1
|
Lorenzen E, Contreras V, Olsen AW, Andersen P, Desjardins D, Rosenkrands I, Juel HB, Delache B, Langlois S, Delaugerre C, Joubert C, Dereuddre-Bosquet N, Bébéar C, De Barbeyrac B, Touati A, McKay PF, Shattock RJ, Le Grand R, Follmann F, Dietrich J. Multi-component prime-boost Chlamydia trachomatis vaccination regimes induce antibody and T cell responses and accelerate clearance of infection in a non-human primate model. Front Immunol 2022; 13:1057375. [PMID: 36505459 PMCID: PMC9726737 DOI: 10.3389/fimmu.2022.1057375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
It is of international priority to develop a vaccine against sexually transmitted Chlamydia trachomatis infections to combat the continued global spread of the infection. The optimal immunization strategy still remains to be fully elucidated. The aim of this study was to evaluate immunization strategies in a nonhuman primate (NHP) model. Cynomolgus macaques (Macaqua fascicularis) were immunized following different multi-component prime-boost immunization-schedules and subsequently challenged with C. trachomatis SvD in the lower genital tract. The immunization antigens included the recombinant protein antigen CTH522 adjuvanted with CAF01 or aluminium hydroxide, MOMP DNA antigen and MOMP vector antigens (HuAd5 MOMP and MVA MOMP). All antigen constructs were highly immunogenic raising significant systemic C. trachomatis-specific IgG responses. In particularly the CTH522 protein vaccinated groups raised a fast and strong pecificsIgG in serum. The mapping of specific B cell epitopes within the MOMP showed that all vaccinated groups, recognized epitopes near or within the variable domains (VD) of MOMP, with a consistent VD4 response in all animals. Furthermore, serum from all vaccinated groups were able to in vitro neutralize both SvD, SvE and SvF. Antibody responses were reflected on the vaginal and ocular mucosa, which showed detectable levels of IgG. Vaccines also induced C. trachomatis-specific cell mediated responses, as shown by in vitro stimulation and intracellular cytokine staining of peripheral blood mononuclear cells (PBMCs). In general, the protein (CTH522) vaccinated groups established a multifunctional CD4 T cell response, whereas the DNA and Vector vaccinated groups also established a CD8 T cells response. Following vaginal challenge with C. trachomatis SvD, several of the vaccinated groups showed accelerated clearance of the infection, but especially the DNA group, boosted with CAF01 adjuvanted CTH522 to achieve a balanced CD4/CD8 T cell response combined with an IgG response, showed accelerated clearance of the infection.
Collapse
Affiliation(s)
- Emma Lorenzen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Anja W. Olsen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Novo Nordisk Foundation, Infectious Disease, Hellerup, Denmark
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Ida Rosenkrands
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Helene Bæk Juel
- Novo Nordisk Foundation, Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Benoit Delache
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sebastien Langlois
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Constance Delaugerre
- Laboratory of Virology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Université de Paris, Paris Cité, Paris, France
| | - Christophe Joubert
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Cécile Bébéar
- Bordeaux University Hopsital, Bacteriology Department, National Reference Centre for bacterial Sexually Transmitted Infections, Bordeaux, France
| | - Bertille De Barbeyrac
- Bordeaux University Hopsital, Bacteriology Department, National Reference Centre for bacterial Sexually Transmitted Infections, Bordeaux, France
| | - Arabella Touati
- Bordeaux University Hopsital, Bacteriology Department, National Reference Centre for bacterial Sexually Transmitted Infections, Bordeaux, France
| | - Paul F. McKay
- Department of Medicine, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Robin J. Shattock
- Department of Medicine, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frank Follmann
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark,*Correspondence: Jes Dietrich,
| |
Collapse
|
2
|
Borges ÁH, Follmann F, Dietrich J. Chlamydia trachomatis vaccine development - a view on the current challenges and how to move forward. Expert Rev Vaccines 2022; 21:1555-1567. [PMID: 36004386 DOI: 10.1080/14760584.2022.2117694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. A licensed vaccine is not yet available, but the first vaccines have entered clinical trials. AREAS COVERED : We describe the progress that has been made in our understanding of the type of immunity that a protective vaccine should induce, and the challenges that vaccine developers face. We also focus on the clinical development of a chlamydia vaccine. The first chlamydia vaccine candidate has now been tested in a clinical phase-I trial, and another phase-I trial is currently running. We discuss what it will take to continue this development and what future trial setups could look like. EXPERT OPINION The chlamydia field is coming of age and the first phase I clinical trial of a C. trachomatis vaccine has been successfully completed. We expect and hope that this will motivate various stakeholders to support further development of chlamydia vaccines in humans.
Collapse
Affiliation(s)
- Álvaro H Borges
- Statens Serum Institut, Department of Infectious Diseases Immunology, Kobenhavn, 2300 Denmark
| | | | - Jes Dietrich
- Statens Serum Institut, Department of Infectious Diseases Immunology, Kobenhavn, 2300 Denmark
| |
Collapse
|
3
|
Richardson S, Medhavi F, Tanner T, Lundy S, Omosun Y, Igietseme JU, Carroll D, Eko FO. Cellular Basis for the Enhanced Efficacy of the Fms-Like Tyrosine Kinase 3 Ligand (FL) Adjuvanted VCG-Based Chlamydia abortus Vaccine. Front Immunol 2021; 12:698737. [PMID: 34249004 PMCID: PMC8264281 DOI: 10.3389/fimmu.2021.698737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Efficacious vaccines are needed to control genital chlamydial diseases in humans and the veterinary industry. We previously reported a C. abortus (Cab) vaccine comprising recombinant Vibrio cholerae ghosts (rVCG) expressing the conserved and immunogenic N-terminal region of the Cab polymorphic membrane protein D (rVCG-Pmp18.1) protein that protected mice against intravaginal challenge. In this study, we investigated the immunomodulatory effect of the hematopoietic progenitor activator cytokine, Fms-like tyrosine kinase 3-ligand (FL) when co-administered with the rVCG-Pmp18.1 vaccine as a strategy to enhance the protective efficacy and the potential mechanism of immunomodulation. Groups of female C57BL/6J mice were immunized and boosted twice intranasally (IN) with rVCG-PmpD18.1 with and without FL or purified rPmp18.1 or rVCG-gD2 (antigen control) or PBS (medium) per mouse. The results revealed that co-administration of the vaccine with FL enhanced antigen-specific cellular and humoral immune responses and protected against live Cab genital infection. Comparative analysis of immune cell phenotypes infiltrating mucosal and systemic immune inductive tissue sites following immunization revealed that co-administration of rVCG-Pmp18.1 with FL significantly enhanced the number of macrophages, dendritic and NK cells, γδ and NK T cells in the spleen (systemic) and iliac lymph nodes (ILN) draining the genital tract (mucosal) tissues compared to rVCG-Pmp18.1 alone. Furthermore, FL enhanced monocyte infiltration in the ILN, while CD19+ B cells and CD4+ T cells were enhanced in the spleen. These results indicate that the immunomodulatory effect of FL is associated with its ability to mobilize innate immune cells and subsequent activation of robust antigen-specific immune effectors in mucosal and systemic lymphoid tissues.
Collapse
Affiliation(s)
- Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Fnu Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph U. Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Darin Carroll
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Fang H, Quan H, Zhang Y, Li Q, Wang Y, Yuan S, Huang S, He C. Co-Infection of Escherichia coli, Enterococcus faecalis and Chlamydia psittaci Contributes to Salpingitis of Laying Layers and Breeder Ducks. Pathogens 2021; 10:pathogens10060755. [PMID: 34203970 PMCID: PMC8232623 DOI: 10.3390/pathogens10060755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
Salpingitis is manifested as hemorrhagic follicular inflammation exudations and peritonitis, leading to reduced egg production and high culling of breeder flocks. From 2018 to 2021, increasing salpingitis during egg peak is threatening the poultry industry post-artificial insemination, both in breeder layers and breeder ducks across China. In our study, Escherichia coli (E. coli), Enterococcus faecalis(E. faecalis) and Chlamydia psittaci (C. psittaci) were isolated and identified from the diseased oviducts using biochemical tests and PCR. To identify and isolate pathogenicity, we inoculated the isolates into laying hens via an intravaginal route. Later, laying hens developed typical salpingitis after receiving the combination of the aforementioned three isolates (1 × 105 IFU/mL of C. psittaci and 1 × 106 CFU/mL of E. faecalis and E. coli, respectively), while less oviduct inflammation was observed in the layers inoculated with the above isolate alone. Furthermore, 56 breeder ducks were divided into seven groups, eight ducks per group. The birds received the combination of three isolates, synergic infection of E. coli and E. faecalis, and C. psittaci alone via vaginal tract, while the remaining ducks were inoculated with physiological saline as the control group. Egg production was monitored daily and lesions of oviducts and follicles were determined post-infection on day 6. Interestingly, typical salpingitis, degenerated follicles and yolk peritonitis were obviously found in the synergic infection of three isolates and the birds inoculated with C. psittaci alone developed hemorrhagic follicles and white exudates in oviducts, while birds with E. faecalis or E. coli alone did not develop typical salpingitis. Finally, higher E. coli loads were determined in the oviducts as compared to E. faecalis and C. psittaci infection. Taken together, the combination of E. coli and E. faecalis, and C. psittaci could induce typical salpingitis and yolk peritonitis both in laying hens and breeder ducks. Secondary infection of E. coli and E. faecalis via artificial insemination is urgently needed for investigation against salpingitis.
Collapse
Affiliation(s)
- Huanxin Fang
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
| | - Hongkun Quan
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Yuhang Zhang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Qiang Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
| | - Cheng He
- College of Life Science and Engineering, Foshan University, Foshan 528011, China; (H.F.); (S.Y.); (S.H.)
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agriculture University, Beijing 100193, China; (H.Q.); (Y.Z.); (Q.L.); (Y.W.)
- Correspondence:
| |
Collapse
|
5
|
Olsen AW, Rosenkrands I, Holland MJ, Andersen P, Follmann F. A Chlamydia trachomatis VD1-MOMP vaccine elicits cross-neutralizing and protective antibodies against C/C-related complex serovars. NPJ Vaccines 2021; 6:58. [PMID: 33875654 PMCID: PMC8055873 DOI: 10.1038/s41541-021-00312-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/07/2021] [Indexed: 11/09/2022] Open
Abstract
Ocular and urogenital infections with Chlamydia trachomatis (C.t.) are caused by a range of different serovars. The first C.t. vaccine in clinical development (CTH522/CAF®01) induced neutralizing antibodies directed to the variable domain 4 (VD4) region of major outer membrane protein (MOMP), covering predominantly B and intermediate groups of serovars. The VD1 region of MOMP contains neutralizing B-cell epitopes targeting serovars of the C and C-related complex. Using an immuno-repeat strategy, we extended the VD1 region of SvA and SvJ to include surrounding conserved segments, extVD1A and extVD1J, and repeated this region four times. The extVD1A*4 was most immunogenic with broad cross-surface and neutralizing reactivity against representative members of the C and C-related complex serovars. Importantly, in vitro results for extVD1A*4 translated into in vivo biological effects, demonstrated by in vivo neutralization of SvA and protection/cross-protection against intravaginal challenge with both SvA and the heterologous SvIa strain.
Collapse
Affiliation(s)
- Anja Weinreich Olsen
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Ida Rosenkrands
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Martin J Holland
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Peter Andersen
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Frank Follmann
- Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
6
|
Pal S, Ausar SF, Tifrea DF, Cheng C, Gallichan S, Sanchez V, de la Maza LM, Visan L. Protection of outbred mice against a vaginal challenge by a Chlamydia trachomatis serovar E recombinant major outer membrane protein vaccine is dependent on phosphate substitution in the adjuvant. Hum Vaccin Immunother 2020; 16:2537-2547. [PMID: 32118511 PMCID: PMC7644203 DOI: 10.1080/21645515.2020.1717183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually-transmitted pathogen for which there is no vaccine. We previously demonstrated that the degree of phosphate substitution in an aluminum hydroxide adjuvant in a TLR-4-based C. trachomatis serovar E (Ser E) recombinant major outer membrane protein (rMOMP) formulation had an impact on the induced antibody titers and IFN-γ levels. Here, we have extended these observations using outbreed CD-1 mice immunized with C. trachomatis Ser E rMOMP formulations to evaluate the impact on bacterial challenge. The results confirmed that the rMOMP vaccine containing the adjuvant with the highest phosphate substitution induced the highest neutralizing antibody titers while the formulation with the lowest phosphate substitution induced the highest IFN-γ production. The most robust protection was observed in mice vaccinated with the formulation containing the adjuvant with the lowest phosphate substitution, as shown by the number of mice with positive vaginal cultures, number of positive cultures and number of C. trachomatis inclusion forming units recovered. This is the first report showing that vaccination of an outbred strain of mice with rMOMP induces protection against a vaginal challenge with C. trachomatis.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | | | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | - Chunmei Cheng
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | - Scott Gallichan
- Analytical Research and Development Department, Sanofi Pasteur , Toronto, Ontario, Canada
| | - Violette Sanchez
- Research & Non Clinical Safety Department, Sanofi Pasteur , Marcy l'Etoile, France
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California , Irvine, CA, USA
| | - Lucian Visan
- Research & Non Clinical Safety Department, Sanofi Pasteur , Marcy l'Etoile, France
| |
Collapse
|
7
|
|
8
|
Madico G, Gursky O, Fairman J, Massari P. Structural and Immunological Characterization of Novel Recombinant MOMP-Based Chlamydial Antigens. Vaccines (Basel) 2017; 6:vaccines6010002. [PMID: 29295593 PMCID: PMC5874643 DOI: 10.3390/vaccines6010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/02/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022] Open
Abstract
Chlamydia is the most common cause of bacterial sexually transmitted infections worldwide. While infections resolve with antibiotic treatment, this is often neglected in women due to frequent asymptomatic infections, leading to disease progression and severe sequelae (pelvic inflammatory disease, ectopic pregnancy, infertility). Development of a vaccine against Chlamydia is crucial. Whole organism-based vaccines have short-lived activity, serovar/subgroup-specific immunity and can cause adverse reactions in vaccinated subjects. The Chlamydia major outer membrane protein (MOMP) is a prime candidate for a subunit vaccine. MOMP contains four regions of sequence variability (variable domains, VDs) with B-cell and T-cell epitopes that elicit protective immunity. However, barriers for developing a MOMP-based vaccine include solubility, yield and refolding. We have engineered novel recombinant antigens in which the VDs are expressed into a carrier protein structurally similar to MOMP and suitable for recombinant expression at a high yield in a correctly folded and detergent-free form. Using a carrier such as the PorB porin from the human commensal organism N. lactamica, we show that PorB/VD chimeric proteins are immunogenic, antigenic and cross-reactive with MOMP. VDs are unique for each serovar but if combined in a single vaccine, a broad coverage against the major Chlamydia serovars can be ensured.
Collapse
Affiliation(s)
- Guillermo Madico
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| | - Olga Gursky
- Department of Physiology & Biophysics and the Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
9
|
Olsen AW, Lorenzen EK, Rosenkrands I, Follmann F, Andersen P. Protective Effect of Vaccine Promoted Neutralizing Antibodies against the Intracellular Pathogen Chlamydia trachomatis. Front Immunol 2017; 8:1652. [PMID: 29312283 PMCID: PMC5732375 DOI: 10.3389/fimmu.2017.01652] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023] Open
Abstract
There is an unmet need for a vaccine to control Chlamydia trachomatis (C.t.) infections. We have recently designed a multivalent heterologous immuno-repeat 1 (Hirep1) vaccine construct based on major outer membrane protein variable domain (VD) 4 regions from C.t. serovars (Svs) D–F. Hirep1 administered in the Cationic Adjuvant Formulation no. 1 (CAF01) promoted neutralizing antibodies in concert with CD4+ T cells and protected against genital infection. In the current study, we examined the protective role of the antibody (Ab) response in detail. Mice were vaccinated with either Hirep1 or a vaccine construct based on a homologous multivalent construct of extended VD4’s from SvF (extVD4F*4), adjuvanted in CAF01. Hirep1 and extVD4F*4 induced similar levels of Ab and cell-mediated immune responses but differed in the fine specificity of the B cell epitopes targeted in the VD4 region. Hirep1 induced a strong response toward a neutralizing epitope (LNPTIAG) and the importance of this epitope for neutralization was demonstrated by competitive inhibition with the corresponding peptide. Immunization with extVD4F*4 skewed the response to a non-neutralizing epitope slightly upstream in the sequence. Vaccination with Hirep1 as opposed to extVD4F*4 induced significant protection against infection in mice both in short- and long-term vaccination experiments, signifying a key role for Hirep1 neutralizing antibodies during protection against C.t. Finally, we show that passive immunization of Rag1 knockout mice with Hirep1 antibodies completely prevented the establishment of infection in 48% of the mice, demonstrating an isolated role for neutralizing antibodies in controlling infection. Our data emphasize the role of antibodies in early protection against C.t. and support the inclusion of neutralizing targets in chlamydia vaccines.
Collapse
Affiliation(s)
- Anja Weinreich Olsen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Emma Kathrine Lorenzen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Follmann
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
10
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
11
|
Chlamydial Type III Secretion System Needle Protein Induces Protective Immunity against Chlamydia muridarum Intravaginal Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3865802. [PMID: 28459057 PMCID: PMC5385227 DOI: 10.1155/2017/3865802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis imposes serious health problems and causes infertility. Because of asymptomatic onset, it often escapes antibiotic treatment. Therefore, vaccines offer a better option for the prevention of unwanted inflammatory sequelae. The existence of serologically distinct serovars of C. trachomatis suggests that a vaccine will need to provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of structural and effector proteins which is an essential virulence factor. In this study, we expressed the T3SS needle protein of Chlamydia muridarum, TC_0037, an ortholog of C. trachomatis CdsF, in a replication-defective adenoviral vector (AdTC_0037) and evaluated its protective efficacy in an intravaginal Chlamydia muridarum model. For better immune responses, we employed a heterologous prime-boost immunization protocol in which mice were intranasally primed with AdTC_0037 and subcutaneously boosted with recombinant TC_0037 and Toll-like receptor 4 agonist monophosphoryl lipid A mixed in a squalene nanoscale emulsion. We found that immunization with TC_0037 antigen induced specific humoral and T cell responses, decreased Chlamydia loads in the genital tract, and abrogated pathology of upper genital organs. Together, our results suggest that TC_0037, a highly conserved chlamydial T3SS protein, is a good candidate for inclusion in a Chlamydia vaccine.
Collapse
|
12
|
Armitage CW, O'Meara CP, Beagley KW. Chlamydial infection enhances expression of the polymeric immunoglobulin receptor (pIgR) and transcytosis of IgA. Am J Reprod Immunol 2016; 77. [PMID: 27868280 DOI: 10.1111/aji.12611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/03/2016] [Indexed: 11/27/2022] Open
Abstract
PROBLEM The pIgR mediates transport of IgA into the lumen of mucosal tissues preventing pathogenic infection. Despite this, the expression of pIgR during chlamydial infections of the male and female reproductive tracts remains poorly understood. METHOD OF STUDY The expression of pIgR in response to hormone cycling or over the course of chlamydial infection was determined in vitro and in vivo by Western blot or immunohistochemistry. RESULTS PIgR was upregulated in response to Chlamydia spp. infection of human epithelia, in both male and female mouse reproductive tracts. PIgR expression was found to be highest during estrus in the cervicovaginal and uterine epithelia and lowest during diestrus or following hormonal synchronization with Depo-Provera. Chlamydial infection of mice mediates upregulation of pIgR and transcytosis of IgA into the lumen. CONCLUSIONS Our results suggest that chlamydial infection enhances IgA secretion and pIgR expression by epithelia in the lower reproductive tracts of females and males, and hormone synchronization downregulates pIgR expression and transcytosis of IgA prior to challenge.
Collapse
Affiliation(s)
- Charles W Armitage
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Connor P O'Meara
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia.,Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Wurttemberg, Germany
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| |
Collapse
|
13
|
Pal S, Tatarenkova OV, de la Maza LM. A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge. Immunology 2015; 146:432-43. [PMID: 26423798 DOI: 10.1111/imm.12520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023] Open
Abstract
C3H/HeN female mice were vaccinated with native Chlamydia muridarum major outer membrane protein (MOMP), using Montanide+CpG or Alum+CpG as adjuvants. Negative control groups were immunized with ovalbumin (OVA) and the same adjuvants. As positive control, mice were inoculated intranasally with live Chlamydia. Mice were challenged in the ovarian bursa with 10(5) C. muridarum inclusion forming units. Six weeks after the genital challenge the animals were caged with male mice and monitored for pregnancy. Mice vaccinated with MOMP+Montanide+CpG developed high levels of C. muridarum-specific antibodies, with a high IgG2a/IgG1 ratio and neutralizing titres. Animals immunized using Alum+CpG had low antibody levels. Cellular immune responses were significantly higher in mice vaccinated with MOMP and Montanide+CpG, but not with Alum+CpG, when compared with negative controls. Following the genital challenge, only 20% (4/20) of mice vaccinated with MOMP+CpG+Montanide had positive vaginal cultures whereas 100% (9/9) of mice immunized with MOMP+CpG+Alum had positive cultures. Of the positive control animals inoculated with live Chlamydia only 15% (3/20) had positive vaginal cultures. In contrast, 100% (20/20) of mice immunized with OVA+CpG+Montanide, or minimal essential medium, had positive cultures. Following mating, 80% (16/20) of mice vaccinated with MOMP+CpG+Montanide, and 85% (17/20) of animals inoculated intranasally with live C. muridarum carried embryos in both uterine horns. No protection against infertility was observed in mice immunized with MOMP and CpG+Alum or OVA. In conclusion, this is the first time that a subunit vaccine has been shown to elicit a protective immune response in the highly susceptible C3H/HeN strain of mice against an upper genital challenge.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA, USA
| | - Olga V Tatarenkova
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
14
|
Li LX, McSorley SJ. A re-evaluation of the role of B cells in protective immunity to Chlamydia infection. Immunol Lett 2015; 164:88-93. [PMID: 25704502 DOI: 10.1016/j.imlet.2015.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/06/2015] [Accepted: 02/12/2015] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis is the etiological agent of the most commonly reported bacterial sexual transmitted infection (STI) in North America and Europe. The control of Chlamydia infection is hindered by the asymptomatic nature of initial infection but the consequence of untreated infection seriously threatens the reproductive health of young women. Unfortunately, there is no licensed vaccine for Chlamydia vaccine, in part due to our incomplete understanding of the immune response to Chlamydia urogenital infection. It has been well established that T cell-mediated immunity plays a dominant role in protective immunity against Chlamydia and thus the importance of B cells is somewhat underappreciated. Here, we summarize recent progress on understanding the role of B cells during Chlamydia genital tract infections and discuss how B cells and humoral immunity make an effective contribution to host defense against important intracellular pathogens, including Chlamydia.
Collapse
Affiliation(s)
- Lin-Xi Li
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, United States.
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, United States
| |
Collapse
|
15
|
Armitage CW, O'Meara CP, Harvie MCG, Timms P, Wijburg OL, Beagley KW. Evaluation of intra- and extra-epithelial secretory IgA in chlamydial infections. Immunology 2015; 143:520-30. [PMID: 24827556 DOI: 10.1111/imm.12317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022] Open
Abstract
Immunoglobulin A is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intra-epithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant secretory IgA (SIgA) we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra- and intra-epithelial stages of infection. We developed an in vitro model using polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model using pIgR(-/-) mice. Secretory IgA targeting the extra-epithelial chlamydial antigen, the major outer membrane protein, significantly reduced infection in vitro by 24% and in vivo by 44%. Conversely, pIgR-mediated delivery of IgA targeting the intra-epithelial inclusion membrane protein A bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intra-epithelial IgA targeting the secreted protease Chlamydia protease-like activity factor also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra-epithelial, but not intra-epithelial, chlamydial antigens for protection against a genital tract infection.
Collapse
Affiliation(s)
- Charles W Armitage
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
|
18
|
Zhu S, Feng Y, Chen J, Lin X, Xue X, Chen S, Zhong X, Li W, Zhang L. Identification of linear B-cell epitopes within Tarp of Chlamydia trachomatis. J Pept Sci 2014; 20:916-22. [PMID: 25377871 DOI: 10.1002/psc.2689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 08/10/2014] [Accepted: 08/18/2014] [Indexed: 11/10/2022]
Abstract
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. There is currently no commercially available vaccine against C. trachomatis. Chlamydial translocated actin-recruiting phosphoprotein (Tarp) can induce cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of Tarp was analyzed using computer-assisted techniques to scan B-cell epitopes, and six possible linear B-cell epitopes peptides (aa80-95, aa107-123, aa152-170, aa171-186, aa239-253 and aa497-513) with high predicted antigenicity and high conservation were investigated. Sera from mice immunized with these potential immunodominant peptides was analyzed by ELISA, which showed that epitope 152-170 elicited serum immunoglobulin G (IgG) response and epitope 171-186 elicited both serum IgG and mucosal secretory immunoglobulin A response. The response of immune sera of epitope 171-186 to endogenous Tarp antigen obtained from the Hela229 cells infected with C. trachomatis was confirmed by Western blot and indirect fluorescence assay. In addition, binding of the antibodies against epitope 171-186 to endogenous Tarp was further confirmed by competitive ELISA. Our results demonstrated that the putative epitope (aa171-186) was an immunodominant B-cell epitope of Tarp. If proven protective and safe, this epitope, in combination with other well-documented epitopes, might be included into a candidate epitope-based vaccine against C. trachomatis.
Collapse
Affiliation(s)
- Shanli Zhu
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, 325000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Patel AL, Mishra PK, Sachdev D, Chaudhary U, Patton DL, Saluja D. Seroprevalence of antibodies against Pkn1, a novel potential immunogen, in Chlamydia trachomatis-infected Macaca nemestrina and human patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:245483. [PMID: 25032212 PMCID: PMC4086347 DOI: 10.1155/2014/245483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/24/2014] [Indexed: 11/17/2022]
Abstract
Chlamydia trachomatis (CT) is an important cause of sexually transmitted genital tract infections (STIs) and trachoma. Despite major research into chlamydial pathogenesis and host immune responses, immunoprotection has been hampered by the incomplete understanding of protective immunity in the genital tract. Characterized vaccine candidates have shown variable efficacy ranging from no protection to partial protection in vivo. It is therefore a research priority to identify novel chlamydial antigens that may elicit protective immune responses against CT infection. In the present study we assessed the seroprevalence of antibodies against protein kinase1 (Pkn1), DNA ligaseA (LigA), and major outer membrane protein A (OmpA) following natural CT infection in humans and in experimentally induced CT infection in Macaca nemestrina. Antigenic stretches of Pkn1, LigA, and OmpA were identified using bioinformatic tools. Pkn1, LigA, and OmpA genes were cloned in bacterial expression vector and purified by affinity chromatography. Our results demonstrate significantly high seroprevalence of antibodies against purified Pkn1 and OmpA in sera obtained from the macaque animal model and human patients infected with CT. In contrast no significant seroreactivity was observed for LigA. The seroprevalence of antibodies against Pkn1 suggest that nonsurface chlamydial proteins could also be important for developing vaccines for C. trachomatis.
Collapse
Affiliation(s)
- Achchhe L. Patel
- Dr BR Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Prashant K. Mishra
- Dr BR Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Divya Sachdev
- Dr BR Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Uma Chaudhary
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | | | - Daman Saluja
- Dr BR Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
20
|
Dixit S, Singh SR, Yilma AN, Agee RD, Taha M, Dennis VA. Poly(lactic acid)-poly(ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1311-21. [PMID: 24602605 DOI: 10.1016/j.nano.2014.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/04/2014] [Accepted: 02/21/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED PLA-PEG [poly(lactic acid)-poly (ethylene glycol)], a biodegradable copolymer, is underexploited for vaccine delivery although it exhibits enhanced biocompatibility and slow release immune-potentiating properties. We document here successful encapsulation of M278, a Chlamydia trachomatis MOMP (major outer-membrane protein) peptide, within PLA-PEG nanoparticles by size (~73-100nm), zeta potential (-16 mV), smooth morphology, encapsulation efficiency (~60%), slow release pattern, and non-toxicity to macrophages. Immunization of mice with encapsulated M278 elicited higher M278-specific T-cell cytokines [Th1 (IFN-γ, IL-2), Th17 (IL-17)] and antibodies [Th1 (IgG2a), Th2 (IgG1, IgG2b)] compared to bare M278. Encapsulated-M278 mouse serum inhibited Chlamydia infectivity of macrophages, with a concomitant transcriptional down-regulation of MOMP, its cognate TLR2 and CD80 co-stimulatory molecule. Collectively, encapsulated M278 potentiated crucial adaptive immune responses, which are required by a vaccine candidate for protective immunity against Chlamydia. Our data highlight PLA-PEG's potential for vaccines, which resides in its slow release and potentiating effects to bolster immune responses. FROM THE CLINICAL EDITOR This study highlights the potential of a PLA-PEG-based nanoparticle formulation containing a major outer membrane protein of chlamydia trachomatis in inducing a sustained enhanced immune response, paving the way to the development of a vaccination strategy against this infection.
Collapse
Affiliation(s)
- Saurabh Dixit
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA
| | - Abebayehu N Yilma
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA; Global Institue of Public Health, New York University, New York, NY, USA
| | - Ronald D Agee
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA; College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Murtada Taha
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA; Department of Natural Sciences, Albany State University, Albany, GA, USA
| | - Vida A Dennis
- Center for NanoBiotechnology Research (CNBR), Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
21
|
Olsen AW, Andersen P, Follmann F. Characterization of protective immune responses promoted by human antigen targets in a urogenital Chlamydia trachomatis mouse model. Vaccine 2014; 32:685-92. [DOI: 10.1016/j.vaccine.2013.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
|
22
|
Fairley SJ, Singh SR, Yilma AN, Waffo AB, Subbarayan P, Dixit S, Taha MA, Cambridge CD, Dennis VA. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int J Nanomedicine 2013; 8:2085-99. [PMID: 23785233 PMCID: PMC3682632 DOI: 10.2147/ijn.s44155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 11/23/2022] Open
Abstract
We recently demonstrated by in vitro experiments that PLGA (poly D, L-lactide-co-glycolide)
potentiates T helper 1 (Th1) immune responses induced by a peptide derived from the recombinant
major outer membrane protein (rMOMP) of Chlamydia trachomatis, and may be a
promising vaccine delivery system. Herein we evaluated the immune-potentiating potential of PLGA by
encapsulating the full-length rMOMP (PLGA-rMOMP), characterizing it in vitro, and investigating its
immunogenicity in vivo. Our hypothesis was that PLGA-rMOMP triggers Th1 immune responses in mice,
which are desirable prerequisites for a C. trachomatis candidate nanovaccine.
Physical-structural characterizations of PLGA-rMOMP revealed its size (approximately 272 nm), zeta
potential (−14.30 mV), apparent spherical smooth morphology, and continuous slow release
pattern. PLGA potentiated the ability of encapsulated rMOMP to trigger production of cytokines and
chemokines by mouse J774 macrophages. Flow cytometric analyses revealed that spleen cells from
BALB/c mice immunized with PLGA-rMOMP had elevated numbers of CD4+ and CD8+ T cell
subsets, and secreted more rMOMP-specific interferon-gamma (Th1) and interleukin (IL)-12p40
(Th1/Th17) than IL-4 and IL-10 (Th2) cytokines. PLGA-rMOMP-immunized mice produced higher serum
immunoglobulin (Ig)G and IgG2a (Th1) than IgG1 (Th2) rMOMP-specific antibodies. Notably, sera from
PLGA-rMOMP-immunized mice had a 64-fold higher Th1 than Th2 antibody titer, whereas mice immunized
with rMOMP in Freund’s adjuvant had only a four-fold higher Th1 than Th2 antibody titer,
suggesting primarily induction of a Th1 antibody response in PLGA-rMOMP-immunized mice. Our data
underscore PLGA as an effective delivery system for a C. trachomatis vaccine. The
capacity of PLGA-rMOMP to trigger primarily Th1 immune responses in mice promotes it as a highly
desirable candidate nanovaccine against C. trachomatis.
Collapse
Affiliation(s)
- Stacie J Fairley
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL 36104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Confer AW, Ayalew S. The OmpA family of proteins: Roles in bacterial pathogenesis and immunity. Vet Microbiol 2013; 163:207-22. [DOI: 10.1016/j.vetmic.2012.08.019] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
24
|
Lu C, Peng B, Li Z, Lei L, Li Z, Chen L, He Q, Zhong G, Wu Y. Induction of protective immunity against Chlamydia muridarum intravaginal infection with the chlamydial immunodominant antigen macrophage infectivity potentiator. Microbes Infect 2013; 15:329-38. [PMID: 23416214 DOI: 10.1016/j.micinf.2013.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/28/2013] [Accepted: 02/03/2013] [Indexed: 12/21/2022]
Abstract
We previously reported that 5 Chlamydia muridarum antigens reacted with antisera from >90% mice urogenitally infected with C. muridarum and they are TC0660 (ABC transporter or ArtJ), TC0727 (outer membrane complex protein B or OmcB), TC0828 (macrophage infectivity potentiator or MIP), TC0726 (inclusion membrane protein or Inc) & TC0268 (hypothetical protein or HP). The orthologs of these antigens in Chlamydia trachomatis were also highly reactive with antisera from women urogenitally infected with C. trachomatis. In the current study, we evaluated these C. muridarum antigens for their ability to induce protection against a C. muridarum intravaginal challenge infection in mice. We found that only MIP induced the most pronounced protection against C. muridarum infection. The protection correlated well with robust C. muridarum MIP-specific antibody and Th1-dominant T cell responses. The MIP-immunized mice displayed significantly reduced live organism shedding from the lower genital tract and highly attenuated inflammatory pathologies in the upper genital tissues. These results demonstrate that MIP, an immunodominant antigen identified by both human and mouse antisera, may be considered a component of a multi-subunit chlamydial vaccine for inducing protective immunity.
Collapse
Affiliation(s)
- Chunxue Lu
- Department of Microbiology and Immunology, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A TLR2 agonist is a more effective adjuvant for a Chlamydia major outer membrane protein vaccine than ligands to other TLR and NOD receptors. Vaccine 2011; 29:6641-9. [PMID: 21742006 DOI: 10.1016/j.vaccine.2011.06.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 12/24/2022]
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen in the World and there is an urgent need for a vaccine to prevent these infections. To determine what type of adjuvant can better enhance the immunogenicity of a Chlamydia vaccine, we formulated the recombinant major outer membrane protein (Ct-rMOMP) with several ligands for Toll-like receptors (TLR) and the nucleotide-binding oligomerization domain (NOD) including Pam(2)CSK(4) (TLR2/TLR6), Poly (I:C) (TLR3), monophosphoryl lipid A (TLR4), flagellin (TLR5), imiquimod R837 (TLR7), imidazoquinoline R848 (TRL7/8), CpG-1826 (TLR9), M-Tri-(DAP) (NOD1/NOD2) and muramyldipeptide (NOD2). Groups of female BALB/c mice were immunized intramuscularly (i.m.) three times with the Ct-rMOMP and each one of those adjuvants. Four weeks after the last immunization the mice were challenged intranasally (i.n.) with 10(4)C. trachomatis mouse pneumonitis (MoPn) inclusion forming units (IFU). As negative antigen control, mice were immunized with the Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) and the same adjuvants. As a positive vaccine control, mice were inoculated i.n. with 10(4)IFU of MoPn. The humoral and cell mediated immune responses were determined the day before the challenge. Following the challenge the mice were weighed daily and, at 10 days post-challenge (p.c.), they were euthanized, their lungs weighted and the number of IFU in the lungs counted. As determined by the IgG2a/IgG1 ratio in the sera, mice immunized with Ct-rMOMP+Pam(2)CSK(4) showed a strong Th2 biased humoral immune response. Furthermore, these mice developed a robust cellular immune response with high Chlamydia-specific T cell proliferation and levels of IFN-γ production. In addition, based on changes in body weight, weight of the lungs and number of IFU recovered from the lungs, the mice immunized with Ct-rMOMP+Pam(2)CSK(4), were better protected against the i.n. challenge than any group of mice immunized with Ct-rMOMP and the other adjuvants. In conclusion, Pam(2)CSK(4) should be evaluated as a candidate adjuvant for a C. trachomatis vaccine.
Collapse
|
26
|
Tifrea DF, Sun G, Pal S, Zardeneta G, Cocco MJ, Popot JL, de la Maza LM. Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 2011; 29:4623-31. [PMID: 21550371 DOI: 10.1016/j.vaccine.2011.04.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 04/12/2011] [Accepted: 04/17/2011] [Indexed: 01/01/2023]
Abstract
The native major outer membrane protein (nMOMP) from Chlamydia was purified in its trimeric form using the zwitterionic detergent Z3-14. In aliquots from this preparation, Z3-14 was exchanged for amphipol (APol) A8-35. CD analysis showed that trapping with A8-35 improved the thermostability of nMOMP without affecting its secondary structure. Recombinant MOMP (rMOMP) was also formulated with Z3-14 or A8-35. Four groups of mice were vaccinated with nMOMP/Z3-14, nMOMP/A8-35, rMOMP/Z3-14 or rMOMP/A8-35 using CpG and Montanide as adjuvants. A positive control group was inoculated intranasally with live Chlamydia and a negative control group with culture medium. Mice were challenged intranasally with live Chlamydia and protection was assessed based on changes in body weight, the weight of the lungs and the number of chlamydial inclusion forming units recovered from the lungs 10 days after the challenge. Overall, vaccines formulated with nMOMP elicited better protection than those using rMOMP. Furthermore, the protection afforded by nMOMP/A8-35 was more robust than that achieved with nMOMP/Z3-14. In contrast, no differences in protection were observed between rMOMP/Z3-14 and rMOMP/A8-35 preparations. These findings suggest that the higher protection conferred by nMOMP/A8-35 complexes most likely results from a better preservation of the native structure of MOMP and/or from a more efficient presentation of the antigen to the immune system, rather than from an adjuvant effect of the amphipol. Thus, amphipols can be used in vaccine formulations to stabilize a membrane-protein component and enhance its immunogenicity.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Cheng C, Pal S, Bettahi I, Oxford KL, Barry PA, de la Maza LM. Immunogenicity of a vaccine formulated with the Chlamydia trachomatis serovar F, native major outer membrane protein in a nonhuman primate model. Vaccine 2011; 29:3456-64. [PMID: 21376796 DOI: 10.1016/j.vaccine.2011.02.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 11/24/2022]
Abstract
To determine the ability of a vaccine formulated with the genital Chlamydia trachomatis, serovar F, native major outer membrane protein (Ct-F-nMOMP), to induce systemic and mucosal immune responses, rhesus macaques (Macaca mulatta) were immunized three times by the intramuscular (i.m.) and subcutaneous (s.c.) routes using CpG-2395 and Montanide ISA 720 VG, as adjuvants. As controls, another group of M. mulatta was immunized with ovalbumin instead of Ct-F-nMOMP using the same formulation and routes. High levels of Chlamydia-specific IgG and IgA antibodies were detected in plasma, vaginal washes, tears, saliva, and stools from the Ct-F-nMOMP immunized animals. Also, high neutralizing antibody titers were detected in the plasma from these animals. Monkeys immunized with ovalbumin had no detectable Chlamydia-specific antibodies. Furthermore, as measured by a lymphoproliferative assay, significant Chlamydia-specific cell-mediated immune responses were detected in the peripheral blood mononuclear cells (PBMC) from the rhesus macaques vaccinated with Ct-F-nMOMP when compared with the animals immunized with ovalbumin. In addition, the levels of two Th1 cytokines, IFN-γ and TNF-α, were significantly higher in the animals immunized with Ct-F-nMOMP when compared with those from the monkeys immunized with ovalbumin. To our knowledge, this is the first time that mucosal and systemic immune responses have been investigated in a nonhuman primate model using a subunit vaccine from a human genital C. trachomatis serovar.
Collapse
Affiliation(s)
- Chunmei Cheng
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | | | | | |
Collapse
|
28
|
Protection of pigs against Chlamydia trachomatis challenge by administration of a MOMP-based DNA vaccine in the vaginal mucosa. Vaccine 2011; 29:1399-407. [DOI: 10.1016/j.vaccine.2010.12.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/30/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022]
|
29
|
Induction of immune memory by a multisubunit chlamydial vaccine. Vaccine 2010; 29:1472-80. [PMID: 21184858 DOI: 10.1016/j.vaccine.2010.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/23/2010] [Accepted: 12/09/2010] [Indexed: 01/03/2023]
Abstract
We tested the hypothesis that intramuscular immunization with a multisubunit chlamydial vaccine candidate will induce long lasting immune responses in mice. Accordingly, groups of female C57BL/6 mice were immunized intramuscularly with Vibrio cholerae ghosts (VCG) expressing the Poring B and polymorphic membrane protein-D proteins of Chlamydia trachomatis or a control antigen. Humoral and cell-mediated immune responses were evaluated following immunization and after live chlamydial infection. Immunization induced an anamnestic response characterized by chlamydial-specific IgG2a and IgA antibodies in sera and vaginal lavage as well as specific genital and splenic T cell responses. The results also revealed that the local mucosal and systemic cellular and humoral immune effectors induced in mice following immunization with the vaccine candidate are long lasting. Vaccinated mice cleared intravaginal challenge with 10(5) chlamydial inclusion forming units within 12 days compared to control mice, which shed up to 2 × 10(3) IFUs at this time point. Moreover, rechallenge of mice 98 days after resolution of the primary infection resulted in the recall and retention of a relatively high frequency of chlamydial-specific Th1 cells and IgG2a in the genital mucosa. These results provide the first evidence that a VCG-based multisubunit chlamydial vaccine is capable of effectively stimulating anamnestic systemic and mucosal immune responses in mice. The data support further vaccine evaluation and testing for induction of long-term protective immunity.
Collapse
|
30
|
Cochrane M, Armitage CW, O’Meara CP, Beagley KW. Towards a Chlamydia trachomatis vaccine: how close are we? Future Microbiol 2010; 5:1833-56. [DOI: 10.2217/fmb.10.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable blindness worldwide. The incidence of chlamydial sexually transmitted infections has increased rapidly and current antibiotic therapy has failed as an intervention strategy. The most accepted strategy for protection and/or control of chlamydial infections is a vaccine that induces both local neutralizing antibodies to prevent infections by the extracellular elementary bodies and a cell-mediated immune response to target the intracellular infection. This article will discuss the challenges in vaccine design for the prevention of chlamydial urogenital infection and/or disease, including selection of target antigens, discussion of effective delivery systems, immunization routes and adjuvants for induction of protective immunity at the targeted mucosal surface whilst minimizing severe inflammatory disease sequelae.
Collapse
Affiliation(s)
- Melanie Cochrane
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Charles W Armitage
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Connor P O’Meara
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | | |
Collapse
|
31
|
CD4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection. Infect Immun 2010; 78:4374-83. [PMID: 20660610 DOI: 10.1128/iai.00622-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite effective antimicrobial chemotherapy, control of Chlamydia trachomatis urogenital infection will likely require a vaccine. We have assessed the protective effect of an outer membrane protein-based vaccine by using a murine model of chlamydial genital infection. Female mice were first vaccinated with Chlamydia muridarum major outer membrane protein (MOMP) plus the adjuvants CpG-1826 and Montanide ISA 720; then they were challenged with C. muridarum. Vaccinated mice shed 2 log(10) to 3 log(10) fewer inclusion-forming units (IFU) than ovalbumin-vaccinated or naïve animals, resolved infection sooner, and had a lower incidence of hydrosalpinx. To determine the relative contribution of T cells to vaccine-induced protection, mice were vaccinated, depleted of CD4(+) or CD8(+) T cells, and then challenged vaginally with C. muridarum. Depletion of CD4(+) T cells, but not depletion of CD8(+) T cells, diminished vaccine-induced protection, with CD4-depleted mice shedding 2 log(10) to 4 log(10) more IFU than CD8-depleted or nondepleted mice. The contribution of antibodies to vaccine-induced protection was demonstrated by the absence of protective immunity in vaccinated B-cell-deficient mice and by a 2 log(10) to 3 log(10) decrease in bacterial shedding by mice passively administered an anti-MOMP serum. Thus, optimal protective immunity in this model of vaccine-induced protection depends on contributions from both CD4(+) T cells and antibody.
Collapse
|
32
|
Chaganty BKR, Murthy AK, Evani SJ, Li W, Guentzel MN, Chambers JP, Zhong G, Arulanandam BP. Heat denatured enzymatically inactive recombinant chlamydial protease-like activity factor induces robust protective immunity against genital chlamydial challenge. Vaccine 2010; 28:2323-9. [PMID: 20056182 DOI: 10.1016/j.vaccine.2009.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/10/2009] [Accepted: 12/23/2009] [Indexed: 01/18/2023]
Abstract
We have shown previously that vaccination with recombinant chlamydial protease-like activity factor (rCPAF) plus interleukin-12 as an adjuvant induces robust protective immunity against primary genital Chlamydia muridarum challenge in mice. Since CPAF is a protease, we compared the effects of enzymatically active and inactive (heat denatured) rCPAF to determine whether proteolytic activity is expendable for the induction of protective immunity against chlamydial challenge. Active, but not inactive, rCPAF immunization induced high levels of anti-active CPAF antibody, whereas both induced robust splenic CPAF-specific IFN-gamma production. Vaccination with active or inactive rCPAF induced enhanced vaginal chlamydial clearance as early as day 6 with complete resolution of infection by day 18, compared to day 30 in mock-vaccinated and challenged animals. Importantly, significant and comparable reductions in oviduct pathology were observed in active and inactive rCPAF-vaccinated mice compared to mock-vaccinated animals. Thus, rCPAF induced anti-chlamydial immunity is largely independent of enzymatic activity and secondary or higher order protein conformation.
Collapse
Affiliation(s)
- Bharat K R Chaganty
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rockey DD, Wang J, Lei L, Zhong G. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Rev Vaccines 2009; 8:1365-77. [PMID: 19803759 DOI: 10.1586/erv.09.98] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The failure of the inactivated Chlamydia-based vaccine trials in the 1960s has led researchers studying Chlamydia to take cautious and rational approaches to develop safe and effective chlamydial vaccines. Subsequent research efforts focused on three areas. The first is the analysis of the immunobiology of chlamydial infection in animal models, with supporting clinical studies, to identify the immune correlates of both protective immunity and pathological responses. Second, recent radical improvements in genomics, proteomics and associated technologies have assisted in the implementation of creative approaches to search for suitable vaccine candidates. Third, progress in the analysis of host response and adjuvanticity regulating both innate and adaptive immunity at the mucosal site of infection has led to progress in the design of optimal delivery and adjuvant systems for enhancing protective immunity. Considerable progress has been made in the first two areas but research efforts to better define the factors that regulate immunity at mucosal sites of infection and to develop strategies to boost protective immunity via immunomodulation, effective delivery systems and potent adjuvants, have remained elusive. In this article, we will summarize progress in these areas with a focus on chlamydial vaccine antigen discovery, and discuss future directions towards the development of a safe and effective chlamydial vaccine.
Collapse
Affiliation(s)
- Daniel D Rockey
- Associate Professor, College of Veterinary Medicine, Oregon State University, 211 Dryden Hall, Corvallis, OR 97331-4804, USA.
| | | | | | | |
Collapse
|
34
|
Functional characterization of antibodies against Neisseria gonorrhoeae opacity protein loops. PLoS One 2009; 4:e8108. [PMID: 19956622 PMCID: PMC2779592 DOI: 10.1371/journal.pone.0008108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 10/26/2009] [Indexed: 11/22/2022] Open
Abstract
Background The development of a gonorrhea vaccine is challenged by the lack of correlates of protection. The antigenically variable neisserial opacity (Opa) proteins are expressed during infection and have a semivariable (SV) and highly conserved (4L) loop that could be targeted in a vaccine. Here we compared antibodies to linear (Ablinear) and cyclic (Abcyclic) peptides that correspond to the SV and 4L loops and selected hypervariable (HV2) loops for surface-binding and protective activity in vitro and in vivo. Methods/Findings AbSV cyclic bound a greater number of different Opa variants than AbSV linear, including variants that differed by seven amino acids. Antibodies to the 4L peptide did not bind Opa-expressing bacteria. AbSVcyclic and AbHV2cyclic, but not AbSVlinear or AbHV2 linear agglutinated homologous Opa variants, and AbHV2BDcyclic but not AbHV2BDlinear blocked the association of OpaB variants with human endocervical cells. Only AbHV2BDlinear were bactericidal against the serum resistant parent strain. Consistent with host restrictions in the complement cascade, the bactericidal activity of AbHV2BDlinear was increased 8-fold when rabbit complement was used. None of the antibodies was protective when administered vaginally to mice. Antibody duration in the vagina was short-lived, however, with <50% of the antibodies recovered 3 hrs post-administration. Conclusions We conclude that an SV loop-specific cyclic peptide can be used to induce antibodies that recognize a broad spectrum of antigenically distinct Opa variants and have agglutination abilities. HV2 loop-specific cyclic peptides elicited antibodies with agglutination and adherence blocking abilities. The use of human complement when testing the bactericidal activity of vaccine-induced antibodies against serum resistant gonococci is also important.
Collapse
|
35
|
Murthy AK, Guentzel MN, Zhong G, Arulanandam BP. Chlamydial protease-like activity factor--insights into immunity and vaccine development. J Reprod Immunol 2009; 83:179-84. [PMID: 19853923 DOI: 10.1016/j.jri.2009.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/24/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular pathogen that remains the leading cause of bacterial sexually transmitted disease worldwide, despite the availability of efficacious antimicrobial therapy. Given that chlamydial infections cause severe pathological sequelae in the upper genital tract, a licensed vaccine to prevent infection and disease would be an ideal solution. Chlamydial protease-like activity factor (CPAF) is a protein secreted in considerable amounts into the cytosol of infected cells and released into the extracellular milieu upon cellular lysis, which therefore is accessible to the host immune system. This is further substantiated by the observation that CPAF is immunodominant among other antigens in Chlamydia sero-positive humans. The efficacy of vaccination with CPAF against genital chlamydial challenge has been evaluated extensively in the murine model. This review will discuss important insights into the potential of CPAF as a component of an anti-chlamydial vaccine.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA circle, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
36
|
Hickey DK, Aldwell FE, Beagley KW. Transcutaneous immunization with a novel lipid-based adjuvant protects against Chlamydia genital and respiratory infections. Vaccine 2009; 27:6217-25. [PMID: 19698810 DOI: 10.1016/j.vaccine.2009.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/29/2009] [Accepted: 08/02/2009] [Indexed: 12/30/2022]
Abstract
Mucosal adjuvants are important to overcome the state of immune tolerance normally associated with mucosal delivery and to enhance adaptive immunity to often-weakly immunogenic subunit vaccine antigens. Unfortunately, adverse side effects of many experimental adjuvants limit the number of adjuvants approved for vaccination. Lipid C is a novel, non-toxic, lipid oral vaccine-delivery formulation, developed originally for oral delivery of the live Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccine. In the present study, murine models of chlamydial respiratory and genital tract infections were used to determine whether transcutaneous immunization (TCI) with Lipid C-incorporated protein antigens could elicit protective immunity at the genital and respiratory mucosae. BALB/c mice were immunized transcutaneously with Lipid C containing the chlamydial major outer membrane protein (MOMP), with and without addition of cholera toxin and CpG-ODN 1826 (CT/CpG). Both vaccine combinations induced mixed cell-mediated and mucosal antibody immune responses. Immunization with Lipid C-incorporated MOMP (Lipid C/MOMP), either alone or with CT/CpG resulted in partial protection following live challenge with Chlamydia muridarum as evidenced by a significant reduction in recoverable Chlamydia from both the genital secretions and lung tissue. Protection induced by immunization with Lipid C/MOMP alone was not further enhanced by the addition of CT/CpG. These results highlight the potential of Lipid C as a novel mucosal adjuvant capable of targeting multiple mucosal surfaces following TCI. Protection at both the respiratory and genital mucosae was achieved without the requirement for potentially toxic adjuvants, suggesting that Lipid C may provide a safe effective mucosal adjuvant for human vaccination.
Collapse
Affiliation(s)
- Danica K Hickey
- School of Biomedical Sciences, The University of Newcastle, Newcastle, Australia and Hunter Medical Research Institute, Newcastle, Australia
| | | | | |
Collapse
|
37
|
Cheng C, Bettahi I, Cruz-Fisher MI, Pal S, Jain P, Jia Z, Holmgren J, Harandi AM, de la Maza LM. Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin. Vaccine 2009; 27:6239-46. [PMID: 19686693 DOI: 10.1016/j.vaccine.2009.07.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/22/2009] [Accepted: 07/30/2009] [Indexed: 01/21/2023]
Abstract
The present study was undertaken to test the efficacy of immunization with the native major outer membrane protein (nMOMP) of Chlamydia trachomatis mouse pneumonitis (MoPn) serovar in combination with a novel immunostimulatory adjuvant consisting of CpG oligodeoxynucleotide (ODN) linked to the nontoxic B subunit of cholera toxin (CTB-CpG) to elicit a protective immune response to C. trachomatis. High levels of Chlamydia-specific IgG antibodies were detected in the sera from BALB/c mice immunized intramuscularly and subcutaneously (i.m.+s.c.) with the nMOMP/CTB-CpG vaccine or with nMOMP adjuvanted with a mixture of CT and CpG ODN (CT+CpG). Further, these immunization schemes gave rise to significant T-cell-mediated Chlamydia-specific immune responses. No Chlamydia-specific humoral or cell-mediated immune responses were detected in the control mice vaccinated with ovalbumin together with either CTB-CpG or CT+CpG. Following an intranasal challenge with C. trachomatis the groups of mice immunized with nMOMP plus CTB-CpG, CT+CpG or live C. trachomatis were found to be protected based on their change in body weight and lung weight as well as number of inclusion forming unit recovered from the lungs, as compared with control groups immunized with ovalbumin plus either adjuvants. Interestingly, IFN-gamma-producing CD4(+), but not CD8(+), T-cells showed a significant correlation with the outcomes of the challenge. In conclusion, nMOMP in combination with the novel adjuvant CTB-CpG elicited a significant antigen-specific antibody and cell-mediated immune responses as well as protection against a pulmonary challenge with C. trachomatis.
Collapse
Affiliation(s)
- Chunmei Cheng
- Department of Pathology and Laboratory Medicine, Medical Sciences, I, Room D440, University of California, Irvine, CA 92697-4800, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sun G, Pal S, Weiland J, Peterson EM, de la Maza LM. Protection against an intranasal challenge by vaccines formulated with native and recombinant preparations of the Chlamydia trachomatis major outer membrane protein. Vaccine 2009; 27:5020-5. [PMID: 19446590 DOI: 10.1016/j.vaccine.2009.05.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/20/2009] [Accepted: 05/04/2009] [Indexed: 12/29/2022]
Abstract
To compare the ability of a native and a recombinant preparation of the major outer membrane protein of Chlamydia trachomatis mouse pneumonitis (MoPn; Ct-nMOMP and Ct-rMOMP) to protect against an intranasal (i.n.) challenge, BALB/c mice were vaccinated by the intramuscular (i.m.) and subcutaneous (s.c.) routes using CpG-1826 and Montanide ISA 720 as adjuvants. Animals inoculated i.n. with live elementary bodies (EB) of Chlamydia served as a positive control. Negative control groups were immunized with either Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) or with minimal essential medium (MEM-0). Mice immunized with Ct-rMOMP, Ct-nMOMP and EB developed a strong immune response as shown by high levels of Chlamydia specific antibodies in serum and a strong T-cell lymphoproliferative response. Following the i.n. challenge with 10(4) inclusion forming units (IFU) of C. trachomatis, mice immunized with Ct-nMOMP or Ct-rMOMP lost significantly less weight than the negative control animals immunized with Ng-rPorB or MEM-0 (P<0.05). However, mice vaccinated with the Ct-nMOMP lost less weight than those immunized with the Ct-rMOMP (P<0.05). Mice were euthanized at 10 days following the challenge, their lungs weighed and the number of IFU of Chlamydia determined. Based on the lung weight and number of IFU recovered, significant protection was observed in the groups of mice immunized with both Ct-nMOMP and the Ct-rMOMP (P<0.05). Nevertheless, significantly better protection was achieved with the Ct-nMOMP in comparison with the Ct-rMOMP (P<0.05). In conclusion, vaccination with a preparation of the nMOMP elicited a more robust protection than immunization with rMOMP, suggesting that the conformational structure of MOMP is critical for inducing strong protection.
Collapse
Affiliation(s)
- Guifeng Sun
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, CA 92697-4800, United States
| | | | | | | | | |
Collapse
|
39
|
Protection of wild-type and severe combined immunodeficiency mice against an intranasal challenge by passive immunization with monoclonal antibodies to the Chlamydia trachomatis mouse pneumonitis major outer membrane protein. Infect Immun 2008; 76:5581-7. [PMID: 18809664 DOI: 10.1128/iai.00574-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies (MAbs) to the Chlamydia trachomatis mouse pneumonitis (MoPn) major outer membrane protein (MOMP) were characterized for their ability to neutralize the infectivity of this organism in vitro and in vivo. One of the MAbs (MoPn-23) recognizes a nonlinear epitope in the MOMP, MAb MoPn-40 binds to a linear epitope in the variable domain 1 (VD1), and MAb MoPn-32 recognizes the chlamydial lipopolysaccharide. MAb MoPn-23 neutralized 50% of the infectivity of Chlamydia, as measured in vitro by using HAK (Fc gammaIII(-)) and HeLa-229 (Fc gammaIII(+)) cells at a concentration 100 times lower than MAb MoPn-40. MAb MoPn-32 had no neutralizing ability. In comparison to the control normal mouse immunoglobulin G, passive immunization of BALB/c mice with MAb MoPn-23 resulted in a highly significant protection against an intranasal (i.n.) challenge as determined by the change in body weight, the weight of the lungs, and the yield of Chlamydia inclusion-forming units (IFU) from the lungs. Passive immunization with MAb MoPn-40 resulted in a lower degree of protection, and MAb MoPn-32 afforded no protection. MAb MoPn-23 was also tested for its ability to protect wild-type (WT) and severe combined immunodeficient (SCID) C.B-17 mice against an i.n. challenge. Protection based on total body weight, lung weight, and yield of Chlamydia IFU was as effective in SCID as in WT C.B-17 mice. In conclusion, antibodies to MOMP can protect mice against a chlamydial infection in the presence or absence of T and B cells.
Collapse
|
40
|
Cunningham KA, Carey AJ, Finnie JM, Bao S, Coon C, Jones R, Wijburg O, Strugnell RA, Timms P, Beagley KW. ORIGINAL ARTICLE: Poly-Immunoglobulin Receptor-Mediated Transport of IgA into the Male Genital Tract is Important for Clearance of Chlamydia muridarum Infection. Am J Reprod Immunol 2008; 60:405-14. [DOI: 10.1111/j.1600-0897.2008.00637.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Sun G, Pal S, Sarcon AK, Kim S, Sugawara E, Nikaido H, Cocco MJ, Peterson EM, de la Maza LM. Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J Bacteriol 2007; 189:6222-35. [PMID: 17601785 PMCID: PMC1951919 DOI: 10.1128/jb.00552-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a major pathogen throughout the world, and preventive measures have focused on the production of a vaccine using the major outer membrane protein (MOMP). Here, in elementary bodies and in preparations of the outer membrane, we identified native trimers of the MOMP. The trimers were stable under reducing conditions, although disulfide bonds appear to be present between the monomers of a trimer and between trimers. Cross-linking of the outer membrane complex demonstrated that the MOMP is most likely not in a close spatial relationship with the 60- and 12-kDa cysteine-rich proteins. Extraction of the MOMP from Chlamydia isolates under nondenaturing conditions yielded the trimeric conformation of this protein as shown by cross-linking and analysis by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with different concentrations of acrylamide. Using circular dichroism spectroscopy, we determined that the trimers were formed mainly of beta-pleated sheet structures in detergent micelles. Using a liposomal swelling assay, the MOMP was found to have porin activity, and the size of the pore was estimated to be approximately 2 nm in diameter. The trimers were found to be stable in SDS at temperatures ranging from 4 to 37 degrees C and over a pH range of 5.0 to 8.0. In addition, the trimers of MOMP were found to be resistant to digestion with trypsin. In conclusion, these results show that the native conformation of the MOMP of C. trachomatis is a trimer with predominantly a beta-sheet structure and porin function.
Collapse
Affiliation(s)
- Guifeng Sun
- Department of Pathology and Laboratory Medicine, Medical Sciences, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cong Y, Jupelli M, Guentzel MN, Zhong G, Murthy AK, Arulanandam BP. Intranasal immunization with chlamydial protease-like activity factor and CpG deoxynucleotides enhances protective immunity against genital Chlamydia muridarum infection. Vaccine 2007; 25:3773-80. [PMID: 17349723 PMCID: PMC2757645 DOI: 10.1016/j.vaccine.2007.02.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/01/2007] [Accepted: 02/07/2007] [Indexed: 12/30/2022]
Abstract
We have reported recently that intranasal (i.n.) vaccination with chlamydial protease-like activity factor (CPAF) and interleukin-12 (IL-12) enhances protective immunity against genital chlamydial challenge. In this study, we show that i.n. or intraperitoneal (i.p.) vaccination with CPAF plus CpG deoxynucleotides (CpG), an alternative T helper 1 (Th1) adjuvant, induced robust CPAF-specific IFN-gamma responses and elevated levels of serum antibody and vaginal IgA production. CPAF+CpG vaccinated animals displayed accelerated genital chlamydial clearance, and minimal hydrosalpinx and inflammatory cellular infiltration compared to mock-immunized (PBS) challenged animals. Together, CpG dexoynucleotides are an efficacious alternative Th1 adjuvant with CPAF to induce protective anti-chlamydial immunity.
Collapse
Affiliation(s)
- Yu Cong
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Immunoglobulin A (IgA) is the most enigmatic of immunoglobulins. It is by far the most abundant of human Igs, being present in the blood plasma at concentrations approximating 2–3mg/mL, as well as the dominant isotype in most secretions where its output amounts to some 5–8g/day in adults. Furthermore, its evolutionary origins appear to precede the synapsid– diapsid divergence in tetrapod phylogeny (>300 million years ago) because it is present in both mammals and birds and therefore possibly also in reptiles (reviewed in Peppard et al., 2005); an IgA-like molecule has now been identified in a lizard (Deza et al., 2007).
Collapse
|
44
|
Renegar KB, Menge A, Mestecky J. Influenza Virus Infection of the Murine Uterus: A New Model for Antiviral Immunity in the Female Reproductive Tract. Viral Immunol 2006; 19:613-22. [PMID: 17201656 DOI: 10.1089/vim.2006.19.613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Secretory IgA (S-IgA) mediates local immunity to influenza virus in the murine upper respiratory tract and may play an important role in local immunity to various microorganisms in the female reproductive tract as well. Although the presence of IgA in cervicovaginal or uterine secretions has been correlated with immunity to a number of pathogens, there has been no direct demonstration of the mediation of uterine antiviral immunity by S-IgA. Influenza virus, although not a normal pathogen of the reproductive tract, was used to develop a model for the investigation of mucosal immunity in the uterus. PR8 (H1N1) influenza virus injected into the ovarian bursa of BALB/c mice grew well, with peak titers between days 3 and 5. Intravenous injection of polymeric IgA anti-influenza virus monoclonal antibody before or 30 min after viral challenge protected mice against viral infection. We believe this work to be the first direct demonstration of S-IgA-mediated antiviral uterine immunity. It provides a model for further investigation of immunity in the female reproductive tract.
Collapse
Affiliation(s)
- Kathryn B Renegar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | |
Collapse
|
45
|
Murthy AK, Chambers JP, Meier PA, Zhong G, Arulanandam BP. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect Immun 2006; 75:666-76. [PMID: 17118987 PMCID: PMC1828486 DOI: 10.1128/iai.01280-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is currently no licensed vaccine against Chlamydia trachomatis, the leading cause of sexually transmitted bacterial disease worldwide. Conventional vaccination attempts using surface-exposed chlamydial antigens have achieved only partial success. We have employed a novel vaccination strategy using a secreted protein, chlamydial protease-like activity factor (CPAF), which has been shown to degrade host major histocompatibility complex transcription factors and keratin-8 and therefore may allow immune evasion and establishment of a productive infection. Intranasal immunization using recombinant CPAF (rCPAF) plus interleukin-12 (IL-12) (rCPAF+IL-12 immunization) was used to assess the protective immunity against genital Chlamydia muridarum infection in BALB/c mice. rCPAF+IL-12 immunization induced robust gamma interferon (IFN-gamma) production and minimal IL-4 production by splenocytes upon in vitro recall with rCPAF. The total and immunoglobulin G2a (IgG2a) anti-rCPAF antibody levels in serum were significantly elevated after rCPAF+IL-12 vaccination, as were the total antibody, IgG2a, and IgA levels in bronchoalveolar lavage and vaginal fluids when the animals were compared to animals that received rCPAF alone. rCPAF+IL-12-vaccinated mice displayed significantly reduced bacterial shedding upon chlamydial challenge and accelerated resolution of infection compared to mock-immunized (phosphate-buffered saline) animals. Moreover, rCPAF+IL-12-immunized animals exhibited protection against pathological consequences of chlamydial infection, including the development of hydrosalpinx and oviduct dilatation. This vaccination regimen also reduced the development of fibrosis and the influx of neutrophils into the upper genital tract when the animals were compared to mock-immunized (phosphate-buffered saline) animals after bacterial challenge. rCPAF+IL-12-mediated resolution of the bacterial infection and protection against Chlamydia-induced inflammatory disease were highly dependent on endogenous IFN-gamma production. Together, these results demonstrate that secreted chlamydial antigens may be novel vaccine candidates to induce protective immunity.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Bronchoalveolar Lavage Fluid/immunology
- Chlamydia Infections/immunology
- Chlamydia Infections/pathology
- Chlamydia muridarum/immunology
- Chlamydia muridarum/isolation & purification
- Colony Count, Microbial
- Fallopian Tubes/pathology
- Female
- Genital Diseases, Female/immunology
- Genital Diseases, Female/microbiology
- Genital Diseases, Female/pathology
- Genital Diseases, Female/therapy
- Immunity, Mucosal
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Interleukin-12/administration & dosage
- Interleukin-12/immunology
- Interleukin-4/biosynthesis
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Vaccination
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vagina/immunology
Collapse
Affiliation(s)
- Ashlesh K Murthy
- Department of Biology, University of Texas at San Antonio, 6900N Loop 1604W, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
46
|
Rodríguez A, Rottenberg M, Tjärnlund A, Fernández C. Immunoglobulin A and CD8+ T-Cell Mucosal Immune Defenses Protect Against Intranasal Infection with Chlamydia pneumoniae. Scand J Immunol 2006; 63:177-83. [PMID: 16499570 DOI: 10.1111/j.1365-3083.2006.01725.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chlamydia pneumoniae initiates infection in humans via the mucosal epithelia of the respiratory tract; therefore, immunity at this mucosal site is believed to be important to control infection with this pathogen. We compared the protective capacity of immunization in mice with two C. pneumoniae antigens, namely the major outer membrane protein (MOMP) and the heat shock protein 60 (HSP-60), against intranasal (i.n.) infection with the bacteria when given as protein or DNA and when administered by i.n. or intraperitoneal (i.p.) routes. Our data showed that i.n. immunizations with both antigens delivered as DNA were protective against C. pneumoniae infection, probably due to induction of cell-mediated immune responses. Our study also revealed that i.n. immunizations with MOMP, but not with HSP-60, given as protein induced protective local immune responses in the respiratory tract against C. pneumoniae infection. Moreover, no protection was induced by either antigen when the i.p. route of immunization was used. We further investigated in immunoglobulin (Ig)A-deficient mice whether the reduction in the bacterial loads observed when MOMP was administered intranasally was related to the strong local IgA responses induced by this route of immunization. Our data showed that IgA-deficient mice were more susceptible to infection than wild-type mice, suggesting that the induction of local IgA responses may play a role in the protection of the respiratory tract against C. pneumoniae infections.
Collapse
Affiliation(s)
- A Rodríguez
- Department of Immunology, Stockholm University, Stockholm, Sweden.
| | | | | | | |
Collapse
|
47
|
Reljic R, Williams A, Ivanyi J. Mucosal immunotherapy of tuberculosis: is there a value in passive IgA? Tuberculosis (Edinb) 2006; 86:179-90. [PMID: 16510311 DOI: 10.1016/j.tube.2006.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/20/2006] [Indexed: 12/18/2022]
Abstract
Immunotherapeutic approaches, which have been considered for tuberculosis (TB), include immuno-potentiating or suppressing agents, cytokines, antibodies, DNA vaccines, non-pathogenic mycobacteria and mycobacterial extracts. While most or all of these potential agents showed at least some degree of promise in various experimental models, few progressed to clinical trials, yielding only moderately encouraging, though controversial results. Consequently, further research is required, as the need for an immunological agent, adjunct to chemotherapy, remains strongly justified. Its purpose is to shorten the currently protracted (6-9 months) drug treatment and thus increase compliance rates, which are most disappointing in areas with the highest disease prevalence. Using a mouse model of Mycobacterium tuberculosis (Mtb) infection, we recently reported, that an intranasally given monoclonal IgA antibody significantly reduced the bacterial load in the infected lungs, and that this protective effect of IgA could be further extended by co-inoculation with interferon gamma (IFNgamma). In this review, we describe the main features of IgA and its cellular receptors, the extent and possible mechanisms of passive vaccination with an IgA monoclonal antibody against the alpha-crystallin antigen of Mtb and discuss the potentials of this approach in the wider context of immunotherapy of TB.
Collapse
Affiliation(s)
- Rajko Reljic
- Mucosal Biology Research Group, Guy's Hospital Campus of King's College London, UK
| | | | | |
Collapse
|
48
|
Mundodi V, Kucknoor AS, Chang TH, Alderete JF. A novel surface protein of Trichomonas vaginalis is regulated independently by low iron and contact with vaginal epithelial cells. BMC Microbiol 2006; 6:6. [PMID: 16448556 PMCID: PMC1403785 DOI: 10.1186/1471-2180-6-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 01/31/2006] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Trichomonosis caused by Trichomonas vaginalis is the number one, non-viral sexually transmitted disease (STD) that affects more than 250 million people worldwide. Immunoglobulin A (IgA) has been implicated in resistance to mucosal infections by pathogens. No reports are available of IgA-reactive proteins and the role, if any, of this class of antibody in the control of this STD. The availability of an IgA monoclonal antibody (mAb) immunoreactive to trichomonads by whole cell (WC)-ELISA prompted us to characterize the IgA-reactive protein of T. vaginalis. RESULTS An IgA mAb called 6B8 was isolated from a library of mAbs reactive to surface proteins of T. vaginalis. The 6B8 mAb recognized a 44-kDa protein (TV44) by immunoblot analysis, and a full-length cDNA clone encoded a protein of 438 amino acids. Southern analysis revealed the gene (tv44) of T. vaginalis to be single copy. The tv44 gene was down-regulated at both the transcriptional and translational levels in iron-depleted trichomonads as well as in parasites after contact with immortalized MS-74 vaginal epithelial cells (VECs). Immunofluorescence on non-permeabilized organisms confirmed surface localization of TV44, and the intensity of fluorescence was reduced after parasite adherence to VECs. Lastly, an identical protein and gene were present in Tritrichomonas foetus and Trichomonas tenax. CONCLUSION This is the first report of a T. vaginalis gene (tv44) encoding a surface protein (TV44) reactive with an IgA mAb, and both gene and protein were conserved in human and bovine trichomonads. Further, TV44 is independently down-regulated in expression and surface placement by iron and contact with VECs. TV44 is another member of T. vaginalis genes that are regulated by at least two independent signaling mechanisms involving iron and contact with VECs.
Collapse
Affiliation(s)
- V Mundodi
- Department of Microbiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - AS Kucknoor
- Department of Microbiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - T-H Chang
- Department of Microbiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - JF Alderete
- Department of Microbiology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
49
|
Morrison SG, Morrison RP. A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. THE JOURNAL OF IMMUNOLOGY 2006; 175:7536-42. [PMID: 16301662 PMCID: PMC3514507 DOI: 10.4049/jimmunol.175.11.7536] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acquired immunity to murine Chlamydia trachomatis genital tract reinfection has long been assumed to be solely dependent on cell-mediated immunity. However, in this study, we identify a previously unrecognized protective role for Ab. Immunity develops in Ab-deficient mice following the resolution of primary chlamydial genital infection. Subsequent depletion of CD4+ T cells, but not CD8+ T cells, in those immune Ab-deficient mice before secondary infectious challenge, resulted in an infection that did not resolve. Passive immunization with immune (convalescent) serum conferred a marked level of protective immunity to reinfection, which was characterized by a striking decrease in bacterial shedding, from >100,000 inclusion forming units to fewer than 10 inclusion forming units, and a shortened duration of infection. Furthermore, mAbs to the chlamydial major outer membrane protein and LPS conferred significant levels of immunity to reinfection and reduced chlamydial shedding by >100-fold. Anti-heat shock protein 60 mAb had no protective effect. In contrast to the marked protective efficacy of immune serum on reinfection, the course of primary infection was essentially unaltered by the passive transfer of immune serum. Our results convincingly demonstrate that Abs contribute importantly to immunity to chlamydial genital tract reinfection, and that Ab-mediated protection is highly dependent on CD4+ T cell-mediated adaptive changes that occur in the local genital tract tissues during primary infection. These results impact our understanding of immunity to chlamydial genital infection and may provide important insight into vaccine development.
Collapse
Affiliation(s)
- Sandra G. Morrison
- Division of Infectious Diseases, Department of Medicine, University of Alabama, Birmingham, AL 35294
| | - Richard P. Morrison
- Division of Infectious Diseases, Department of Medicine, University of Alabama, Birmingham, AL 35294
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
- Address correspondence and reprint requests to Dr. Richard P. Morrison, Division of Infectious Diseases, Department of Medicine, University of Alabama, ZRB 216, 1530 3rd Avenue South, Birmingham, AL 35294-0007.
| |
Collapse
|
50
|
Morrison SG, Morrison RP. The protective effect of antibody in immunity to murine chlamydial genital tract reinfection is independent of immunoglobulin A. Infect Immun 2005; 73:6183-6. [PMID: 16113345 PMCID: PMC1231110 DOI: 10.1128/iai.73.9.6183-6186.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resolution of primary and secondary chlamydial genital infection in immunoglobulin A (IgA)-deficient (IgA(-/-)) mice was not different from that in IgA(+/+) mice. Furthermore, depletion of either CD4(+) or CD8(+) T cells prior to reinfection of IgA(+/+) or (-/-) mice had limited impact on immunity to reinfection. Thus, although antibody contributes importantly to immunity to chlamydial genital tract reinfection, IgA antibodies are not an absolute requirement of that protective response.
Collapse
Affiliation(s)
- Sandra G Morrison
- Department of Microbiology, Montana State University, Bozeman, Montana, USA
| | | |
Collapse
|