1
|
Arce-Fonseca M, Mata-Espinosa D, Aranda-Fraustro A, Rosales-Encina JL, Flores-Valdez MA, Rodríguez-Morales O. Mycobacterium bovis BCG as immunostimulating agent prevents the severe form of chronic experimental Chagas disease. Front Immunol 2024; 15:1380049. [PMID: 38576607 PMCID: PMC10991741 DOI: 10.3389/fimmu.2024.1380049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction There is currently no vaccine against Chagas disease (ChD), and the medications available confer multiple side effects. Mycobacterium bovis Bacillus Calmette-Guérin (BCG) produces balanced Th1, Th2, and Th17 modulatory immune responses and has improved efficacy in controlling chronic infections through nonspecific immunity. We aimed to improve the response to infection by inducing a stronger immune response and greater protection against the parasite by trained immunity. Methods BALB/c mice were immunized with BCG subcutaneously, and 60 days later, they were infected with Trypanosoma cruzi intraperitoneally. An evaluation of the progression of the disease from the acute to the chronic stage, analyzing various aspects such as parasitemia, survival, clinical status, and humoral and cellular immune response, as well as the appearance of visceral megas and the histopathological description of target organs, was performed. Results Vaccination reduced parasitemia by 70%, and 100% survival was achieved in the acute stage; although the presentation of clinical signs was reduced, there was no increase in the antibody titer or in the differential production of the isotypes. Conclusion Serum cytokine production indicated a proinflammatory response in infected animals, while in those who received BCG, the response was balanced by inducing Th1/Th2-type cytokines, with a better prognosis of the disease in the chronic stage.
Collapse
Affiliation(s)
- Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Dulce Mata-Espinosa
- Laboratory of Experimental Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alberto Aranda-Fraustro
- Department of Pathology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Luis Rosales-Encina
- Laboratory of Molecular Biology, Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., Guadalajara, Mexico
| | - Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
2
|
Marques-Neto LM, Piwowarska Z, Kanno AI, Moraes L, Trentini MM, Rodriguez D, Silva JLSC, Leite LCC. Thirty years of recombinant BCG: new trends for a centenary vaccine. Expert Rev Vaccines 2021; 20:1001-1011. [PMID: 34224293 DOI: 10.1080/14760584.2021.1951243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Global perception of the potential for Bacille Calmette-Guérin (BCG), and consequently recombinant BCG (rBCG), in a variety of prophylactic and therapeutic applications has been increasing. A century of information on BCG, and three decades of experience with rBCG, has generated solid knowledge in this field.Area covered: Here, we review the current state of knowledge of BCG and rBCG development. Molecular tools have facilitated the expression of a variety of molecules in BCG, with the aim of improving its efficacy as a tuberculosis vaccine, generating polyvalent vaccines against other pathogens, including viruses, bacteria, and parasites, and developing immunotherapy approaches against noninvasive bladder cancer. BCG's recently appraised heterologous effects and prospects for expanding its application to other diseases are also addressed.Expert opinion: There are high expectations for new tuberculosis vaccines currently undergoing advanced clinical trials, which could change the prospects of the field. Systems biology could reveal effective biomarkers of protection, which would greatly support vaccine development. The development of appropriate large-scale production processes would further support implementation of new vaccines and rBCG products. The next few years should consolidate the broader applications of BCG and produce insights into improvements using the recombinant BCG technology.
Collapse
Affiliation(s)
| | - Zuzanna Piwowarska
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Alex I Kanno
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luana Moraes
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Monalisa M Trentini
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Jose L S C Silva
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Luciana C C Leite
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
3
|
Kim BJ, Kim BR, Kook YH, Kim BJ. Potential of recombinant Mycobacterium paragordonae expressing HIV-1 Gag as a prime vaccine for HIV-1 infection. Sci Rep 2019; 9:15515. [PMID: 31664100 PMCID: PMC6820866 DOI: 10.1038/s41598-019-51875-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Recombinant Mycobacterium strains such as recombinant BCG (rBCG) have received considerable attention for the HIV-1 vaccine development. Recently, we described a temperature-sensitive Mycobacterium paragordonae (Mpg) strain as a novel live tuberculosis vaccine that is safer and showed an enhanced protective effect against mycobacterial infection compared to BCG. We studied the possibility of developing a vaccine against HIV-1 infection using rMpg strain expressing the p24 antigen (rMpg-p24). We observed that rMpg-p24 can induce an increased p24 expression in infected antigen presenting cells (APCs) compared to rBCG-p24. We also observed that rMpg-p24 can induce enhanced p24 specific immune responses in vaccinated mice as evidenced by increased p24-specific T lymphocyte proliferation, gamma interferon induction, antibody production and cytotoxic T lymphocyte (CTL) responses. Furthermore, an rMpg-p24 prime and plasmid DNA boost showed an increased CTL response and antibody production compared to rBCG or rMpg alone. In summary, our study indicates that a live rMpg-p24 strain induced enhanced immune responses against HIV-1 Gag in vaccinated mice. Thus, rMpg-p24 may have potential as a preventive prime vaccine in a heterologous prime-boost regimen for HIV-1 infection.
Collapse
Affiliation(s)
- Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
4
|
Oliveira TL, Rizzi C, da Cunha CEP, Dorneles J, Seixas Neto ACP, Amaral MG, Hartwig DD, Dellagostin OA. Recombinant BCG strains expressing chimeric proteins derived from Leptospira protect hamsters against leptospirosis. Vaccine 2019; 37:776-782. [DOI: 10.1016/j.vaccine.2018.12.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 01/25/2023]
|
5
|
A Combination of Recombinant Mycobacterium bovis BCG Strains Expressing Pneumococcal Proteins Induces Cellular and Humoral Immune Responses and Protects against Pneumococcal Colonization and Sepsis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00133-17. [PMID: 28768668 DOI: 10.1128/cvi.00133-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022]
Abstract
Pneumococcal diseases remain a substantial cause of mortality in young children in developing countries. The development of potentially serotype-transcending vaccines has been extensively studied; ideally, such a vaccine should include antigens that are able to induce protection against colonization (likely mediated by interleukin-17A [IL-17A]) and invasive disease (likely mediated by antibody). The use of strong adjuvants or alternative delivery systems that are able to improve the immunological response of recombinant proteins has been proposed but poses potential safety and practical concerns in children. We have previously constructed a recombinant Mycobacterium bovis BCG strain expressing a pneumococcal surface protein A (PspA)-PdT fusion protein (rBCG PspA-PdT) that was able to induce an effective immune response and protection against sepsis in a prime-boost strategy. Here, we constructed two new rBCG strains expressing the pneumococcal proteins SP 0148 and SP 2108, which confer IL-17A-dependent protection against pneumococcal colonization in mouse models. Immunization of mice with rBCG 0148 or rBCG 2108 in a prime-boost strategy induced IL-17A and gamma interferon (IFN-γ) production. The combination of these rBCG strains with rBCG PspA-PdT (rBCG Mix), followed by a booster dose of the combined recombinant proteins (rMix) induced an IL-17A response against SP 0148 and SP 2108 and a humoral response characterized by increased levels of IgG2c against PspA and functional antibodies against pneumolysin. Furthermore, immunization with the rBCG Mix prime/rMix booster (rBCG Mix/rMix) provides protection against pneumococcal colonization and sepsis. These results suggest the use of combined rBCG strains as a potentially serotype-transcending pneumococcal vaccine in a prime-boost strategy, which could provide protection against pneumococcal colonization and sepsis.
Collapse
|
6
|
Oliveira TL, Rizzi C, Dellagostin OA. Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 2017; 101:6865-6877. [PMID: 28779291 DOI: 10.1007/s00253-017-8439-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/17/2023]
Abstract
Recombinant Mycobacterium bovis BCG vaccines (rBCG) were first developed in the 1990s as a means of expressing antigens from multiple pathogens. This review examines the key structural factors of recombinant M. bovis that influence the expression of the heterologous antigens and the generation of genetic and functional stability in rBCG, which are crucial for inducing strong and lasting immune responses. The fundamental aim of this paper is to provide an overview of factors that affect the expression of recombinant proteins in BCG and the generation of the immune response against the target antigens, including mycobacterial promoters, location of foreign antigens, and stability of the vectors. The reporter systems that have been employed for evaluation of these molecular features in BCG are also reviewed here.
Collapse
Affiliation(s)
- Thaís Larré Oliveira
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Unidade de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
7
|
Recombinant BCG expressing a PspA-PdT fusion protein protects mice against pneumococcal lethal challenge in a prime-boost strategy. Vaccine 2017; 35:1683-1691. [PMID: 28242071 DOI: 10.1016/j.vaccine.2017.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/13/2017] [Accepted: 02/14/2017] [Indexed: 11/24/2022]
Abstract
Pneumococcal proteins have been evaluated as genetically-conserved potential vaccine candidates. We have previously demonstrated that a fragment of PspA in fusion with PdT (rPspA-PdT) induced protective immune responses in mice. However, purified proteins have shown poor immunogenicity and often require the combination with strong adjuvants and booster doses. Here, we investigated the use of a Bacillus Calmette-Guérin (BCG) strain, a well-established prophylactic vaccine for tuberculosis with known adjuvant properties, for delivery of the PspA-PdT fusion protein. Immunization of mice in a prime-boost strategy, using rPspA-PdT as a boost, demonstrated that rBCG PspA-PdT/rPspA-PdT was able to induce an antibody response against both proteins, promoting an IgG1 to IgG2 antibody isotype shift. Sera from rBCG PspA-PdT/rPspA-PdT immunized mice showed antibodies able to bind to the pneumococcal surface and promoted higher complement deposition when compared with WT-BCG/rPspA-PdT or a single dose of rPspA-PdT. In addition, these antisera inhibited the cytolytic activity of Ply. Production of interleukin-6 (IL-6), gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) was increased in splenocytes culture. Furthermore, a higher expression of CD69 early activation molecule was observed on splenic CD4+ T cells from mice immunized with rBCG PspA-PdT before and after the protein booster dose. Finally, immunization with rBCG PspA-PdT/rPspA-PdT protected mice against pneumococcal lethal challenge. These results support the further investigation of recombinant BCG strains to express pneumococcal proteins, which could be administered in early stages of life and lead to protective pneumococcal immunity in infants and children.
Collapse
|
8
|
New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters. Appl Environ Microbiol 2016; 82:2240-2246. [PMID: 26850295 PMCID: PMC4959472 DOI: 10.1128/aem.03677-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/25/2016] [Indexed: 12/18/2022] Open
Abstract
The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovisBCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response.
Collapse
|
9
|
Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:726-41. [PMID: 25924766 PMCID: PMC4478521 DOI: 10.1128/cvi.00075-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches.
Collapse
|
10
|
Begnini KR, Buss JH, Collares T, Seixas FK. Recombinant Mycobacterium bovis BCG for immunotherapy in nonmuscle invasive bladder cancer. Appl Microbiol Biotechnol 2015; 99:3741-54. [DOI: 10.1007/s00253-015-6495-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023]
|
11
|
Kaufmann SH, Cotton MF, Eisele B, Gengenbacher M, Grode L, Hesseling AC, Walzl G. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 2014; 13:619-30. [PMID: 24702486 DOI: 10.1586/14760584.2014.905746] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberculosis remains a major health threat and vaccines better than bacillus Calmette-Guérin (BCG) are urgently required. Here we describe our experience with a recombinant BCG expressing listeriolysin and deficient in urease. This potential replacement vaccine has demonstrated superior efficacy and safety over BCG in Mycobacterium tuberculosis aerosol-challenged mice and was safe in numerous animal models including immune-deficient mice, guinea pigs, rabbits and nonhuman primates. Phase I clinical trials in adults in Germany and South Africa have proven safety and a current Phase IIa trial is under way to assess immunogenicity and safety in its target population, newborns in a high tuberculosis incidence setting, with promising early results. Second-generation candidates are being developed to improve safety and efficacy.
Collapse
Affiliation(s)
- Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Kaufmann SHE, Gengenbacher M. Recombinant live vaccine candidates against tuberculosis. Curr Opin Biotechnol 2012; 23:900-7. [DOI: 10.1016/j.copbio.2012.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/05/2012] [Accepted: 03/12/2012] [Indexed: 11/28/2022]
|
14
|
Hopkins R, Bridgeman A, Bourne C, Mbewe-Mvula A, Sadoff JC, Both GW, Joseph J, Fulkerson J, Hanke T. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors. Eur J Immunol 2011; 41:3542-52. [PMID: 21932450 DOI: 10.1002/eji.201141962] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/18/2011] [Accepted: 09/12/2011] [Indexed: 11/07/2022]
Abstract
The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen.
Collapse
Affiliation(s)
- Richard Hopkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mycobacterium bovis Bacille Calmette-Guérin as a Vaccine Vector for Global Infectious Disease Control. Tuberc Res Treat 2011; 2011:574591. [PMID: 22567267 PMCID: PMC3335490 DOI: 10.1155/2011/574591] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/07/2011] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) is the only available vaccine for tuberculosis (TB). Although this vaccine is effective in controlling infantile TB, BCG-induced protective effects against pulmonary diseases in adults have not been clearly demonstrated. Recombinant BCG (rBCG) technology has been extensively applied to obtain more potent immunogenicity of this vaccine, and several candidate TB vaccines have currently reached human clinical trials. On the other hand, recent progress in the improvement of the BCG vector, such as the codon optimization strategy and combination with viral vector boost, allows us to utilize this bacterium in HIV vaccine development. In this paper, we review recent progress in rBCG-based vaccine studies that may have implications in the development of novel vaccines for controlling global infectious diseases in the near future.
Collapse
|
16
|
Plotkin SA. Correcting a public health fiasco: The need for a new vaccine against Lyme disease. Clin Infect Dis 2011; 52 Suppl 3:s271-5. [PMID: 21217175 DOI: 10.1093/cid/ciq119] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A vaccine against Lyme disease was licensed in the United States in 1998 but was subsequently removed from the market because of lack of sales. I believe that the poor acceptance of the vaccine was based on tepid recommendations by the Centers for Disease Control and Prevention (CDC), undocumented and probably nonexistent safety issues, and insufficient education of physicians. A new vaccine is feasible but will not be developed unless there is a demand by infectious diseases specialists, epidemiologists, authorities in affected states and the public that is evident to manufacturers. The fact that there is no vaccine for an infection causing ∼20,000 annual cases is an egregious failure of public health.
Collapse
|
17
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
18
|
Rosario M, Hopkins R, Fulkerson J, Borthwick N, Quigley MF, Joseph J, Douek DC, Greenaway HY, Venturi V, Gostick E, Price DA, Both GW, Sadoff JC, Hanke T. Novel recombinant Mycobacterium bovis BCG, ovine atadenovirus, and modified vaccinia virus Ankara vaccines combine to induce robust human immunodeficiency virus-specific CD4 and CD8 T-cell responses in rhesus macaques. J Virol 2010; 84:5898-908. [PMID: 20375158 PMCID: PMC2876636 DOI: 10.1128/jvi.02607-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 03/30/2010] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA(401) as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA(401) was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA(401) and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration.
Collapse
Affiliation(s)
- Maximillian Rosario
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Richard Hopkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - John Fulkerson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Nicola Borthwick
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Máire F. Quigley
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Joan Joseph
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Daniel C. Douek
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Hui Yee Greenaway
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Vanessa Venturi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Emma Gostick
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - David A. Price
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Gerald W. Both
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Jerald C. Sadoff
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| |
Collapse
|
19
|
Safety and immunogenicity of novel recombinant BCG and modified vaccinia virus Ankara vaccines in neonate rhesus macaques. J Virol 2010; 84:7815-21. [PMID: 20484495 DOI: 10.1128/jvi.00726-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although major inroads into making antiretroviral therapy available in resource-poor countries have been made, there is an urgent need for an effective vaccine administered shortly after birth, which would protect infants from acquiring human immunodeficiency virus type 1 (HIV-1) through breast-feeding. Bacillus Calmette-Guérin (BCG) is given to most infants at birth, and its recombinant form could be used to prime HIV-1-specific responses for a later boost by heterologous vectors delivering the same HIV-1-derived immunogen. Here, two groups of neonate Indian rhesus macaques were immunized with either novel candidate vaccine BCG.HIVA(401) or its parental strain AERAS-401, followed by two doses of recombinant modified vaccinia virus Ankara MVA.HIVA. The HIVA immunogen is derived from African clade A HIV-1. All vaccines were safe, giving local reactions consistent with the expected response at the injection site. No systemic adverse events or gross abnormality was seen at necropsy. Both AERAS-401 and BCG.HIVA(401) induced high frequencies of BCG-specific IFN-gamma-secreting lymphocytes that declined over 23 weeks, but the latter failed to induce detectable HIV-1-specific IFN-gamma responses. MVA.HIVA elicited HIV-1-specific IFN-gamma responses in all eight animals, but, except for one animal, these responses were weak. The HIV-1-specific responses induced in infants were lower compared to historic data generated by the two HIVA vaccines in adult animals but similar to other recombinant poxviruses tested in this model. This is the first time these vaccines were tested in newborn monkeys. These results inform further infant vaccine development and provide comparative data for two human infant vaccine trials of MVA.HIVA.
Collapse
|
20
|
Recombinant Mycobacterium bovis BCG. Vaccine 2009; 27:6495-503. [PMID: 19720367 DOI: 10.1016/j.vaccine.2009.08.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 12/14/2022]
Abstract
The Bacillus Calmette-Guerin (BCG) is an attenuated strain of Mycobacterium bovis that has been broadly used as a vaccine against human tuberculosis. This live bacterial vaccine is able to establish a persistent infection and induces both cellular and humoral immune responses. The development of mycobacterial genetic systems to express foreign antigens and the adjuvanticity of BCG are the basis of the potential use of this attenuated mycobacterium as a recombinant vaccine. Over the years, a range of strategies has been developed to allow controlled and stable expression of viral, bacterial and parasite antigens in BCG. Herein, we review the strategies developed to express heterologous antigens in BCG and the immune response elicited by recombinant BCG constructs. In addition, the use of recombinant BCG as an immunomodulator and future perspectives of BCG as a recombinant vaccine vector are discussed.
Collapse
|
21
|
Recombinant Mycobacterium bovis BCG prime-recombinant adenovirus boost vaccination in rhesus monkeys elicits robust polyfunctional simian immunodeficiency virus-specific T-cell responses. J Virol 2009; 83:5505-13. [PMID: 19297477 DOI: 10.1128/jvi.02544-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While mycobacteria have been proposed as vaccine vectors because of their persistence and safety, little has been done systematically to optimize their immunogenicity in nonhuman primates. We successfully generated recombinant Mycobacterium bovis BCG (rBCG) expressing simian immunodeficiency virus (SIV) Gag and Pol as multigenic, nonintegrating vectors, but rBCG-expressing SIV Env was unstable. A dose and route determination study in rhesus monkeys revealed that intramuscular administration of rBCG was associated with local reactogenicity, whereas intravenous and intradermal administration of 10(6) to 10(8) CFU of rBCG was well tolerated. After single or repeat rBCG inoculations, monkeys developed high-frequency gamma interferon enzyme-linked immunospot responses against BCG purified protein derivative. However, the same animals developed only modest SIV-specific CD8(+) T-cell responses. Nevertheless, high-frequency SIV-specific cellular responses were observed in the rBCG-primed monkeys after boosting with recombinant adenovirus 5 (rAd5) expressing the SIV antigens. These cellular responses were of greater magnitude and more persistent than those generated after vaccination with rAd5 alone. The vaccine-elicited cellular responses were predominantly polyfunctional CD8(+) T cells. These findings support the further exploration of mycobacteria as priming vaccine vectors.
Collapse
|
22
|
Bueno SM, González PA, Cautivo KM, Mora JE, Leiva ED, Tobar HE, Fennelly GJ, Eugenin EA, Jacobs WR, Riedel CA, Kalergis AM. Protective T cell immunity against respiratory syncytial virus is efficiently induced by recombinant BCG. Proc Natl Acad Sci U S A 2008; 105:20822-7. [PMID: 19075247 PMCID: PMC2634951 DOI: 10.1073/pnas.0806244105] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of childhood hospitalization and a major health burden worldwide. Unfortunately, because of an inefficient immunological memory, RSV infection provides limited immune protection against reinfection. Furthermore, RSV can induce an inadequate Th2-type immune response that causes severe respiratory tract inflammation and obstruction. It is thought that effective RSV clearance requires the induction of balanced Th1-type immunity, involving the activation of IFN-gamma-secreting cytotoxic T cells. A recognized inducer of Th1 immunity is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which has been used in newborns for decades in several countries as a tuberculosis vaccine. Here, we show that immunization with recombinant BCG strains expressing RSV antigens promotes protective Th1-type immunity against RSV in mice. Activation of RSV-specific T cells producing IFN-gamma and IL-2 was efficiently obtained after immunization with recombinant BCG. This type of T cell immunity was protective against RSV challenge and caused a significant reduction of inflammatory cell infiltration in the airways. Furthermore, mice immunized with recombinant BCG showed no weight loss and reduced lung viral loads. These data strongly support recombinant BCG as an efficient vaccine against RSV because of its capacity to promote protective Th1 immunity.
Collapse
Affiliation(s)
- Susan M. Bueno
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Pablo A. González
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Kelly M. Cautivo
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Jorge E. Mora
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Eduardo D. Leiva
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Hugo E. Tobar
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Glenn J. Fennelly
- The Lewis M. Fraad Department of Pediatrics, Jacobi Medical Center, Bronx, NY 10461
- Departments of Pediatrics and
| | | | - William R. Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Laboratorio de Biologia Celular y Farmacologia, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Alexis M. Kalergis
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
- Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
23
|
Brockstedt DG, Dubensky TW. Promises and challenges for the development of Listeria monocytogenes-based immunotherapies. Expert Rev Vaccines 2008; 7:1069-84. [PMID: 18767955 DOI: 10.1586/14760584.7.7.1069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Active immunotherapy has shown great promise in preclinical models for the treatment of infectious and malignant disease. Yet, these promising results have not translated into approved therapies. One of the major deficits of active immunotherapies tested to date in advanced clinical studies has been their inability to stimulate both arms of the immune system appropriately. The interest in using recombinant bacteria as vaccine vectors for active immunotherapy derives in part from their ability to stimulate multiple innate immune pathways and, at the same time, to deliver antigen for presentation to the adaptive immune system. This review will focus on the development of live-attenuated and killed strains of the intracellular bacterium Listeria monocytogenes for treatment of chronic infections and cancer. Early clinical trials intended to demonstrate safety as well as proof of concept have recently been initiated in several indications. Advances in molecular engineering as well as successes and challenges for clinical development of L. monocytogenes-based vaccines will be discussed.
Collapse
Affiliation(s)
- Dirk G Brockstedt
- Anza Therapeutics, Inc., 2550 Stanwell Drive, Concord, CA 94520, USA.
| | | |
Collapse
|
24
|
|
25
|
Borsuk S, Mendum TA, Fagundes MQ, Michelon M, Cunha CW, McFadden J, Dellagostin OA. Auxotrophic complementation as a selectable marker for stable expression of foreign antigens in Mycobacterium bovis BCG. Tuberculosis (Edinb) 2007; 87:474-80. [PMID: 17888740 DOI: 10.1016/j.tube.2007.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/20/2007] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
Mycobacterium bovis BCG has the potential to be an effective live vector for multivalent vaccines. However, most mycobacterial cloning vectors rely on antibiotic resistance genes as selectable markers, which would be undesirable in any practical vaccine. Here we report the use of auxotrophic complementation as a selectable marker that would be suitable for use in a recombinant vaccine. A BCG auxotrophic for the amino acid leucine was constructed by knocking out the leuD gene by unmarked homologous recombination. Expression of leuD on a plasmid not only allowed complementation, but also acted as a selectable marker. Removal of the kanamycin resistance gene, which remained necessary for plasmid manipulations in Escherichia coli, was accomplished by two different methods: restriction enzyme digestion followed by re-ligation before BCG transformation, or by Cre-loxP in vitro recombination mediated by the bacteriophage P1 Cre Recombinase. Stability of the plasmid was evaluated during in vitro and in vivo growth of the recombinant BCG in comparison to selection by antibiotic resistance. The new system was highly stable even during in vivo growth, as the selective pressure is maintained, whereas the conventional vector was unstable in the absence of selective pressure. This new system will now allow the construction of potential recombinante vaccine strains using stable multicopy plasmid vectors without the inclusion of antibiotic resistance markers.
Collapse
Affiliation(s)
- Sibele Borsuk
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP-354, 96010-900 Pelotas, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Im EJ, Saubi N, Virgili G, Sander C, Teoh D, Gatell JM, McShane H, Joseph J, Hanke T. Vaccine platform for prevention of tuberculosis and mother-to-child transmission of human immunodeficiency virus type 1 through breastfeeding. J Virol 2007; 81:9408-18. [PMID: 17596303 PMCID: PMC1951420 DOI: 10.1128/jvi.00707-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most children in Africa receive their vaccine against tuberculosis at birth. Those infants born to human immunodeficiency virus type 1 (HIV-1)-positive mothers are at high risk of acquiring HIV-1 infection through breastfeeding in the first weeks of their lives. Thus, the development of a vaccine which would protect newborns against both of these major global killers is a logical yet highly scientifically, ethically, and practically challenging aim. Here, a recombinant lysine auxotroph of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a BCG strain that is safer than those currently used and expresses an African HIV-1 clade-derived immunogen, was generated and shown to be stable and to induce durable, high-quality HIV-1-specific CD4(+)- and CD8(+)-T-cell responses. Furthermore, when the recombinant BCG vaccine was used in a priming-boosting regimen with heterologous components, the HIV-1-specific responses provided protection against surrogate virus challenge, and the recombinant BCG vaccine alone protected against aerosol challenge with M. tuberculosis. Thus, inserting an HIV-1-derived immunogen into the scheduled BCG vaccine delivered at or soon after birth may prime HIV-1-specific responses, which can be boosted by natural exposure to HIV-1 in the breast milk and/or by a heterologous vaccine such as recombinant modified vaccinia virus Ankara delivering the same immunogen, and decrease mother-to-child transmission of HIV-1 during breastfeeding.
Collapse
Affiliation(s)
- Eung-Jun Im
- Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Parsa S, Pfeifer B. Engineering bacterial vectors for delivery of genes and proteins to antigen-presenting cells. Mol Pharm 2007; 4:4-17. [PMID: 17233543 DOI: 10.1021/mp0600889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial vectors offer a biological route to gene and protein delivery with this article featuring delivery to antigen-presenting cells (APCs). Primarily in the context of immune stimulation against infectious disease or cancer, the goal of bacterially mediated delivery is to overcome the hurdles to effective macromolecule delivery. This review will present several bacterial vectors as macromolecule (protein or gene) delivery devices with both innate and acquirable (or engineered) biological features to facilitate delivery to APCs. The review will also present topics related to large-scale manufacture, storage, and distribution that must be considered if the bacterial delivery devices are ever to be used in a global market.
Collapse
Affiliation(s)
- Saba Parsa
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
28
|
Medeiros MA, Armôa GRG, Dellagostin OA, McIntosh D. Induction of humoral immunity in response to immunization with recombinant Mycobacterium bovis BCG expressing the S1 subunit of Bordetella pertussis toxin. Can J Microbiol 2006; 51:1015-20. [PMID: 16462859 DOI: 10.1139/w05-095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two recombinant Mycobacterium bovis BCG (rBCG) vaccine strains were developed for the expression of cytoplasmically located S1 subunit of pertussis toxin, with expression driven by the hsp60 promoter of M. bovis (rBCG/pPB10) or the pAN promoter of Mycobacterium paratuberculosis (rBCG/pPB12). Both strains showed stable expression of equivalent levels of recombinant S1 in vitro and induced long-term (up to 8 months) humoral immune responses in BALB/c mice, although these responses differed quantitatively and qualitatively. Specifically, rBCG/pPB12 induced markedly higher levels of IgG1 than did rBCG/pPB10, and mice immunized with the former strain developed specific long-term memory to S1, as indicated by the production of high levels of S1-specific IgG in response to a sublethal challenge with pertussis toxin 15 months after initial immunization. When considered in combination with previous studies, our data encourage further evaluation of rBCG as a potential means of developing a low-cost whooping cough vaccine based on defined antigens.
Collapse
Affiliation(s)
- Marco A Medeiros
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
29
|
Nascimento IP, Leite LCC. The effect of passaging in liquid media and storage onMycobacterium bovisâ BCG growth capacity and infectivity. FEMS Microbiol Lett 2005; 243:81-6. [PMID: 15668004 DOI: 10.1016/j.femsle.2004.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 11/08/2004] [Accepted: 11/24/2004] [Indexed: 11/19/2022] Open
Abstract
The effect of successive cultures--undergoing or not cycles of freezing, storage and thawing--on the growth curves of the Mycobacterium bovis Bacille Calmette-Guerin (BCG) Moreau strain and a recombinant-BCG (rBCG) vaccine preparation were evaluated. The results showed that both strains going through three rounds of freezing and thawing were not able to grow efficiently in the third stage of liquid culture. This effect and also long-term frozen storage appeared to be more preeminent in cultures that had been harvested at 0.8 optical density (OD at 600 nm) prior to freezing and storage, as in comparison to their 0.4 OD counterparts. Altogether, the data suggest that cultures inoculated with samples harvested at lower OD are less sensitive to the limiting effects of serial cultivation, regardless of being BCG or rBCG. Successive cultivations without freezing and thawing also affect growth of BCG culture inoculated with cells at later exponential phase (0.8 OD). Finally, macrophage infectivity with BCG cells from the third growth passage was significantly lower than from the first passage. These results draw attention to the importance of using fresh, low-passage and/or growth and infection capacity-controlled vaccine stocks for the evaluation of strains of BCG or rBCG.
Collapse
Affiliation(s)
- Ivan P Nascimento
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, SP, Brazil
| | | |
Collapse
|
30
|
Dennehy M, Williamson AL. Factors influencing the immune response to foreign antigen expressed in recombinant BCG vaccines. Vaccine 2005; 23:1209-24. [PMID: 15652663 DOI: 10.1016/j.vaccine.2004.08.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 08/26/2004] [Indexed: 11/30/2022]
Abstract
A wide range of recombinant BCG vaccine candidates containing foreign viral, bacterial, parasite or immunomodulatory genetic material have been developed and evaluated, primarily in animal models, for immune response to the foreign antigen. This review considers some of the factors that may influence the immunogenicity of these vaccines. The influence of levels and timing of expression of the foreign antigen and the use of targeting sequences are considered in the first section. Genetic and functional stability of rBCG is reviewed in the second section. In the last section, the influence of dose and route of immunization, strain of BCG and the animal model used are discussed.
Collapse
Affiliation(s)
- Maureen Dennehy
- The Biovac Institute, Private Bag X3, Pinelands, 7430 Cape Town, South Africa.
| | | |
Collapse
|
31
|
Abstract
Less than 20 years elapsed between the 1982 report of the identification and isolation of Borrelia burgdorferi and the licensure and marketing in the USA of a prophylactic vaccine against this pathogen. However, the manufacturer removed the vaccine from the market under 4 years after its release. The low demand undoubtedly was the result of limited efficacy, need for frequent boosters, the high price of the vaccine, exclusion of children, fear of vaccine-induced musculoskeletal symptoms and litigation surrounding the vaccine. Second-generation polyvalent outer surface protein (Osp)C vaccines may overcome some of these concerns but the precise antigenic components required for efficacy are uncertain. The development of the next generation of Lyme disease vaccines is in its infancy.
Collapse
|
32
|
Affiliation(s)
- Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
33
|
Varaldo PB, Leite LCC, Dias WO, Miyaji EN, Torres FIG, Gebara VC, Armôa GRG, Campos AS, Matos DCS, Winter N, Gicquel B, Vilar MM, McFadden J, Almeida MS, Tendler M, McIntosh D. Recombinant Mycobacterium bovis BCG expressing the Sm14 antigen of Schistosoma mansoni protects mice from cercarial challenge. Infect Immun 2004; 72:3336-43. [PMID: 15155638 PMCID: PMC415698 DOI: 10.1128/iai.72.6.3336-3343.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sm14 antigen of Schistosoma mansoni was cloned and expressed in Mycobacterium bovis BCG as a fusion with the Mycobacterium fortuitum beta-lactamase protein under the control of its promoter, pBlaF*; the protein was localized in the bacterial cell wall. The rBCG-Sm14 strain was shown to be relatively stable in cultured murine and bovine monocytes in terms of infectivity, bacterial persistence, and plasmid stability. The immunization of mice with rBCG-Sm14 showed no induction of anti-Sm14 antibodies; however, splenocytes of immunized mice released increased levels of gamma interferon upon stimulation with recombinant Sm14 (rSm14), indicating an induction of a Th1-predominant cellular response against Sm14. Mice immunized with one or two doses of rBCG-Sm14 and challenged with live S. mansoni cercaria showed a 48% reduction in worm burden, which was comparable to that obtained by immunization with three doses of rSm14 purified from Escherichia coli. The data presented here further enhance the status of Sm14 as a promising candidate antigen for the control of schistosomiasis and indicate that a one-dose regimen of rBCG-Sm14 could be considered a convenient means to overcome many of the practical problems associated with the successful implementation of a multiple-dose vaccine schedule in developing countries.
Collapse
Affiliation(s)
- Paula B Varaldo
- Centro de Biotecnologia, Instituto Butantan, São Paulo SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hu PQ, Tuma-Warrino RJ, Bryan MA, Mitchell KG, Higgins DE, Watkins SC, Salter RD. Escherichia coliExpressing Recombinant Antigen and Listeriolysin O Stimulate Class I-Restricted CD8+T Cells following Uptake by Human APC. THE JOURNAL OF IMMUNOLOGY 2004; 172:1595-601. [PMID: 14734740 DOI: 10.4049/jimmunol.172.3.1595] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccination against cancer or intracellular pathogens requires stimulation of class I-restricted CD8(+) T cells. It is therefore important to develop Ag delivery vectors that will promote cross-presentation by APCs and stimulate appropriate inflammatory responses. Toward this goal, we tested the potential of Escherichia coli as an Ag delivery vector in in vitro human culture. Bacteria expressing enhanced green fluorescent protein were internalized efficiently by dendritic cells, as shown by flow cytometry and fluorescence microscopy. Phenotypic changes in DC were observed, including up-regulation of costimulatory molecules and IL-12p40 production. We tested whether bacteria expressing recombinant Ags could stimulate human T cells using the influenza matrix protein as a model Ag. Specific responses against an immunodominant epitope were seen using IFN-gamma ELISPOT assays when the matrix protein was coexpressed with listeriolysin O, but not when expressed alone. THP-1 macrophages were also capable of stimulating T cells after uptake of bacteria, but showed slower kinetics and lower overall levels of T cell stimulation than dendritic cells. Increased phagocytosis of bacteria induced by differentiation of THP-1 increased their ability to stimulate T cells, as did opsonization. Presentation was blocked by proteasome inhibitors, but not by lysosomal protease inhibitors leupeptin and E64. These results demonstrate that recombinant E. coli can be engineered to direct Ags to the cytosol of human phagocytic APCs, and suggest possible vaccine strategies for generating CD8(+) T cell responses against pathogens or tumors.
Collapse
Affiliation(s)
- Paul Q Hu
- Department of Immunology and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Uno-Furuta S, Matsuo K, Tamaki S, Takamura S, Kamei A, Kuromatsu I, Kaito M, Matsuura Y, Miyamura T, Adachi Y, Yasutomi Y. Immunization with recombinant Calmette-Guerin bacillus (BCG)-hepatitis C virus (HCV) elicits HCV-specific cytotoxic T lymphocytes in mice. Vaccine 2003; 21:3149-56. [PMID: 12804842 DOI: 10.1016/s0264-410x(03)00256-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), an effective HCV vaccine should be capable of eliciting HCV-specific CTLs. In the present study, we assessed the capability of a novel recombinant vaccine using an attenuated tuberculosis bacillus, Calmette-Guerin bacillus (BCG), as a vaccine vehicle to elicit HCV-specific CTLs. BCG was engineered to express the CTL epitope of HCV-non-structure protein 5a (NS5a) as a chimeric protein with alpha antigen of mycobacteria. Immunization with this recombinant BCG elicited major histocompatibility complex class I-restricted CD8(+) HCV-NS5a-specific CTLs in mice. Immunized mice showed a substantial reduction in the vaccinia virus titer compared with control mice when the immunized mice were challenged with a recombinant vaccinia virus expressing HCV-NS5a genes. These findings provide evidences for the possibility of BCG as a vaccine vector and its continued exploration as a vehicle for eliciting HCV-specific immunity.
Collapse
Affiliation(s)
- Satori Uno-Furuta
- Department of Bioregulation, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dietrich G, Viret JF, Gentschev I. Haemolysin A and listeriolysin--two vaccine delivery tools for the induction of cell-mediated immunity. Int J Parasitol 2003; 33:495-505. [PMID: 12782050 DOI: 10.1016/s0020-7519(03)00058-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemolysin A of Escherichia coli and listeriolysin of Listeria monocytogenes represent important bacterial virulence factors. While such cytolysins are usually the reason for morbidity and even mortality, vaccine researchers have turned haemolysin A and listeriolysin into tools for vaccine delivery. Both cytolysins have found widespread application in vaccine research and are highly suitable for the elicitation of cell-mediated immunity. In this paper, we will review vaccine delivery mediated by the haemolysin A secretion system and listeriolysin and will highlight their use in vaccination approaches against protozoan parasites.
Collapse
Affiliation(s)
- Guido Dietrich
- Vaccine Research, Berna Biotech AG, Rehhagstr. 79, CH-3018, Bern, Switzerland.
| | | | | |
Collapse
|
37
|
Abstract
The demand for new and improved vaccines against human diseases has continued unabated over the past century. While the need continues for traditional vaccines in areas such as infectious diseases, there is an increasing demand for new therapies in nontraditional areas, such as cancer treatment, bioterrorism and food safety. Prompted by these changes, there has been a renewed interest in the application and development of live, attenuated bacteria expressing foreign antigens as vaccines. The application of bacterial vector vaccines to human maladies has been studied most extensively in attenuted strains of Salmonella. Live, attenuated strains of Shigella, Listeria monocytogenes, Mycobacterium bovis-BCG and Vibrio cholerae provide unique alternatives in terms of antigen delivery and immune presentation, however and also show promise as potentially useful bacterial vectors.
Collapse
Affiliation(s)
- Sims K Kochi
- Avant Immunotherapeutics, Inc., Needham, MA 02494, USA.
| | | | | |
Collapse
|
38
|
Dietrich G, Viret JF, Hess J. Novel vaccination strategies based on recombinant Mycobacterium bovis BCG. Int J Med Microbiol 2003; 292:441-51. [PMID: 12635927 DOI: 10.1078/1438-4221-00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this manuscript, we will review the utilization of Mycobacterium bovis Bacille Calmette-Guerin (BCG) as a vaccine against tuberculosis (TB) and as a carrier system for heterologous antigens. BCG is one of the most widely used vaccines. Novel techniques in genome manipulation allow the construction of virulence-attenuated recombinant (r)-BCG strains that can be employed as homologous vaccines, or as heterologous antigen delivery systems, for priming pathogen-specific immunity against infectious diseases, including TB. Several approaches are available for heterologous antigen expression and compartmentalization in BCG and recent findings show the potential to modulate and direct the immune responses induced by r-BCG strains as desired. Recent achievements in complete genome analysis of various target pathogens, combined with a better understanding of protective pathogen-specific immune responses, form the basis for the rational design of a new generation of recombinant mycobacterial vaccines against a multitude of infectious diseases.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- Cattle
- Communicable Disease Control
- Genetic Vectors
- Humans
- Mycobacterium bovis/genetics
- Recombination, Genetic
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/immunology
- Vaccination/methods
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Guido Dietrich
- Bacterial Vaccine Research, Berna Biotech Ltd., Berne, Switzerland.
| | | | | |
Collapse
|
39
|
|
40
|
Curtiss R. Bacterial infectious disease control by vaccine development. J Clin Invest 2002; 110:1061-6. [PMID: 12393839 PMCID: PMC150804 DOI: 10.1172/jci16941] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Roy Curtiss
- Department of Biology, Washington University, 1 Brookings Drive, Campus Box 1137, St. Louis, Missouri 63130-4899, USA.
| |
Collapse
|
41
|
Abstract
Interest in vaccine adjuvants is intense and growing, because many of the new subunit vaccine candidates lack sufficient immunogenicity to be clinically useful. In this review, I have emphasized modern vaccine adjuvants injected parenterally, or administered orally, intranasally, or transcutaneously with licensed or experimental vaccines in humans. Every adjuvant has a complex and often multi-factorial immunological mechanism, usually poorly understood in vivo. Many determinants of adjuvanticity exist, and each adjuvanted vaccine is unique. Adjuvant safety is critical and can enhance, retard, or stop development of an adjuvanted vaccine. The choice of an adjuvant often depends upon expensive experimental trial and error, upon cost, and upon commercial availability. Extensive regulatory and administrative support is required to conduct clinical trials of adjuvanted vaccines. Finally, comparative adjuvant trials where one antigen is formulated with different adjuvants and administered by a common protocol to animals and humans can accelerate vaccine development.
Collapse
Affiliation(s)
- Robert Edelman
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore 21201, USA.
| |
Collapse
|
42
|
Gentschev I, Dietrich G, Spreng S, Pilgrim S, Stritzker J, Kolb-Mäurer A, Goebel W. Delivery of protein antigens and DNA by attenuated intracellular bacteria. Int J Med Microbiol 2002; 291:577-82. [PMID: 11890559 DOI: 10.1078/1438-4221-00170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
On the basis of attenuated intracellular bacteria, we have developed two delivery systems for either heterologous proteins or DNA vaccine vectors. The first system utilizes attenuated strains of Gram-negative bacteria which are engineered to secrete heterologous antigens via the alpha-hemolysin secretion system (type I) of Escherichia coli. The second system is based on attenuated suicide strains of Listeria monocytogenes, which are used for the direct delivery of eukaryotic antigen expression vectors into professional antigen-presenting cells (APC) like macrophages and dendritic cells in vitro and can be also used in animal models.
Collapse
|
43
|
Méderlé I, Bourguin I, Ensergueix D, Badell E, Moniz-Peireira J, Gicquel B, Winter N. Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect Immun 2002; 70:303-14. [PMID: 11748196 PMCID: PMC127622 DOI: 10.1128/iai.70.1.303-314.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bivalent recombinant strains of Mycobacterium bovis BCG (rBCG) expressing the early regulatory nef and the structural gag(p26) genes from the simian immunodeficiency virus (SIV) SIVmac251 were engineered so that both genes were cotranscribed from a synthetic operon. The expression cassette was cloned into a multicopy-replicating vector, and the expression levels of both nef and gag in the bivalent rBCG(nef-gag) strain were found to be comparable to those of monovalent rBCG(nef) or rBCG(gag) strains. However, extrachromosomal cloning of the nef-gag operon into a replicative plasmid resulted in strains of low genetic stability that rapidly lost the plasmid in vivo. Thus, the nef-gag operon was inserted site specifically into the BCG chromosome by means of mycobacteriophage Ms6-derived vectors. The resulting integrative rBCG(nef-gag) strains showed very high genetic stability both in vitro and in vivo. The in vivo expression of the heterologous genes was much longer lived when the expression cassette was inserted into the BCG chromosome. In one of the strains obtained, integrative cloning did not reduce the expression levels of the genes even though a single copy was present. Accordingly, this strain induced cellular immune responses of the same magnitude as that of the replicative rBCG strain containing several copies of the genes.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bacteriophages
- Cells, Cultured
- Chromosomes, Bacterial
- Cloning, Molecular/methods
- DNA, Viral
- Female
- Gene Expression
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genetic Vectors/genetics
- Macrophages/cytology
- Macrophages/immunology
- Mice
- Mice, Inbred BALB C
- Mutagenesis, Insertional/methods
- Mutagenesis, Site-Directed
- Mycobacterium bovis/genetics
- Mycobacterium bovis/virology
- Operon
- Plasmids
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- I Méderlé
- Unité de Génétique Mycobactérienne, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The efficiency of any live bacterial vector vaccine hinges on its ability to present sufficient foreign antigen to the human immune system to initiate the desired protective immune response(s). However, synthesis of sufficient levels of heterologous antigen can result in an increase in metabolic burden with an accompanying decrease in the fitness of the live vector, which can ultimately lower desired immune responses to both live vector and heterologous antigen. Here, we explore the underlying mechanisms of metabolic load and propose ways of minimizing such burdens to enhance the fitness and immunogenicity of Salmonella-based live vector vaccines.
Collapse
Affiliation(s)
- J E Galen
- Center for Vaccine Development, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA.
| | | |
Collapse
|
45
|
Affiliation(s)
- N Ohara
- Nagasaki University School of Dentistry, Sakamoto 1-7-1, 852-8588, Nagasaki, Japan.
| | | |
Collapse
|
46
|
Drabner B, Guzmán CA. Elicitation of predictable immune responses by using live bacterial vectors. BIOMOLECULAR ENGINEERING 2001; 17:75-82. [PMID: 11222981 DOI: 10.1016/s1389-0344(00)00072-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is an increasing need for novel vaccines able to stimulate efficient and long-lasting responses, which have also low production costs. To confer protective immunity following vaccination, the adequate type of response should be elicited. Vaccines based on attenuated bacterial carriers have contained production and delivery costs, and are able to stimulate more potent immune responses than non-replicating formulations. The improved knowledge on carrier physiology and host response, the availability of different mutants and highly sophisticated expression tools, and the possibility of co-administering modulators enable to trigger predictable responses according to the specific needs. Recent studies support the use of attenuated bacteria not only as conventional carriers, but also as a delivery system for DNA vaccines against infectious agents and tumors. In this review we discuss the most widely used bacterial carrier systems for either antigens or nucleic acid vaccines, and the strategies which have been successfully exploited to modulate the immune responses elicited.
Collapse
Affiliation(s)
- B Drabner
- Vaccine Research Group, Division of Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124, Braunschweig, Germany
| | | |
Collapse
|
47
|
Hess J, Schaible U, Raupach B, Kaufmann SH. Exploiting the immune system: toward new vaccines against intracellular bacteria. Adv Immunol 2001; 75:1-88. [PMID: 10879281 DOI: 10.1016/s0065-2776(00)75001-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J Hess
- Department of Immunology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | | | | | | |
Collapse
|
48
|
Abstract
The last year in tuberculosis vaccine research has witnessed the initial flowering of the benefits promised by the tuberculosis genome sequencing product. Although the real benefits in terms of clinical treatments are yet to be realized, genomics is making its presence felt in the rapid identification and expression of proteins with vaccine potential from Mycobacterium tuberculosis, the definition of species-specific antigens for diagnostic use, and the construction of a variety of novel living vectors for vaccination. At the same time, the recent increase in work on animal models with more direct applicability to the situations likely to be encountered in human vaccine trials are providing the basic underpinnings needed for the assessment of these new vaccines.
Collapse
Affiliation(s)
- T M Doherty
- Department of TB Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
49
|
Shata MT, Stevceva L, Agwale S, Lewis GK, Hone DM. Recent advances with recombinant bacterial vaccine vectors. MOLECULAR MEDICINE TODAY 2000; 6:66-71. [PMID: 10652479 DOI: 10.1016/s1357-4310(99)01633-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacille Calmette-Guerin (BCG), Listeria monocytogenes, Salmonellae and Shigellae have shown promise as vaccine vectors in experimental animal models. Although disappointing results in humans and non-human primates stalled the development of this vaccination strategy, interest in this approach was reinvigorated recently by the development of bacterial DNA-vaccine-vectors. The purpose of this review is to highlight the strengths and weaknesses of bacterial vaccine vectors, and to discuss the future prospects of these vaccine delivery systems.
Collapse
Affiliation(s)
- M T Shata
- Division of Vaccine Research, Institute of Human Virology, 725 Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|