1
|
Belelli D, Riva A, Nutt DJ. Reducing the harms of alcohol: nutritional interventions and functional alcohol alternatives. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:241-276. [PMID: 38555118 DOI: 10.1016/bs.irn.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The health risks and harm associated with regular alcohol consumption are well documented. In a recent WHO statement published in The Lancet Public Health alcohol consumption has been estimated to contribute worldwide to 3 million deaths in 2016 while also being responsible for 5·1% of the global burden of disease and injury. The total elimination of alcohol consumption, which has been long imbedded in human culture and society, is not practical and prohibition policies have proved historically ineffective. However, valuable strategies to reduce alcohol harms are already available and improved alternative approaches are currently being developed. Here, we will review and discuss recent advances on two main types of approaches, that is nutritional interventions and functional alcohol alternatives.
Collapse
Affiliation(s)
- Delia Belelli
- GABALabs Res. Senior Scientific Consultant, United Kingdom
| | - Antonio Riva
- Roger Williams Institute of Hepatology (Foundation for Liver Research), London; Faculty of Life Sciences & Medicine, King's College London, London
| | | |
Collapse
|
2
|
Hasegawa H, Kondo M. Astrocytic Responses to Binge Alcohol Intake in the Mouse Hindbrain. Biol Pharm Bull 2023; 46:1194-1202. [PMID: 37661398 DOI: 10.1248/bpb.b23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Ethanol is the most commonly used toxic chemical in human cultures. Ethanol predominantly damages the brain causing various neurological disorders. Astrocytes are important cellular targets of ethanol in the brain and are involved in alcoholic symptoms. Recent studies have revealed the diversity of astrocyte populations in the brain. However, it is unclear how the different astrocyte populations respond to an excess of ethanol. Here we examined the effect of binge ethanol levels on astrocytes in the mouse brainstem and cerebellum. Ethanol administration for four consecutive days increased the glial fibrillary acidic protein (GFAP)-immunoreactive signals in the spinal tract of the trigeminal nerve (stTN) and reticular nucleus (RN). Another astrocyte marker, aquaporin 4 (AQP4), was also increased in the stTN with a pattern similar to that of GFAP. However, in the RN, the immunoreactive signals of AQP4 were different from that of GFAP and were not changed by ethanol administration. In the cerebellum, GFAP-positive signals were found in all four astrocytic populations, and those in the Bergmann glia were selectively eliminated by ethanol administration. We next examined the effect of estradiol on the ethanol-induced changes in astrocytic immunoreactive signals. The administration of estradiol alone increased the AQP4-immunoreactivity in the stTN with a pattern similar to that of ethanol, whereas the co-administration of estradiol and ethanol suppressed the intensity of the AQP4-positive signals. Thus, binge levels of ethanol intake selectively affect astrocyte populations in the brainstem and cerebellum. Sex hormones can affect the ethanol-induced neurotoxicity via modulation of astrocyte reactivity.
Collapse
Affiliation(s)
| | - Mari Kondo
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| |
Collapse
|
3
|
Mineur YS, Garcia-Rivas V, Thomas MA, Soares AR, McKee SA, Picciotto MR. Sex differences in stress-induced alcohol intake: a review of preclinical studies focused on amygdala and inflammatory pathways. Psychopharmacology (Berl) 2022; 239:2041-2061. [PMID: 35359158 PMCID: PMC9704113 DOI: 10.1007/s00213-022-06120-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
Clinical studies suggest that women are more likely than men to relapse to alcohol drinking in response to stress; however, the mechanisms underlying this sex difference are not well understood. A number of preclinical behavioral models have been used to study stress-induced alcohol intake. Here, we review paradigms used to study effects of stress on alcohol intake in rodents, focusing on findings relevant to sex differences. To date, studies of sex differences in stress-induced alcohol drinking have been somewhat limited; however, there is evidence that amygdala-centered circuits contribute to effects of stress on alcohol seeking. In addition, we present an overview of inflammatory pathways leading to microglial activation that may contribute to alcohol-dependent behaviors. We propose that sex differences in neuronal function and inflammatory signaling in circuits centered on the amygdala are involved in sex-dependent effects on stress-induced alcohol seeking and suggest that this is an important area for future studies.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Vernon Garcia-Rivas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Merrilee A Thomas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Sherry A McKee
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA.
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA.
| |
Collapse
|
4
|
Doran CR, Aschengrau A. Prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water and sleep quality in adulthood: a retrospective cohort study. Environ Health 2022; 21:15. [PMID: 35033085 PMCID: PMC8760772 DOI: 10.1186/s12940-021-00819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Communities in Cape Cod, Massachusetts were exposed to tetrachloroethylene (PCE) through contaminated drinking water from 1969 to 1983. PCE exposure during adulthood has well-established neurotoxic effects; however, long-term impacts stemming from early life exposure, especially adverse effects on sleep quality, are not well understood. METHODS The present analysis was based on data from the Cape Cod Health Study, a retrospective cohort study of the long-term neurotoxic impacts of early-life exposure to PCE-contaminated drinking water. Exposure to PCE-contaminated water was estimated using a validated leaching and transport model. Measures of sleep quality were obtained from self-administered questionnaires. Generalized estimating equations were used to generate risk ratios and 95% confidence intervals to estimate the association between early-life PCE exposure and sleep quality among 604 participants. RESULTS Compared to unexposed participants, any PCE exposure during early life was associated with 1.57 times the risk of reporting breathing pauses during sleep (95% CI 0.92-2.68). Low-level exposure to PCE was associated with 1.50 times the risk of reporting sleep apnea or other sleep disorders (95% CI 0.78-2.89), while high levels of exposure had comparable risk compared to no exposure (RR = 0.94, 95% CI 0.50-1.79). Weak or no associations were observed for other sleep quality outcomes. In stratified analyses participants with mental illness and/or substance use disorder had increased risk ratios for short sleep duration associated with PCE exposure. CONCLUSION These findings suggest that early-life exposure to PCE may be associated with a moderate increase in the risk of reporting breathing pauses during sleep in adulthood and that a history of mental illness and/or substance use disorder may exacerbate the risk of short sleep duration.
Collapse
Affiliation(s)
- Charlotte R Doran
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Talbot 328 east, Boston, MA, 02118, USA
| | - Ann Aschengrau
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Talbot 328 east, Boston, MA, 02118, USA.
| |
Collapse
|
5
|
Nekoukar Z, Zakariaei Z, Taghizadeh F, Musavi F, Banimostafavi ES, Sharifpour A, Ebrahim Ghuchi N, Fakhar M, Tabaripour R, Safanavaei S. Methanol poisoning as a new world challenge: A review. Ann Med Surg (Lond) 2021; 66:102445. [PMID: 34141419 PMCID: PMC8187162 DOI: 10.1016/j.amsu.2021.102445] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Methanol poisoning (MP) occurs often via ingestion, inhalation, or dermal exposure to formulations containing methanol in base. Clinical manifestations of MP include gastrointestinal symptoms, central nervous system (CNS) suppression, and decompensated metabolic acidosis occurred with blurred vision and early or late blindness. OBJECTIVE This study reviewed the clinical manifestations, laboratory and radiology findings, and treatment approaches in MP. DISCUSSION Methanol is usually rapidly absorbed after ingestion and metabolized by alcohol dehydrogenase (ADH), then distributed to the body water to reach a volume distribution approximately equal to 0.77 L/kg. It is also eliminated from the body as unchanged parent compounds. Clinical manifestations of MP alone initiate within 0.5-4 h after ingestion and include gastrointestinal symptoms and CNS suppression. After a latent period of 6-24 h, depending on the absorbed dose, decompensated metabolic acidosis occurs with blurred vision and early or late blindness. Blurred vision with normal consciousness is a strong suspicious sign of an MP. The mortality and severity of intoxication are well associated with the severity of CNS depression, hyperglycemia, and metabolic acidosis, but not with serum methanol concentration. After initial resuscitation, the most important therapeutic action for patients with known or suspected MP is correction of acidosis, inhibition of ADH, and hemodialysis. CONCLUSION Since MP is associated with high morbidity and mortality, it should be considered seriously and instantly managed. Delay in treatment may cause complications, permanent damage, and even death.
Collapse
Affiliation(s)
- Zahra Nekoukar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakaria Zakariaei
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
- Toxicology and Forensic Medicine Division, Orthopedic Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Taghizadeh
- Psychiatry and Behavioral Sciences Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Musavi
- Toxicology and Forensic Medicine Division, Orthopedic Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Sadat Banimostafavi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Sharifpour
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
- Pulmonary and Critical Care Division, Imam Khomeini Hospital, Iranian National Registry Center for Lophomoniasis (INRCL), Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Ebrahim Ghuchi
- Knowledge and Information Science, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rabeeh Tabaripour
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sepideh Safanavaei
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
- Pulmonary and Critical Care Division, Imam Khomeini Hospital, Iranian National Registry Center for Lophomoniasis (INRCL), Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Khirug S, Soni S, Saez Garcia M, Tessier M, Zhou L, Kulesskaya N, Rauvala H, Lindholm D, Ludwig A, Molinari F, Rivera C. Protective Role of Low Ethanol Administration Following Ischemic Stroke via Recovery of KCC2 and p75 NTR Expression. Mol Neurobiol 2021; 58:1145-1161. [PMID: 33099743 PMCID: PMC7878264 DOI: 10.1007/s12035-020-02176-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/14/2020] [Indexed: 01/31/2023]
Abstract
A striking result from epidemiological studies show a correlation between low alcohol intake and lower incidence for ischemic stroke and severity of derived brain injury. Although reduced apoptosis and inflammation has been suggested to be involved, little is known about the mechanism mediating this effect in vivo. Increase in intracellular chloride concentration and derived depolarizing GABAAR-mediated transmission are common consequences following various brain injuries and are caused by the abnormal expression levels of the chloride cotransporters NKCC1 and KCC2. Downstream pro-apoptotic signaling through p75NTR may link GABAA depolarization with post-injury neuronal apoptosis. Here, we show that changes in GABAergic signaling, Cl- homeostasis, and expression of chloride cotransporters in the post-traumatic mouse brain can be significantly reduced by administration of 3% ethanol to the drinking water. Ethanol-induced upregulation of KCC2 has a positive impact on neuronal survival, preserving a large part of the cortical peri-infarct zone, as well as preventing the massive post-ischemic upregulation of the pro-apoptotic protein p75NTR. Importantly, intracortical multisite in vivo recordings showed that ethanol treatment could significantly ameliorate stroke-induced reduction in cortical activity. This surprising finding discloses a pathway triggered by low concentration of ethanol as a novel therapeutically relevant target.
Collapse
Affiliation(s)
- Stanislav Khirug
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
| | - Shetal Soni
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marta Saez Garcia
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Marine Tessier
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France
| | - Liang Zhou
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Natalia Kulesskaya
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Heikki Rauvala
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Anastasia Ludwig
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | | | - Claudio Rivera
- Neuroscience Center-HiLIFE, University of Helsinki, 00014, Helsinki, Finland.
- INMED (INSERM U1249), Aix-Marseille Université, Marseille, France.
| |
Collapse
|
7
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Tyson TL, Feick NH, Cravalho PF, Flynn-Evans EE, Stone LS. Dose-dependent sensorimotor impairment in human ocular tracking after acute low-dose alcohol administration. J Physiol 2020; 599:1225-1242. [PMID: 33332605 PMCID: PMC7898833 DOI: 10.1113/jp280395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 11/08/2022] Open
Abstract
Key points Oculomotor behaviours are commonly used to evaluate sensorimotor disruption due to ethanol (EtOH). The current study demonstrates the dose‐dependent impairment in oculomotor and ocular behaviours across a range of ultra‐low BACs (<0.035%). Processing of target speed and direction, as well as pursuit eye movements, are significantly impaired at 0.015% BAC, suggesting impaired neural activity within brain regions associated with the visual processing of motion. Catch‐up saccades during steady visual tracking of the moving target compensate for the reduced vigour of smooth eye movements that occurs with the ingestion of low‐dose alcohol. Saccade dynamics start to become ‘sluggish’ at as low as 0.035% BAC. Pupillary light responses appear unaffected at BAC levels up to 0.065%.
Abstract Changes in oculomotor behaviours are often used as metrics of sensorimotor disruption due to ethanol (EtOH); however, previous studies have focused on deficits at blood‐alcohol concentrations (BACs) above about 0.04%. We investigated the dose dependence of the impairment in oculomotor and ocular behaviours caused by EtOH administration across a range of ultra‐low BACs (≤0.035%). We took repeated measures of oculomotor and ocular performance from sixteen participants, both pre‐ and post‐EtOH administration. To assess the neurological impacts across a wide range of brain areas and pathways, our protocol measured 21 largely independent performance metrics extracted from a range of behavioural responses ranging from ocular tracking of radial step‐ramp stimuli, to eccentric gaze holding, to pupillary responses evoked by light flashes. Our results show significant impairment of pursuit and visual motion processing at 0.015% BAC, reflecting degraded neural processing within extrastriate cortical pathways. However, catch‐up saccades largely compensate for the tracking displacement shortfall caused by low pursuit gain, although there still is significant residual retinal slip and thus degraded dynamic acuity. Furthermore, although saccades are more frequent, their dynamics are more sluggish (i.e. show lower peak velocities) starting at BAC levels as low as 0.035%. Small effects in eccentric gaze holding and no effect in pupillary response dynamics were observed at levels below 0.07%, showing the higher sensitivity of the pursuit response to very low levels of blood alcohol, under the conditions of our study. Oculomotor behaviours are commonly used to evaluate sensorimotor disruption due to ethanol (EtOH). The current study demonstrates the dose‐dependent impairment in oculomotor and ocular behaviours across a range of ultra‐low BACs (<0.035%). Processing of target speed and direction, as well as pursuit eye movements, are significantly impaired at 0.015% BAC, suggesting impaired neural activity within brain regions associated with the visual processing of motion. Catch‐up saccades during steady visual tracking of the moving target compensate for the reduced vigour of smooth eye movements that occurs with the ingestion of low‐dose alcohol. Saccade dynamics start to become ‘sluggish’ at as low as 0.035% BAC. Pupillary light responses appear unaffected at BAC levels up to 0.065%.
Collapse
Affiliation(s)
- Terence L Tyson
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Leland S Stone
- Visuomotor Control Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
9
|
Venuti LS, Pena-Flores NL, Herberholz J. Cellular interactions between social experience, alcohol sensitivity, and GABAergic inhibition in a crayfish neural circuit. J Neurophysiol 2020; 125:256-272. [PMID: 33174493 DOI: 10.1152/jn.00519.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We report here that prior social experience modified the behavioral responses of adult crayfish to acute alcohol exposure. Animals housed individually for 1 wk before alcohol exposure were less sensitive to the intoxicating effects of alcohol than animals housed in groups, and these differences are based on changes in the nervous system rather than differences in alcohol uptake. To elucidate the underlying neural mechanisms, we investigated the neurophysiological responses of the lateral giant (LG) interneurons after alcohol exposure. Specifically, we measured the interactions between alcohol and different GABAA-receptor antagonists and agonists in reduced crayfish preparations devoid of brain-derived tonic GABAergic inhibition. We found that alcohol significantly increased the postsynaptic potential of the LG neurons, but contrary to our behavioral observations, the results were similar for isolated and communal animals. The GABAA-receptor antagonist picrotoxin, however, facilitated LG postsynaptic potentials more strongly in communal crayfish, which altered the neurocellular interactions with alcohol, whereas TPMPA [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid], an antagonist directed against GABAA-receptors with ρ subunits, did not produce any effects. Muscimol, an agonist for GABAA-receptors, blocked the stimulating effects of alcohol, but this was independent of prior social history. THIP [4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol], an agonist directed against GABAA-receptors with δ subunits, which were not previously known to exist in the LG circuit, replicated the suppressing effects of muscimol. Together, our findings provide strong evidence that alcohol interacts with the crayfish GABAergic system, and the interplay between prior social experience and acute alcohol intoxication might be linked to changes in the expression and function of specific GABAA-receptor subtypes.NEW & NOTEWORTHY The complex interactions between alcohol and prior social experience are still poorly understood. Our work demonstrates that socially isolated crayfish exhibit lower neurobehavioral sensitivity to acute ethanol compared with communally housed animals, and this socially mediated effect is based on changes in the nervous systems rather than on differences in uptake or metabolism. By combining intracellular neurophysiology and neuropharmacology, we investigated the role of the main inhibitory neurotransmitter GABA, and its receptor subtypes, in shaping this process.
Collapse
Affiliation(s)
| | | | - Jens Herberholz
- Neuroscience and Cognitive Science Program.,Department of Psychology, University of Maryland, College Park, Maryland
| |
Collapse
|
10
|
Aschengrau A, Grippo A, Winter MR, Shea MG, White RF, Saitz R. Drug use disorder following early life exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study. Environ Health 2020; 19:99. [PMID: 32943075 PMCID: PMC7495895 DOI: 10.1186/s12940-020-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Many studies of adults with occupational exposure to solvents such as tetrachloroethylene (PCE) have shown adverse effects on cognition, mood and behavioral problems. Much less is known about neurotoxic effects in early life at lower exposure levels seen in community settings. We recently reported that illicit drug use was more frequent among adults from Cape Cod, Massachusetts who were exposed to PCE-contaminated drinking water during gestation and early childhood than their unexposed counterparts. Using newly collected data from this population-based retrospective cohort study, the current analysis examines whether early life PCE exposure is also associated with drug use disorder over the life course. METHODS Three-hundred and sixty-three subjects with prenatal and early childhood PCE exposure and 255 unexposed subjects were studied. These individuals (median age: 40-41 years) completed self-administered questionnaires on the eleven established diagnostic criteria for drug use disorder and confounding variables. A validated leaching and transport model was used to estimate exposure to PCE-contaminated water. RESULTS Overall, 23.3% of subjects reported having at least one criterion for drug use disorder over their lifetime. Early life PCE exposure was associated with a modest increase in the lifetime presence of one or more diagnostic criteria for drug use disorder (adjusted RR: 1.4, 95% CI: 1.0-1.8). Compared to unexposed subjects, PCE-exposed subjects were more likely to report having most diagnostic criteria of drug use disorder, including neglecting major roles due to drug use, physical and psychological problems related to drug use, and giving up activities due to drug use. No dose-response relationships were observed with increasing levels of PCE exposure. CONCLUSIONS These results suggest that exposure to PCE-contaminated drinking water during early life modestly increases the risk of developing diagnostic criteria for drug use disorder later in life. Because this study has several limitations, these findings should be confirmed in follow-up investigations of other exposed populations with more diverse racial and socioeconomic characteristics.
Collapse
Affiliation(s)
- Ann Aschengrau
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118 USA
| | - Alexandra Grippo
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118 USA
| | - Michael R. Winter
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, 85 East Newton Street, Boston, MA 02118 USA
| | - Margaret G. Shea
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, 85 East Newton Street, Boston, MA 02118 USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118 USA
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA
| | - Richard Saitz
- Department of Community Health Sciences, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118 USA
- Clinical Addiction Research and Education Unit, Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA USA
- Grayken Center for Addiction, Boston Medical Center, Boston, MA USA
| |
Collapse
|
11
|
Kirson D, Oleata CS, Roberto M. Taurine Suppression of Central Amygdala GABAergic Inhibitory Signaling via Glycine Receptors Is Disrupted in Alcohol Dependence. Alcohol Clin Exp Res 2019; 44:445-454. [PMID: 31782155 DOI: 10.1111/acer.14252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) increases brain stress systems while suppressing reward system functioning. One expression of stress system recruitment is elevated GABAergic activity in the central amygdala (CeA), which is involved in the excessive drinking seen with AUD. The sulfonic amino acid taurine, a glycine receptor partial agonist, modulates GABAergic activity in the rewarding effects of alcohol. Despite taurine abundance in the amygdala, its role in the dysregulation of GABAergic activity associated with AUD has not been studied. Thus, here, we evaluated the effects of taurine on locally stimulated GABAergic neurotransmission in the CeA of naïve- and alcohol-dependent rats. METHODS We recorded intracellularly from CeA neurons of naïve- and alcohol-dependent rats, quantifying locally evoked GABAA receptor-mediated inhibitory postsynaptic potentials (eIPSP). We examined the effects of taurine and alcohol on CeA eIPSP to characterize potential alcohol dependence-induced changes in the effects of taurine. RESULTS We found that taurine decreased amplitudes of eIPSP in CeA neurons of naïve rats, without affecting the acute alcohol-induced facilitation of GABAergic responses. In CeA neurons from dependent rats, taurine no longer had an effect on eIPSP, but now blocked the ethanol (EtOH)-induced increase in eIPSP amplitude normally seen. Additionally, preapplication of the glycine receptor-specific antagonist strychnine blocked the EtOH-induced increase in eIPSP amplitude in neurons from naïve rats. CONCLUSIONS These data suggest taurine may act to oppose the effects of acute alcohol via the glycine receptor in the CeA of naïve rats, and this modulatory system is altered in the CeA of dependent rats.
Collapse
Affiliation(s)
- Dean Kirson
- Department of Molecular Medicine, and Alcohol Research Center, The Scripps Research Institute, La Jolla, California
| | - Christopher S Oleata
- Department of Molecular Medicine, and Alcohol Research Center, The Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Department of Molecular Medicine, and Alcohol Research Center, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
12
|
Mahdinia R, Goudarzi I, Lashkarbolouki T, Salmani ME. Vitamin E attenuates alterations in learning, memory and BDNF levels caused by perinatal ethanol exposure. Nutr Neurosci 2019; 24:747-761. [PMID: 31607237 DOI: 10.1080/1028415x.2019.1674523] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective: Alcohol exposure during pregnancy affects the developing fetus and causes a variety of physical and neurological abnormalities. Here we aim to study the effects of vitamin E on spatial learning and memory deficits and on changes in hippocampal brain-derived neurotrophic factor (BDNF) levels following perinatal ethanol exposure in rats. Method: Pregnant Wistar rats received ethanol (4 g/kg) and vitamin E (doses of 100, 200, and 400 mg/kg) on day 0 of gestation (GD) until weaning (28 days). On postnatal days (PND) 29, the performance of spatial learning and memory of rats were measured using the Morris water maze (MWM). The expression of BDNF protein levels in the hippocampus was assayed using BDNF ELISA kits. Results: Ethanol exposed group showed higher escape latency during training, reduced time spent in the target quadrant, higher escape location latency and average proximity in probe test. Vitamin E with doses of 100, 200 and 400 mg/kg significantly reduced escape latency during training. Also, vitamin E (400 mg/kg) significantly increased time spent in target quadrant, decreased escape location latency and average proximity in probe test. Maternal ethanol treatment significantly reduced the expression of BDNF protein in the hippocampus of offspring, whereas administration of vitamin E (400 mg/kg) significantly increased hippocampal BDNF in ethanol-treated rats. Discussion: Vitamin E administration dose-dependently ameliorate learning and memory deficits induced by perinatal ethanol exposure and increased hippocampal BDNF levels. BDNF may be implicated in the beneficial effects of vitamin E on learning and memory in the perinatal ethanol-exposed rat.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University , Damghan , Iran
| | | | | |
Collapse
|
13
|
Lander M, Bastiampillai T, Sareen J. Review of withdrawal catatonia: what does this reveal about clozapine? Transl Psychiatry 2018; 8:139. [PMID: 30065280 PMCID: PMC6068101 DOI: 10.1038/s41398-018-0192-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/05/2018] [Accepted: 05/11/2018] [Indexed: 12/23/2022] Open
Abstract
Withdrawal symptoms are common upon discontinuation of psychiatric medications. Catatonia, a neuropsychiatric condition proposed to be associated with gamma-aminobutyric acid (GABA) hypoactivity due to its robust response to benzodiazepines, has been described as a withdrawal syndrome in case reports but is not a well-recognized phenomenon. The authors undertook a review of withdrawal catatonia with an aim to understand its presentation as well as the medications and psychoactive substances it is associated with. The review identified 55 cases of withdrawal catatonia, the majority of which occurred upon discontinuation of benzodiazepines (24 cases) and discontinuation of clozapine (20 cases). No other antipsychotic medications were identified as having been associated with the onset of a catatonic episode within 2 weeks following their discontinuation. Increasing GABA activity and resultant GABA receptor adaptations with prolonged use is postulated as a shared pharmacological mechanism between clozapine and benzodiazepines that underlie their association with withdrawal catatonia. The existing evidence for clozapine's activity on the GABA system is reviewed. The clinical presentations of benzodiazepine withdrawal catatonia and clozapine withdrawal catatonia appear to differ and reasons for this are explored. One reason is that benzodiazepines act directly on GABAA receptors as allosteric agonists, while clozapine has more complex and indirect interactions, primarily through effects on receptors located on GABA interneurons. Another possible reason for the difference in clinical presentation is that clozapine withdrawal catatonia may also involve receptor adaptations in non-GABA receptors such as dopamine and acetylcholine. The findings from our review have implications for the treatment of withdrawal catatonia, and treatment recommendations are provided. Further research understanding the uniqueness of clozapine withdrawal catatonia among antipsychotic medication may give some insight as to clozapine's differential mechanism of action.
Collapse
Affiliation(s)
- Matthew Lander
- Department of Psychiatry, University of Manitoba, Winnipeg, Canada.
| | - Tarun Bastiampillai
- Discipline of Psychiatry, School of Medicine, Flinders University, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jitender Sareen
- Departments of Psychiatry, Psychology, and Community Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
14
|
Chronic Oxycodone Self-administration Altered Reward-related Genes in the Ventral and Dorsal Striatum of C57BL/6J Mice: An RNA-seq Analysis. Neuroscience 2018; 393:333-349. [PMID: 30059705 DOI: 10.1016/j.neuroscience.2018.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
Prescription opioid abuse, for example of oxycodone, is a pressing public health issue. This study focuses on how chronic oxycodone self-administration (SA) affects the reward pathways in the mouse brain. In this study, we tested the hypothesis that the expression of reward-related genes in the ventral and dorsal striatum, areas involved in different aspects of opioid addiction models, was altered within 1 h after chronic oxycodone SA, using transcriptome-wide sequencing (RNA-seq). Based on results from earlier human genetic and rodent preclinical studies, we focused on a set of genes that may be associated with the development of addictive diseases and the rewarding effect of drugs of abuse, primarily in the opioid, stress response and classical neurotransmitter systems. We found that 32 transcripts in the ventral striatum, and 7 in the dorsal striatum, were altered significantly in adult mice that had self-administered oxycodone (n = 5) for 14 consecutive days (4 h/day) compared with yoked saline controls (n = 5). The following 5 genes in the ventral striatum showed experiment-wise significant changes: proopiomelanocortin (Pomc) and serotonin 5-HT-2A receptor (Htr2a) were upregulated; serotonin receptor 7 (Htr7), galanin receptor1 (Galr1) and glycine receptor 1 (Glra1) were downregulated. Some genes detected by RNA-seq were confirmed by quantitative polymerase chain reaction (qPCR). Conclusion: A RNA-seq study shows that chronic oxycodone SA alters the expression of several reward-related genes in the dorsal and ventral striatum. These results suggest potential mechanisms underlying neuronal adaptation to chronic oxycodone self-exposure, of relevance to our mechanistic understanding of prescription opioid abuse.
Collapse
|
15
|
The Cerebellar GABA AR System as a Potential Target for Treating Alcohol Use Disorder. Handb Exp Pharmacol 2018; 248:113-156. [PMID: 29736774 DOI: 10.1007/164_2018_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the brain, fast inhibitory neurotransmission is mediated primarily by the ionotropic subtype of the gamma-aminobutyric acid (GABA) receptor subtype A (GABAAR). It is well established that the brain's GABAAR system mediates many aspects of neurobehavioral responses to alcohol (ethanol; EtOH). Accordingly, in both preclinical studies and some clinical scenarios, pharmacologically targeting the GABAAR system can alter neurobehavioral responses to acute and chronic EtOH consumption. However, many of the well-established interactions of EtOH and the GABAAR system have been identified at concentrations of EtOH ([EtOH]) that would only occur during abusive consumption of EtOH (≥40 mM), and there are still inadequate treatment options for prevention of or recovery from alcohol use disorder (AUD, including abuse and dependence). Accordingly, there is a general acknowledgement that more research is needed to identify and characterize: (1) neurobehavioral targets of lower [EtOH] and (2) associated brain structures that would involve such targets in a manner that may influence the development and maintenance of AUDs.Nearly 15 years ago it was discovered that the GABAAR system of the cerebellum is highly sensitive to EtOH, responding to concentrations as low as 10 mM (as would occur in the blood of a typical adult human after consuming 1-2 standard units of EtOH). This high sensitivity to EtOH, which likely mediates the well-known motor impairing effects of EtOH, combined with recent advances in our understanding of the role of the cerebellum in non-motor, cognitive/emotive/reward processes has renewed interest in this system in the specific context of AUD. In this chapter we will describe recent advances in our understanding of cerebellar processing, actions of EtOH on the cerebellar GABAAR system, and the potential relationship of such actions to the development of AUD. We will finish with speculation about how cerebellar specific GABAAR ligands might be effective pharmacological agents for treating aspects of AUD.
Collapse
|
16
|
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017; 96:1223-1238. [PMID: 29268093 PMCID: PMC6566861 DOI: 10.1016/j.neuron.2017.10.032] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/30/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Ethanol is one of the most commonly abused drugs. Although environmental and genetic factors contribute to the etiology of alcohol use disorders, it is ethanol's actions in the brain that explain (1) acute ethanol-related behavioral changes, such as stimulant followed by depressant effects, and (2) chronic changes in behavior, including escalated use, tolerance, compulsive seeking, and dependence. Our knowledge of ethanol use and abuse thus relies on understanding its effects on the brain. Scientists have employed both bottom-up and top-down approaches, building from molecular targets to behavioral analyses and vice versa, respectively. This review highlights current progress in the field, focusing on recent and emerging molecular, cellular, and circuit effects of the drug that impact ethanol-related behaviors. The focus of the field is now on pinpointing which molecular effects in specific neurons within a brain region contribute to behavioral changes across the course of acute and chronic ethanol exposure.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Söderpalm B, Lidö HH, Ericson M. The Glycine Receptor-A Functionally Important Primary Brain Target of Ethanol. Alcohol Clin Exp Res 2017; 41:1816-1830. [PMID: 28833225 DOI: 10.1111/acer.13483] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022]
Abstract
Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand-gated ion channels, that is, the nicotinic acetylcholine receptor, the γ-aminobutyric acid type A receptor, the 5-hydroxytryptamine3 , and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine-activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Helga H Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Lefevre EM, Medley GA, Reeks T, Alexander S, Burne THJ, Eyles DW. Effect of the glucocorticoid receptor antagonist RU486 on MK-801 induced behavioural sensitisation. PLoS One 2017; 12:e0176156. [PMID: 28430805 PMCID: PMC5400269 DOI: 10.1371/journal.pone.0176156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/06/2017] [Indexed: 02/04/2023] Open
Abstract
Stress is known to modulate sensitisation to repeated psychostimulant exposure. However, there is no direct evidence linking glucocorticoids and sensitisation achieved by repeated administration of the NMDA receptor antagonist MK-801. We tested the hypothesis that co-administration of RU486, a glucocorticoid receptor (GR) antagonist, prior to repeated daily MK-801 injections would block the expression of locomotor sensitisation due to its dual effects on corticosterone and dopamine. We employed a repeated MK-801 administration locomotor sensitisation paradigm in male Sprague Dawley rats. RU486 or a dimethyl sulfoxide (DMSO) vehicle was co-administered with MK-801 or saline during the induction phase. Subsequent to withdrawal, rats were challenged with MK-801 alone to test for the expression of sensitisation. In a separate cohort of rats, plasma corticosterone levels were quantified from blood samples taken on the 1st, 4th and 7th day of induction and at expression. One day after challenge, nucleus accumbens tissue levels of dopamine and its metabolites DOPAC and HVA were measured. During the induction phase, RU486 progressively enhanced locomotor sensitisation to MK-801. RU486 and MK-801 both showed stimulatory effects on corticosterone levels and this was further augmented when given in combination. Contrary to our hypothesis, RU486 did not block the expression of locomotor sensitisation to MK-801 and actually increased levels of dopamine, DOPAC and HVA in nucleus accumbens tissue. Our results showed that RU486 has augmentative rather than inhibitory effects on MK-801-induced sensitisation. This study indicates a divergent role for glucocorticoids in sensitisation to MK-801 compared to sensitisation with other psychostimulants.
Collapse
Affiliation(s)
- Emilia M. Lefevre
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Gregory A. Medley
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Queensland, Australia
| | - Timothy Reeks
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Queensland, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Queensland, Australia
| | - Darryl W. Eyles
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Queensland, Australia
- * E-mail:
| |
Collapse
|
19
|
Sy JL, Tomarken AJ, Patel V, Blake R. The time course of binocular rivalry during the phases of the menstrual cycle. J Vis 2016; 16:22. [PMID: 28006072 PMCID: PMC5221672 DOI: 10.1167/16.15.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/30/2016] [Indexed: 11/28/2022] Open
Abstract
Binocular rivalry occurs when markedly different inputs to the two eyes initiate alternations in perceptual dominance between the two eyes' views. A link between individual differences in perceptual dynamics of rivalry and concentrations of GABA, a prominent inhibitory neurotransmitter in the brain, has highlighted binocular rivalry as a potential tool to investigate inhibitory processes in the brain. The present experiment investigated whether previously reported fluctuations of GABA concentrations in a healthy menstrual cycle (Epperson et al., 2002) also are associated with measurable changes in rivalry dynamics within individuals. We obtained longitudinal measures of alternation rate, dominance, and mixture durations in 300 rivalry tracking blocks measured over 5 weeks from healthy female participants who monitored the start of the follicular and luteal phases of their cycle. Although we demonstrate robust and stable individual differences in rivalry dynamics, across analytic approaches and dependent measures, we found no significant change or even trends across menstrual phases in the temporal dynamics of dominance percepts. We found only sparse between-phase differences in skew and kurtosis on mixture percepts when data were pooled across sessions and blocks. These results suggest a complex dynamic between hormonal steroids, binocular rivalry, and GABAeric signaling in the brain and thus implicate the need to consider a systemic perspective when linking GABA with perceptual alternations in binocular rivalry.
Collapse
Affiliation(s)
- Jocelyn L Sy
- Department of Psychology, Vanderbilt University, Nashville, TN,
| | | | - Vaama Patel
- Department of Psychology, Vanderbilt University, Nashville, TN,
| | - Randolph Blake
- Department of Psychology, Vanderbilt University, Nashville, TN,
| |
Collapse
|
20
|
Zuo W, Wang L, Chen L, Krnjević K, Fu R, Feng X, He W, Kang S, Shah A, Bekker A, Ye JH. Ethanol potentiates both GABAergic and glutamatergic signaling in the lateral habenula. Neuropharmacology 2016; 113:178-187. [PMID: 27678415 DOI: 10.1016/j.neuropharm.2016.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 10/21/2022]
Abstract
Ethanol's aversive property may limit it's use, but the underlying mechanisms are no well-understood. Emerging evidence suggests a critical role for the lateral habenula (LHb) in the aversive response to various drugs, including ethanol. We previously showed that ethanol enhances glutamatergic transmission and stimulates LHb neurons. GABAergic transmission, a major target of ethanol in many brain regions, also tightly regulates LHb activity. This study assessed the action of ethanol on LHb GABAergic transmission in rat brain slices. Application of ethanol accelerated spontaneous action potential firing of LHb neurons, and LHb activity was increased by the GABAA receptor antagonist gabazine, and ethanol-induced acceleration of LHb firing was further increased by gabazine. Additionally, ethanol potentiated GABAergic transmission (inhibitory postsynaptic currents, IPSCs) with an EC50 of 1.5 mM. Ethanol-induced potentiation of IPSCs was increased by a GABAB receptor antagonist; it was mimicked by dopamine, dopamine receptor agonists, and dopamine reuptake blocker, and was completely prevented by reserpine, which depletes store of catecholamine. Moreover, ethanol-induced potentiation of IPSCs involved cAMP signaling. Finally, ethanol enhanced simultaneously glutamatergic and GABAergic transmissions to the majority of LHb neurons: the potentiation of the former being greater than that of the latter, the net effect was increased firing. Since LHb excitation may contribute to aversion, ethanol-induced potentiation of GABAergic inhibition tends to reduce aversion.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Krešimir Krnjević
- Department of Physiology, McGill University, McIntyre Centre, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada
| | - Rao Fu
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Xia Feng
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen He
- Department of Geriatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Seungwoo Kang
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Avi Shah
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA.
| |
Collapse
|
21
|
Nimitvilai S, You C, Arora DS, McElvain MA, Vandegrift BJ, Brodie MS, Woodward JJ. Differential Effects of Toluene and Ethanol on Dopaminergic Neurons of the Ventral Tegmental Area. Front Neurosci 2016; 10:434. [PMID: 27713687 PMCID: PMC5031606 DOI: 10.3389/fnins.2016.00434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 11/13/2022] Open
Abstract
Drugs of abuse increase the activity of dopaminergic neurons of the ventral tegmental area (VTA), and output from the VTA is critical for both natural and drug-induced reward and reinforcement. Ethanol and the abused inhalant toluene both enhance VTA neuronal firing, but the mechanisms of this effect is not fully known. In this study, we used extracellular recordings to compare the actions of toluene and ethanol on DA VTA neurons. Both ethanol and toluene increased the firing rate of DA neurons, although toluene was ~100 times more potent than ethanol. The mixed ion channel blocker quinine (100 μM) blocked the increases in firing produced by ethanol and toluene, indicating some similarity in mechanisms of excitation. A mixture of antagonists of GABA and cholinergic receptors did not prevent toluene-induced or ethanol-induced excitation, and toluene-induced excitation was not altered by co-administration of ethanol, suggesting independent mechanisms of excitation for ethanol and toluene. Concurrent blockade of NMDA, AMPA, and metabotropic glutamate receptors enhanced the excitatory effect of toluene while having no significant effect on ethanol excitation. Nicotine increased firing of DA VTA neurons, and this was blocked by the nicotinic antagonist mecamylamine (1 μM). Mecamylamine did not alter ethanol or toluene excitation of firing but the muscarinic antagonist atropine (5 μM) or a combination of GABA antagonists (bicuculline and CGP35348, 10 μM each) reduced toluene-induced excitation without affecting ethanol excitation. The Ih current blocker ZD7288 abolished the excitatory effect of toluene but unlike the block of ethanol excitation, the effect of ZD7288 was not reversed by the GIRK channel blocker barium, but was reversed by GABA antagonists. These results demonstrate that the excitatory effects of ethanol and toluene have some similarity, such as block by quinine and ZD7288, but also indicate that there are important differences between these two drugs in their modulation by glutamatergic, cholinergic, and GABAergic receptors. These findings provide important information regarding the actions of abused inhalants on central reward pathways, and suggest that regulation of the activation of central dopamine pathways by ethanol and toluene partially overlap.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Devinder S Arora
- School of Pharmacy, Griffith University Southport, QLD, Australia
| | - Maureen A McElvain
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
22
|
Mahalingaiah S, Winter MR, Aschengrau A. Association of prenatal and early life exposure to tetrachloroethylene (PCE) with polycystic ovary syndrome and other reproductive disorders in the cape cod health study: A retrospective cohort study. Reprod Toxicol 2016; 65:87-94. [PMID: 27412368 DOI: 10.1016/j.reprotox.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tetrachloroethylene (PCE) is an organic lipophilic solvent with possible neuroendocrine toxicity. The objective of this study was to determine the association of prenatal and early childhood exposure to PCE-contaminated drinking water and development of adult-onset Polycystic Ovary Syndrome (PCOS), endometriosis, difficulty conceiving and miscarriage. METHODS Five-hundred exposed and 331 unexposed female participants born between 1969 and 1983 completed questionnaires on demographic and lifestyle characteristics, and reproductive disorders. Residential locations from the prenatal period through five years of age were used to estimate early life PCE exposure with water modeling software. RESULTS For any early life exposure to PCE, the adjusted risk ratio for PCOS was 0.9 (95% CI: 0.5-1.6). No statistically significant associations were observed for increasing levels of exposure with PCOS or the other reproductive disorders. CONCLUSION No meaningful associations were found among adult women with early life exposure to PCE-contaminated drinking water and adult-onset reproductive disorders.
Collapse
Affiliation(s)
- Shruthi Mahalingaiah
- Department of Obstetrics and Gynecology, Boston University School of Medicine/Boston Medical Center, 85 E. Concord St., 6th Floor, Boston, MA 02118, USA.
| | - Michael R Winter
- Data Coordinating Center, Boston University School of Public Health, Fuller 9, 715 Albany Street, Boston MA 02118, USA.
| | - Ann Aschengrau
- Department of Epidemiology, Boston University School of Public Health, Talbot 3E, 715 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
23
|
Tightrope or Slackline? The Neuroscience of Psychoactive Substances. Trends Pharmacol Sci 2016; 37:511-521. [PMID: 27156438 DOI: 10.1016/j.tips.2016.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022]
Abstract
Novel psychoactive substances flood worldwide markets faster than they can be banned. Legislators struggle to find a balance between free availability, prescription systems, and criminalisation, while physicians try to balance risks and benefits of drug treatment and identify drug abuse - a tightrope walk. Classification of psychoactive substances is central to these decision-making processes but existing classifications rely on unrelated, inconsistent, and shifting guidelines that categorise drugs by chemical structure, toxicity, or addictive potency. We propose that a new categorisation of drugs based on neurobiological mechanisms of action may help to simplify the regulation of drug use, delivers a neurobiological context, and streamlines classification and future regulatory directions. We provide guidelines to distinguish between drug abuse and treatment and to navigate the controversies over legalising or banning drugs. Finally, we comment on the role neuroscientific research can play in the future to solve imminent problems in this highly important field.
Collapse
|
24
|
Förstera B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected? Front Cell Neurosci 2016; 10:114. [PMID: 27199667 PMCID: PMC4858537 DOI: 10.3389/fncel.2016.00114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023] Open
Abstract
In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.
Collapse
Affiliation(s)
- Benjamin Förstera
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| | - Patricio A Castro
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte Coquimbo, Chile
| | - Gustavo Moraga-Cid
- Hindbrain Integrative Neurobiology Laboratory, Institut de Neurobiologie Alfred Fessard Gif-Sur-Yvette, France
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| |
Collapse
|
25
|
Morud J, Adermark L, Ericson M, Söderpalm B. Alterations in ethanol-induced accumbal transmission after acute and long-term zinc depletion. Addict Biol 2015; 20:170-81. [PMID: 24102995 DOI: 10.1111/adb.12096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Alcoholism is subject to extensive research, but the role of changes in metabolism caused by alcohol consumption has been poorly investigated. Zinc (Zn(2+) ) deficiency is a common metabolic aberration among alcoholics and Zn(2+) influences the function of ligand-gated ion channels, known pharmacological targets of ethanol (EtOH). Here, we investigate whether manipulation of extracellular levels of Zn(2+) modulates EtOH-induced increases of dopamine (DA) output, as measured by in vivo microdialysis in the rat, and whether voluntary EtOH consumption is altered by Zn(2+) deficiency. Our findings show that the Zn(2+) -chelating agent tricine slowly raises DA levels when perfused in the nucleus accumbens (nAc), whereas the more potent Zn(2+) chelator TPEN reduces DA levels. We also show that pre-treatment with either tricine or TPEN blocks the EtOH-induced DA elevation. Chronic Zn(2+) deficiency induced by a Zn(2+) -free diet did not affect EtOH consumption, but excitatory transmission, assessed by striatal field-potential recordings in the nAc shell, was significantly modulated both by Zn(2+) -free diet and by EtOH consumption, as compared with the EtOH naïve controls. The present study indicates that Zn(2+) influences EtOH's interaction with the brain reward system, possibly by interfering with glycine receptor and GABAA receptor function. This also implies that Zn(2+) deficiency among alcoholics may be important to correct in order to normalize important aspects of brain function.
Collapse
Affiliation(s)
- Julia Morud
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Louise Adermark
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Mia Ericson
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
| | - Bo Söderpalm
- Addiction Biology Unit; Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology; The Sahlgrenska Academy at University of Gothenburg; Sweden
- Beroendekliniken; Sahlgrenska University Hospital; Sweden
| |
Collapse
|
26
|
Burgos CF, Castro PA, Mariqueo T, Bunster M, Guzmán L, Aguayo LG. Evidence for α-helices in the large intracellular domain mediating modulation of the α1-glycine receptor by ethanol and Gβγ. J Pharmacol Exp Ther 2015; 352:148-55. [PMID: 25339760 PMCID: PMC4279101 DOI: 10.1124/jpet.114.217976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022] Open
Abstract
The α1-subunit containing glycine receptors (GlyRs) is potentiated by ethanol, in part, by intracellular Gβγ actions. Previous studies have suggested that molecular requirements in the large intracellular domain are involved; however, the lack of structural data about this region has made it difficult to describe a detailed mechanism. Using circular dichroism and molecular modeling, we generated a full model of the α1-GlyR, which includes the large intracellular domain and provides new information on structural requirements for allosteric modulation by ethanol and Gβγ. The data strongly suggest the existence of an α-helical conformation in the regions near transmembrane (TM)-3 and TM4 of the large intracellular domain. The secondary structure in the N-terminal region of the large intracellular domain near TM3 appeared critical for ethanol action, and this was tested using the homologous domain of the γ2-subunit of the GABAA receptor predicted to have little helical conformation. This region of γ2 was able to bind Gβγ and form a functional channel when combined with α1-GlyR, but it was not sensitive to ethanol. Mutations in the N- and C-terminal regions introduced to replace corresponding amino acids of the α1-GlyR sequence restored the ability to be modulated by ethanol and Gβγ. Recovery of the sensitivity to ethanol was associated with the existence of a helical conformation similar to α1-GlyR, thus being an essential secondary structural requirement for GlyR modulation by ethanol and G protein.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Patricio A Castro
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Trinidad Mariqueo
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Marta Bunster
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Leonardo Guzmán
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| |
Collapse
|
27
|
An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel. Proc Natl Acad Sci U S A 2014; 111:9313-8. [PMID: 24927535 DOI: 10.1073/pnas.1317363111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ethanol alters BK (slo1) channel function leading to perturbation of physiology and behavior. Site(s) and mechanism(s) of ethanol-BK channel interaction are unknown. We demonstrate that ethanol docks onto a water-accessible site that is strategically positioned between the slo1 calcium-sensors and gate. Ethanol only accesses this site in presence of calcium, the BK channel's physiological agonist. Within the site, ethanol hydrogen-bonds with K361. Moreover, substitutions that hamper hydrogen bond formation or prevent ethanol from accessing K361 abolish alcohol action without altering basal channel function. Alcohol interacting site dimensions are approximately 10.7 × 8.6 × 7.1 Å, accommodating effective (ethanol-heptanol) but not ineffective (octanol, nonanol) channel activators. This study presents: (i) to our knowledge, the first identification and characterization of an n-alkanol recognition site in a member of the voltage-gated TM6 channel superfamily; (ii) structural insights on ethanol allosteric interactions with ligand-gated ion channels; and (iii) a first step for designing agents that antagonize BK channel-mediated alcohol actions without perturbing basal channel function.
Collapse
|
28
|
Abstract
Alcohol dependence is a complex disorder affecting all social and ethnic groups. Although the scientific understanding of the mechanism governing this multifactorial disease is still in its infancy, understanding its biological bases, including the potential contribution of genetic factors, is key to characterizing individual's risk and developing efficacious therapeutic target to combat the disease. This review provides an overview of different approaches that are being increasingly integrated to extend our knowledge of the genetic underpinnings of alcohol dependence.
Collapse
Affiliation(s)
- Awoyemi A Awofala
- a Department of Biological Sciences , Tai Solarin University of Education , Ijagun , Ogun State , Nigeria
| |
Collapse
|
29
|
Abstract
The role of the brain opioid system in alcohol dependence has been the subject of much research for over 25 years. This review explores the evidence: firstly describing the opioid receptors in terms of their individual subtypes, neuroanatomy, neurophysiology and ligands; secondly, summarising emerging data from specific neurochemical, behavioural and neuroimaging studies, explaining the characteristics of addiction with a focus on alcohol dependence and connecting the opioid system with alcohol dependence; and finally reviewing the known literature regarding opioid antagonists in clinical use for alcohol dependence. Further interrogation of how modulation of the opioid system, via use of MOP (mu), DOP (delta) and KOP (kappa) agents, restores the balance of a dysregulated system in alcohol dependence should increase our insight into this disease process and therefore guide better methods for understanding and treating alcohol dependence in the future.
Collapse
|
30
|
Ehlers CL, Desikan A, Wills DN. Developmental differences in EEG and sleep responses to acute ethanol administration and its withdrawal (hangover) in adolescent and adult Wistar rats. Alcohol 2013; 47:601-10. [PMID: 24169089 DOI: 10.1016/j.alcohol.2013.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 02/03/2023]
Abstract
Age-related differences in sensitivity to the acute effects of alcohol may play an important role in the increased risk for the development of alcoholism seen in teens that begin drinking at an early age. The present study evaluated the acute and protracted (hangover) effects of ethanol in adolescent (P33-P40) and adult (P100-P107) Wistar rats, using the cortical electroencephalogram (EEG). Six minutes of EEG was recorded during waking, 15 min after administration of 0, 1.5, or 3.0 g/kg ethanol, and for 3 h at 20 h post ethanol, during the rats' next sleep cycle. Significantly higher overall frontal and parietal cortical power was seen in a wide range of EEG frequencies in adolescent rats as compared to adult rats in their waking EEG. Acute administration of ethanol did not produce differences between adolescents and adults on behavioral measures of acute intoxication. However, it did produce a significantly less intense acute EEG response to ethanol in the theta frequencies in parietal cortex in the adolescents as compared to the adults. At 20 h following acute ethanol administration, during the rats' next sleep cycle, a decrease in slow-wave frequencies (1-4 Hz) was seen and the adolescent rats were found to display more reduction in the slow-wave frequencies than the adults did. The present study found that adolescent rats, as compared to adults, demonstrate low sensitivity to acute ethanol administration in the theta frequencies and more susceptibility to disruption of slow-wave sleep during hangover. These studies may lend support to the idea that these traits may contribute to increased risk for alcohol use disorders seen in adults who begin drinking in their early teenage years.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Rd. SP30-1501, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
31
|
Mick I, Spring K, Uhr M, Zimmermann US. Alcohol administration attenuates hypothalamic-pituitary-adrenal (HPA) activity in healthy men at low genetic risk for alcoholism, but not in high-risk subjects. Addict Biol 2013; 18:863-71. [PMID: 22260244 DOI: 10.1111/j.1369-1600.2011.00420.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acute alcohol challenge studies in rodents and naturalistic observations in drinking alcoholics suggest that alcohol stimulates the hypothalamic-pituitary-adrenal (HPA) system. The literature on respective studies in healthy volunteers is more inconsistent, suggesting differential alcohol effects depending on dosage, recent drinking history, family history of alcoholism and alcohol-induced side effects. These papers and the putative pharmacologic mechanisms underlying alcohol effects on the HPA system are reviewed here and compared with a new study, in which we investigated how secretion of adrenocorticotrophin (ACTH) and cortisol is affected by ingestion of 0.6 g/kg ethanol in 33 young healthy socially drinking males with a paternal history of alcoholism (PHP) versus 30 family history negative (FHN) males. Alcohol and placebo were administered in a 2-day, double-blind, placebo controlled crossover design with randomized administration sequence. After administration of placebo, ACTH and cortisol decreased steadily over 130 minutes. In FHN subjects, secretion of both hormones was even more attenuated after alcohol, resulting in significantly lower levels compared with placebo. In PHP subjects, no alcohol effect on hormone secretion could be detected. The ratio of cortisol to ACTH secretion, each expressed as area under the secretion curve, was significantly increased by alcohol in FHN and PHP participants. These results argue against HPA stimulation being a mechanism that promotes the transition from moderate to dependent drinking. The fact that alcohol-induced HPA suppression was not detected in PHP males is consistent with the general concept that subjects at high risk for alcoholism exhibit less-pronounced alcohol effects.
Collapse
Affiliation(s)
- Inge Mick
- Department of Psychiatry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | | | | |
Collapse
|
32
|
Deehan GA, Hauser SR, Wilden JA, Truitt WA, Rodd ZA. Elucidating the biological basis for the reinforcing actions of alcohol in the mesolimbic dopamine system: the role of active metabolites of alcohol. Front Behav Neurosci 2013; 7:104. [PMID: 23986666 PMCID: PMC3750600 DOI: 10.3389/fnbeh.2013.00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/27/2013] [Indexed: 11/13/2022] Open
Abstract
The development of successful pharmacotherapeutics for the treatment of alcoholism is predicated upon understanding the biological action of alcohol. A limitation of the alcohol research field has been examining the effects of alcohol only and ignoring the multiple biological active metabolites of alcohol. The concept that alcohol is a "pro-drug" is not new. Alcohol is readily metabolized to acetaldehyde within the brain. Acetaldehyde is a highly reactive compound that forms a number of condensation products, including salsolinol and iso-salsolinol (acetaldehyde and dopamine). Recent experiments have established that numerous metabolites of alcohol have direct CNS action, and could, in part or whole, mediate the reinforcing actions of alcohol within the mesolimbic dopamine system. The mesolimbic dopamine system originates in the ventral tegmental area (VTA) and projects to forebrain regions that include the nucleus accumbens (Acb) and the medial prefrontal cortex (mPFC) and is thought to be the neurocircuitry governing the rewarding properties of drugs of abuse. Within this neurocircuitry there is convincing evidence that; (1) biologically active metabolites of alcohol can directly or indirectly increase the activity of VTA dopamine neurons, (2) alcohol and alcohol metabolites are reinforcing within the mesolimbic dopamine system, (3) inhibiting the alcohol metabolic pathway inhibits the biological consequences of alcohol exposure, (4) alcohol consumption can be reduced by inhibiting/attenuating the alcohol metabolic pathway in the mesolimbic dopamine system, (5) alcohol metabolites can alter neurochemical levels within the mesolimbic dopamine system, and (6) alcohol interacts with alcohol metabolites to enhance the actions of both compounds. The data indicate that there is a positive relationship between alcohol and alcohol metabolites in regulating the biological consequences of consuming alcohol and the potential of alcohol use escalating to alcoholism.
Collapse
Affiliation(s)
- Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University, School of Medicine Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
33
|
Xie Z, Li G, Ye JH. Acute effects of ethanol on GABA A and glycine currents in the lateral habenula neurons of young rats. ACTA ACUST UNITED AC 2013; 3. [PMID: 28066680 PMCID: PMC5218823 DOI: 10.13055/ojns_3_1_5.130821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Compelling evidence has shown a pivotal role of dopaminergic function in drug addiction. Recently, the lateral habenula (LHb) has attracted a great deal of attention as another target for abused drugs in the brain because its role in regulating dopaminergic system, among others. GABA and glycine are major inhibitory neurotransmitters. Their corresponding receptors are key targets of ethanol. The properties of these receptors in LHb neurons and their responses to ethanol in particular however, remain unknown. Using the patch clamp techniques, we examined the effects of ethanol on the chloride currents elicited by GABA and glycine in LHb neurons acutely dissociated from 10-20 day-old Sprague-Dawley rats. We show that GABA concentration-dependently elicited a bicuculline sensitive inward current in 96% (130/140) of the neurons tested. Ethanol (43.2 mM) suppressed current elicited by a wide range of concentrations (1-300 μM) of GABA in 74% (35/47) cells tested. Ethanol suppression is dependent on its concentrations but not on membrane potentials of the neurons. Moreover, glycine concentration-dependently elicited an inward current in 94% (112/120) of the neurons tested. Both strychnine and picrotoxin concentration dependently suppressed glycine current with IC50 of 220 nM and 813 μM, respectively. Ethanol (43.2 mM) potentiated current elicited by unsaturated but not saturated concentrations of glycine. Thus, the LHb neurons of young rats contain both functional GABAA and glycine receptors which are sensitive to ethanol at pharmacologically relevant concentrations. These effects of ethanol might be important in the control of the activity and output of LHb neurons.
Collapse
Affiliation(s)
- Zijing Xie
- Department of Anesthesiology, Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey.,Department of Neurology Dong-Zhi-Men Hospital, Beijing University of Chinese Medicine. Key laboratory for internal Chinese Medicine of Ministry of Education, China
| | - Guohui Li
- Department of Anesthesiology, Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
34
|
Kim AK, Brown RM, Lawrence AJ. The role of orexins/hypocretins in alcohol use and abuse: an appetitive-reward relationship. Front Behav Neurosci 2012. [PMID: 23189046 PMCID: PMC3504295 DOI: 10.3389/fnbeh.2012.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Orexins (hypocretins) are neuropeptides synthesized in neurons located in the lateral (LH), perifornical, and dorsomedial (DMH) hypothalamus. These neurons innervate many regions in the brain and modulate multiple other neurotransmitter systems. As a result of these extensive projections and interactions orexins are involved in numerous functions, such as feeding behavior, neuroendocrine regulation, the sleep-wake cycle, and reward-seeking. This review will summarize the literature to date which has evaluated a role of orexins in the behavioral effects of alcohol, with a focus on understanding the importance of this peptide and its potential as a clinical therapeutic target for alcohol use disorders.
Collapse
Affiliation(s)
- Andrezza K Kim
- Addiction Neuroscience Laboratory, Behavioural Neuroscience Division, Florey Neuroscience Institutes, University of Melbourne Parkville, VIC, Australia ; Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | | | | |
Collapse
|
35
|
Lidö HH, Marston H, Ericson M, Söderpalm B. The glycine reuptake inhibitor Org24598 and acamprosate reduce ethanol intake in the rat; tolerance development to acamprosate but not to Org24598. Addict Biol 2012; 17:897-907. [PMID: 21955180 DOI: 10.1111/j.1369-1600.2011.00367.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular glycine modulates accumbal dopamine levels as well as ethanol-induced dopamine overflow. Glycine availability is also crucial for regulating alcohol consumption and the glycine transporter 1 (GlyT-1) inhibitor Org25935 robustly decreases alcohol intake in rats. To explore whether the alcohol-intake reducing effect of Org25935 is substance bound, we examined the effect of a different selective GlyT-1 inhibitor, Org24598, on ethanol consumption in rats and compared the effect with that of acamprosate, a drug currently in clinical use. We studied the effects of daily Org24598 and acamprosate injections on male Wistar rats with ~60% ethanol preference in a limited access two bottle free-choice model for 12 days, followed by alcohol deprivation for 14 days before a second test period of 10 days. Finally, rats underwent in vivo microdialysis where dopamine, glycine, taurine and β-alanine in n. accumbens were measured. Org24598 profoundly reduced ethanol intake and the effect remained throughout both treatment periods. Acamprosate promptly reduced ethanol intake, but on the third day tolerance developed to this effect and acamprosate failed to influence alcohol consumption during the second test period. Neither Org24598 nor acamprosate reduced water intake. Following the drinking study, the Org24598 group displayed higher basal accumbal dopamine levels compared with acamprosate and vehicle groups. Both Org24598 and acamprosate reduced the ethanol-induced dopamine response in n. accumbens. The study demonstrates a robust anti-alcohol intake effect of the GlyT-1 inhibitor Org24598, supporting the new concept that GlyT-1 inhibition reduces ethanol consumption. GlyT-1 inhibition may represent a new treatment principle for alcoholism that is superior to acamprosate.
Collapse
Affiliation(s)
- Helga H Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | | | | | | |
Collapse
|
36
|
Abstract
Inhibitory (or strychnine sensitive) glycine receptors (GlyRs) are anion-selective transmitter-gated ion channels of the cys-loop superfamily, which includes among others also the inhibitory γ-aminobutyric acid receptors (GABA(A) receptors). While GABA mediates fast inhibitory neurotransmission throughout the CNS, the action of glycine as a fast inhibitory neurotransmitter is more restricted. This probably explains why GABA(A) receptors constitute a group of extremely successful drug targets in the treatment of a wide variety of CNS diseases, including anxiety, sleep disorders and epilepsy, while drugs specifically targeting GlyRs are virtually lacking. However, the spatially more restricted distribution of glycinergic inhibition may be advantageous in situations when a more localized enhancement of inhibition is sought. Inhibitory GlyRs are particularly relevant for the control of excitability in the mammalian spinal cord, brain stem and a few selected brain areas, such as the cerebellum and the retina. At these sites, GlyRs regulate important physiological functions, including respiratory rhythms, motor control, muscle tone and sensory as well as pain processing. In the hippocampus, RNA-edited high affinity extrasynaptic GlyRs may contribute to the pathology of temporal lobe epilepsy. Although specific modulators have not yet been identified, GlyRs still possess sites for allosteric modulation by a number of structurally diverse molecules, including alcohols, neurosteroids, cannabinoids, tropeines, general anaesthetics, certain neurotransmitters and cations. This review summarizes the present knowledge about this modulation and the molecular bases of the interactions involved.
Collapse
Affiliation(s)
- Gonzalo E Yevenes
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
37
|
Kirson D, Todorovic J, Mihic SJ. Positive allosteric modulators differentially affect full versus partial agonist activation of the glycine receptor. J Pharmacol Exp Ther 2012; 342:61-70. [PMID: 22473615 DOI: 10.1124/jpet.112.191486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Taurine acts as a partial agonist at the glycine receptor (GlyR) in some brain regions such as the hippocampus, striatum, and nucleus accumbens. Ethanol, volatile anesthetics, and inhaled drugs of abuse are all known positive allosteric modulators of GlyRs, but their effects on taurine-activated GlyRs remain poorly understood, especially their effects on the high concentrations of taurine likely to be found after synaptic release. Two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes was used to compare the enhancing effects of ethanol, anesthetics, and inhalants on human homomeric α1-GlyR activated by saturating concentrations of glycine versus taurine. Allosteric modulators had negligible effects on glycine-activated GlyR while potentiating taurine-activated currents. In addition, inhaled anesthetics markedly enhanced desensitization rates of taurine- but not glycine-activated receptors. Our findings suggest that ethanol, volatile anesthetics, and inhalants differentially affect the time courses of synaptic events at GlyR, depending on whether the receptor is activated by a full or partial agonist.
Collapse
Affiliation(s)
- Dean Kirson
- Waggoner Center for Alcohol and Addiction Research, and Institute for Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
38
|
Foster M, Zivadinov R, Weinstock-Guttman B, Tamaño-Blanco M, Badgett D, Carl E, Ramanathan M. Associations of moderate alcohol consumption with clinical and MRI measures in multiple sclerosis. J Neuroimmunol 2012; 243:61-8. [PMID: 22261546 DOI: 10.1016/j.jneuroim.2011.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/25/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To examine the associations of alcohol consumption patterns with disability and brain injury in multiple sclerosis (MS) patients. DESIGN This study included 423 subjects (272 MS patients, 151 healthy controls) participating in a study of clinical, environmental and genetic risk factors in MS. Disability was assessed with the Expanded Disability Status Scale (EDSS) and the MS Severity Scale (MSSS). Brain injury was assessed using the quantitative MRI measures of T2-lesion volume (T2-LV), T1-LV, normalized volumes of brain parenchyma (NBV), gray matter (NGMV) and lateral ventricle (NLVV). Information related to alcohol-consumption patterns was obtained with standardized questionnaire during an in-person interview. The associations of alcohol consumption variables with disability and MRI measures were assessed in regression analyses. RESULTS The frequency of MS patients who did not consume alcohol after MS (19.4%) was higher than the frequency before MS (p<0.001). The EDSS, NGMV and NLVV exhibited a non-linear dependence on duration of alcohol consumption after MS onset: non-linear regression analyses indicated that EDSS and NLVV were lower and the NGMV was greater in MS patients who had consumed for a period of 15years or less after MS onset compared those who did not consume alcohol or consumed it for more than 15years. CONCLUSION The duration of alcohol consumption is associated with disability and MRI measures in MS. Prospective, longitudinal studies of the role of alcohol in MS disease progression are warranted.
Collapse
Affiliation(s)
- Mathew Foster
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Aschengrau A, Weinberg JM, Janulewicz PA, Romano ME, Gallagher LG, Winter MR, Martin BR, Vieira VM, Webster TF, White RF, Ozonoff DM. Affinity for risky behaviors following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study. Environ Health 2011; 10:102. [PMID: 22136431 PMCID: PMC3268745 DOI: 10.1186/1476-069x-10-102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 12/02/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many studies of adults with acute and chronic solvent exposure have shown adverse effects on cognition, behavior and mood. No prior study has investigated the long-term impact of prenatal and early childhood exposure to the solvent tetrachloroethylene (PCE) on the affinity for risky behaviors, defined as smoking, drinking or drug use as a teen or adult. OBJECTIVES This retrospective cohort study examined whether early life exposure to PCE-contaminated drinking water influenced the occurrence of cigarette smoking, alcohol consumption, and drug use among adults from Cape Cod, Massachusetts. METHODS Eight hundred and thirty-one subjects with prenatal and early childhood PCE exposure and 547 unexposed subjects were studied. Participants completed questionnaires to gather information on risky behaviors as a teenager and young adult, demographic characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure was estimated using the U.S. EPA's water distribution system modeling software (EPANET) that was modified to incorporate a leaching and transport model to estimate PCE exposures from pipe linings. RESULTS Individuals who were highly exposed to PCE-contaminated drinking water during gestation and early childhood experienced 50-60% increases in the risk of using two or more major illicit drugs as a teenager or as an adult (Relative Risk (RR) for teen use = 1.6, 95% CI: 1.2-2.2; and RR for adult use = 1.5, 95% CI: 1.2-1.9). Specific drugs for which increased risks were observed included crack/cocaine, psychedelics/hallucinogens, club/designer drugs, Ritalin without a prescription, and heroin (RRs:1.4-2.1). Thirty to 60% increases in the risk of certain smoking and drinking behaviors were also seen among highly exposed subjects. CONCLUSIONS The results of this study suggest that risky behaviors, particularly drug use, are more frequent among adults with high PCE exposure levels during gestation and early childhood. These findings should be confirmed in follow-up investigations of other exposed populations.
Collapse
Affiliation(s)
- Ann Aschengrau
- Department of Epidemiology, Boston University School of Public Health, Talbot 3E, 715 Albany Street, Boston, MA 02118, USA
| | - Janice M Weinberg
- Department of Biostatistics, Boston University School of Public Health, Crosstown, 715 Albany Street, Boston, MA 02118, USA
| | - Patricia A Janulewicz
- Department of Epidemiology, Boston University School of Public Health, Talbot 3E, 715 Albany Street, Boston, MA 02118, USA
| | - Megan E Romano
- Department of Epidemiology, Boston University School of Public Health, Talbot 3E, 715 Albany Street, Boston, MA 02118, USA
- Department of Epidemiology, University of Washington, Box 357236, Seattle WA, 98195, USA
| | - Lisa G Gallagher
- Department of Environmental Health, Boston University School of Public Health, Talbot 4W, 715 Albany Street, Boston, MA 02118, USA
| | - Michael R Winter
- Data Coordinating Center, Boston University School of Public Health, Crosstown, 715 Albany Street, Boston MA 02118, USA
| | - Brett R Martin
- Data Coordinating Center, Boston University School of Public Health, Crosstown, 715 Albany Street, Boston MA 02118, USA
| | - Veronica M Vieira
- Department of Environmental Health, Boston University School of Public Health, Talbot 4W, 715 Albany Street, Boston, MA 02118, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Talbot 4W, 715 Albany Street, Boston, MA 02118, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Talbot 4W, 715 Albany Street, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston Ma 02118 USA
| | - David M Ozonoff
- Department of Environmental Health, Boston University School of Public Health, Talbot 4W, 715 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
40
|
Tang N, Farah B, He M, Fox S, Malouf A, Littner Y, Bearer CF. Ethanol causes the redistribution of L1 cell adhesion molecule in lipid rafts. J Neurochem 2011; 119:859-67. [PMID: 21884525 DOI: 10.1111/j.1471-4159.2011.07467.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fetal alcohol spectrum disorder is estimated to affect 1% of live births. The similarities between children with fetal alcohol syndrome and those with mutations in the gene encoding L1 cell adhesion molecule (L1) implicates L1 as a target of ethanol developmental neurotoxicity. Ethanol specifically inhibits the neurite outgrowth promoting function of L1 at pharmacologic concentrations. Emerging evidence shows that localized disruption of the lipid rafts reduces L1-mediated neurite outgrowth. We hypothesize that ethanol impairment of the association of L1 with lipid rafts is a mechanism underlying ethanol's inhibition of L1-mediated neurite outgrowth. In this study, we examine the effects of ethanol on the association of L1 and lipid rafts. We show that, in vitro, L1 but not N-cadherin shifts into lipid rafts following treatment with 25 mM ethanol. The ethanol concentrations causing this effect are similar to those inhibiting L1-mediated neurite outgrowth. Increasing chain length of the alcohol demonstrates the same cutoff as that previously shown for inhibition of L1-L1 binding. In addition, in cerebellar granule neurons in which lipid rafts are disrupted with methyl-beta-cyclodextrin, the rate of L1-mediated neurite outgrowth on L1-Fc is reduced to background rate and that this background rate is not ethanol sensitive. These data indicate that ethanol may inhibit L1-mediated neurite outgrowth by retarding L1 trafficking through a lipid raft compartment.
Collapse
Affiliation(s)
- Ningfeng Tang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21209, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
The sedative but not the memory-blocking properties of ethanol are modulated by α5-subunit-containing γ-aminobutyric acid type A receptors. Behav Brain Res 2011; 217:379-85. [DOI: 10.1016/j.bbr.2010.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 12/26/2022]
|
42
|
Adermark L, Clarke RBC, Söderpalm B, Ericson M. Ethanol-induced modulation of synaptic output from the dorsolateral striatum in rat is regulated by cholinergic interneurons. Neurochem Int 2011; 58:693-9. [PMID: 21333709 DOI: 10.1016/j.neuint.2011.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/28/2011] [Accepted: 02/10/2011] [Indexed: 11/16/2022]
Abstract
The striatum is the largest input nucleus to the basal ganglia and associated with reward-based behavior. We assessed whether acute ethanol (EtOH) exposure could modulate synaptic efficacy in the dorsolateral striatum of juvenile Wistar rats. Since acute EtOH administration can both increase and decrease the probability of release of different neurotransmitters from synaptic terminals, we used field potential recordings to evaluate the net effect of EtOH on striatal output. We showed that 50mM EtOH but not 20, 80 or 100mM, depresses population spike (PS) amplitude in the dorsolateral striatum. This depression of synaptic output is insensitive to the N-methyl-d-aspartic acid (NMDA) receptor inhibitor DL-2-amino-5-phosphonopentanoic acid (AP-5, 50μM), but is blocked in slices treated with glycine receptor antagonists (strychnine, 1μM; PMBA, 50μM), nicotinic acetylcholine receptor antagonists (mecamylamine, 10μM; methyllycaconitine citrate (MLA), 40nM), or GABA(A) receptor inhibitors (picrotoxin, 100μM; bicuculline, 2μM, 20μM). A long-term facilitation of synaptic output, which is more pronounced in slices from adult Wistar rats, is detected following EtOH washout (50, 80, 100mM). This long-term enhancement of PS amplitude is regulated by cholinergic interneurons and completely blocked by mecamylamine, MLA or the non-selective muscarinic antagonist scopolamine (10μM). Administration of 100mM EtOH significantly depresses PS amplitude in scopolamine-treated slices, suggesting that EtOH exerts dual actions on striatal output that are initiated instantly upon drug wash-on. In conclusion, EtOH modulates striatal microcircuitry and neurotransmission in a way that could be of importance for understanding the intoxicating properties as well as the acute reward sensation of EtOH.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
43
|
Guan YZ, Ye JH. Ethanol blocks long-term potentiation of GABAergic synapses in the ventral tegmental area involving mu-opioid receptors. Neuropsychopharmacology 2010; 35:1841-9. [PMID: 20393452 PMCID: PMC2904870 DOI: 10.1038/npp.2010.51] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is well documented that ethanol exposure alters GABA (gamma-aminobutyric acid)-releasing synapses, and ethanol addiction is associated with endogenous opioid system. Emerging evidence indicates that opioids block long-term potentiation in the fast inhibitory GABA(A) receptor synapses (LTP(GABA)) onto dopamine-containing neurons in the ventral tegmental area (VTA), a brain region essential for reward-seeking behavior. However, how ethanol affects LTP(GABA) is not known. We report here that in acute midbrain slices from rats, clinically relevant concentrations of ethanol applied both in vitro and in vivo prevents LTP(GABA), which is reversed, respectively, by in vitro and in vivo administration of naloxone, a mu-opioid receptor (MOR) antagonist. Furthermore, the blockade of LTP(GABA) induced by a brief in vitro ethanol treatment is mimicked by DAMGO ([D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin), a MOR agonist. Paired-pulse ratios are similar in slices, 24 h after in vivo injection with either saline or ethanol. Sp-cAMPS, a stable cAMP analog, and pCPT-cGMP, a cGMP analog, potentiates GABA(A)-mediated inhibitory postsynaptic currents in slices from ethanol-treated rats, indicating that a single in vivo ethanol exposure does not maximally increase GABA release, instead, ethanol produces a long-lasting inability to generate LTP(GABA). These neuroadaptations to ethanol might contribute to early stage of addiction.
Collapse
Affiliation(s)
- Yan-zhong Guan
- Department of Anesthesiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Anesthesiology, UMDNJ, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA, Tel: + 1973-972-1866, Fax: +1973-972-4172, E-mail:
| |
Collapse
|
44
|
Besheer J, Grondin JJ, Cannady R, Sharko AC, Faccidomo S, Hodge CW. Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake. Biol Psychiatry 2010; 67:812-22. [PMID: 19897175 PMCID: PMC2854174 DOI: 10.1016/j.biopsych.2009.09.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/04/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Systemic modulation of Group I and II metabotropic glutamate receptors (mGluRs) regulate ethanol self-administration in a variety of animal models. Although these receptors are expressed in reward-related brain regions, the anatomical specificity of their functional involvement in ethanol self-administration remains to be characterized. This study sought to evaluate the functional role of Group I (mGluR5) and Group II (mGluR2/3) in mesocorticolimbic brain regions in ethanol self-administration. METHODS Alcohol-preferring (P) rats, a genetic model of high alcohol drinking, were trained to self-administer ethanol (15% v/v) versus water in operant conditioning chambers. Effects of brain site-specific infusion of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the mGluR2/3 agonist were then assessed on the maintenance of self-administration. RESULTS Microinjection of the mGluR5 antagonist MPEP in the nucleus accumbens reduced ethanol self-administration at a dose that did not alter locomotor activity. By contrast, infusion of the mGluR2/3 agonist LY379268 in the nucleus accumbens reduced self-administration and produced nonspecific reductions in locomotor activity. The mGluR5 involvement showed anatomical specificity as evidenced by lack of effect of MPEP infusion in the dorsomedial caudate or medial prefrontal cortex on ethanol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (.4% w/v) versus water, and effects of intra-accumbens MPEP were tested. The MPEP did not alter sucrose self-administration or motor behavior. CONCLUSIONS These results suggest that mGluR5 activity specifically in the nucleus accumbens is required for the maintenance of ethanol self-administration in individuals with genetic risk for high alcohol consumption.
Collapse
|
45
|
Law RJ, Lightstone FC. Gaba Receptor Insecticide Non-Competitive Antagonists May Bind at Allosteric Modulator Sites. Int J Neurosci 2009; 118:705-34. [DOI: 10.1080/00207450701750216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Addolorato G, Leggio L, Ferrulli A, Caputo F, Gasbarrini A. The therapeutic potential of gamma-hydroxybutyric acid for alcohol dependence: balancing the risks and benefits. A focus on clinical data. Expert Opin Investig Drugs 2009; 18:675-86. [DOI: 10.1517/13543780902905855] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Fregosi RF, Pilarski JQ. Prenatal nicotine exposure and development of nicotinic and fast amino acid-mediated neurotransmission in the control of breathing. Respir Physiol Neurobiol 2009; 164:80-6. [PMID: 18585984 DOI: 10.1016/j.resp.2008.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/08/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
Abstract
There is mounting evidence that neonatal animals exposed to nicotine in the prenatal period exhibit a variety of anatomic and functional abnormalities that adversely affect their respiratory and cardiovascular control systems, but how nicotine causes these developmental alterations is unknown. The principle that guides our work is that PNE impairs the ability of nicotinic acetylcholine receptors (nAChRs) to modulate the pre-synaptic release of both inhibitory (particularly GABA) and excitatory (glutamate) neurotransmitters, leading to marked alterations in the density and/or function of receptors on the (post-synaptic) membrane of respiratory neurons. Such changes could lead to impaired ventilatory responses to sensory afferent stimulation, and altered breathing patterns, including central apneic events. In this brief review we summarize the work that lead to the development of this hypothesis, and introduce some new data that support and extend it.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Department of Physiology, The University ofArizona, College of Medicine, Tucson, AZ 85721-0093, USA.
| | | |
Collapse
|
48
|
Ethanol aggravates itch-related scratching in hairless mice developing atopic dermatitis. Eur J Pharmacol 2009; 611:92-9. [PMID: 19344707 DOI: 10.1016/j.ejphar.2009.03.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 03/11/2009] [Accepted: 03/23/2009] [Indexed: 11/20/2022]
Abstract
In patients with atopic dermatitis, alcoholic beverages can sometimes trigger or enhance itching. We have previously reported that HR-1 hairless mice fed a commercial special diet, HR-AD, but not a normal diet, develop atopic dermatitis-like skin inflammation with prolonged spontaneous scratching, and that skin barrier dysfunction is involved in the basal scratching. In the present study, the effects of ethanol on itch-related scratching were examined in this mouse model. When ethanol (30%, 10 ml/kg) was given orally to HR-AD-fed mice, scratching with long duration was further markedly increased, while oral ethanol administration had little effect on the scratching response in normal diet-fed mice. The scratching response after oral ethanol administration in HR-AD-fed mice (ethanol-induced scratching) was attenuated by antagonism of the mu-opioid receptor or local skin anesthesia, as in human itching. Ethanol-induced scratching was also suppressed by improvement of skin barrier function by an application of petrolatum ointment, while ethanol administration itself did not affect the function. This suggests that ethanol indirectly aggravates the basal scratching. Although antagonism of the transient receptor potential vanilloid-1 did not affect ethanol-induced scratching, blockade of ethanol actions in the central nervous system (CNS), including gamma-aminobutyric acid type A receptor antagonism and N-methyl-d-aspartate receptor activation, inhibited it. Taken together, the present study demonstrates that orally administered ethanol markedly aggravates itch-related scratching in HR-AD-fed mice developing atopic dermatitis, and suggests that the CNS depressant actions of ethanol play an important role in the aggravation.
Collapse
|
49
|
Spanagel R. Alcoholism: A Systems Approach From Molecular Physiology to Addictive Behavior. Physiol Rev 2009; 89:649-705. [DOI: 10.1152/physrev.00013.2008] [Citation(s) in RCA: 491] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alcohol consumption is an integral part of daily life in many societies. The benefits associated with the production, sale, and use of alcoholic beverages come at an enormous cost to these societies. The World Health Organization ranks alcohol as one of the primary causes of the global burden of disease in industrialized countries. Alcohol-related diseases, especially alcoholism, are the result of cumulative responses to alcohol exposure, the genetic make-up of an individual, and the environmental perturbations over time. This complex gene × environment interaction, which has to be seen in a life-span perspective, leads to a large heterogeneity among alcohol-dependent patients, in terms of both the symptom dimensions and the severity of this disorder. Therefore, a reductionistic approach is not very practical if a better understanding of the pathological processes leading to an addictive behavior is to be achieved. Instead, a systems-oriented perspective in which the interactions and dynamics of all endogenous and environmental factors involved are centrally integrated, will lead to further progress in alcohol research. This review adheres to a systems biology perspective such that the interaction of alcohol with primary and secondary targets within the brain is described in relation to the behavioral consequences. As a result of the interaction of alcohol with these targets, alterations in gene expression and synaptic plasticity take place that lead to long-lasting alteration in neuronal network activity. As a subsequent consequence, alcohol-seeking responses ensue that can finally lead via complex environmental interactions to an addictive behavior.
Collapse
|
50
|
Excitatory tonus is required for the survival of granule cell precursors during postnatal development within the cerebellum. Neuroscience 2008; 158:1364-77. [PMID: 19056468 DOI: 10.1016/j.neuroscience.2008.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 10/23/2008] [Accepted: 10/29/2008] [Indexed: 11/23/2022]
Abstract
In addition to protective effects within the adult central nervous system (CNS), in vivo application of N-methyl-d-aspartate inhibitors such as (+) MK-801 have been shown to induce neurodegeneration in neonatal rats over a specific developmental period. We have systematically mapped the nature and extent of MK-801-induced neurodegeneration throughout the neonatal murine brain in order to genetically dissect the mechanism of these effects. Highest levels of MK-801-induced neurodegeneration are seen in the cerebellar external germinal layer; while mature neurons of the internal granule layer are unaffected by MK-801 treatment. Examination of external germinal layer neurons by electron microscopy, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) and bromodeoxyuridine (BrdU) labeling, and caspase-3 activation demonstrate that these neurons die through the process of programmed cell death soon after they exit from the cell cycle. Significantly, ablation of caspase-3 activity completely inhibited the MK-801-induced (and developmental) programmed cell death of external germinal layer neurons. Similar to caspase-3, inactivation of muscarinic acetylcholine receptors in vivo using scopolamine inhibited MK-801-induced programmed cell death. By contrast, the GABAergic agonist diazepam, either alone or in combination with MK-801, enhanced programmed cell death within external germinal layer neurons. These data demonstrate that, in vivo, cerebellar granule neurons undergo a dramatic change in intracellular signaling in response to molecules present in the local cellular milieu during their first 24 h following exit from the cell cycle.
Collapse
|