistribution and a direct effect of PKC on EAAT3. Consistent with these results, isoflurane induced an increase in phosphorylation of wild type, T5A, and T498A EAAT3, and this increase was absent in S465A and S465D. Our current results, together with our previous data that showed the involvement of PKCalpha in the isoflurane effects on EAAT3, suggest that the phosphorylation of serine 465 in EAAT3 by PKCalpha mediates the increased EAAT3 activity and redistribution to plasma membrane after isoflurane exposure.
Collapse
Affiliation(s)
- Yueming Huang
- Department of Anesthesiology, University of Virginia Health System, One Hospital Drive, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Excitatory amino acid transporters (EAATs) play a central role in the termination of synaptic transmission and in extracellular glutamate homeostasis in the mammalian CNS. A functional transporter is assembled as oligomer consisting of three subunits, each of which appears to transport glutamate independently from the neighboring subunits. EAATs do not only sustain a secondary-active glutamate transport but also function as anion channel. We here address the question whether intersubunit interactions play a role in pore-mediated anion conduction. We expressed a neuronal isoform, EAAT4, heterologously in Xenopus oocytes and mammalian cells and measured glutamate flux and anion currents under various concentrations of Na+ and glutamate. EAAT4 anion channels are active in the absence of both substrates, and increasing concentrations activate EAAT4 anion currents with a sigmoidal concentration dependence. Because only one glutamate molecule is cotransported per uptake cycle, the cooperativity between glutamate binding sites most likely arises from an interaction between different carrier domains. This interaction is modified by two point mutations close to the putative glutamate binding site, G464S and Q467S. Both mutations alter the dissociation constants and Hill coefficient of the substrate dependence of anion currents, leaving the concentration dependence of glutamate uptake unaffected. Our results demonstrate that glutamate carriers cooperatively interact during anion channel activation.
Collapse
|
22
|
Fang H, Huang Y, Zuo Z. Enhancement of substrate-gated Cl- currents via rat glutamate transporter EAAT4 by PMA. Am J Physiol Cell Physiol 2006; 290:C1334-40. [PMID: 16601148 DOI: 10.1152/ajpcell.00443.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glutamate transporters (also called excitatory amino acid transporters, EAAT) are important in extracellular homeostasis of glutamate, a major excitatory neurotransmitter. EAAT4, a neuronally expressed EAAT in cerebellum, has a large portion (approximately 95% of the total L-aspartate-induced currents in human EAAT4) of substrate-gated Cl(-) currents, a distinct feature of this EAAT. We cloned EAAT4 from rat cerebellum. This molecule was predicted to have eight putative transmembrane domains. L-glutamate induced an inward current in oocytes expressing this EAAT4 at a holding potential -60 mV. Phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, significantly increased the magnitude of L-glutamate-induced currents but did not affect the apparent affinity of EAAT4 for L-glutamate. This PMA-enhanced current had a reversal potential -17 mV at extracellular Cl(-) concentration ([Cl(-)](o)) 104 mM with an approximately 60-mV shift per 10-fold change in [Cl(-)](o), properties consistent with Cl(-)-selective conductance. However, PMA did not change EAAT4 transport activity as measured by [(3)H]-L-glutamate. Thus PMA-enhanced Cl(-) currents via EAAT4 were not thermodynamically coupled to substrate transport. These PMA-enhanced Cl(-) currents were partially blocked by staurosporine, chelerythrine, and calphostin C, the three PKC inhibitors. Ro-31-8425, a PKC inhibitor that inhibits conventional PKC isozymes at low concentrations (nM level), partially inhibited the PMA-enhanced Cl(-) currents only at a high concentration (1 microM). Intracellular injection of BAPTA, a Ca(2+)-chelating agent, did not affect the PMA-enhanced Cl(-) currents. 4alpha-Phorbol-12,13-didecanoate, an inactive analog of PMA, did not enhance glutamate-induced currents. These data suggest that PKC, possibly isozymes other than conventional ones, modulates the substrate-gated Cl(-) currents via rat EAAT4. Our results also suggest that substrate-gated ion channel activity and glutamate transport activity, two EAAT4 properties that could modulate neuronal excitability, can be regulated independently.
Collapse
Affiliation(s)
- Hongyu Fang
- Department of Anesthesiology, University of Virginia Health System, One Hospital Dr., PO Box 800710, Charlottesville, VA 22908-0710, USA
| | | | | |
Collapse
|
23
|
Mim C, Balani P, Rauen T, Grewer C. The glutamate transporter subtypes EAAT4 and EAATs 1-3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism. ACTA ACUST UNITED AC 2006; 126:571-89. [PMID: 16316976 PMCID: PMC2266596 DOI: 10.1085/jgp.200509365] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Here, we report the application of glutamate concentration jumps and voltage jumps to determine the kinetics of rapid reaction steps of excitatory amino acid transporter subtype 4 (EAAT4) with a 100-μs time resolution. EAAT4 was expressed in HEK293 cells, and the electrogenic transport and anion currents were measured using the patch-clamp method. At steady state, EAAT4 was activated by glutamate and Na+ with high affinities of 0.6 μM and 8.4 mM, respectively, and showed kinetics consistent with sequential binding of Na+-glutamate-Na+. The steady-state cycle time of EAAT4 was estimated to be >300 ms (at −90 mV). Applying step changes to the transmembrane potential, Vm, of EAAT4-expressing cells resulted in the generation of transient anion currents (decaying with a τ of ∼15 ms), indicating inhibition of steady-state EAAT4 activity at negative voltages (<−40 mV) and activation at positive Vm (>0 mV). A similar inhibitory effect at Vm < 0 mV was seen when the electrogenic glutamate transport current was monitored, resulting in a bell-shaped I-Vm curve. Jumping the glutamate concentration to 100 μM generated biphasic, saturable transient transport and anion currents (Km ∼ 5 μM) that decayed within 100 ms, indicating the existence of two separate electrogenic reaction steps. The fast electrogenic reaction was assigned to Na+ binding to EAAT4, whereas the second reaction is most likely associated with glutamate translocation. Together, these results suggest that glutamate uptake of EAAT4 is based on the same molecular mechanism as transport by the subtypes EAATs 1–3, but that its kinetics and voltage dependence are dramatically different from the other subtypes. EAAT4 kinetics appear to be optimized for high affinity binding of glutamate, but not rapid turnover. Therefore, we propose that EAAT4 is a high-affinity/low-capacity transport system, supplementing low-affinity/high-capacity synaptic glutamate uptake by the other subtypes.
Collapse
Affiliation(s)
- Carsten Mim
- University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
24
|
Matyja E, Taraszewska A, Nagańska E, Rafałowska J. Autophagic degeneration of motor neurons in a model of slow glutamate excitotoxicity in vitro. Ultrastruct Pathol 2005; 29:331-9. [PMID: 16257859 DOI: 10.1080/01913120500214333] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that so-called "autophagic cell death" participates in cell degeneration in certain pathological conditions. Autophagy might be involved in some neurodegenerative processes, including lateral amyotrophic sclerosis (SLA). The exact mechanism leading to progressive motor neuron (MN) loss remains unclear, but glutamate-mediated mechanism is thought to be responsible. Previous ultrastructural studies by the authors performed on a model of SLA in vitro, based on chronic glutamate excitotoxicity, revealed a subset of morphological features characteristic to different modes of neuronal death, including autophagic degeneration. The contribution of this pathway of MNs death is evaluated in organotypic cultures of rat lumbar spinal cord chronically exposed to specific glutamate uptake blockers: DL-threo-beta-hydroxyaspartate (THA) and L-transpyrrolidine-2,4-dicarboxylate (PDC). The study documents the various steps of authophagy in slowly evolving process of MN neurodegeneration. The cells undergoing autophagy usually exhibited sequestration of some parts of cytoplasm with normal and/or degenerated organelles, whereas other parts of cytoplasm as well as neuronal nucleus remained unchanged. The advanced autophagic changes were often associated with other modes of MN death, especially with apoptosis. Numerous MNs revealed apoptotic nuclear features with typical peripheral margination of nuclear chromatin, accompanied by severe autophagic or autophagic-necrotic degeneration of the cytoplasm. These results support the opinion of unclear distinction between different modes of cell death and indicate the involvement of autophagey in MNs neurodegeneration in vitro.
Collapse
Affiliation(s)
- Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
25
|
Koch HP, Larsson HP. Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J Neurosci 2005; 25:1730-6. [PMID: 15716409 PMCID: PMC6725926 DOI: 10.1523/jneurosci.4138-04.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate transporters remove glutamate from the synaptic cleft to maintain efficient synaptic communication between neurons and to prevent glutamate concentrations from reaching neurotoxic levels. Glutamate transporters play an important role in ischemic neuronal death during stroke and have been implicated in epilepsy and amytropic lateral sclerosis. However, the molecular structure and the glutamate-uptake mechanism of these transporters are not well understood. The most recent models of glutamate transporters have three or five subunits, each with eight transmembrane domains, and one or two membrane-inserted loops. Here, using fluorescence resonance energy transfer (FRET) analysis, we have determined the relative position of the extracellular regions of these domains. Our results are consistent with a trimeric glutamate transporter with a large (>45 A) extracellular vestibule. In contrast to other transport proteins, our FRET measurements indicate that there are no large-scale motions in glutamate transporters and that glutamate uptake is accompanied by relatively small motions around the glutamate-binding sites. The large extracellular vestibule and the small-scale conformational changes could contribute to the fast kinetics predicted for glutamate transporters. Furthermore, we show that, despite the multimeric nature of glutamate transporters, the subunits function independently.
Collapse
Affiliation(s)
- Hans P Koch
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
26
|
Pignataro L, Sitaramayya A, Finnemann SC, Sarthy VP. Nonsynaptic localization of the excitatory amino acid transporter 4 in photoreceptors. Mol Cell Neurosci 2005; 28:440-51. [PMID: 15737735 DOI: 10.1016/j.mcn.2004.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 10/01/2004] [Accepted: 10/06/2004] [Indexed: 11/27/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are involved in regulating extracellular glutamate levels at synaptic regions in the CNS. EAAT1, 2, 3, and 5 have been found in the mammalian retina, but the presence of EAAT4 has remained controversial. Recently, we found a high level of EAAT4 mRNA in the human retina, and this observation lead us to examine whether EAAT4 was expressed in the mammalian retina. Immunoblotting studies showed the presence of EAAT4-immunoreactive proteins in human and mouse retinas, corresponding to EAAT4 monomers and dimers. Immunohistochemistry revealed that EAAT4 was localized in rod and cone photoreceptor outer segments in the human retina, and in the outer and inner segments of mouse and ground squirrel retinas. In no case was EAAT4 found in the outer plexiform layer or in any other layer in the retina. EAAT4 expression by photoreceptors was confirmed by immunoblotting a purified rod outer segment preparation, which showed the presence of a 50-kDa EAAT4-immunoreactive protein. In addition, the EAAT4-associated protein, GTRAP41, was found in the human, mouse, and squirrel retinas as well as in the rod outer segment preparation. Further immunocytochemical and co-immunoprecipitation experiments demonstrated that GTRAP41 was colocalized and interacted in vivo with EAAT4. Importantly, glutamate uptake and drug inhibition experiments showed that an EAAT4-like glutamate uptake system is present in the rod outer segments. Finally, we examined whether glutamate signaling mediated by EAAT4 can modulate rod outer segment phagocytosis by the retinal pigment epithelium. Results of the present study show that EAAT4 is present in the outer segments, a nonsynaptic region of photoreceptors, where it might provide a feedback mechanism for sensing extracellular glutamate or serve as an outer barrier to prevent glutamate from escaping from the retina.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
27
|
Fyk-Kolodziej B, Qin P, Dzhagaryan A, Pourcho RG. Differential cellular and subcellular distribution of glutamate transporters in the cat retina. Vis Neurosci 2004; 21:551-65. [PMID: 15579221 DOI: 10.1017/s0952523804214067] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Indexed: 11/06/2022]
Abstract
Retrieval of glutamate from extracellular sites in the retina involves at least five excitatory amino acid transporters. Immunocytochemical analysis of the cat retina indicates that each of these transporters exhibits a selective distribution which may reflect its specific function. The uptake of glutamate into Müller cells or astrocytes appears to depend upon GLAST and EAAT4, respectively. Staining for EAAT4 was also seen in the pigment epithelium. The remaining transporters are neuronal with GLT-1α localized to a number of cone bipolar, amacrine, and ganglion cells and GLT-1v in cone photoreceptors and several populations of bipolar cells. The EAAC1 transporter was found in horizontal, amacrine, and ganglion cells. Staining for EAAT5 was seen in the axon terminals of both rod and cone photoreceptors as well as in numerous amacrine and ganglion cells. Although some of the glutamate transporter molecules are positioned for presynaptic or postsynaptic uptake at glutamatergic synapses, others with localizations more distant from such contacts may serve in modulatory roles or provide protection against excitoxic or oxidative damage.
Collapse
Affiliation(s)
- Bozena Fyk-Kolodziej
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The object of this review is to assemble much of the literature concerning Purkinje cell death in cerebellar pathology and to relate this to what is now known about the complex topography of the cerebellar cortex. A brief introduction to Purkinje cells, and their regionalization is provided, and then the data on Purkinje cell death in mouse models and, where appropriate, their human counterparts, have been arranged according to several broad categories--naturally-occurring and targeted mutations leading to Purkinje cell death, Purkinje cell death due to toxins, Purkinje cell death in ischemia, Purkinje cell death in infection and in inherited disorders, etc. The data reveal that cerebellar Purkinje cell death is much more topographically complex than is usually appreciated.
Collapse
Affiliation(s)
- Justyna R Sarna
- Genes Development Research Group, Department of Cell Biology & Anatomy, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | | |
Collapse
|
29
|
Hamamura M, Watanabe S, Fukumaki Y. Selective changes in the shapes of parasagittal bands of Aldoc (Zebrin) mRNA in the rat vermis of the cerebellum after repeated methamphetamine injections. CEREBELLUM (LONDON, ENGLAND) 2004; 3:236-47. [PMID: 15686102 DOI: 10.1080/14734220410019066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the cerebellum the mossy and climbing projections, which excite Purkinje cells, display a parasagittal and striped organization. These projections also excite Zebrin (aldolase C: Aldoc) parasagittally. To evaluate the possibility that external stimuli can change the organization of the bands of Aldoc mRNA, we compared the effects of repeated methamphetamine administration on the Aldoc mRNA stripes in the four transverse (anterior, central, posterior and nodular) regions of the vermis with the effects on the glutamate transporter EAAT4 (SCL1A 6) mRNA stripes. In the posterior region the injections four times daily increased the fragmentation of the Aldoc mRNA stripes. The presence of a large amount of fragmentation (forty/cerebellum slice), was accompanied with large lateral dislocations of the Aldoc mRNA stripes. In the central and nodular regions, where the size of the stripe areas decreased significantly the stripes were dislocated laterally. The dislocations of the Aldoc mRNA bands did not occur after a single methamphetamine injection and thus repeated injections were necessary to change the distributions of the lateral bands. In contrast, the distributions of the SCL1A 6 mRNA stripes did not change, even though there was mild fragmentation (six/slice) of the SLC1A 6 mRNA stripes in the anterior region and decreases in the numbers (twelve/slice) in the nodular region. We concluded that excess dopamine selectively changes the location of the Aldoc mRNA compartments in the vermis while the SLC1A 6 mRNA stripes could be changed by other inputs and thus the specific transmitter system might change the specific compartment of the cerebellum.
Collapse
Affiliation(s)
- Mitsuko Hamamura
- Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | |
Collapse
|
30
|
Hu WH, Walters WM, Xia XM, Karmally SA, Bethea JR. Neuronal glutamate transporter EAAT4 is expressed in astrocytes. Glia 2003; 44:13-25. [PMID: 12951653 DOI: 10.1002/glia.10268] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-affinity excitatory amino acid transporters (EAATs) are essential to terminate glutamatergic neurotransmission and to prevent excitotoxicity. To date, five distinct EAATs have been cloned from animal and human tissues: GLAST (EAAT1), GLT-1 (EAAT2), EAAC1 (EAAT3), EAAT4, and EAAT5. EAAT1 and EAAT2 are commonly known as glial glutamate transporters, whereas EAAT3, EAAT4, and EAAT5 are neuronal. EAAT4 is largely expressed in cerebellar Purkinje cells. In this study, using immunohistochemistry and Western blotting, we found that EAAT4-like immunoreactivity (ir) is enriched in the spinal cord and forebrain. Double-labeled fluorescent immunostaining and confocal image analysis indicated that EAAT4-like ir colocalizes with an astrocytic marker, glial fibrillary acidic protein (GFAP). The astrocytic localization of EAAT4 was further confirmed in astrocyte cultures by double-labeled fluorescent immunocytochemistry and Western blotting. Reverse transcriptase-polymerase chain reaction analysis demonstrated mRNA expression of EAAT4 in astrocyte cultures. Sequencing confirmed the specificity of the amplified fragment. These results demonstrate that EAAT4 is expressed in astrocytes. This astrocytic localization of neuronal EAAT4 may reveal a new function of EAAT4 in the central nervous system.
Collapse
Affiliation(s)
- Wen-Hui Hu
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
31
|
Figiel M, Maucher T, Rozyczka J, Bayatti N, Engele J. Regulation of glial glutamate transporter expression by growth factors. Exp Neurol 2003; 183:124-35. [PMID: 12957496 DOI: 10.1016/s0014-4886(03)00134-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Injuries to the brain result in the decline of glial glutamate transporter expression within hours and a recovery after several days. One consequence of this disturbed expression seems to consist in the temporary accumulation of toxic extracellular glutamate levels followed by secondary neuronal cell death. Whereas evidence exists that the decline in glutamate transporter expression results from a loss of neuronal PACAP influences on astroglia, the mechanism(s) inducing the reexpression of glial glutamate transporters is presently unknown. We now demonstrate that the injury-induced growth factors EGF, TGFalpha, FGF-2, and PDGF all promote the expression of the glutamate transporters GLT-1 and/or GLAST in cultured cortical astroglia. In contrast, similar stimulatory influences were absent with GDNF and BDNF, growth factors not affected by brain injuries. The effects of EGF, TGFalpha, FGF-2, and PDGF on glial glutamate transport were only partly redundant and involved distinctly different signaling pathways. Unlike EGF, TGFalpha, and FGF-2, PDGF promoted GLT-1, but not GLAST expression and further failed to increase the maximal velocity of sodium-dependent glutamate uptake. Moreover, FGF-2 only affected glial glutamate transport when the RAF-MEK-ERK signaling pathway was concomitantly inhibited with PD98059. Depending on the extracellular growth factor and glutamate transporter subtype, the observed stimulatory effects required the activation of PKA, PKC, and/or AKT. We suggest that after brain injury, reactive processes may limit secondary neuronal cell death by promoting glial glutamate transport. The detailed knowledge of these compensatory mechanisms will eventually allow us to therapeutically interfere with glutamate-associated neuronal cell death in the brain.
Collapse
Affiliation(s)
- Maciej Figiel
- Anatomie und Zellbiologie, Universität Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
32
|
Schlüter K, Figiel M, Rozyczka J, Engele J. CNS region-specific regulation of glial glutamate transporter expression. Eur J Neurosci 2002; 16:836-42. [PMID: 12372019 DOI: 10.1046/j.1460-9568.2002.02130.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuronal cell death associated with certain neurodegenerative disorders as well as acute brain injuries is in part due to the reduced expression of glial glutamate transporters and the subsequent accumulation of toxic extracellular glutamate concentrations. Extracellular factors previously found to potently stimulate the expression of the glial glutamate transporters, GLT-1/EAAT2 and GLAST/EAAT1, in astroglial cultures of rat cerebral hemispheres are PACAP, TGF alpha, and EGF. In the present study, we sought to determine whether similar stimulatory influences apply for astroglia from other areas of the central nervous system (CNS). Immunoblot and real-time RT-PCR analysis of striatal astroglial cultures maintained for 72 h with PACAP, TGF alpha, or EGF revealed a prominent increase in GLT-1 and GLAST expression. In apparent contrast, all factors completely failed to affect GLT-1 and GLAST expression in astroglial cultures from the cerebellum, mesencephalon, and spinal cord between 36 h and 7 days. This failure was not due to the absence of functional recognition or transduction machineries for the extracellular factors as suggested by the additional observations that cerebellar, mesencephalic and spinal cord glia were capable of responding to stimulation with PACAP, TGF alpha, or EGF for 10 min with activation of CREB. Moreover, dibutyryl cyclic AMP (dbcAMP) potently promoted GLT-1 and/or GLAST expression in mesencephalic, cerebellar and spinal cord glia, further indicating that extracellular factors regulate glial glutamate transporter expression throughout the CNS. Together these findings identify PACAP, TGF alpha and EGF as potent regulators of glutamate transporter expression in striatal glia. In addition, these findings provide evidence for a CNS region-specific regulation of glial glutamate transport.
Collapse
Affiliation(s)
- Karen Schlüter
- Anatomie und Zellbiologie, Universität Ulm, 89069 Ulm, Germany
| | | | | | | |
Collapse
|
33
|
Abstract
Evidence suggests that increases in brain ammonia due to congenital urea cycle disorders, Reye Syndrome or liver failure have deleterious effects on the glutamate neurotransmitter system. In particular, ammonia exposure of the brain in vivo or in vitro preparations leads to alterations of glutamate transport. Exposure of cultured astrocytes to ammonia results in reduced high affinity uptake sites for glutamate due to a reduction in expression of the astrocytic glutamate transporter GLAST. On the other hand, acute liver failure leads to decreased expression of a second astrocytic glutamate transporter GLT-1 and a consequent reduction in glutamate transport sites in brain. Effects of the chronic exposure of brain to ammonia on cellular glutamate transport are less clear. The loss of glutamate transporter activity in brain in acute liver failure and hyperammonemia is associated with increased extracellular brain glutamate concentrations which may be responsible for the hyperexcitability and cerebral edema observed in hyperammonemic disorders.
Collapse
Affiliation(s)
- Roger F Butterworth
- Neuroscience Research Unit, Hôpital Saint-Luc du Chum, University of Montreal, 1058 St-Denis Street, Que., H2X 3J4, Montreal, Canada.
| |
Collapse
|
34
|
Gorter JA, Van Vliet EA, Proper EA, De Graan PNE, Ghijsen WEJM, Lopes Da Silva FH, Aronica E. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats. J Comp Neurol 2002; 442:365-77. [PMID: 11793340 DOI: 10.1002/cne.10101] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The expression of glial and neuronal glutamate transporter proteins was investigated in the hippocampal region at different time points after electrically induced status epilepticus (SE) in the rat. This experimental rat model for mesial temporal lobe epilepsy is characterized by cell loss, gliosis, synaptic reorganization, and chronic seizures after a latent period. Despite extensive gliosis, immunocytochemistry revealed only an up-regulation of both glial transporters localized at the outer aspect of the inner molecular layer (iml) in chronic epileptic rats. The neuronal EAAC1 transporter was increased in many somata of individual CA1-3 neurons and granule cells that had survived after SE; this up-regulation was still present in the chronic epileptic phase. In contrast, a permanent decrease of EAAC1 immunoreactivity was observed in the iml of the dentate gyrus. This permanent decrease in EAAC1 expression, which was only observed in rats that experienced progressive spontaneous seizure activity, could lead to abnormal glutamate levels in the iml once new abnormal glutamatergic synaptic contacts are formed by means of sprouted mossy fibers. Considering the steady growth of reorganizing mossy fibers in the iml, the absence of a glutamate reuptake mechanism in this region could contribute to progression of spontaneous seizure activity, which occurs with a similar time course.
Collapse
Affiliation(s)
- Jan A Gorter
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Shigeri Y, Shimamoto K, Yasuda-Kamatani Y, Seal RP, Yumoto N, Nakajima T, Amara SG. Effects of threo-beta-hydroxyaspartate derivatives on excitatory amino acid transporters (EAAT4 and EAAT5). J Neurochem 2001; 79:297-302. [PMID: 11677257 DOI: 10.1046/j.1471-4159.2001.00588.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
D,L-threo-beta-Benzyloxyaspartate (D,L-TBOA), an analog of threo-beta-hydroxyaspartate (THA) possessing a bulky substituent, is a potent non-transportable blocker for the excitatory amino acid transporters, EAAT1, 2 and 3, while L-threo-beta-methoxyaspartate (L-TMOA) is a blocker for EAAT2, but a substrate for EAAT1 and EAAT3. To characterize the actions of these THA analogs and the function of EAAT4 and EAAT5, we performed electrophysiological analyses in EAAT4 or EAAT5 expressed on Xenopus oocytes. In EAAT4-expressing oocytes, D,L-TBOA acted as a non-transportable blocker, while L-TMOA like D,L-THA was a competitive substrate. In contrast, D,L-THA, D,L-TBOA and L-TMOA all strongly attenuated the glutamate-induced currents generated by EAAT5. Among them, L-TMOA showed the most potent inhibitory action. Moreover, D,L-THA, D,L-TBOA and L-TMOA themselves elicited outward currents at negative potentials and remained inward at positive potentials suggesting that D,L-TBOA and L-TMOA, as well as D,L-THA, not only act as non-transportable blockers, but also block the EAAT5 leak currents. These results indicate that EAATs 4 and 5 show different sensitivities to THA analogs although they share properties of a glutamate-gated chloride channel.
Collapse
Affiliation(s)
- Y Shigeri
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
37
|
Abstract
This review provides an overview of the distributions, properties and roles of amino acid transport systems in normal and pathological retinal tissues and discusses the roles of specific identified transporters in the mammalian retina. The retina is used in this context as a vehicle for describing neuronal and glial properties, which are in some, but not all cases comparable to those found elsewhere an the brain. Where significant departures are noted, these are discussed in the context of functional specialisations of the retina and its relationship to adjacent supporting tissues such as the retinal pigment epithelium. Specific examples are given where immunocytochemical labelling for amino acid transporters may yield inaccurate results, possibly because of activity-dependent conformation changes of epitopes in these proteins which render the epitopes more or less accessible to antibodies.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
38
|
Allen JW, Mutkus LA, Aschner M. Methylmercury-mediated inhibition of 3H-d-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain Res 2001; 902:92-100. [PMID: 11376598 DOI: 10.1016/s0006-8993(01)02375-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Astrocytes are essential for removal of glutamate from the extracellular space in the central nervous system. The neurotoxic heavy metal methylmercury potently and specifically inhibits the transport of glutamate in cultured astrocytes by an unknown mechanism. Glutamate transport in astrocytes is also inhibited by reactive oxygen species. A glutamate-induced transporter current is inhibited both by reactive oxygen species and thiol oxidizing agents. These observations suggest that oxidation of the transporter might mediate methylmercury-induced inhibition of glutamate transport. In the present study, we examined the ability of thiol reducing or oxidizing agents to inhibit transport of 3H-D-aspartate, a glutamate analog, in primary cultures of neonatal rat astrocytes. To assess if methylmercury-mediated inhibition of 3H-aspartate transport was due to overproduction of reactive oxygen species, we tested the ability of Trolox, alpha-phenyl-tert-butyl nitrone (PBN), or catalase to attenuate the methylmercury-induced inhibition of aspartate uptake. Neither the thiol reducing agent dithiothreitol (DTT), nor the thiol oxidizing agent 5,5'-dithio-bis(2-nitrobenzoic) acid (DTNB) had any effect on 3H-aspartate transport suggesting that the thiol redox state does not alter transporter function. In contrast, the antioxidant catalase (1000 U/ml) significantly attenuated methylmercury-induced inhibition of 3H-aspartate uptake, suggesting that excess reactive oxygen species, specifically H2O2, inhibit the function of an astrocytic excitatory amino acid transporter (EAAT1). Prolonged exposure (6 h) to inhibitors of glutamate transport significantly decreased EAAT1 mRNA levels suggesting that transporter expression is related to function. This study suggests that methylmercury-induced overproduction of H2O2 is a mechanism for inhibition of glutamate transport and transporter expression in cultured astrocytes.
Collapse
Affiliation(s)
- J W Allen
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, , Winston-Salem, NC 27157-1083, USA
| | | | | |
Collapse
|
39
|
Eliasof S, McIlvain HB, Petroski RE, Foster AC, Dunlop J. Pharmacological characterization of threo-3-methylglutamic acid with excitatory amino acid transporters in native and recombinant systems. J Neurochem 2001; 77:550-7. [PMID: 11299317 DOI: 10.1046/j.1471-4159.2001.00253.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The glutamate analog (+/-) threo-3-methylglutamate (T3MG) has recently been reported to inhibit the EAAT2 but not EAAT1 subtype of high-affinity, Na(+)-dependent excitatory amino acid transporter (EAAT). We have examined the effects of T3MG on glutamate-elicited currents mediated by EAATs 1-4 expressed in Xenopus oocytes and on the transport of radiolabeled substrate in mammalian cell lines expressing EAATs 1-3. T3MG was found to be an inhibitor of EAAT2 and EAAT4 but a weak inhibitor of EAAT1 and EAAT3. T3MG competitively inhibited uptake of D-[(3)H]-aspartate into both cortical and cerebellar synaptosomes with a similar potency, consistent with its inhibitory activity on the cloned EAAT2 and EAAT4 subtypes. In addition, T3MG produced substrate-like currents in oocytes expressing EAAT4 but not EAAT2. However, T3MG was unable to elicit heteroexchange of preloaded D-[(3)H]-aspartate in cerebellar synaptosomes, inconsistent with the behavior of a substrate inhibitor. Finally, T3MG acts as a poor ionotropic glutamate receptor agonist in cultured hippocampal neurons: concentrations greater than 100 microM T3MG were required to elicit significant NMDA receptor-mediated currents. Thus, T3MG represents a pharmacological tool for the study of not only the predominant EAAT2 subtype but also the EAAT4 subtype highly expressed in cerebellum.
Collapse
Affiliation(s)
- S Eliasof
- Neurocrine Biosciences Inc., San Diego, California, USA Wyeth Neuroscience, Wyeth-Ayerst Research, Princeton, New Jersey, USA
| | | | | | | | | |
Collapse
|
40
|
Lin CI, Orlov I, Ruggiero AM, Dykes-Hoberg M, Lee A, Jackson M, Rothstein JD. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 2001; 410:84-8. [PMID: 11242046 DOI: 10.1038/35065084] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Excitatory amino-acid carrier 1 (EAAC1) is a high-affinity Na+-dependent L-glutamate/D,L-aspartate cell-membrane transport protein. It is expressed in brain as well as several non-nervous tissues. In brain, EAAC1 is the primary neuronal glutamate transporter. It has a polarized distribution in cells and mainly functions perisynaptically to transport glutamate from the extracellular environment. In the kidney it is involved in renal acidic amino-acid re-absorption and amino-acid metabolism. Here we describe the identification and characterization of an EAAC1-associated protein, GTRAP3-18. Like EAAC1, GTRAP3-18 is expressed in numerous tissues. It localizes to the cell membrane and cytoplasm, and specifically interacts with carboxy-terminal intracellular domain of EAAC1. Increasing the expression of GTRAP3-18 in cells reduces EAAC1-mediated glutamate transport by lowering substrate affinity. The expression of GTRAP3-18 can be upregulated by retinoic acid, which results in a specific reduction of EAAC1-mediated glutamate transport. These studies show that glutamate transport proteins can be regulated potently and that GTRAP can modulate the transport functions ascribed to EAAC1. GTRAP3-18 may be important in regulating the metabolic function of EAAC1.
Collapse
Affiliation(s)
- C I Lin
- Johns Hopkins University, Department of Neurology and Neuroscience, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Massie A, Vandesande F, Arckens L. Expression of the high-affinity glutamate transporter EAAT4 in mammalian cerebral cortex. Neuroreport 2001; 12:393-7. [PMID: 11209956 DOI: 10.1097/00001756-200102120-00041] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RT-PCR, immunocytochemistry and Western blotting were used to study the expression of the glutamate transporter EAAT4 in the cerebral cortex of cat and mouse. By means of RT-PCR we were able to detect EAAT4 mRNA in the cerebral cortex of both species. Sequencing ensured the specificity of the amplified fragment. Immunocytochemistry and Western blotting enabled us to localize EAAT4 protein in cat and mouse cerebral cortex. Intense EAAT4 immunoreactivity was found in the soma and dendrites of neurons mainly of layers II, III and V. For both species, the signal in the cerebellum was very intense and confined to the molecular and Purkinje cell layer.
Collapse
Affiliation(s)
- A Massie
- Laboratory of Neuroendocrinology and Immunological Biotechnology, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
42
|
Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuron-derived peptide regulating glial glutamate transport and metabolism. J Neurosci 2000. [PMID: 10804201 DOI: 10.1523/jneurosci.20-10-03596.2000] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the brain, glutamatergic neurotransmission is terminated predominantly by the rapid uptake of synaptically released glutamate into astrocytes through the Na(+)-dependent glutamate transporters GLT-1 and GLAST and its subsequent conversion into glutamine by the enzyme glutamine synthetase (GS). To date, several factors have been identified that rapidly alter glial glutamate uptake by post-translational modification of glutamate transporters. The only condition known to affect the expression of glial glutamate transporters and GS is the coculturing of glia with neurons. We now demonstrate that neurons regulate glial glutamate turnover via pituitary adenylate cyclase-activating polypeptide (PACAP). In the cerebral cortex PACAP is synthesized by neurons and acts on the subpopulation of astroglia involved in glutamate turnover. Exposure of astroglia to PACAP increased the maximal velocity of [(3)H]glutamate uptake by promoting the expression of GLT-1, GLAST, and GS. Moreover, the stimulatory effects of neuron-conditioned medium on glial glutamate transporter expression were attenuated in the presence of PACAP-inactivating antibodies or the PACAP receptor antagonist PACAP 6-38. In contrast to PACAP, vasoactive intestinal peptide promoted glutamate transporter expression only at distinctly higher concentrations, suggesting that PACAP exerts its effects on glial glutamate turnover via PAC1 receptors. Although PAC1 receptor-dependent activation of protein kinase A (PKA) was sufficient to promote the expression of GLAST, the activation of both PKA and protein kinase C (PKC) was required to promote GLT-1 expression optimally. Given the existence of various PAC1 receptor isoforms that activate PKA and PKC to different levels, these findings point to a complex mechanism by which PACAP regulates glial glutamate transport and metabolism. Disturbances of these regulatory mechanisms could represent a major cause for glutamate-associated neurological and psychiatric disorders.
Collapse
|
43
|
Ingram EM, Tessler S, Bowery NG, Emson PC. Glial glutamate transporter mRNAs in the genetically absence epilepsy rat from Strasbourg. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:96-104. [PMID: 10648892 DOI: 10.1016/s0169-328x(99)00301-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies support a critical role for the glutamatergic system and glutamate transporters in the pathogenesis of epilepsy. The glial glutamate transporters GLT-1 (L-glutamate transporter) and GLAST (L-glutamate/L-aspartate transporter) are known to be responsible for the majority of glutamate reuptake from the synaptic cleft and constitute one mechanism by which extracellular glutamate levels may be controlled. The present study therefore compared GLT-1 and GLAST mRNA levels in the genetically absence epilepsy rat from Strasbourg (GAERS) with those of age-matched non-epileptic controls. The GAERS rat has been proposed as an animal model of inherited human absence epilepsy, displaying recurrent, generalised, non-convulsive seizures that originate from thalamic and cortical structures. In situ hybridisation with 35S-labelled oligonucleotide probes demonstrated substantial and significant increases in GLT-1 mRNA levels in the ventromedial nucleus of the thalamus (VM) and the subthalamic nucleus (STN) of GAERS rats. Increases in GLAST mRNA were found in the primary somatosensory cortex (SS1) and temporal cortex (Te) of GAERS. These data, along with previous studies, suggest that regional imbalances in GABAergic and glutamatergic systems may be associated with the pathogenesis of absence seizures in GAERS.
Collapse
Affiliation(s)
- E M Ingram
- Department of Neurobiology, The Babraham Institute, Babraham, Cambridge, UK
| | | | | | | |
Collapse
|
44
|
Laketić-Ljubojević I, Suva LJ, Maathuis FJ, Sanders D, Skerry TM. Functional characterization of N-methyl-D-aspartic acid-gated channels in bone cells. Bone 1999; 25:631-7. [PMID: 10593407 DOI: 10.1016/s8756-3282(99)00224-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our recent identification of glutamate receptors in bone cells suggested a novel means of paracrine communication in the skeleton. To determine whether these receptors are functional, we investigated the effects of the excitatory amino acid, glutamate, and the pharmacological ligand, N-methyl-D-aspartic acid (NMDA), on glutamate-like receptors in the human osteoblastic cell lines MG63 and SaOS-2. Glutamate binds to osteoblasts, with a Kd of approximately 10(-4) mol/L and the NMDA receptor antagonist, D(L)-2-amino-5-phosphonovaleric acid (D-APV), inhibits binding. Using the patch-clamp technique, we measured whole-cell currents before and after addition of L-glutamate or NMDA and investigated the effects of the NMDA channel blockers, dizolcipine maleate (MK801), and Mg2+, and the competitive NMDA receptor antagonist, 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphoric acid (R-CPP), on agonist-induced currents. Both glutamate and NMDA induced significant increases in membrane currents. Application of Mg2+ (200 micromol/L) and MK801 (100 micromol/L) caused a significant decrease in inward currents elicited in response to agonist stimulation. The competitive NMDA receptor antagonist, R-CPP (100 micromol/L), also partially blocked the NMDA-induced currents in MG63 cells. This effect was reversed by addition of further NMDA (100 micromol/L). In Fura-2-loaded osteoblasts, glutamate induced elevation of intracellular free calcium, which was blocked by MK801. These results support the hypothesis that glutamate plays a role in bone cell signaling and suggest a possible role for glutamate agonists/antagonists in the treatment of bone diseases.
Collapse
|