1
|
Hegewisch-Solloa E, Nalin AP, Freud AG, Mace EM. Deciphering the localization and trajectory of human natural killer cell development. J Leukoc Biol 2023; 114:487-506. [PMID: 36869821 DOI: 10.1093/jleuko/qiad027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 03/05/2023] Open
Abstract
Innate immune cells represent the first line of cellular immunity, comprised of both circulating and tissue-resident natural killer cells and innate lymphoid cells. These innate lymphocytes arise from a common CD34+ progenitor that differentiates into mature natural killer cells and innate lymphoid cells. The successive stages in natural killer cell maturation are characterized by increased lineage restriction and changes to phenotype and function. Mechanisms of human natural killer cell development have not been fully elucidated, especially the role of signals that drive the spatial localization and maturation of natural killer cells. Cytokines, extracellular matrix components, and chemokines provide maturation signals and influence the trafficking of natural killer cell progenitors to peripheral sites of differentiation. Here we present the latest advances in our understanding of natural killer and innate lymphoid cell development in peripheral sites, including secondary lymphoid tissues (i.e. tonsil). Recent work in the field has provided a model for the spatial distribution of natural killer cell and innate lymphoid cell developmental intermediates in tissue and generated further insights into the developmental niche. In support of this model, future studies using multifaceted approaches seek to fully map the developmental trajectory of human natural killer cells and innate lymphoid cells in secondary lymphoid tissues.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| | - Ansel P Nalin
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 10th Ave. Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, 460 W 12th Ave. Columbus, OH 43210, USA
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W 168th St. New York, NY 10032, USA
| |
Collapse
|
2
|
Hegewisch-Solloa E, Melsen JE, Ravichandran H, Rendeiro AF, Freud AG, Mundy-Bosse B, Melms JC, Eisman SE, Izar B, Grunstein E, Connors TJ, Elemento O, Horowitz A, Mace EM. Mapping human natural killer cell development in pediatric tonsil by imaging mass cytometry and high-resolution microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556371. [PMID: 37732282 PMCID: PMC10508773 DOI: 10.1101/2023.09.05.556371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Natural killer (NK) cells develop from CD34+ progenitors in a stage-specific manner defined by changes in cell surface receptor expression and function. Secondary lymphoid tissues, including tonsil, are sites of human NK cell development. Here we present new insights into human NK cell development in pediatric tonsil using cyclic immunofluorescence and imaging mass cytometry. We show that NK cell subset localization and interactions are dependent on NK cell developmental stage and tissue residency. NK cell progenitors are found in the interfollicular domain in proximity to cytokine-expressing stromal cells that promote proliferation and maturation. Mature NK cells are primarily found in the T-cell rich parafollicular domain engaging in cell-cell interactions that differ depending on their stage and tissue residency. The presence of local inflammation results in changes in NK cell interactions, abundance, and localization. This study provides the first comprehensive atlas of human NK cell development in secondary lymphoid tissue.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Janine E Melsen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Hiranmayi Ravichandran
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - André F Rendeiro
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090, Vienna, Austria
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210
| | - Bethany Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, 10032
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, 10032
| | - Shira E Eisman
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, 10032
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032
- Program for Mathematical Genomics, Columbia University, New York, NY, 10032
| | - Eli Grunstein
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Medical Center, New York, New York 10032
| | - Thomas J Connors
- Department of Pediatrics, Division of Pediatric Critical Care and Hospital Medicine, Columbia University Irving Medical Center, New York, NY 10024
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
3
|
Schorr C, Krishnan MS, Capitano M. Deficits in our understanding of natural killer cell development in mouse and human. Curr Opin Hematol 2023; 30:106-116. [PMID: 37074304 PMCID: PMC10239331 DOI: 10.1097/moh.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
PURPOSE OF REVIEW Natural killer (NK) cells are a type of immune cell that play a crucial role in the defense against cancer and viral infections. The development and maturation of NK cells is a complex process, involving the coordination of various signaling pathways, transcription factors, and epigenetic modifications. In recent years, there has been a growing interest in studying the development of NK cells. In this review, we discuss the field's current understanding of the journey a hematopoietic stem cell takes to become a fully mature NK cell and detail the sequential steps and regulation of conventional NK leukopoiesis in both mice and humans. RECENT FINDINGS Recent studies have highlighted the significance of defining NK development stages. Several groups report differing schema to identify NK cell development and new findings demonstrate novel ways to classify NK cells. Further investigation of NK cell biology and development is needed, as multiomic analysis reveals a large diversity in NK cell development pathways. SUMMARY We provide an overview of current knowledge on the development of NK cells, including the various stages of differentiation, the regulation of development, and the maturation of NK cells in both mice and humans. A deeper understanding of NK cell development has the potential to provide insights into new therapeutic strategies for the treatment of diseases such as cancer and viral infections.
Collapse
Affiliation(s)
- Christopher Schorr
- Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Maya Shraddha Krishnan
- Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Maegan Capitano
- Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
4
|
Del Vecchio F, Martinez-Rodriguez V, Schukking M, Cocks A, Broseghini E, Fabbri M. Professional killers: The role of extracellular vesicles in the reciprocal interactions between natural killer, CD8+ cytotoxic T-cells and tumour cells. J Extracell Vesicles 2021; 10:e12075. [PMID: 33815694 PMCID: PMC8015281 DOI: 10.1002/jev2.12075] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate the cross‐talk between cancer cells and the cells of the surrounding Tumour Microenvironment (TME). Professional killer cells include Natural Killer (NK) cells and CD8+ Cytotoxic T‐lymphocytes (CTLs), which represent some of the most effective immune defense mechanisms against cancer cells. Recent evidence supports the role of EVs released by NK cells and CTLs in killing cancer cells, paving the road to a possible therapeutic role for such EVs. This review article provides the state‐of‐the‐art knowledge on the role of NK‐ and CTL‐derived EVs as anticancer agents, focusing on the different functions of different sub‐types of EVs. We also reviewed the current knowledge on the effects of cancer‐derived EVs on NK cells and CTLs, identifying areas for future investigation in the emerging new field of EV‐mediated immunotherapy of cancer.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Verena Martinez-Rodriguez
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA.,Department of Cell and Molecular Biology John A. Burns School of Medicine University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Monique Schukking
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA.,Department of Molecular Biosciences & Bioengineering University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Alexander Cocks
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA
| | - Elisabetta Broseghini
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna Bologna Italy
| | - Muller Fabbri
- University of Hawai'i Cancer Center Cancer Biology Program University of Hawai'i at Manoa Honolulu Hawaii USA
| |
Collapse
|
5
|
Fathi E, Farahzadi R, Valipour B. Alginate/gelatin encapsulation promotes NK cells differentiation potential of bone marrow resident C-kit + hematopoietic stem cells. Int J Biol Macromol 2021; 177:317-327. [PMID: 33621568 DOI: 10.1016/j.ijbiomac.2021.02.131] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
The ability of natural killer (NK) cells to destroy cancerous cells with no prior sensitization has made them attractive candidates for cell therapy. The application of hydrogels must be notified as cell delivery vehicles in cell differentiation. The present study was conducted to investigate the effect of alginate-gelatin encapsulation on NK cell differentiation potential of C-kit+ cells. C-kit+ cells were differentiated to NK cells under both encapsulated and un-encapsulated conditions. Next, the cells were subjected to real-time polymerase chain reaction (PCR) and western blotting for the assessment of their telomere length and protein expressions, respectively. Afterward, culture medium was collected to measure cytokines levels. Thereafter, the differentiated NK cells were co-cultured with Molt-4 cells to investigate the potency of cell apoptosis by Annexin V/PI assay. A significant change was observed in the protein expression of Janus kinase/Signal transducers (JAK/STAT) pathway components. Additionally, the encapsulation caused an increase in the apoptosis of Molt-4 cells and telomere length of NK cells differentiated C-kit+ cells. Therefore, it can be concluded that the effects of encapsulation on NK cell's differentiation of C-kit+ cells could be resulted from the secreted cytokines of interleukin (IL)-2, IL-3, IL-7, and IL-12 as well as the increased telomere length.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behnaz Valipour
- Department of Histopathology and Anatomy, Faculty of Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
6
|
Abstract
BACKGROUND In utero transplantation (IUT) of hematopoietic stem cells has the potential to treat a large number of hematologic and metabolic diseases amenable to partial replacement of the hematopoietic system. METHODS A review of the literature was conducted that focused on the clinical and experimental experience with IUT and, in this context, the development of the hematopoietic and immune systems. RESULTS Successful application of IUT has been limited to the treatment of various types of immunodeficiencies that affect lymphocyte development and function. Other congenital defects such as the thalassemias have not resulted in clinically significant engraftment. Recent efforts at understanding and overcoming the barriers to engraftment in the fetus have focused on providing a selective advantage to donor stem cells and fostering immune tolerance toward the donor cells. The critical cellular components of the graft that promote engraftment and tolerance induction are being evaluated in animal models. Improvements in engraftment have resulted from the inclusion of T cells and/or dendritic cells in the graft, as well as a strategy of combined prenatal and postnatal transplantation. CONCLUSIONS The advantages, necessity, and benefits of early treatment will continue to encourage development of IUT as a means to treat hematopoietic and other types of birth defects.
Collapse
Affiliation(s)
- Marcus O Muench
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
7
|
Wu Y, Tian Z, Wei H. Developmental and Functional Control of Natural Killer Cells by Cytokines. Front Immunol 2017; 8:930. [PMID: 28824650 PMCID: PMC5543290 DOI: 10.3389/fimmu.2017.00930] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are effective in combating infections and tumors and as such are tempting for adoptive transfer therapy. However, they are not homogeneous but can be divided into three main subsets, including cytotoxic, tolerant, and regulatory NK cells, with disparate phenotypes and functions in diverse tissues. The development and functions of such NK cells are controlled by various cytokines, such as fms-like tyrosine kinase 3 ligand (FL), kit ligand (KL), interleukin (IL)-3, IL-10, IL-12, IL-18, transforming growth factor-β, and common-γ chain family cytokines, which operate at different stages by regulating distinct signaling pathways. Nevertheless, the specific roles of each cytokine that regulates NK cell development or that shapes different NK cell functions remain unclear. In this review, we attempt to describe the characteristics of each cytokine and the existing protocols to expand NK cells using different combinations of cytokines and feeder cells. A comprehensive understanding of the role of cytokines in NK cell development and function will aid the generation of better efficacy for adoptive NK cell treatment.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Serebrovskaya TV, Nikolsky IS, Nikolska VV, Mallet RT, Ishchuk VA. Intermittent hypoxia mobilizes hematopoietic progenitors and augments cellular and humoral elements of innate immunity in adult men. High Alt Med Biol 2012; 12:243-52. [PMID: 21962068 DOI: 10.1089/ham.2010.1086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This study tested the hypothesis that intermittent hypoxia treatment (IHT) modulates circulating hematopoietic stem and progenitor cells (HSPC) and augments humoral and cellular components of innate immunity in young, healthy men. Ten subjects (group 1: age 31±4 yr) were studied before and at 1 and 7 days after a 14-day IHT program consisting of four 5-min bouts/day of breathing 10% O2, lowering arterial O2 saturation to 84% to 85%, with intervening 5-min room-air exposures. Five more subjects (group 2: age 29±5 yr) were studied during 1 IHT session. Immunofluorescence detected HSPCs as CD45+CD34+ cells in peripheral blood. Phagocytic and bactericidal activities of neutrophils, circulating immunoglobulins (IgM, IgG, IgA), immune complexes, complement, and cytokines (erythropoietin, TNF-α, IL-4, IFN-γ) were measured. In group 1, the HSPC count fell 27% below pre-IHT baseline 1 week after completing IHT, without altering erythrocyte and reticulocyte counts. The IHT program also activated complement, increased circulating platelets, augmented phagocytic and bactericidal activities of neutrophils, sharply lowered circulating TNF-α and IL-4 by >90% and ∼75%, respectively, and increased IFN-γ, particularly 1 week after IHT. During acute IHT (group 2), HSPC increased by 51% after the second hypoxia bout and by 19% after the fourth bout, and total leukocyte, neutrophil, monocyte, and lymphocyte counts also increased; but these effects subsided by 30 min post-IHT. Collectively, these results demonstrate that IHT enhances innate immunity by mobilizing HSPC, activating neutrophils, and increasing circulating complement and immunoglobulins. These findings support the potential for eventual application of IHT for immunotherapy.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW After hematopoietic cell transplantation (HCT) donor-derived natural killer (NK) cells kill tumor cells to prevent relapse and mediate other beneficial clinical effects including control of infections without inducing graft-vs.-host disease (GVHD). Understanding the determinants of NK cell alloreactivity and function will support improvements in the design of HCT and adoptive cellular therapies. RECENT FINDINGS Refinements to the model of NK cell education or licensing have been made which will inform strategies to develop functional alloreactive NK cells for therapeutic use. Differences in NK cell function have been shown to be dependent on the nature of the stimuli. Recent advances have been made in our understanding of the role of activating NK receptors on education and outcome after HCT. The use of adoptively transferred NK cells to treat hematopoietic malignancies has been expanding. New approaches to modulate target sensitivity to NK cell-mediated killing are under development. SUMMARY NK cells play an important role in the therapeutic efficacy of HCT, with effects on control of infections, GVHD, engraftment and relapse prevention. Recent advances in our understanding of NK cell biology will support improvements in our ability to exploit NK cells to treat cancer.
Collapse
|
10
|
Attenuation of vaccinia virus by the expression of human Flt3 ligand. Virol J 2010; 7:109. [PMID: 20504356 PMCID: PMC2883979 DOI: 10.1186/1743-422x-7-109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/26/2010] [Indexed: 11/10/2022] Open
Abstract
Background Vaccinia virus, one of the best known members of poxvirus family, has a wide host range both in vivo and in vitro. The expression of Flt3 ligand (FL) by recombinant vaccinia virus (rVACV) highly influenced properties of the virus in dependence on the level of expression. Results High production of FL driven by the strong synthetic promoter decreased the growth of rVACV in macrophage cell line J774.G8 in vitro as well as its multiplication in vivo when inoculated in mice. The inhibition of replication in vivo was mirrored in low levels of antibodies against vaccinia virus (anti-VACV) which nearly approached to the negative serum level in non-infected mice. Strong FL expression changed not only the host range of the recombinant but also the basic protein contents of virions. The major proteins - H3L and D8L - which are responsible for the virus binding to the cells, and 28 K protein that serves as a virulence factor, were changed in the membrane portion of P13-E/L-FL viral particles. The core virion fraction contained multiple larger, uncleaved proteins and a higher amount of cellular proteins compared to the control virus. The overexpression of FL also resulted in its incorporation into the viral core of P13-E/L-FL IMV particles. In contrary to the equimolar ratio of glycosylated and nonglycosylated FL forms found in cells transfected with the expression plasmid, the recombinant virus incorporated mainly the smaller, nonglycosylated FL. Conclusions It has been shown that the overexpression of the Flt3L gene in VACV results in the attenuation of the virus in vivo.
Collapse
|
11
|
Erlendsson LS, Muench MO, Hellman U, Hrafnkelsdóttir SM, Jonsson A, Balmer Y, Mäntylä E, Orvar BL. Barley as a green factory for the production of functional Flt3 ligand. Biotechnol J 2010; 5:163-71. [PMID: 19844912 DOI: 10.1002/biot.200900111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.
Collapse
|
12
|
Meade JL, Wilson EB, Holmes TD, de Wynter EA, Brett P, Straszynski L, Ballard PAS, Trapani JA, McDermott MF, Cook GP. Proteolytic activation of the cytotoxic phenotype during human NK cell development. THE JOURNAL OF IMMUNOLOGY 2009; 183:803-13. [PMID: 19570824 DOI: 10.4049/jimmunol.0713829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells induce apoptosis in target cells via the perforin-mediated delivery of granzyme molecules. Cytotoxic human NK cells can be generated by IL-15-mediated differentiation of CD34(+) cells in vitro and these cultures have been used extensively to analyze the development of the NK cell surface phenotype. We have used NK cell differentiation in vitro together with protease-deficient human NK cells to analyze the acquisition of the cytotoxic phenotype. Granzymes are synthesized as inactive zymogens and are proteolytically activated by the cysteine protease cathepsin C. Cathepsin C is also synthesized as a zymogen and activated by proteolysis. We show that human NK cells generated in vitro undergo granule exocytosis and induce the caspase cascade in target cells. IL-15 and stem cell factor (IL-15 plus SCF) induced the expression of the granzyme B and perforin genes and the activation of cathepsin C and granzyme B zymogens. Perforin activation is also mediated by a cysteine protease and IL-15 plus SCF-mediated differentiation was accompanied by perforin processing. However, cathepsin C-deficient human NK cells revealed that perforin processing could occur in the absence of cathepsin C activity. The combination of IL-15 plus SCF is therefore sufficient to coordinate the development of the NK cell surface phenotype with the expression and proteolytic activation of the cytotoxic machinery, reflecting the central role of IL-15 in NK cell development.
Collapse
Affiliation(s)
- Josephine L Meade
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bárcena A, Muench MO, Kapidzic M, Fisher SJ. A new role for the human placenta as a hematopoietic site throughout gestation. Reprod Sci 2009; 16:178-87. [PMID: 19208786 DOI: 10.1177/1933719108327621] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated whether the human placenta contributes to embryonic and fetal hematopoietic development. Two cell populations--CD34(++)CD45(low) and CD34( +)CD45(low)--were found in chorionic villi. CD34(++) CD45(low) cells display many markers that are characteristic of multipotent primitive hematopoietic progenitors and hematopoietic stem cells. Clonogenic in vitro assays showed that CD34(++)CD45( low) cells contained colony-forming units-culture with myeloid and erythroid potential and differentiated into CD56(+) natural killer cells and CD19(+) B cells in culture. CD34(+)CD45(low) cells were mostly enriched in erythroid- and myeloid-committed progenitors. While the number of CD34(++)CD45(low) cells increased throughout gestation in parallel with placental mass. However, their density (cells per gram of tissue) reached its peak at 5 to 8 weeks, decreasing more than 7-fold from the ninth week onward. In addition to multipotent progenitors, the placenta contained intermediate progenitors, indicative of active hematopoiesis. Together, these data suggest that the human placenta is potentially an important hematopoietic organ, opening the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.
Collapse
Affiliation(s)
- Alicia Bárcena
- Institute for Regeneration Medicine, Human Embryonic Stem Cell Program, Department of Cell and Tissue Biology, University of California at San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
14
|
Porter DL, Hexner EO, Cooley S, Miller JS. Cellular adoptive immunotherapy after autologous and allogeneic hematopoietic stem cell transplantation. Cancer Treat Res 2009; 144:497-537. [PMID: 19779876 DOI: 10.1007/978-0-387-78580-6_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- David L Porter
- Division of Hematology-Oncology, University of Pennsylvania Medical Center, 16 Penn Tower, 3400 Spruce St, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
15
|
Bárcena A, Kapidzic M, Muench MO, Gormley M, Scott MA, Weier JF, Ferlatte C, Fisher SJ. The human placenta is a hematopoietic organ during the embryonic and fetal periods of development. Dev Biol 2008; 327:24-33. [PMID: 19073167 DOI: 10.1016/j.ydbio.2008.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 01/23/2023]
Abstract
We studied the potential role of the human placenta as a hematopoietic organ during embryonic and fetal development. Placental samples contained two cell populations-CD34(++)CD45(low) and CD34(+)CD45(low)-that were found in chorionic villi and in the chorioamniotic membrane. CD34(++)CD45(low) cells express many cell surface antigens found on multipotent primitive hematopoietic progenitors and hematopoietic stem cells. CD34(++)CD45(low) cells contained colony-forming units culture (CFU-C) with myeloid and erythroid potential in clonogenic in vitro assays, and they generated CD56(+) natural killer cells and CD19(+)CD20(+)sIgM(+) B cells in polyclonal liquid cultures. CD34(+)CD45(low) cells mostly comprised erythroid- and myeloid-committed progenitors, while CD34(-) cells lacked CFU-C. The placenta-derived precursors were fetal in origin, as demonstrated by FISH using repeat-sequence chromosome-specific probes for X and Y. The number of CD34(++)CD45(low) cells increased with gestational age, but their density (cells per gram of tissue) peaked at 5-8 wk, decreasing more than sevenfold at the onset of the fetal phase (9 wk of gestation). In addition to multipotent progenitors, the placenta contained myeloid- and erythroid-committed progenitors indicative of active in situ hematopoiesis. These data suggest that the human placenta is an important hematopoietic organ, raising the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.
Collapse
Affiliation(s)
- Alicia Bárcena
- Institute for Regeneration Medicine, Human Embryonic Stem Cell Program, Department of Cell and Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, HSE-1619, San Francisco, California 94143-0512, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Muzzioli M, Stecconi R, Moresi R, Provinciali M. Zinc improves the development of human CD34+ cell progenitors towards NK cells and increases the expression of GATA-3 transcription factor in young and old ages. Biogerontology 2008; 10:593-604. [DOI: 10.1007/s10522-008-9201-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|
17
|
Zhang F, Zhang XL, Liu D, Wang W, Liu JX. Advances in biological function of interleukin-21 and inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2008; 16:2131-2136. [DOI: 10.11569/wcjd.v16.i19.2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interleukin-21 (IL-21) is a recently discovered cytokine. Once combined with its receptor, IL-21 can regulate B cell proliferation, promote proliferation and differentiation of T cells and NK cells and enhance killing activity of NK cells. Inflammatory bowel disease (IBD) is a kind of autoimmune disease. Its pathogenesis is not clear yet and many factors may participate in it. Immunological derangement plays a significant role in IBD development which involves alteration of several cytokines. IL-21 is just one of them. This article reviewed IL-21 and its relationship with IBD.
Collapse
|
18
|
Kao IT, Yao CL, Kong ZL, Wu ML, Chuang TL, Hwang SM. Generation of natural killer cells from serum-free, expanded human umbilical cord blood CD34+ cells. Stem Cells Dev 2008; 16:1043-51. [PMID: 17999637 DOI: 10.1089/scd.2007.0033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cells are important effectors of the innate immune system, which exhibits cytolytic activity against infectious agents and tumor cells. NK cells are derived from CD34(+) hematopoietic stem cells (HSCs). Human umbilical cord blood (UCB) has been recognized as a rich source of HSCs. Previously, we have reported an optimized serum-free medium for ex vivo expansion of CD34(+) cells from UCB. In this study, the serum-free, expanded CD34(+) cells were tested to differentiate into NK cells and their induction kinetics. After 5 weeks of induction, the induced NK cells were characterized by analysis of surface antigens, IFN-gamma secretion, and cytotoxicity against K562 cells. The results indicated that NK cells derived from the serum-free, expanded CD34(+) cells exhibited both characteristics and functions of NK cells. Furthermore, the serum-free, expanded CD34(+) cells showed a significantly higher NK cell differentiation potential than freshly isolated CD34(+) cells. NK cells induced from serum-free, expanded CD34(+) cells showed a higher concentration of IFN-gamma secretion and ability of cytotoxicity than those from freshly isolated CD34(+) cells. Therefore, ex vivo-expanded CD34(+) cells in optimized serum-free medium could differentiate into NK cells and provided a promising cell source for immunotherapeutic approaches.
Collapse
Affiliation(s)
- I-Ting Kao
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Muzzioli M, Stecconi R, Donnini A, Re F, Provinciali M. Zinc improves the development of human CD34+ cell progenitors towards Natural Killer cells and induces the expression of GATA-3 transcription factor. Int J Biochem Cell Biol 2007; 39:955-65. [PMID: 17306601 DOI: 10.1016/j.biocel.2007.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/09/2007] [Accepted: 01/10/2007] [Indexed: 11/20/2022]
Abstract
The Natural Killer cell maturation from CD34(+) hematopoietic cell precursors is a complex process that requires the synergistic effect of different cytokines and growth factors. Although there have been a number of important advances in our understanding of the Natural Killer differentiation, the developmental step leading to mature Natural Killer cells is still poorly defined. We evaluated the effect of two zinc concentrations (10 and 20microM) on the kinetic of development of CD34(+) cell progenitors towards Natural Killer cells. CD34(+) cells were purified from peripheral blood and cultured in medium supplemented with interleukin-15, interleukin-7, Flt 3 ligand, and stem cell factor. CD34(+) cells underwent proliferation and progressively lost CD34 antigen and acquired a CD56(+) phenotype. These CD56(+) cells exerted cytotoxic activity and expressed the CD94 inhibitory receptor. The supplementation with zinc greatly increased both the number of cells in culture and the absolute number of CD56(+) cells. Zinc induced higher levels of cytotoxic activity and a higher number of perforin-producing and of CD94-bearing CD56(+) cells in comparison with zinc unsupplemented cultures in early stages of Natural Killer cell development. The zinc-induced changes in CD34-derived CD56(+) cells were associated with an increased expression of GATA-3, a zinc-finger transcription factor providing for maturation and activity of T and Natural Killer cells. The increase was related to a higher CD56(+) cell number (10microM zinc), or to an increased GATA-3 mRNA transcription in CD56(+) cells (20microM zinc). Our data demonstrate that zinc influences the proliferation and differentiation of CD34(+) progenitors.
Collapse
Affiliation(s)
- Mario Muzzioli
- Immunology Center, INRCA Gerontol Res. Dept., Via Birarelli 8, I-60121 Ancona, Italy
| | | | | | | | | |
Collapse
|
20
|
Muench MO, Ohkubo T, Smith CA, Suskind DL, Bárcena A. Maintenance of proliferative capacity and retroviral transduction efficiency of human fetal CD38(-)/CD34(++) stem cells. Stem Cells Dev 2006; 15:97-108. [PMID: 16522167 DOI: 10.1089/scd.2006.15.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Methods for the efficient transduction and expansion of fetal hematopoietic stem cells could lead to novel in utero therapies for blood cell disorders and enzymatic deficiencies. Here we describe a new assay to measure rapidly the effects of cytokines on the differentiation or expansion of primitive progenitors and stem cells found among CD38(-)CD34(++) lineage() cells isolated from human midgestation liver. Importantly, conditions that otherwise supported the expansion of clonogenic progenitors reduced their proliferative capacity. A combination of megakaryocyte growth and development factor and granulocyte-macrophage colony-stimulating factor maintained proliferative potential while also yielding an intermediate level of progenitor expansion. Retroviral transduction was achieved using Moloney murine leukemia virus-based vectors. Freshly isolated candidate stem cells could be transduced at almost 17% efficiency by a 1-h exposure to virus with centrifugation to aid transduction. This was increased to a mean 35.5% transduction efficiency after 1 day of culture. Additionally, the transduction efficiency of candidate stem cells isolated from fetal placental blood was 33.0%. These findings encourage further investigation into the feasibility of ex utero gene therapy whereby fetal cells are isolated from the circulation, transduced, and expanded ex utero before being returned to the fetus.
Collapse
Affiliation(s)
- Marcus O Muench
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | |
Collapse
|
21
|
Døsen G, Tenstad E, Nygren MK, Stubberud H, Funderud S, Rian E. Wnt expression and canonical Wnt signaling in human bone marrow B lymphopoiesis. BMC Immunol 2006; 7:13. [PMID: 16808837 PMCID: PMC1543656 DOI: 10.1186/1471-2172-7-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 06/29/2006] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The early B lymphopoiesis in mammals is regulated through close interactions with stromal cells and components of the intracellular matrix in the bone marrow (BM) microenvironment. Although B lymphopoiesis has been studied for decades, the factors that are implicated in this process, both autocrine and paracrine, are inadequately explored. Wnt signaling is known to be involved in embryonic development and growth regulation of tissues and cancer. Wnt molecules are produced in the BM, and we here ask whether canonical Wnt signaling has a role in regulating human BM B lymphopoiesis. RESULTS Examination of the mRNA expression pattern of Wnt ligands, Fzd receptors and Wnt antagonists revealed that BM B progenitor cells and stromal cells express a set of ligands and receptors available for induction of Wnt signaling as well as antagonists for fine tuning of this signaling. Furthermore, different B progenitor maturation stages showed differential expression of Wnt receptors and co-receptors, beta-catenin, plakoglobin, LEF-1 and TCF-4 mRNAs, suggesting canonical Wnt signaling as a regulator of early B lymphopoiesis. Exogenous Wnt3A induced stabilization and nuclear accumulation of beta-catenin in primary lineage restricted B progenitor cells. Also, Wnt3A inhibited B lymphopoiesis of CD133+CD10- hematopoietic progenitor cells and CD10+ B progenitor cells in coculture assays using a supportive layer of stromal cells. This effect was blocked by the Wnt antagonists sFRP1 or Dkk1. Examination of early events in the coculture showed that Wnt3A inhibits cell division of B progenitor cells. CONCLUSION These results indicate that canonical Wnt signaling is involved in human BM B lymphopoiesis where it acts as a negative regulator of cell proliferation in a direct or stroma dependent manner.
Collapse
Affiliation(s)
- Guri Døsen
- Department of Immunology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Medical Faculty, University of Oslo, Norway
| | - Ellen Tenstad
- Department of Immunology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Medical Faculty, University of Oslo, Norway
| | - Marit Kveine Nygren
- Department of Immunology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Medical Faculty, University of Oslo, Norway
| | - Heidi Stubberud
- Department of Immunology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Medical Faculty, University of Oslo, Norway
| | - Steinar Funderud
- Department of Immunology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Medical Faculty, University of Oslo, Norway
| | - Edith Rian
- Department of Immunology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Medical Faculty, University of Oslo, Norway
| |
Collapse
|
22
|
Liu F, Lu J, Fan HH, Wang ZQ, Cui SJ, Zhang GA, Chi M, Zhang X, Yang PY, Chen Z, Han ZG. Insights into human CD34+ hematopoietic stem/progenitor cells through a systematically proteomic survey coupled with transcriptome. Proteomics 2006; 6:2673-92. [PMID: 16596711 DOI: 10.1002/pmic.200500032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hematopoietic stem cells are capable of self-renewal and differentiation into different hematopoietic lineages. To gain a comprehensive understanding of hematopoietic stem/progenitor cells, a systematic proteomic survey of human CD34+ cells collected from human umbilical cord blood was performed, in which the proteins were separated by 1- and 2-DE, as well as by nano-LC, and subsequently identified by MS. A total of 370 distinct proteins identified from those cells provided new insights into the potential of the stem/progenitor cells because the nerve, gonad, and eye-associated proteins were reliably identified. Interestingly, the transcripts of 133 (35.9%) identified proteins were not found by the prevalent transcriptome approaches, although several selected transcripts could be detected by RT-PCR. Moreover, the heterogeneity of 33 proteins identified from 2-DE was attributable primarily to post-translational processes rather than to alternative splicing at transcriptional level. Furthermore, the biosyntheses of 15 proteins identified in this study appears not to be completely interrupted in spite of the fact that corresponding antisense RNAs were found in the existing transcriptome data. The integrated proteomic and transcriptomic analyses employed here provided a unique view of the human stem/progenitor cells.
Collapse
Affiliation(s)
- Feng Liu
- Chinese National Human Genome Center at Shanghai, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kersten C, Dosen G, Myklebust JH, Sivertsen EA, Hystad ME, Smeland EB, Rian E. BMP-6 inhibits human bone marrow B lymphopoiesis—Upregulation of Id1 and Id3. Exp Hematol 2006; 34:72-81. [PMID: 16413393 DOI: 10.1016/j.exphem.2005.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 09/14/2005] [Accepted: 09/14/2005] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In mammals, factors produced by bone marrow (BM) stromal cells are instrumental in orchestrating the developmental process of B lymphocytes. Bone morphogenetic proteins (BMPs) are multifunctional cytokines previously found to regulate hematopoietic stem cells. In the present study, we have explored the role of BMP-6 in human B progenitor cells. MATERIALS AND METHODS In vitro B lymphopoiesis of CD10(+) B progenitor cells from human BM was evaluated in the presence or absence of BMP-6 in short- or long-term coculture on MS-5 stromal cells, by tracking CFSE-labeled CD10(+) B progenitor cells or by quantification of CD19(+) cells. DNA synthesis in the pre-B cell line Nalm-6 was measured by (3)H-thymidine incorporation. BMP-6-induced phosphorylation of Smad1/5/8 was determined by Western blot analysis, whereas elevation of Id1-Id4 mRNA levels and basal BMP-6 mRNA levels were measured by real-time and conventional RT-PCR, respectively. RESULTS By in vitro coculture of CD10(+) B progenitor cells or monoculture of Nalm-6 cells, we found that BMP-6 inhibited B lymphopoiesis by impeding cell proliferation. Furthermore, in CD10(+) B progenitors as well as in Nalm-6 cells, BMP-6 rapidly induced phosphorylation of Smad1/5/8, followed by an upregulation of Id1 and Id3 mRNA levels. Finally, we demonstrated that human bone marrow stromal cells express BMP-6 mRNA whereas B progenitor cells did not. CONCLUSIONS We suggest that BMP-6, produced by the BM, may participate to fine-tune the balance between proliferation, apoptosis, and differentiation in human B progenitor cells during BM B lymphopoiesis.
Collapse
Affiliation(s)
- Christian Kersten
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
24
|
DeLuca D, Basye JL, Schumacher MJ, Lebsack TW. Production of human B cells from CD34+CD38- T- B- progenitors in organ culture by sequential cytokine stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:1084-98. [PMID: 16581123 DOI: 10.1016/j.dci.2006.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/13/2006] [Accepted: 02/09/2006] [Indexed: 05/08/2023]
Abstract
We investigated sequential cytokine addition on human hematopoietic stem cell (HSC) differentiation in murine fetal liver (FL), fetal spleen (FS) and bone marrow (BM) organ cultures (OC). Tissues were colonized with unpurified or FACS sorted CD34+CD38-CD10-CD19-CD3-CD8-CD4-(T- B-) cells from human cord blood (HUCB). CD19+ cell production and kinetics differed in each tissue. Fetal liver organ cultures (FLOC) inoculated with CD34+CD38-T-B- cells produced fewer CD19+ cells than fetal liver organ culture (FLOC) cultured with unpurified HUCB. CD19+ cell production was restored in the CD34+CD38-T-B- organ cultures by treating with SCF, LIF and IL-6 followed by IL-7 and removing all cytokines for the last 3 days of culture (a six-fold increase). FLOC also produced CD34+CD38-T-B- cells and monocyte-lineage CD33+CD14- cells, both of which increased after cytokine treatment. Re-colonization of secondary FLOC with CD34+CD38-T-B- cells generated in primary FLOC produced additional B-cells, monocytes and CD34+CD38- cells suggesting that the primary cells retained HSC activity. Expansion and differentiation of HSCs depended on the microenvironment of the recipient tissue as well as addition of cytokines in the appropriate order.
Collapse
Affiliation(s)
- Dominick DeLuca
- Department of Microbiology and Immunology, Life Sciences North Room 648, Tucson, AZ 84724-5049, USA.
| | | | | | | |
Collapse
|
25
|
Muench MO. In utero transplantation: baby steps towards an effective therapy. Bone Marrow Transplant 2005; 35:537-47. [PMID: 15665844 DOI: 10.1038/sj.bmt.1704811] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In utero transplantation (IUT) offers the potential to treat a large number of diseases by transplantation of healthy cells into a fetus with a birth defect. Prenatal diagnosis is feasible for many diseases prior to the full development of the fetal immune system offering the opportunity to introduce foreign cells and antigens into the developing fetus. At least 45 cases of IUT have been performed for a variety of diseases. IUT has successfully treated severe combined immunodeficiency and there are indications that it may be effective in treating some nonhematopoietic diseases. However, many diseases remain resistant to fetal therapy owing to the low levels of chimerism that can be achieved. Promising efforts to improve the levels of engraftment are focusing on optimizing the graft and developing donor-specific tolerance in the fetal recipient. Mounting evidence suggests that donor T cells can aid in achieving clinically significant levels of chimerism. The use of fetal donor cells may also offer some benefit. Animal experiments suggest that even low-level chimerism can lead to tolerance, which can be exploited by booster transplants in the neonate. Continued research appears likely to succeed in developing IUT into an effective form of therapy for a variety of diseases.
Collapse
Affiliation(s)
- M O Muench
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0793, USA.
| |
Collapse
|
26
|
Abstract
Interleukin-21 (IL-21) is the newest member of the common gamma-chain family of cytokines, which includes IL-2, IL-4, IL-7, IL-9, IL-13, and IL-15. Its private receptor, IL-21R, has been shown to activate the Janus kinase/signal transducers and activators of transcription signaling pathway upon ligand binding. Initial studies have demonstrated that IL-21 has pleiotropic effects on the proliferation, differentiation, and effector functions of B, T, natural killer, and dendritic cells. More recently, the potential therapeutic capacity of IL-21 in the treatment of cancers has been widely investigated. The biological role of IL-21 in the immune system is complex, as IL-21 has been shown to have the ability to both promote and inhibit immune responses. Overall, the current data point to IL-21 being a novel immunomodulatory cytokine, whose regulation of any given immune response is highly dependent on the surrounding environmental context.
Collapse
Affiliation(s)
- Devangi S Mehta
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
27
|
Xu J, Lucas R, Schuchmann M, Kühnle S, Meergans T, Barreiros AP, Lohse AW, Otto G, Wendel A. GM-CSF restores innate, but not adaptive, immune responses in glucocorticoid-immunosuppressed human blood in vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:938-47. [PMID: 12847265 DOI: 10.4049/jimmunol.171.2.938] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection remains the major complication of immunosuppressive therapy in organ transplantation. Therefore, reconstitution of the innate immunity against infections, without activation of the adaptive immune responses, to prevent graft rejection is a clinically desirable status in transplant recipients. We found that GM-CSF restored TNF mRNA and protein expression without inducing IL-2 production and T cell proliferation in glucocorticoid-immunosuppressed blood from either healthy donors or liver transplant patients. Gene array experiments indicated that GM-CSF selectively restored a variety of dexamethasone-suppressed, LPS-inducible genes relevant for innate immunity. A possible explanation for the lack of GM-CSF to restore T cell proliferation is its enhancement of the release of IL-1betaR antagonist, rather than of IL-1beta itself, since exogenously added IL-1beta induced an IL-2-independent Con A-stimulated proliferation of glucocorticoid-immunosuppressed lymphocytes. Finally, to test the in vivo relevance of our findings, we showed that GM-CSF restored the survival of dexamethasone- or cyclosporine A-immunosuppressed mice from an otherwise lethal infection with Salmonella typhimurium. In addition to this increased resistance to infection, GM-CSF did not induce graft rejection of a skin allotransplant in cyclosporine A-immunosuppressed mice. The selective restoration potential of GM-CSF suggests its therapeutic use in improving the resistance against infections upon organ transplantation.
Collapse
MESH Headings
- Adjuvants, Immunologic/blood
- Adjuvants, Immunologic/physiology
- Adult
- Aged
- Animals
- CDC2-CDC28 Kinases
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/biosynthesis
- Cell Division/drug effects
- Cell Division/immunology
- Cell Separation
- Concanavalin A/pharmacology
- Cyclin-Dependent Kinase 2
- Cyclin-Dependent Kinase Inhibitor p27
- Cyclin-Dependent Kinases/biosynthesis
- Dexamethasone/blood
- Dexamethasone/pharmacology
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Graft Rejection/immunology
- Graft Rejection/mortality
- Graft Rejection/prevention & control
- Granulocyte-Macrophage Colony-Stimulating Factor/blood
- Granulocyte-Macrophage Colony-Stimulating Factor/physiology
- Humans
- Immunity, Active/drug effects
- Immunity, Innate/drug effects
- Immunosuppressive Agents/blood
- Immunosuppressive Agents/pharmacology
- Interleukin-1/pharmacology
- Interleukin-2/physiology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred CBA
- Middle Aged
- Protein Serine-Threonine Kinases/biosynthesis
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/mortality
- Salmonella Infections, Animal/prevention & control
- Skin Transplantation/immunology
- Skin Transplantation/mortality
- Survival Rate
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/biosynthesis
- Up-Regulation/drug effects
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Jian Xu
- Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Perez SA, Sotiropoulou PA, Gkika DG, Mahaira LG, Niarchos DK, Gritzapis AD, Kavalakis YG, Antsaklis AI, Baxevanis CN, Papamichail M. A novel myeloid-like NK cell progenitor in human umbilical cord blood. Blood 2003; 101:3444-50. [PMID: 12506032 DOI: 10.1182/blood-2002-05-1501] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cell differentiation from pluripotent CD34(+) human hematopoietic stem cells or oligopotent lymphoid progenitors has already been reported. In the present study, long-term cultures of the CD56(-)/CD34(-) myeloid-like adherent cell fraction (ACF) from umbilical cord blood (UCB), characterized by the expression of CD14(+) as well as other myeloid markers, were set up with flt3 ligand (FL) and interleukin-15 (IL-15). The UCB/ACF gradually expressed the CD56 marker, which reached fairly high levels (approximately 90% of the cells were CD56(+)) by day 15. FL plus IL-15-driven ACF/CD56(+) cells progressively expressed a mature NK functional program lysing both NK- and lymphokine-activate killer (LAK)-sensitive tumor targets and producing high levels of interferon-gamma (IFN-gamma), granulocyte-macrophage colony-stimulating factor, tumor necrosis factor alpha, and IL-10 upon stimulation with IL-12 and IL-18. Similar results were obtained when highly purified CD14(+) cells from UCB were cultured with FL and IL-15. In contrast, UCB/CD34(+) cells cultured under the same conditions showed a delayed expression of CD56 and behaved functionally differently in that they exhibited NK but not LAK cytotoxicity and produced significantly fewer cytokines. Kinetic studies on the phenotype of UCB/ACF or UCB/CD14(+) cells cultured in the presence of FL and IL-15 showed a rapid decrease in CD14 expression after day 5, which reached levels of zero by day 20. Approximately 60% of the CD56(+) derived from the UCB/ACF or the UCB/CD14(+) cells coexpressed CD14 by day 5. Taken together, our data support the role of CD14(+) myeloid-like cells within UCB as a novel progenitor for lymphoid NK cells.
Collapse
Affiliation(s)
- Sonia A Perez
- Cancer Immunology Immunotherapy Center, Saint Savas Hospital, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Muench MO, Suskind DL, Bárcena A. Isolation, growth and identification of colony-forming cells with erythroid, myeloid, dendritic cell and NK-cell potential from human fetal liver. Biol Proced Online 2002; 4:10-23. [PMID: 12734573 PMCID: PMC145552 DOI: 10.1251/bpo29] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 05/16/2002] [Accepted: 05/27/2002] [Indexed: 12/04/2022] Open
Abstract
The study of hematopoietic stem cells (HSCs) and the process by which they differentiate into committed progenitors has been hampered by the lack of in vitro clonal assays that can support erythroid, myeloid and lymphoid differentiation. We describe a method for the isolation from human fetal liver of highly purified candidate HSCs and progenitors based on the phenotypes CD38(-)CD34(++) and CD38(+)CD34(++), respectively. We also describe a method for the growth of colony-forming cells (CFCs) from these cell populations, under defined culture conditions, that supports the differentiation of erythroid, CD14/CD15(+) myeloid, CD1a(+) dendritic cell and CD56(+) NK cell lineages. Flow cytometric analyses of individual colonies demonstrate that CFCs with erythroid, myeloid and lymphoid potential are distributed among both the CD38(-) and CD38(+) populations of CD34(++) progenitors.
Collapse
Affiliation(s)
- Marcus O Muench
- Department of Laboratory Medicine, University of California at San Francisco. 3rd & Parnassus Ave., Room U-440; San Francisco, CA 94143-0793.
| | | | | |
Collapse
|
30
|
Sivori S, Falco M, Marcenaro E, Parolini S, Biassoni R, Bottino C, Moretta L, Moretta A. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci U S A 2002; 99:4526-31. [PMID: 11917118 PMCID: PMC123681 DOI: 10.1073/pnas.072065999] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Accepted: 02/04/2002] [Indexed: 11/18/2022] Open
Abstract
In this study we analyzed the progression of cell surface receptor expression during the in vitro-induced human natural killer (NK) cell maturation from CD34(+) Lin(-) cell precursors. NKp46 and NKp30, two major triggering receptors that play a central role in natural cytotoxicity, were expressed before the HLA class I-specific inhibitory receptors. Moreover, their appearance at the cell surface correlated with the acquisition of cytolytic activity by developing NK cells. Although the early expression of triggering receptors may provide activating signals required for inducing further cell differentiation, it may also affect the self-tolerance of developing NK cells. Our data show that a fail-safe mechanism preventing killing of normal autologous cells may be provided by the 2B4 surface molecule, which, at early stages of NK cell differentiation, functions as an inhibitory rather than as an activating receptor.
Collapse
Affiliation(s)
- Simona Sivori
- Dipartimento di Medicina Sperimentale, Università di Genova, Via L.B. Alberti 2, 16132 Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kasaian MT, Whitters MJ, Carter LL, Lowe LD, Jussif JM, Deng B, Johnson KA, Witek JS, Senices M, Konz RF, Wurster AL, Donaldson DD, Collins M, Young DA, Grusby MJ. IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 2002; 16:559-69. [PMID: 11970879 DOI: 10.1016/s1074-7613(02)00295-9] [Citation(s) in RCA: 379] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
IFNalpha/beta, IL-12, and IL-15 regulate NK cell activation and expansion, but signals triggering resolution of the NK response upon induction of adaptive immunity remain to be defined. We now report that IL-21, a product of activated T cells, may serve this function. Mice lacking IL-21R (IL-21R(-/-)) had normal NK cell development but no detectable responses to IL-21. IL-21 enhanced cytotoxic activity and IFNgamma production by activated murine NK cells but did not support their viability, thus limiting their duration of activation. Furthermore, IL-21 blocked IL-15-induced expansion of resting NK cells, thus preventing the initiation of further innate responses. In contrast, IL-21 enhanced the proliferation, IFNgamma production, and cytotoxic function of CD8(+) effector T cells in an allogeneic MLR. These observations suggest that IL-21 promotes the transition between innate and adaptive immunity.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytotoxicity, Immunologic
- Female
- Hyaluronan Receptors/immunology
- Immunity, Active
- Immunity, Innate
- Interleukin-15/immunology
- Interleukin-21 Receptor alpha Subunit
- Interleukins/immunology
- Interleukins/pharmacology
- Isoantigens/immunology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Receptors, Interleukin-2/biosynthesis
- Receptors, Interleukin-21
Collapse
|
32
|
Loza MJ, Zamai L, Azzoni L, Rosati E, Perussia B. Expression of type 1 (interferon gamma) and type 2 (interleukin-13, interleukin-5) cytokines at distinct stages of natural killer cell differentiation from progenitor cells. Blood 2002; 99:1273-81. [PMID: 11830476 DOI: 10.1182/blood.v99.4.1273] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether production of type 1 and type 2 cytokines defines discrete stages of natural killer (NK) cell differentiation, cytokine expression was analyzed in human NK cells generated in vitro in the presence of interleukin-15 (IL-15) and/or IL-2 from umbilical cord blood hematopoietic progenitors. Like peripheral NK cells, the CD161(+)/CD56(+) NK cells from these cultures contained a tumor necrosis factor alpha (TNF-alpha)(+)/granulocyte macrophage-colony-stimulating factor (GM-CSF)(+) subset, an interferon gamma (IFN-gamma)(+) subset, mostly included within the former, and very few IFN-gamma(-)/IL-13(+) cells. Instead, most immature CD161(+)/CD56(-) NK cells, detectable only in the cultures with IL-2, produced IL-13, TNF-alpha, and GM-CSF, but not IFN-gamma, and contained an IL-5(+) subset. In short-term cultures with IL-12 and feeder cells, a proportion of the immature cells acquired the ability to produce IFN-gamma. Part of these produced both IFN-gamma and IL-13, irrespective of induced CD56 expression. These in vitro data indicate that ability to produce the type 2 cytokines IL-13 and IL-5 defines CD161(+) NK cells at intermediate stages of differentiation, and is lost upon terminal functional differentiation, concomitant with acquired ability to produce IFN-gamma.
Collapse
Affiliation(s)
- Matthew J Loza
- The Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
33
|
Borrego F, Kabat J, Kim DK, Lieto L, Maasho K, Peña J, Solana R, Coligan JE. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol 2002; 38:637-60. [PMID: 11858820 DOI: 10.1016/s0161-5890(01)00107-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells express receptors that are specific for MHC class I molecules. These receptors play a crucial role in regulating the lytic and cytokine expression capabilities of NK cells. In humans, three distinct families of genes have been defined that encode for receptors of HLA class I molecules. The first family identified consists of type I transmembrane molecules belonging to the immunoglobulin (Ig) superfamily and are called killer cell Ig-like receptors (KIR). A second group of receptors belonging to the Ig superfamily, named ILT (for immunoglobulin like transcripts), has more recently been described. ILTs are expressed mainly on B, T and myeloid cells, but some members of this group are also expressed on NK cells. They are also referred to as LIRs (for leukocyte Ig-like receptor) and MIRs (for macrophage Ig-like receptor). The ligands for the KIR and some of the ILT receptors include classical (class Ia) HLA class I molecules, as well as the nonclassical (class Ib) HLA-G molecule. The third family of HLA class I receptors are C-type lectin family members and are composed of heterodimers of CD94 covalently associated with a member of the NKG2 family of molecules. The ligand for most members is the nonclassical class I molecule HLA-E. NKG2D, a member of the NKG2 family, is expressed as a homodimer, along with the adaptor molecule DAP10. The ligands of NKG2D include the human class I like molecules MICA and MICB, and the recently described ULBPs. Each of these three families of receptors has individual members that can recognize identical or similar ligands yet signal for activation or inhibition of cellular functions. This dichotomy correlates with particular structural features present in the transmembrane and intracytoplasmic portions of these molecules. In this review we will discuss the molecular structure, specificity, cellular expression patterns, and function of these HLA class I receptors, as well as the chromosomal location and genetic organization.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Twinbrook II, Room 205, 12441 Parklawn Dr., Rockville, MD 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Muench MO, Bárcena A. Broad distribution of colony-forming cells with erythroid, myeloid, dendritic cell, and NK cell potential among CD34(++) fetal liver cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4902-9. [PMID: 11673495 DOI: 10.4049/jimmunol.167.9.4902] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The generation of erythroid, myeloid, and lymphoid cells from human fetal liver progenitors was studied in colony-forming cell (CFC) assays. CD38(-) and CD38(+) progenitors that expressed high levels of CD34 were grown in serum-deprived medium supplemented with kit ligand, flk2/flt3 ligand, GM-CSF, c-mpl ligand, erythropoietin, and IL-15. The resulting colonies were individually analyzed by flow cytometry. CD56(+) NK cells were detected in 21.9 and 9.9% of colonies grown from CD38(-) and CD38(+) progenitors, respectively. NK cells were detected in mostly large CD14(+)/CD15(+) myeloid colonies that also, in some cases, contained red cells. NK cells were rarely detected in erythroid colonies, suggesting an early split between the erythroid and the NK cell lineages. CD1a(+) dendritic cells were also present in three-quarters of the colonies grown from CD38(-) and CD38(+) progenitors. Multilineage colonies containing erythrocytes, myeloid cells, and NK cells were present in 13.7 and 2.7% of colonies grown from CD38(-) and CD38(+) progenitors, respectively. High proliferative-potential CFCs that generated multilineage colonies were also detected among both populations of progenitors. The total number of high proliferative-potential CFCs with erythroid, myeloid, and NK cell potential was estimated to be 2-fold higher in the CD38(+) fraction compared with the CD38(-) fraction because of the higher frequency of CD38(+) cells among CD34(++) cells. The broad distribution of multipotent CFCs among CD38(-) and CD38(+) progenitors suggests that the segregation of the erythroid, myeloid, and lymphoid lineages may not always be an early event in hemopoiesis. Alternatively, some stem cells may be present among CD38(+) cells.
Collapse
Affiliation(s)
- M O Muench
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
35
|
Muench MO, Rae J, Bárcena A, Leemhuis T, Farrell J, Humeau L, Maxwell-Wiggins JR, Capper J, Mychaliska GB, Albanese CT, Martin T, Tsukamoto A, Curnutte JT, Harrison MR. Transplantation of a fetus with paternal Thy-1(+)CD34(+)cells for chronic granulomatous disease. Bone Marrow Transplant 2001; 27:355-64. [PMID: 11313664 DOI: 10.1038/sj.bmt.1702798] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2000] [Accepted: 11/17/2000] [Indexed: 01/19/2023]
Abstract
A fetus diagnosed with X-linked chronic granulomatous disease was transplanted with Thy-1(+)CD34(+) cells of paternal origin. The transplant was performed at 14 weeks gestation by ultrasound guided injection into the peritoneal cavity. The fetus was delivered at 38 weeks gestation after an otherwise uneventful pregnancy. Umbilical cord blood was collected and used to determine the level of peripheral blood chimerism as well as levels of functional engrafted cells. Flow cytometry was used to detect donor leukocytes identified as HLA-A2(-)B7(+) cells, whereas recipient cells were identified as HLA-A2(+)B7(-) cells. No evidence of donor cell engraftment above a level of 0.01% was found. PCR was used to detect HLA-DRB1*15(+) donor cells among the recipient's HLA-DRB1*15(-) cells, but no engraftment was seen with a sensitivity of 1:1000. The presence of functional, donor-derived neutrophils was assessed by flow cytometry using two different fluorescent dyes that measure reactive oxygen species generated by the phagocyte NADPH oxidase. No evidence of paternal-derived functional neutrophils above a level of 0.15% was observed. Peripheral blood and bone marrow samples were collected at 6 months of age. Neither sample showed engraftment by HLA typing using both flow cytometry and PCR. Functional phagocytes were also not observed. Furthermore, no indication of immunological tolerance specific for the donor cells was indicated by a mixed lymphocyte reaction assay performed at 6 months of age. While there appears to be no engraftment of the donor stem cells, the transplant caused no harm to the fetus and the child was healthy at 6 months of age. Analyses of fetal tissues, obtained from elective abortions, revealed that CD3(+) T cells and CD56(+)CD3(-) NK cells are present in the liver at 8 weeks gestation and in the blood by 9 weeks gestation. The presence of these lymphocytes may contribute to the lack of donor cell engraftment in the human fetus.
Collapse
Affiliation(s)
- M O Muench
- Fetal Treatment Center at the University of California, San Francisco 94143-0793, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|