1
|
Carlos López-Ramos J, Martínez-Lara E, Serrano J, Fernández P, Parras GG, Ruiz-Marcos A, Rodrigo J. Nitric oxide synthase system in the brain development of neonatal hypothyroid rats. Neuroscience 2024:S0306-4522(24)00551-7. [PMID: 39461663 DOI: 10.1016/j.neuroscience.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Thyroid hormones play an important morphogenetic role during the fetal and neonatal periods and regulate numerous metabolic processes. In the central nervous system, they control myelination and overall brain development, regional gene expression, and regulation of oxygen consumption. Their deficiency in the fetal and neonatal periods causes severe mental retardation, due to lack of thyroid function, or to iodine deficiency. At the same time, nitric oxide is an atypical neurotransmitter that also has special relevance in neuronal development and plasticity and functions as a vasodilator, regulating cerebral blood flow. Although under physiological conditions it functions as a neuroprotector, in excess it can be neurotoxic. We have studied, by immunocytochemical and Western blot techniques, the evolution of the expression of neuronal and inducible isoforms of the enzyme nitric oxide synthase, and of nitrotyrosine as a marker of protein nitration produced by the presence of nitric oxide, during the early stages of postnatal brain development. We induced hypothyroidism by administering mercaptomethylimidazole to pregnant mothers, from the seventh day of gestation until the sacrifice of the offspring. The results show a delay in the evolution of the expression of the two isoforms of the enzyme nitric oxide synthase in hypothyroid animals, followed by an anomalous overexpression in later stages. Finally, the expression of nitrotyrosine follows an evolution that is synchronized with that shown by both isoenzymes in control and hypothyroid animals.
Collapse
Affiliation(s)
- Juan Carlos López-Ramos
- División de Neurociencias, Universidad Pablo de Olavide, Seville ES-41013, Spain; Instituto Cajal, Avda. Doctor Arce, 24, Madrid 28002, Spain.
| | - Esther Martínez-Lara
- Departmento de Biología Experimental, Universidad de Jaén, Campus de Las Lagunillas s/n, Jaén 23071, Spain
| | - Julia Serrano
- Instituto Cajal, Avda. Doctor Arce, 24, Madrid 28002, Spain
| | | | - Gloria G Parras
- División de Neurociencias, Universidad Pablo de Olavide, Seville ES-41013, Spain
| | | | - José Rodrigo
- Instituto Cajal, Avda. Doctor Arce, 24, Madrid 28002, Spain
| |
Collapse
|
2
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Jones E, McLaughlin KA. A Novel Perspective on Neuronal Control of Anatomical Patterning, Remodeling, and Maintenance. Int J Mol Sci 2023; 24:13358. [PMID: 37686164 PMCID: PMC10488252 DOI: 10.3390/ijms241713358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
While the nervous system may be best known as the sensory communication center of an organism, recent research has revealed a myriad of multifaceted roles for both the CNS and PNS from early development to adult regeneration and remodeling. These systems work to orchestrate tissue pattern formation during embryonic development and continue shaping pattering through transitional periods such as metamorphosis and growth. During periods of injury or wounding, the nervous system has also been shown to influence remodeling and wound healing. The neuronal mechanisms responsible for these events are largely conserved across species, suggesting this evidence may be important in understanding and resolving many human defects and diseases. By unraveling these diverse roles, this paper highlights the necessity of broadening our perspective on the nervous system beyond its conventional functions. A comprehensive understanding of the complex interactions and contributions of the nervous system throughout development and adulthood has the potential to revolutionize therapeutic strategies and open new avenues for regenerative medicine and tissue engineering. This review highlights an important role for the nervous system during the patterning and maintenance of complex tissues and provides a potential avenue for advancing biomedical applications.
Collapse
Affiliation(s)
| | - Kelly A. McLaughlin
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA;
| |
Collapse
|
4
|
Vancamp P, Butruille L, Herranen A, Boelen A, Fini JB, Demeneix BA, Remaud S. Transient developmental exposure to low doses of bisphenol F negatively affects neurogliogenesis and olfactory behaviour in adult mice. ENVIRONMENT INTERNATIONAL 2023; 172:107770. [PMID: 36706583 DOI: 10.1016/j.envint.2023.107770] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Neural stem cells in the murine subventricular zone (SVZ) reactivate during postnatal development to generate neurons and glia throughout adulthood. We previously demonstrated that a postnatal thyroid hormone (TH) peak orchestrates this remodelling, rendering this process vulnerable to endocrine disruption. We exposed mice to 2 or 200 µg/kg bw/day of the bisphenol A-replacement and suspected TH-disruptor bisphenol F (BPF) in the drinking water, from embryonic day 15 to postnatal day 21 (P21). In parallel, one group was exposed to the TH-synthesis blocker propylthiouracil (0.15 % PTU). In contrast to PTU, BPF exposure did not affect serum TH levels at P15, P21 or P60. RNA-seq on dissected SVZs at P15 revealed dysregulated neurodevelopmental genes in all treatments, although few overlapped amongst the conditions. We then investigated the phenotype at P60 to analyse long-term consequences of transient developmental exposure. As opposed to hypothyroid conditions, and despite dysregulated oligodendrogenesis-promoting genes in the P15 SVZ exposed to the highest dose of BPF, immunostainings for myelin and OLIG2/CC1 showed no impact on global myelin content nor oligodendrocyte maturation in the P60 corpus callosum, apart from a reduced thickness. The highest dose did reduce numbers of newly generated SVZ-neuroblasts with 22 %. Related to this were behavioural alterations. P60 mice previously exposed to the highest BPF dose memorized an odour less well than control animals did, although they performed better than PTU-exposed animals. All mice could discriminate new odours, but all exposed groups showed less interest in social odours. Our data indicate that perinatal exposure to low doses of BPF disrupts postnatal murine SVZ remodelling, and lowers the adult neuron/oligodendroglia output, even after exposure had been absent for 40 days. These anomalies warrant further investigation on the potential harm of alternative bisphenol compounds for human foetal brain development.
Collapse
Affiliation(s)
- Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Anni Herranen
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Jean-Baptiste Fini
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, F-75005 Paris, France.
| |
Collapse
|
5
|
Thyroid and Corticosteroid Signaling in Amphibian Metamorphosis. Cells 2022; 11:cells11101595. [PMID: 35626631 PMCID: PMC9139329 DOI: 10.3390/cells11101595] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/25/2023] Open
Abstract
In multicellular organisms, development is based in part on the integration of communication systems. Two neuroendocrine axes, the hypothalamic–pituitary–thyroid and the hypothalamic–pituitary–adrenal/interrenal axes, are central players in orchestrating body morphogenesis. In all vertebrates, the hypothalamic–pituitary–thyroid axis controls thyroid hormone production and release, whereas the hypothalamic–pituitary–adrenal/interrenal axis regulates the production and release of corticosteroids. One of the most salient effects of thyroid hormones and corticosteroids in post-embryonic developmental processes is their critical role in metamorphosis in anuran amphibians. Metamorphosis involves modifications to the morphological and biochemical characteristics of all larval tissues to enable the transition from one life stage to the next life stage that coincides with an ecological niche switch. This transition in amphibians is an example of a widespread phenomenon among vertebrates, where thyroid hormones and corticosteroids coordinate a post-embryonic developmental transition. The review addresses the functions and interactions of thyroid hormone and corticosteroid signaling in amphibian development (metamorphosis) as well as the developmental roles of these two pathways in vertebrate evolution.
Collapse
|
6
|
Vancamp P, Le Blay K, Butruille L, Sébillot A, Boelen A, Demeneix BA, Remaud S. Developmental thyroid disruption permanently affects the neuroglial output in the murine subventricular zone. Stem Cell Reports 2022; 17:459-474. [PMID: 35120623 PMCID: PMC9039754 DOI: 10.1016/j.stemcr.2022.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Neural stem cells (NSCs) in the adult brain are a source of neural cells for brain injury repair. We investigated whether their capacity to generate new neurons and glia is determined by thyroid hormone (TH) during development because serum levels peak during postnatal reorganization of the main NSC niche, the subventricular zone (SVZ). Re-analysis of mouse transcriptome data revealed increased expression of TH transporters and deiodinases in postnatal SVZ NSCs, promoting local TH action, concomitant with a burst in neurogenesis. Inducing developmental hypothyroidism reduced NSC proliferation, disrupted expression of genes implicated in NSC determination and TH signaling, and altered the neuron/glia output in newborns. Three-month-old adult mice recovering from developmental hypothyroidism had fewer olfactory interneurons and underperformed on short-memory odor tests, dependent on SVZ neurogenesis. Our data provide readouts permitting comparison with adverse long-term events following thyroid disruptor exposure and ideas regarding the etiology of prevalent neurodegenerative diseases in industrialized countries. Thyroid hormone peak associates with a neurogenic wave in the postnatal murine SVZ Single-cell RNA-seq data show increased TH action in SVZ progenitors at that stage Developmental hypothyroidism disrupts neuroglial commitment and associated genes Transient developmental TH depletion impairs adult neurogliogenesis and olfaction
Collapse
Affiliation(s)
- Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 Rue Cuvier, 75005 Paris, France
| | - Karine Le Blay
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 Rue Cuvier, 75005 Paris, France
| | - Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 Rue Cuvier, 75005 Paris, France
| | - Anthony Sébillot
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 Rue Cuvier, 75005 Paris, France
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, 1105 Amsterdam, the Netherlands
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 Rue Cuvier, 75005 Paris, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 Rue Cuvier, 75005 Paris, France.
| |
Collapse
|
7
|
Tanizaki Y, Shibata Y, Zhang H, Shi YB. Thyroid Hormone Receptor α Controls the Hind Limb Metamorphosis by Regulating Cell Proliferation and Wnt Signaling Pathways in Xenopus tropicalis. Int J Mol Sci 2022; 23:ijms23031223. [PMID: 35163147 PMCID: PMC8835992 DOI: 10.3390/ijms23031223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Thyroid hormone (T3) receptors (TRs) mediate T3 effects on vertebrate development. We have studied Xenopus tropicalis metamorphosis as a model for postembryonic human development and demonstrated that TRα knockout induces precocious hind limb development. To reveal the molecular pathways regulated by TRα during limb development, we performed chromatin immunoprecipitation- and RNA-sequencing on the hind limb of premetamorphic wild type and TRα knockout tadpoles, and identified over 700 TR-bound genes upregulated by T3 treatment in wild type but not TRα knockout tadpoles. Interestingly, most of these genes were expressed at higher levels in the hind limb of premetamorphic TRα knockout tadpoles than stage-matched wild-type tadpoles, suggesting their derepression upon TRα knockout. Bioinformatic analyses revealed that these genes were highly enriched with cell cycle and Wingless/Integrated (Wnt) signaling-related genes. Furthermore, cell cycle and Wnt signaling pathways were also highly enriched among genes bound by TR in wild type but not TRα knockout hind limb. These findings suggest that direct binding of TRα to target genes related to cell cycle and Wnt pathways is important for limb development: first preventing precocious hind limb formation by repressing these pathways as unliganded TR before metamorphosis and later promoting hind limb development during metamorphosis by mediating T3 activation of these pathways.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (Y.T.); (Y.S.)
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (Y.T.); (Y.S.)
- Center for the Development of New Model Organisms, National Institute for Basic Biology, National Institute of Natural Sciences, Okazaki 444-8585, Aichi, Japan
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (Y.T.); (Y.S.)
- Correspondence:
| |
Collapse
|
8
|
Uchida K, Suzuki M. Congenital Hypothyroidism and Brain Development: Association With Other Psychiatric Disorders. Front Neurosci 2021; 15:772382. [PMID: 34955723 PMCID: PMC8695682 DOI: 10.3389/fnins.2021.772382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones play an important role in brain development, and thyroid hormone insufficiency during the perinatal period results in severe developmental delays. Perinatal thyroid hormone deficiency is clinically known as congenital hypothyroidism, which is caused by dysgenesis of the thyroid gland or low iodine intake. If the disorder is not diagnosed or not treated early, the neuronal architecture is perturbed by thyroid hormone insufficiency, and neuropathological findings, such as abnormal synapse formation, defects in neuronal migration, and impairment of myelination, are observed in the brains of such patients. Furthermore, the expression of psychiatric disorder-related molecules, especially parvalbumin, is significantly decreased by thyroid hormone insufficiency during the perinatal period. Animal experiments using hypothyroidism models display decreased parvalbumin expression and abnormal brain architecture, and these experimental results show reproducibility and stability. These basic studies reinforce the results of epidemiological studies, suggesting the relevance of thyroid dysfunction in psychiatric disorders. In this review, we discuss the disruption of brain function associated with congenital hypothyroidism from the perspective of basic and clinical research.
Collapse
Affiliation(s)
- Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Mao Suzuki
- Laboratory of Biomodeling, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Tampakakis E, Mahmoud AI. The role of hormones and neurons in cardiomyocyte maturation. Semin Cell Dev Biol 2021; 118:136-143. [PMID: 33931308 DOI: 10.1016/j.semcdb.2021.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
The heart undergoes profound morphological and functional changes as it continues to mature postnatally. However, this phase of cardiac development remains understudied. More recently, cardiac maturation research has attracted a lot of interest due to the need for more mature stem cell-derived cardiomyocytes for disease modeling, drug screening and heart regeneration. Additionally, neonatal heart injury models have been utilized to study heart regeneration, and factors regulating postnatal heart development have been associated with adult cardiac disease. Critical components of cardiac maturation are systemic and local biochemical cues. Specifically, cardiac innervation and the concentration of various metabolic hormones appear to increase perinatally and they have striking effects on cardiomyocytes. Here, we first report some of the key parameters of mature cardiomyocytes and then discuss the specific effects of neurons and hormonal cues on cardiomyocyte maturation. We focus primarily on the structural, electrophysiologic, metabolic, hypertrophic and hyperplastic effects of each factor. This review highlights the significance of underappreciated regulators of cardiac maturation and underscores the need for further research in this exciting field.
Collapse
Affiliation(s)
- Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Thyroid hormone insufficiency alters the expression of psychiatric disorder-related molecules in the hypothyroid mouse brain during the early postnatal period. Sci Rep 2021; 11:6723. [PMID: 33762687 PMCID: PMC7990947 DOI: 10.1038/s41598-021-86237-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
The functional role of thyroid hormone (TH) in the cortex and hippocampus of mouse during neuronal development was investigated in this study. TH insufficiency showed a decrease in the expression of parvalbumin (PV) in the cortex and hippocampus of pups at postnatal day (PD) 14, while treatment with thyroxine from PD 0 to PD 14 ameliorated the PV loss. On the other hand, treatment with antithyroid agents in adulthood did not result in a decrease in the expression of PV in these areas. These results indicate the existence of a critical period of TH action during the early postnatal period. A decrease in MeCP2-positive neuronal nuclei was also observed in the cortical layers II–IV of the cerebral cortex. The brains were then stained with CUX1, a marker for cortical layers II–IV. In comparison with normal mice, CUX1 signals were decreased in the somatosensory cortex of the hypothyroid mice, and the total thickness of cortical layers II–IV of the mice was lower than that of normal mice. These results suggest that TH insufficiency during the perinatal period strongly and broadly affects neuronal development.
Collapse
|
11
|
Tanizaki Y, Shibata Y, Zhang H, Shi YB. Analysis of Thyroid Hormone Receptor α-Knockout Tadpoles Reveals That the Activation of Cell Cycle Program Is Involved in Thyroid Hormone-Induced Larval Epithelial Cell Death and Adult Intestinal Stem Cell Development During Xenopus tropicalis Metamorphosis. Thyroid 2021; 31:128-142. [PMID: 32515287 PMCID: PMC7840310 DOI: 10.1089/thy.2020.0022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: There are two highly conserved thyroid hormone (triiodothyronine [T3]) receptor (TR) genes, TRα and TRβ, in all vertebrates, and the expression of TRα but not TRβ is activated earlier than T3 synthesis during development. In human, high levels of T3 are present during the several months around birth, and T3 deficiency during this period causes severe developmental abnormalities including skeletal and intestinal defects. It is, however, difficult to study this period in mammals as the embryos and neonates depend on maternal supply of nutrients for survival. However, Xenopus tropicalis undergoes a T3-dependent metamorphosis, which drastically changes essentially every organ in a tadpole. Of interest is intestinal remodeling, which involves near complete degeneration of the larval epithelium through apoptosis. Concurrently, adult intestinal stem cells are formed de novo and subsequently give rise to the self-renewing adult epithelial system, resembling intestinal maturation around birth in mammals. We have previously demonstrated that T3 signaling is essential for the formation of adult intestinal stem cells during metamorphosis. Methods: We studied the function of endogenous TRα in the tadpole intestine by using knockout animals and RNA-seq analysis. Results: We observed that removing endogenous TRα caused defects in intestinal remodeling, including drastically reduced larval epithelial cell death and adult intestinal stem cell proliferation. Using RNA-seq on intestinal RNA from premetamorphic wild-type and TRα-knockout tadpoles treated with or without T3 for one day, before any detectable T3-induced cell death and stem cell formation in the tadpole intestine, we identified more than 1500 genes, which were regulated by T3 treatment of the wild-type but not TRα-knockout tadpoles. Gene Ontology and biological pathway analyses revealed that surprisingly, these TRα-regulated genes were highly enriched with cell cycle-related genes, in addition to genes related to stem cells and apoptosis. Conclusions: Our findings suggest that TRα-mediated T3 activation of the cell cycle program is involved in larval epithelial cell death and adult epithelial stem cell development during intestinal remodeling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 49 Room 6A82, Bethesda, MD 20814, USA
| |
Collapse
|
12
|
Abstract
Understanding how to promote organ and appendage regeneration is a key goal of regenerative medicine. The frog, Xenopus, can achieve both scar-free healing and tissue regeneration during its larval stages, although it predominantly loses these abilities during metamorphosis and adulthood. This transient regenerative capacity, alongside their close evolutionary relationship with humans, makes Xenopus an attractive model to uncover the mechanisms underlying functional regeneration. Here, we present an overview of Xenopus as a key model organism for regeneration research and highlight how studies of Xenopus have led to new insights into the mechanisms governing regeneration.
Collapse
Affiliation(s)
- Lauren S Phipps
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Lindsey Marshall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
13
|
Gothié J, Vancamp P, Demeneix B, Remaud S. Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiol (Oxf) 2020; 228:e13316. [PMID: 31121082 PMCID: PMC9286394 DOI: 10.1111/apha.13316] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
In the vertebrate brain, neural stem cells (NSCs) generate both neuronal and glial cells throughout life. However, their neuro‐ and gliogenic capacity changes as a function of the developmental context. Despite the growing body of evidence on the variety of intrinsic and extrinsic factors regulating NSC physiology, their precise cellular and molecular actions are not fully determined. Our review focuses on thyroid hormone (TH), a vital component for both development and adult brain function that regulates NSC biology at all stages. First, we review comparative data to analyse how TH modulates neuro‐ and gliogenesis during vertebrate brain development. Second, as the mammalian brain is the most studied, we highlight the molecular mechanisms underlying TH action in this context. Lastly, we explore how the interplay between TH signalling and cell metabolism governs both neurodevelopmental and adult neurogenesis. We conclude that, together, TH and cellular metabolism regulate optimal brain formation, maturation and function from early foetal life to adult in vertebrate species.
Collapse
Affiliation(s)
- Jean‐David Gothié
- Department of Neurology & Neurosurgery Montreal Neurological Institute & Hospital, McGill University Montreal Quebec Canada
| | - Pieter Vancamp
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| | | | - Sylvie Remaud
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| |
Collapse
|
14
|
Easterling MR, Engbrecht KM, Crespi EJ. Endocrine Regulation of Epimorphic Regeneration. Endocrinology 2019; 160:2969-2980. [PMID: 31593236 DOI: 10.1210/en.2019-00321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Studies aiming to uncover primary mechanisms of regeneration have predominantly focused on genetic pathways regulating specific stages in the regeneration process: wound healing, blastema formation, and pattern formation. However, studies across organisms show that environmental conditions and the physiological state of the animal can affect the rate or quality of regeneration, and endocrine signals are likely the mediators of these effects. Endocrine signals acting directly on receptors expressed in the tissue or via neuroendocrine pathways can affect regeneration by regulating the immune response to injury, allocation of energetic resources, or by enhancing or inhibiting proliferation and differentiation pathways involved in regeneration. This review discusses the cumulative knowledge in the literature about endocrine regulation of regeneration and its importance in future research to advance biomedical research.
Collapse
Affiliation(s)
- Marietta R Easterling
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Kristin M Engbrecht
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
- Pacific Northwest National Laboratory, Richland, Washington
| | - Erica J Crespi
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
15
|
Easterling MR, Engbrecht KM, Crespi EJ. Endocrine regulation of regeneration: Linking global signals to local processes. Gen Comp Endocrinol 2019; 283:113220. [PMID: 31310748 DOI: 10.1016/j.ygcen.2019.113220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
Regeneration in amphibians and reptiles has been explored since the early 18th century, giving us a working in vivo model to study epimorphic regeneration in vertebrates. Studies aiming to uncover primary mechanisms of regeneration have predominantly focused on genetic pathways regulating specific stages of the regeneration process: wound healing, blastema formation and growth, and pattern formation. However, studies across organisms show that environmental conditions and physiological state of the animal can affect the rate or quality of regeneration, and endocrine signals are likely the mediators of these effects. Endocrine signals working/acting directly on receptors expressed in the structure or via neuroendocrine pathways can affect regeneration by modulating immune response to injury, allocation of energetic resources, or by enhancing or inhibiting proliferation and differentiation pathways in regenerating tissue. This review discusses the cumulative knowledge known about endocrine regulation of regeneration and important future research directions of interest to both ecological and biomedical research.
Collapse
Affiliation(s)
- Marietta R Easterling
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States.
| | - Kristin M Engbrecht
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States; Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Erica J Crespi
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States
| |
Collapse
|
16
|
Sachs LM, Buchholz DR. Insufficiency of Thyroid Hormone in Frog Metamorphosis and the Role of Glucocorticoids. Front Endocrinol (Lausanne) 2019; 10:287. [PMID: 31143159 PMCID: PMC6521741 DOI: 10.3389/fendo.2019.00287] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) is the most important hormone in frog metamorphosis, a developmental process which will not occur in the absence of TH but can be induced precociously by exogenous TH. However, such treatments including in-vitro TH treatments often do not replicate the events of natural metamorphosis in many organs, including lung, brain, blood, intestine, pancreas, tail, and skin. A potential explanation for the discrepancy between natural and TH-induced metamorphosis is the involvement of glucocorticoids (GCs). GCs are not able to advance development by themselves but can modulate the rate of developmental progress induced by TH via increased tissue sensitivity to TH. Global gene expression analyses and endocrine experiments suggest that GCs may also have direct actions required for completion of metamorphosis independent of their effects on TH signaling. Here, we provide a new review and analysis of the requirement and necessity of TH signaling in light of recent insights from gene knockout frogs. We also examine the independent and interactive roles GCs play in regulating morphological and molecular metamorphic events dependent upon TH.
Collapse
Affiliation(s)
- Laurent M. Sachs
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'histoire Naturelle, Paris, France
| | - Daniel R. Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
17
|
Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc Natl Acad Sci U S A 2019; 116:3614-3623. [PMID: 30755533 DOI: 10.1073/pnas.1803794116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite therapeutic advances, heart failure is the major cause of morbidity and mortality worldwide, but why cardiac regenerative capacity is lost in adult humans remains an enigma. Cardiac regenerative capacity widely varies across vertebrates. Zebrafish and newt hearts regenerate throughout life. In mice, this ability is lost in the first postnatal week, a period physiologically similar to thyroid hormone (TH)-regulated metamorphosis in anuran amphibians. We thus assessed heart regeneration in Xenopus laevis before, during, and after TH-dependent metamorphosis. We found that tadpoles display efficient cardiac regeneration, but this capacity is abrogated during the metamorphic larval-to-adult switch. Therefore, we examined the consequence of TH excess and deprivation on the efficiently regenerating tadpole heart. We found that either acute TH treatment or blocking TH production before resection significantly but differentially altered gene expression and kinetics of extracellular matrix components deposition, and negatively impacted myocardial wall closure, both resulting in an impeded regenerative process. However, neither treatment significantly influenced DNA synthesis or mitosis in cardiac tissue after amputation. Overall, our data highlight an unexplored role of TH availability in modulating the cardiac regenerative outcome, and present X. laevis as an alternative model to decipher the developmental switches underlying stage-dependent constraint on cardiac regeneration.
Collapse
|
18
|
Kerdivel G, Blugeon C, Fund C, Rigolet M, Sachs LM, Buisine N. Opposite T 3 Response of ACTG1-FOS Subnetwork Differentiate Tailfin Fate in Xenopus Tadpole and Post-hatching Axolotl. Front Endocrinol (Lausanne) 2019; 10:194. [PMID: 31001200 PMCID: PMC6454024 DOI: 10.3389/fendo.2019.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/07/2019] [Indexed: 01/13/2023] Open
Abstract
Amphibian post-embryonic development and Thyroid Hormones (TH) signaling are deeply and intimately connected. In anuran amphibians, TH induce the spectacular and complex process known as metamorphosis. In paedomorphic salamanders, at similar development time, raising levels of TH fail to induce proper metamorphosis, as many "larval" tissues (e.g., gills, tailfin) are maintained. Why does the same evolutionary conserved signaling pathway leads to alternative phenotypes? We used a combination of developmental endocrinology, functional genomics and network biology to compare the transcriptional response of tailfin to TH, in the post-hatching paedormorphic Axolotl salamander and Xenopus tadpoles. We also provide a technological framework that efficiently reduces large lists of regulated genes down to a few genes of interest, which is well-suited to dissect endocrine regulations. We first show that Axolotl tailfin undergoes a strong and robust TH-dependent transcriptional response at post embryonic transition, despite the lack of visible anatomical changes. We next show that Fos and Actg1, which structure a single and dense subnetwork of cellular sensors and regulators, display opposite regulation between the two species. We finally show that TH treatments and natural variations of TH levels follow similar transcriptional dynamics. We suggest that, at the molecular level, tailfin fate correlates with the alternative transcriptional states of an fos-actg1 sub-network, which also includes transcription factors and regulators of cell fate. We propose that this subnetwork is one of the molecular switches governing the initiation of distinct TH responses, with transcriptional programs conducting alternative tailfin fate (maintenance vs. resorption) 2 weeks post-hatching.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Corinne Blugeon
- Genomic Facility, CNRS, INSERM, Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, PSL Université Paris, Paris, France
| | - Cédric Fund
- Genomic Facility, CNRS, INSERM, Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, PSL Université Paris, Paris, France
| | - Muriel Rigolet
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Laurent M. Sachs
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
- *Correspondence: Laurent M. Sachs
| | - Nicolas Buisine
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
19
|
Laslo M, Denver RJ, Hanken J. Evolutionary Conservation of Thyroid Hormone Receptor and Deiodinase Expression Dynamics in ovo in a Direct-Developing Frog, Eleutherodactylus coqui. Front Endocrinol (Lausanne) 2019; 10:307. [PMID: 31178826 PMCID: PMC6542950 DOI: 10.3389/fendo.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Direct development is a reproductive mode in amphibians that has evolved independently from the ancestral biphasic life history in at least a dozen anuran lineages. Most direct-developing frogs, including the Puerto Rican coquí, Eleutherodactylus coqui, lack a free-living aquatic larva and instead hatch from terrestrial eggs as miniature adults. Their embryonic development includes the transient formation of many larval-specific features and the formation of adult-specific features that typically form postembryonically-during metamorphosis-in indirect-developing frogs. We found that pre-hatching developmental patterns of thyroid hormone receptors alpha (thra) and beta (thrb) and deiodinases type II (dio2) and type III (dio3) mRNAs in E. coqui limb and tail are conserved relative to those seen during metamorphosis in indirect-developing frogs. Additionally, thra, thrb, and dio2 mRNAs are expressed in the limb before formation of the embryonic thyroid gland. Liquid-chromatography mass-spectrometry revealed that maternally derived thyroid hormone is present throughout early embryogenesis, including stages of digit formation that occur prior to the increase in embryonically produced thyroid hormone. Eleutherodactylus coqui embryos take up much less 3,5,3'-triiodothyronine (T3) from the environment compared with X. tropicalis tadpoles. However, E. coqui tissue explants mount robust and direct gene expression responses to exogenous T3 similar to those seen in metamorphosing species. The presence of key components of the thyroid axis in the limb and the ability of limb tissue to respond to T3 suggest that thyroid hormone-mediated limb development may begin prior to thyroid gland formation. Thyroid hormone-dependent limb development and tail resorption characteristic of metamorphosis in indirect-developing anurans are evolutionarily conserved, but they occur instead in ovo in E. coqui.
Collapse
Affiliation(s)
- Mara Laslo
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
- *Correspondence: Mara Laslo
| | - Robert J. Denver
- Departments of Molecular, Cellular and Developmental Biology, and Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
20
|
Yaoita Y, Nakajima K. Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax. Genes Cells 2018; 23:998-1008. [PMID: 30294949 DOI: 10.1111/gtc.12647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 11/29/2022]
Abstract
Thyroid hormones (THs) induce metamorphosis in amphibians, causing dynamic changes, whereas mammalian newborns undergo environmental transition from placenta to open air at birth. The similarity between amphibian metamorphosis and the mammalian perinatal periods has been repeatedly discussed. However, a corresponding developmental gene expression analysis has not yet been reported. In this study, we examined the developmental gene expression profiles in the brain and liver of Xenopus tropicalis during metamorphosis climax and compared them to the respective gene expression profiles of newborn rodents. Many upregulated genes identified in the tadpole brain during metamorphosis are also upregulated in the rodent brain during the first three postnatal weeks when the TH surge occurs. The upregulation of some genes in the brain was inhibited in thyroid hormone receptor α (TRα) knockout tadpoles but not in TRβ-knockout tadpoles, implying that brain metamorphosis is mainly mediated by TRα. The expression of some genes was also increased in the liver during metamorphosis climax. Our data suggest that the rodent brain undergoes TH-dependent remodeling during the first three postnatal weeks as observed in X. tropicalis during the larva-to-adult metamorphosis.
Collapse
Affiliation(s)
- Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
21
|
Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep 2018. [PMID: 29535325 PMCID: PMC5849681 DOI: 10.1038/s41598-018-22553-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transmembrane proteins that mediate the cellular uptake or efflux of thyroid hormone potentially provide a key level of control over neurodevelopment. In humans, defects in one such protein, solute carrier SLC16A2 (MCT8) are associated with psychomotor retardation. Other proteins that transport the active form of thyroid hormone triiodothyronine (T3) or its precursor thyroxine (T4) have been identified in vitro but the wider significance of such transporters in vivo is unclear. The development of the auditory system requires thyroid hormone and the cochlea is a primary target tissue. We have proposed that the compartmental anatomy of the cochlea would necessitate transport mechanisms to convey blood-borne hormone to target tissues. We report hearing loss in mice with mutations in Slc16a2 and a related gene Slc16a10 (Mct10, Tat1). Deficiency of both transporters results in retarded development of the sensory epithelium similar to impairment caused by hypothyroidism, compounded with a progressive degeneration of cochlear hair cells and loss of endocochlear potential. Administration of T3 largely restores the development of the sensory epithelium and limited auditory function, indicating the T3-sensitivity of defects in the sensory epithelium. The results indicate a necessity for thyroid hormone transporters in cochlear development and function.
Collapse
|
22
|
Richard S, Flamant F. Regulation of T3 Availability in the Developing Brain: The Mouse Genetics Contribution. Front Endocrinol (Lausanne) 2018; 9:265. [PMID: 29892264 PMCID: PMC5985302 DOI: 10.3389/fendo.2018.00265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Alterations in maternal thyroid physiology may have deleterious consequences on the development of the fetal brain, but the underlying mechanisms remain elusive, hampering the development of appropriate therapeutic strategies. The present review sums up the contribution of genetically modified mouse models to this field. In particular, knocking out genes involved in thyroid hormone (TH) deiodination, transport, and storage has significantly improved the picture that we have of the economy of TH in the fetal brain and the underlying genetic program. These data pave the way for future studies to bridge the gap in knowledge between thyroid physiology and brain development.
Collapse
|
23
|
Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB. Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis. Endocrinology 2017; 158:1985-1998. [PMID: 28324024 PMCID: PMC5460924 DOI: 10.1210/en.2016-1953] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (T3) receptors (TRs) mediate the effects of T3 on organ metabolism and animal development. There are two TR genes, TRα and TRβ, in all vertebrates. During animal development, TRα expression is activated earlier than zygotic T3 synthesis and secretion into the plasma, implicating a developmental role of TRα both in the presence and absence of T3. Using T3-dependent amphibian metamorphosis as a model, we previously proposed a dual-function model for TRs, in particular TRα, during development. That is, unliganded TR represses the expression of T3-inducible genes during premetamorphosis to ensure proper animal growth and prevent premature metamorphosis, whereas during metamorphosis, liganded TR activates target gene transcription to promote the transformation of the tadpole into a frog. To determine if TRα has such a dual function, we generated homozygous TRα-knockout animal lines. We show that, indeed, TRα knockout affects both premetamorphic animal development and metamorphosis. Surprisingly, we observed that TRα is not essential for amphibian metamorphosis, given that homozygous knockout animals complete metamorphosis within a similar time period after fertilization as their wild-type siblings. On the other hand, the timing of metamorphosis for different organs is altered by the knockout; limb metamorphosis occurs earlier, whereas intestinal metamorphosis is completed later than in wild-type siblings. Thus, our studies have demonstrated a critical role of endogenous TRα, not only in regulating both the timing and rate of metamorphosis, but also in coordinating temporal metamorphosis of different organs.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Dan Su
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Nga Luu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
24
|
Knoedler JR, Subramani A, Denver RJ. The Krüppel-like factor 9 cistrome in mouse hippocampal neurons reveals predominant transcriptional repression via proximal promoter binding. BMC Genomics 2017; 18:299. [PMID: 28407733 PMCID: PMC5390390 DOI: 10.1186/s12864-017-3640-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Background Krüppel-like factor 9 (Klf9) is a zinc finger transcription factor that functions in neural cell differentiation, but little is known about its genomic targets or mechanism of action in neurons. Results We used the mouse hippocampus-derived neuronal cell line HT22 to identify genes regulated by Klf9, and we validated our findings in mouse hippocampus. We engineered HT22 cells to express a Klf9 transgene under control of the tetracycline repressor, and used RNA sequencing to identify genes modulated by Klf9. We found 217 genes repressed and 21 induced by Klf9. We also engineered HT22 cells to co-express biotin ligase and a Klf9 fusion protein containing an N-terminal biotin ligase recognition peptide. Using chromatin-streptavidin precipitation (ChSP) sequencing we identified 3,514 genomic regions where Klf9 associated. Seventy-five percent of these were within 1 kb of transcription start sites, and Klf9 associated in chromatin with 60% of the repressed genes. We analyzed the promoters of several repressed genes containing Klf9 ChSP peaks using transient transfection reporter assays and found that Klf9 repressed promoter activity, which was abolished after mutation of Sp/Klf-like motifs. Knockdown or knockout of Klf9 in HT22 cells caused dysregulation of Klf9 target genes. Chromatin immunoprecipitation assays showed that Klf9 associated in chromatin from mouse hippocampus with genes identified by ChSP sequencing on HT22 cells, and expression of Klf9 target genes was dysregulated in the hippocampus of neonatal Klf9-null mice. Gene ontology analysis revealed that Klf9 genomic targets include genes involved in cystokeletal remodeling, Wnt signaling and inflammation. Conclusions We have identified genomic targets of Klf9 in hippocampal neurons and created a foundation for future studies on how it functions in chromatin, and regulates neuronal morphology and survival across the lifespan. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3640-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA.,Current address: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA
| | - Robert J Denver
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Kyono Y, Subramani A, Ramadoss P, Hollenberg AN, Bonett RM, Denver RJ. Liganded Thyroid Hormone Receptors Transactivate the DNA Methyltransferase 3a Gene in Mouse Neuronal Cells. Endocrinology 2016; 157:3647-57. [PMID: 27387481 PMCID: PMC5007891 DOI: 10.1210/en.2015-1529] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (T3) is essential for proper neurological development. The hormone, bound to its receptors, regulates gene transcription in part by modulating posttranslational modifications of histones. Methylation of DNA, which is established by the de novo DNA methyltransferase (DNMT)3a and DNMT3b, and maintained by DNMT1 is another epigenetic modification influencing gene transcription. The expression of Dnmt3a, but not other Dnmt genes, increases in mouse brain in parallel with the postnatal rise in plasma [T3]. We found that treatment of the mouse neuroblastoma cell line Neuro2a[TRβ1] with T3 caused rapid induction of Dnmt3a mRNA, which was resistant to protein synthesis inhibition, supporting that it is a direct T3-response gene. Injection of T3 into postnatal day 6 mice increased Dnmt3a mRNA in the brain by 1 hour. Analysis of two chromatin immunoprecipitation-sequencing datasets, and targeted analyses using chromatin immunoprecipitation, transfection-reporter assays, and in vitro DNA binding identified 2 functional T3-response elements (TREs) at the mouse Dnmt3a locus located +30.3 and +49.3 kb from the transcription start site. Thyroid hormone receptors associated with both of these regions in mouse brain chromatin, but with only 1 (+30.3 kb) in Neuro2a[TRβ1] cells. Deletion of the +30.3-kb TRE using CRISPR/Cas9 genome editing eliminated or strongly reduced the Dnmt3a mRNA response to T3. Bioinformatics analysis showed that both TREs are highly conserved among eutherian mammals. Thyroid regulation of Dnmt3a may be an evolutionarily conserved mechanism for modulating global changes in DNA methylation during postnatal neurological development.
Collapse
Affiliation(s)
- Yasuhiro Kyono
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Arasakumar Subramani
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Preeti Ramadoss
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Anthony N Hollenberg
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Ronald M Bonett
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| | - Robert J Denver
- Neuroscience Graduate Program (Y.K., R.J.D.) and Department of Molecular, Cellular and Developmental Biology (A.S., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Division of Endocrinology, Diabetes and Metabolism (P.R., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115; and Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104
| |
Collapse
|
26
|
Faunes F, Larraín J. Conservation in the involvement of heterochronic genes and hormones during developmental transitions. Dev Biol 2016; 416:3-17. [DOI: 10.1016/j.ydbio.2016.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 01/26/2023]
|
27
|
Hu F, Knoedler JR, Denver RJ. A Mechanism to Enhance Cellular Responsivity to Hormone Action: Krüppel-Like Factor 9 Promotes Thyroid Hormone Receptor-β Autoinduction During Postembryonic Brain Development. Endocrinology 2016; 157:1683-93. [PMID: 26886257 PMCID: PMC4816725 DOI: 10.1210/en.2015-1980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs.
Collapse
Affiliation(s)
- Fang Hu
- Department of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.) and Neuroscience Graduate Program (J.R.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109
| | - Joseph R Knoedler
- Department of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.) and Neuroscience Graduate Program (J.R.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109
| | - Robert J Denver
- Department of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.) and Neuroscience Graduate Program (J.R.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
28
|
Préau L, Le Blay K, Saint Paul E, Morvan-Dubois G, Demeneix BA. Differential thyroid hormone sensitivity of fast cycling progenitors in the neurogenic niches of tadpoles and juvenile frogs. Mol Cell Endocrinol 2016; 420:138-51. [PMID: 26628040 DOI: 10.1016/j.mce.2015.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/21/2015] [Accepted: 11/22/2015] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs in neural stem cell (NSC) niches where slow cycling stem cells give rise to faster cycling progenitors. In the adult mouse NSC niche thyroid hormone, T3, and its receptor TRα act as a neurogenic switch promoting progenitor cell cycle completion and neuronal differentiation. Little is known about whether and how T3 controls proliferation of differentially cycling cells during xenopus neurogenesis. To address this question, we first used Sox3 as a marker of stem cell and progenitor populations and then applied pulse-chase EdU/IdU incorporation experiments to identify Sox3-expressing slow cycling (NSC) and fast cycling progenitor cells. We focused on the lateral ventricle of Xenopus laevis and two distinct stages of development: late embryonic development (pre-metamorphic) and juvenile frogs (post-metamorphic). These stages were selected for their relatively stable thyroid hormone availability, either side of the major dynamic phase represented by metamorphosis. TRα expression was found in both pre and post-metamorphic neurogenic regions. However, exogenous T3 treatment only increased proliferation of the fast cycling Sox3+ cell population in post-metamorphic juveniles, having no detectable effect on proliferation in pre-metamorphic tadpoles. We hypothesised that the resistance of proliferative cells to exogenous T3 in pre-metamorphic tadpoles could be related to T3 inactivation by the inactivating Deiodinase 3 enzyme. Expression of dio3 was widespread in the tadpole neurogenic niche, but not in the juvenile neurogenic niche. Use of a T3-reporter transgenic line showed that in juveniles, T3 had a direct transcriptional effect on rapid cycling progenitors. Thus, the fast cycling progenitor cells in the neurogenic niche of tadpoles and juvenile frogs respond differentially to T3 as a function of developmental stage.
Collapse
Affiliation(s)
- L Préau
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - K Le Blay
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - E Saint Paul
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - G Morvan-Dubois
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France
| | - B A Demeneix
- UMR CNRS 7221, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris, 75231, France.
| |
Collapse
|
29
|
More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology. Dev Biol 2015; 408:188-95. [DOI: 10.1016/j.ydbio.2015.02.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 11/21/2022]
|
30
|
Huang CCJ, Kraft C, Moy N, Ng L, Forrest D. A Novel Population of Inner Cortical Cells in the Adrenal Gland That Displays Sexually Dimorphic Expression of Thyroid Hormone Receptor-β1. Endocrinology 2015; 156:2338-48. [PMID: 25774556 PMCID: PMC4430604 DOI: 10.1210/en.2015-1118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of the adrenal cortex involves the formation and then subsequent regression of immature or fetal inner cell layers as the mature steroidogenic outer layers expand. However, controls over this remodeling, especially in the immature inner layer, are incompletely understood. Here we identify an inner cortical cell population that expresses thyroid hormone receptor-β1 (TRβ1), one of two receptor isoforms encoded by the Thrb gene. Using mice with a Thrb(b1) reporter allele that expresses lacZ instead of TRβ1, β-galactosidase was detected in the inner cortex from early stages. Expression peaked at juvenile ages in an inner zone that included cells expressing 20-α-hydroxysteroid dehydrogenase, a marker of the transient, so-called X-zone in mice. The β-galactosidase-positive zone displayed sexually dimorphic regression in males after approximately 4 weeks of age but persisted in females into adulthood in either nulliparous or parous states. T3 treatment promoted hypertrophy of inner cortical cells, induced some markers of mature cortical cells, and, in males, delayed the regression of the TRβ1-positive zone, suggesting that TRβ1 could partly divert the differentiation fate and counteract male-specific regression of inner zone cells. TRβ1-deficient mice were resistant to these actions of T3, supporting a functional role for TRβ1 in the inner cortex.
Collapse
Affiliation(s)
- Chen-Che Jeff Huang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
31
|
Peeters RP, Ng L, Ma M, Forrest D. The timecourse of apoptotic cell death during postnatal remodeling of the mouse cochlea and its premature onset by triiodothyronine (T3). Mol Cell Endocrinol 2015; 407:1-8. [PMID: 25737207 PMCID: PMC4390549 DOI: 10.1016/j.mce.2015.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/03/2023]
Abstract
Apoptosis underlies various forms of tissue remodeling during development. Prior to the onset of hearing, thyroid hormone (T3) promotes cochlear remodeling, which involves regression of the greater epithelial ridge (GER), a transient structure of columnar cells adjacent to the mechanosensory hair cells. We investigated the timecourse of apoptosis in the GER and the influence of ectopic T3 on apoptosis. In saline-treated mice, activated caspase 3-positive cells were detected in the GER between postnatal days 7 and 13 and appeared progressively along the cochlear duct from base to apex over developmental time. T3 given on P0 and P1 advanced the overall program of apoptosis and remodeling by ~4 days. Thyroid hormone receptor β was required for these actions, suggesting a receptor-mediated process of initiation of apoptosis. Finally, T3 given only at P0 or P1 resulted in deafness in adult mice, thus revealing a transient period of susceptibility to long-term damage in the neonatal auditory system.
Collapse
Affiliation(s)
- R P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands; Rotterdam Thyroid Center, Erasmus Medical Center, Rotterdam, The Netherlands; Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | - L Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - M Ma
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - D Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Abstract
Thyroid hormone (T3) affects adult metabolism and postembryonic development in vertebrates. T3 functions mainly via binding to its receptors (TRs) to regulate gene expression. There are 2 TR genes, TRα and TRβ, with TRα more ubiquitously expressed. During development, TRα expression appears earlier than T3 synthesis and secretion into the plasma. This and the ability of TRs to regulate gene expression both in the presence and absence of T3 have indicated a role for unliganded TR during vertebrate development. On the other hand, it has been difficult to study the role of unliganded TR during development in mammals because of the difficulty to manipulate the uterus-enclosed, late-stage embryos. Here we use amphibian development as a model to address this question. We have designed transcriptional activator-like effector nucleases (TALENs) to mutate the TRα gene in Xenopus tropicalis. We show that knockdown of TRα enhances tadpole growth in premetamorphic tadpoles, in part because of increased growth hormone gene expression. More importantly, the knockdown also accelerates animal development, with the knockdown animals initiating metamorphosis at a younger age and with a smaller body size. On the other hand, such tadpoles are resistant to exogenous T3 treatment and have delayed natural metamorphosis. Thus, our studies not only have directly demonstrated a critical role of endogenous TRα in mediating the metamorphic effect of T3 but also revealed novel functions of unliganded TRα during postembryonic development, that is, regulating both tadpole growth rate and the timing of metamorphosis.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
33
|
Sirakov M, Kress E, Nadjar J, Plateroti M. Thyroid hormones and their nuclear receptors: new players in intestinal epithelium stem cell biology? Cell Mol Life Sci 2014; 71:2897-907. [PMID: 24604390 PMCID: PMC11113153 DOI: 10.1007/s00018-014-1586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/31/2014] [Accepted: 02/12/2014] [Indexed: 12/14/2022]
Abstract
Thyroid hormones participate in the development and homeostasis of several organs and tissues. It is well documented that they act via nuclear receptors, the TRs, which are transcription factors whose function is modulated by the hormone T3. Importantly, T3-induced physiological response within a cell depends on the specific TR expression and on the T3 bioavailability. However, in addition to this T3-dependent control of TR functionality, increasing data show that the action of TRs is coordinated and integrated with other signaling pathways, specifically at the level of stem/progenitor cell populations. By focusing on the intestinal epithelium of both amphibians and mammals we summarize here new data in support of a role for thyroid hormones and the TR nuclear receptors in stem cell biology. This new concept may be extended to other organs and have biological relevance in therapeutic approaches aimed to target stem cells such as tissue engineering and cancer.
Collapse
Affiliation(s)
- Maria Sirakov
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Brussels, Belgium
| | - Elsa Kress
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, 69622 Villeurbanne, France
| | - Julien Nadjar
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, 69622 Villeurbanne, France
| | - Michelina Plateroti
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Claude Bernard Lyon 1, 16 Rue Raphael Dubois, 69622 Villeurbanne, France
| |
Collapse
|
34
|
Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM. Thyroid hormone action in postnatal heart development. Stem Cell Res 2014; 13:582-91. [PMID: 25087894 DOI: 10.1016/j.scr.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/16/2022] Open
Abstract
Thyroid hormone is a critical regulator of cardiac growth and development, both in fetal life and postnatally. Here we review the role of thyroid hormone in postnatal cardiac development, given recent insights into its role in stimulating a burst of cardiomyocyte proliferation in the murine heart in preadolescence; a response required to meet the massive increase in circulatory demand predicated by an almost quadrupling of body weight during a period of about 21 days from birth to adolescence. Importantly, thyroid hormone metabolism is altered by chronic diseases, such as heart failure and ischemic heart disease, as well as in very sick children requiring surgery for congenital heart diseases, which results in low T3 syndrome that impairs cardiovascular function and is associated with a poor prognosis. Therapy with T3 or thyroid hormone analogs has been shown to improve cardiac contractility; however, the mechanism is as yet unknown. Given the postnatal cardiomyocyte mitogenic potential of T3, its ability to enhance cardiac function by promoting cardiomyocyte proliferation warrants further consideration.
Collapse
Affiliation(s)
- Ming Li
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Siiri E Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; University of New South Wales, Kensington, NSW 2033, Australia
| | - Nawazish Naqvi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amy Nicks
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; University of Leeds, Leeds, LS2 9JT, UK
| | - Ahsan Husain
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; University of New South Wales, Kensington, NSW 2033, Australia.
| |
Collapse
|
35
|
TR alpha 2 exerts dominant negative effects on hypothalamic Trh transcription in vivo. PLoS One 2014; 9:e95064. [PMID: 24747825 PMCID: PMC3991681 DOI: 10.1371/journal.pone.0095064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 03/23/2014] [Indexed: 11/19/2022] Open
Abstract
Mammalian thyroid hormone receptors (TRs) have multiple isoforms, including the bona fide receptors that bind T3 (TRα1, TRβ1 and TRβ2) and a non-hormone-binding variant, TRα2. Intriguingly, TRα2 is strongly expressed in the brain, where its mRNA levels exceed those of functional TRs. Ablation of TRα2 in mice results in over-expression of TRα1, and a complex phenotype with low levels of free T3 and T4, without elevated TSH levels, suggesting an alteration in the negative feedback at the hypothalamic-pituitary level. As the hypothesis of a potential TRH response defect has never been tested, we explored the functional role of TRα2 in negative feedback on transcription of hypothalamic thyrotropin, Trh. The in vivo transcriptional effects of TRα2 on hypothalamic Trh were analysed using an in vivo reporter gene approach. Effects on Trh-luc expression were examined to that of two, T3 positively regulated genes used as controls. Applying in vivo gene transfer showed that TRα2 over-expression in the mouse hypothαlamus abrogates T3-dependent repression of Trh and T3 activation of positively regulated promoters, blocking their physiological regulation. Surprisingly, loss of function studies carried out by introducing a shTRα2 construct in the hypothalamus also blocked physiological T3 dependent regulation. Thus, modulating hypothalamic TRα2 expression by either gain or loss of function abrogated T3 dependent regulation of Trh transcription, producing constant transcriptional levels insensitive to feedback. This loss of physiological regulation was reflected at the level of the endogenous Trh gene, were gain or loss of function held mRNA levels constant. These results reveal the as yet undescribed dominant negative role of TRα2 over TRα1 effect on hypothalamic Trh transcription.
Collapse
|
36
|
Fauquier T, Chatonnet F, Picou F, Richard S, Fossat N, Aguilera N, Lamonerie T, Flamant F. Purkinje cells and Bergmann glia are primary targets of the TRα1 thyroid hormone receptor during mouse cerebellum postnatal development. Development 2014; 141:166-75. [PMID: 24346699 DOI: 10.1242/dev.103226] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thyroid hormone is necessary for normal development of the central nervous system, as shown by the severe mental retardation syndrome affecting hypothyroid patients with low levels of active thyroid hormone. The postnatal defects observed in hypothyroid mouse cerebellum are recapitulated in mice heterozygous for a dominant-negative mutation of Thra, the gene encoding the ubiquitous TRα1 receptor. Using CRE/loxP-mediated conditional expression approach, we found that this mutation primarily alters the differentiation of Purkinje cells and Bergmann glia, two cerebellum-specific cell types. These primary defects indirectly affect cerebellum development in a global manner. Notably, the inward migration and terminal differentiation of granule cell precursors is impaired. Therefore, despite the broad distribution of its receptors, thyroid hormone targets few cell types that exert a predominant role in the network of cellular interactions that govern normal cerebellum maturation.
Collapse
Affiliation(s)
- Teddy Fauquier
- Université de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Institut de Génomique Fonctionnelle de Lyon, F-69364 Lyon, Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lucas TF, Nascimento AR, Pisolato R, Pimenta MT, Lazari MFM, Porto CS. Receptors and signaling pathways involved in proliferation and differentiation of Sertoli cells. SPERMATOGENESIS 2014; 4:e28138. [PMID: 25225624 DOI: 10.4161/spmg.28138] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/11/2022]
Abstract
The identification of the hormones and other factors regulating Sertoli cell survival, proliferation, and maturation in neonatal, peripubertal, and pubertal life remains one of the most critical questions in testicular biology. The regulation of Sertoli cell proliferation and differentiation is thought to be controlled by cell-cell junctions and a set of circulating and local hormones and growth factors. In this review, we will focus on receptors and intracellular signaling pathways activated by androgen, follicle-stimulating hormone, thyroid hormone, activin, retinoids, insulin, insulin-like growth factor, relaxin, and estrogen, with special emphasis on estrogen receptors. Estrogen receptors activate intracellular signaling pathways that converge on cell cycle and transcription factors and play a role in the regulation of Sertoli cell proliferation and differentiation.
Collapse
Affiliation(s)
- Thaís Fg Lucas
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Aline R Nascimento
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Raisa Pisolato
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Maristela T Pimenta
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Maria Fatima M Lazari
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| | - Catarina S Porto
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; INFAR; Vila Clementino; São Paulo, SP Brazil
| |
Collapse
|
38
|
Gao Y, Lee WM, Cheng CY. Thyroid hormone function in the rat testis. Front Endocrinol (Lausanne) 2014; 5:188. [PMID: 25414694 PMCID: PMC4220729 DOI: 10.3389/fendo.2014.00188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormones are emerging regulators of testicular function since Sertoli, germ, and Leydig cells are found to express thyroid hormone receptors (TRs). These testicular cells also express deiodinases, which are capable of converting the pro-hormone T4 to the active thyroid hormone T3, or inactivating T3 or T4 to a non-biologically active form. Furthermore, thyroid hormone transporters are also found in the testis. Thus, the testis is equipped with the transporters and the enzymes necessary to maintain the optimal level of thyroid hormone in the seminiferous epithelium, as well as the specific TRs to execute thyroid hormone action in response to different stages of the epithelial cycle of spermatogenesis. Studies using genetic models and/or goitrogens (e.g., propylthiouracil) have illustrated a tight physiological relationship between thyroid hormone and testicular function, in particular, Sertoli cell differentiation status, mitotic activity, gap junction function, and blood-testis barrier assembly. These findings are briefly summarized and discussed herein.
Collapse
Affiliation(s)
- Ying Gao
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Will M. Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - C. Yan Cheng
- Center for Biomedical Research, Population Council, New York, NY, USA
- *Correspondence: C. Yan Cheng, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA e-mail: ;
| |
Collapse
|
39
|
Uchida K, Taguchi Y, Sato C, Miyazaki H, Kobayashi K, Kobayashi T, Itoi K. Amelioration of improper differentiation of somatostatin-positive interneurons by triiodothyronine in a growth-retarded hypothyroid mouse strain. Neurosci Lett 2013; 559:111-6. [PMID: 24333174 DOI: 10.1016/j.neulet.2013.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Thyroid hormone (TH) plays an important role in brain development, and TH deficiency during pregnancy or early postnatal periods leads to neurological disorders such as cretinism. Hypothyroidism reduces the number of parvalbumin (PV)-positive interneurons in the neocortex and hippocampus. Here we used a mouse strain (growth-retarded; grt) that shows growth retardation and hypothyroidism to examine whether somatostatin (Sst)-positive interneurons that are generated from the same pool of neural progenitor cells as PV-positive cells are also altered by TH deficiency. The number of PV-positive interneurons was significantly decreased in the neocortex and hippocampus of grt mice as compared with normal control mice. In contrast to the decrease in the number of PV neurons, the number of Sst-positive interneurons in grt mice was increased in the stratum oriens of the hippocampus and the hilus of the dentate gyrus, although their number was unchanged in the neocortex. These changes were reversed by triiodothyronine administration from postnatal day (PD) 0 to 20. TH supplementation that was initiated after PD21 did not, however, affect the number of PV- or Sst-positive cells. These results suggest that during the first three postnatal weeks, TH may be critical for the generation of subpopulations of interneurons.
Collapse
Affiliation(s)
- Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan.
| | - Yusuke Taguchi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Chika Sato
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hidetaka Miyazaki
- Department of Stomatology and Oral Surgery, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kenichi Kobayashi
- Health Effects Research Group, National Institute of Occupational Safety and Health, Kawasaki, Japan
| | - Tetsuya Kobayashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
40
|
Ladeuix B, Duchamp C, Levillain O. Underestimated contribution of skeletal muscle in ornithine metabolism during mouse postnatal development. Amino Acids 2013; 46:167-76. [DOI: 10.1007/s00726-013-1608-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/19/2013] [Indexed: 02/08/2023]
|
41
|
Fumel B, Roy S, Fouchécourt S, Livera G, Parent AS, Casas F, Guillou F. Depletion of the p43 mitochondrial T3 receptor increases Sertoli cell proliferation in mice. PLoS One 2013; 8:e74015. [PMID: 24040148 PMCID: PMC3767600 DOI: 10.1371/journal.pone.0074015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/26/2013] [Indexed: 01/01/2023] Open
Abstract
Among T3 receptors, TRα1 is ubiquitous and its deletion or a specific expression of a dominant-negative TRα1 isoform in Sertoli cell leads to an increase in testis weight and sperm production. The identification of a 43-kDa truncated form of the nuclear receptor TRα1 (p43) in the mitochondrial matrix led us to test the hypothesis that this mitochondrial transcription factor could regulate Sertoli cell proliferation. Here we report that p43 depletion in mice increases testis weight and sperm reserve. In addition, we found that p43 deletion increases Sertoli cell proliferation in postnatal testis at 3 days of development. Electron microscopy studies evidence an alteration of mitochondrial morphology observed specifically in Sertoli cells of p43−/− mice. Moreover, gene expression studies indicate that the lack of p43 in testis induced an alteration of the mitochondrial-nuclear cross-talk. In particular, the up-regulation of Cdk4 and c-myc pathway in p43−/− probably explain the extended proliferation recorded in Sertoli cells of these mice. Our finding suggests that T3 limits post-natal Sertoli cell proliferation mainly through its mitochondrial T3 receptor p43.
Collapse
Affiliation(s)
- Betty Fumel
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE, Nouzilly, France
| | - Stéphanie Roy
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Sophie Fouchécourt
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Gabriel Livera
- Université Paris Diderot, Sorbonne Paris Cité, INSERM U967, CEA/DSV/iRCM/SCSR Laboratoire de Développement des Gonades, Fontenay-Aux-Roses, France
| | - Anne-Simone Parent
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, CHU Sart Tilman, Liège, Belgium
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et métabolisme, Montpellier, France
- Université de Montpellier 1 et 2, Montpellier, France
| | - Florian Guillou
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- * E-mail:
| |
Collapse
|
42
|
Bowers J, Terrien J, Clerget-Froidevaux MS, Gothié JD, Rozing MP, Westendorp RGJ, van Heemst D, Demeneix BA. Thyroid hormone signaling and homeostasis during aging. Endocr Rev 2013; 34:556-89. [PMID: 23696256 DOI: 10.1210/er.2012-1056] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studies in humans and in animal models show negative correlations between thyroid hormone (TH) levels and longevity. TH signaling is implicated in maintaining and integrating metabolic homeostasis at multiple levels, notably centrally in the hypothalamus but also in peripheral tissues. The question is thus raised of how TH signaling is modulated during aging in different tissues. Classically, TH actions on mitochondria and heat production are obvious candidates to link negative effects of TH to aging. Mitochondrial effects of excess TH include reactive oxygen species and DNA damage, 2 factors often considered as aging accelerators. Inversely, caloric restriction, which can retard aging from nematodes to primates, causes a rapid reduction of circulating TH, reducing metabolism in birds and mammals. However, many other factors could link TH to aging, and it is these potentially subtler and less explored areas that are highlighted here. For example, effects of TH on membrane composition, inflammatory responses, stem cell renewal and synchronization of physiological responses to light could each contribute to TH regulation of maintenance of homeostasis during aging. We propose the hypothesis that constraints on TH signaling at certain life stages, notably during maturity, are advantageous for optimal aging.
Collapse
Affiliation(s)
- J Bowers
- Muséum national d'Histoire Naturelle, Laboratoire de Physiologie Générale et Comparée, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7221, 75231 Paris cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Many organs respond to physiological challenges by changing tissue size or composition. Such changes may originate from tissue-specific stem cells and their supportive environment (niche). The endocrine system is a major effector and conveyor of physiological changes and as such could alter stem cell behavior in various ways. In this review, we examine how hormones affect stem cell biology in four different organs: the ovary, intestine, hematopoietic system, and mammary gland. Hormones control every stage of stem cell life, including establishment, expansion, maintenance, and differentiation. The effects can be cell autonomous or non-cell autonomous through the niche. Moreover, a single hormone can affect different stem cells in different ways or affect the same stem cell differently at various developmental times. The vast complexity and diversity of stem cell responses to hormonal cues allow hormones to coordinate the body's reaction to physiological challenges.
Collapse
Affiliation(s)
- Dana Gancz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100 Israel; ,
| | | |
Collapse
|
44
|
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2013; 14:38-48. [PMID: 23258295 PMCID: PMC4416212 DOI: 10.1038/nrm3495] [Citation(s) in RCA: 380] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The heart hypertrophies in response to developmental signals as well as increased workload. Although adult-onset hypertrophy can ultimately lead to disease, cardiac hypertrophy is not necessarily maladaptive and can even be beneficial. Progress has been made in our understanding of the structural and molecular characteristics of physiological cardiac hypertrophy, as well as of the endocrine effectors and associated signalling pathways that regulate it. Physiological hypertrophy is initiated by finite signals, which include growth hormones (such as thyroid hormone, insulin, insulin-like growth factor 1 and vascular endothelial growth factor) and mechanical forces that converge on a limited number of intracellular signalling pathways (such as PI3K, AKT, AMP-activated protein kinase and mTOR) to affect gene transcription, protein translation and metabolism. Harnessing adaptive signalling mediators to reinvigorate the diseased heart could have important medical ramifications.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
45
|
Monk JA, Sims NA, Dziegielewska KM, Weiss RE, Ramsay RG, Richardson SJ. Delayed development of specific thyroid hormone-regulated events in transthyretin null mice. Am J Physiol Endocrinol Metab 2013; 304:E23-31. [PMID: 23092911 PMCID: PMC3774171 DOI: 10.1152/ajpendo.00216.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormones (THs) are vital for normal postnatal development. Extracellular TH distributor proteins create an intravascular reservoir of THs. Transthyretin (TTR) is a TH distributor protein in the circulatory system and is the only TH distributor protein synthesized in the central nervous system. We investigated the phenotype of TTR null mice during development. Total and free 3',5',3,5-tetraiodo-L-thyronine (T(4)) and free 3',3,5-triiodo-L-thyronine (T(3)) in plasma were significantly reduced in 14-day-old (P14) TTR null mice. TTR null mice also displayed a delayed suckling-to-weaning transition, decreased muscle mass, delayed growth, and retarded longitudinal bone growth. In addition, ileums from postnatal day 0 (P0) TTR null mice displayed disordered architecture and contained fewer goblet cells than wild type. Protein concentrations in cerebrospinal fluid from P0 and P14 TTR null mice were higher than in age-matched wild-type mice. In contrast to the current literature based on analyses of adult TTR null mice, our results demonstrate that TTR has an important and nonredundant role in influencing the development of several organs.
Collapse
Affiliation(s)
- Julie A Monk
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Thyroid hormone triggers the developmental loss of axonal regenerative capacity via thyroid hormone receptor α1 and krüppel-like factor 9 in Purkinje cells. Proc Natl Acad Sci U S A 2012; 109:14206-11. [PMID: 22891348 DOI: 10.1073/pnas.1119853109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons in the CNS of higher vertebrates lose their ability to regenerate their axons at a stage of development that coincides with peak circulating thyroid hormone (T(3)) levels. Here, we examined whether this peak in T(3) is involved in the loss of axonal regenerative capacity in Purkinje cells (PCs). This event occurs at the end of the first postnatal week in mice. Using organotypic culture, we found that the loss of axon regenerative capacity was triggered prematurely by early exposure of mouse PCs to T(3), whereas it was delayed in the absence of T(3). Analysis of mutant mice showed that this effect was mainly mediated by the T(3) receptor α1. Using gain- and loss-of-function approaches, we also showed that Krüppel-like factor 9 was a key mediator of this effect of T(3). These results indicate that the sudden physiological increase in T(3) during development is involved in the onset of the loss of axon regenerative capacity in PCs. This loss of regenerative capacity might be part of the general program triggered by T(3) throughout the body, which adapts the animal to its postnatal environment.
Collapse
|
48
|
Sirakov M, Skah S, Nadjar J, Plateroti M. Thyroid hormone's action on progenitor/stem cell biology: new challenge for a classic hormone? Biochim Biophys Acta Gen Subj 2012; 1830:3917-27. [PMID: 22890105 DOI: 10.1016/j.bbagen.2012.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/01/2012] [Accepted: 07/29/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thyroid hormones are involved in developmental and homeostatic processes in several tissues. Their action results in different outcomes depending on the developmental stage, tissue and/or cellular context. Interestingly, their pleiotropic roles are conserved across vertebrates. It is largely documented that thyroid hormones act via nuclear receptors, the TRs, which are transcription factors and whose activity can be modulated by the local availability of the hormone T3. In the "classical view", the T3-induced physiological response depends on the expression of specific TR isoforms and the iodothyronine deiodinase selenoenzymes that control the local level of T3, thus TR activity. SCOPE OF THE REVIEW Recent data have clearly established that the functionality of TRs is coordinated and integrated with other signaling pathways, specifically at the level of stem/progenitor cell populations. Here, we summarize these data and propose a new and intriguing role for thyroid hormones in two selected examples. MAJOR CONCLUSIONS In the intestinal epithelium and the retina, TRα1 and TRβ2 are expressed at the level of the precursors where they induce cell proliferation and differentiation, respectively. Moreover, these different functions result from the integration of the hormone signal with other intrinsic pathways, which play a fundamental role in progenitor/stem cell physiology. GENERAL SIGNIFICANCE Taken together, the interaction of TRs with other signaling pathways, specifically in stem/progenitor cells, is a new concept that may have biological relevance in therapeutic approaches aimed to target stem cells such as tissue engineering and cancer. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Maria Sirakov
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|
49
|
Fumel B, Guerquin MJ, Livera G, Staub C, Magistrini M, Gauthier C, Flamant F, Guillou F, Fouchécourt S. Thyroid hormone limits postnatal Sertoli cell proliferation in vivo by activation of its alpha1 isoform receptor (TRalpha1) present in these cells and by regulation of Cdk4/JunD/c-myc mRNA levels in mice. Biol Reprod 2012; 87:16, 1-9. [PMID: 22539677 DOI: 10.1095/biolreprod.111.098418] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hypo- and hyperthyroidism alter testicular functions in the young. Among T3 receptors, TRalpha1 is ubiquitous, and its previously described knockout leads to an increase in testis weight and sperm production. We tested, for the first time, the hypothesis that TRalpha1-dependent regulation of Sertoli cell (SC) proliferation was directly regulated by TRalpha1 present in these cells. Thus, after crossing with the AMH-Cre line, we generated and analyzed a new line that expressed a dominant-negative TRalpha1 isoform (TRalpha(AMI)) in SCs only. So-called TRalpha(AMI)-SC (TRalpha(AMI/+) Cre(+)) mice exhibited similar phenotypic features to the knockout line: heavier testicular weight and higher sperm reserve, in comparison with their adequate controls (TRalpha(AMI/+) Cre(-)). SC density increased significantly as a result of a higher proliferative index at ages Postnatal Day (P) 0 and P3. When explants of control testes were cultured (at age P3), a significant decrease in the proliferation of SCs was observed in response to an excess of T3. This response was not observed in the TRalpha(AMI)-SC and knockout lines. Finally, when TRalpha(AMI) is present in SCs, the phenotype observed is similar to that of the knockout line. This study demonstrates that T3 limits postnatal SC proliferation by activation of TRalpha1 present in these cells. Moreover, quantitative RT-PCR provided evidence that regulation of the Cdk4/JunD/c-myc pathway was involved in this negative control.
Collapse
Affiliation(s)
- Betty Fumel
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen C, Zhou Z, Zhong M, Zhang Y, Li M, Zhang L, Qu M, Yang J, Wang Y, Yu Z. Thyroid hormone promotes neuronal differentiation of embryonic neural stem cells by inhibiting STAT3 signaling through TRα1. Stem Cells Dev 2012; 21:2667-81. [PMID: 22468949 DOI: 10.1089/scd.2012.0023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A deficiency of maternal thyroid hormones (THs) during pregnancy may have severe impacts on fetal brain development. However, the cellular targets of THs and their underlying mechanisms are still unclear. In this study, we found that maternal hypothyroidism during pregnancy in mice inhibited neurogenesis in the embryonic telencephalon and caused learning and memory impairment in the offspring. To explore the underlying mechanisms, we treated cultured mouse embryonic neural stem cells (eNSCs) with a physiological level of 3, 5, 3'-triiodo-L-thyronine (T3). We found that T3 promoted the neuronal differentiation of eNSCs, while inhibiting astrocytic differentiation. In addition, the proliferation and maintenance of eNSCs were inhibited by T3. Furthermore, the TH receptor alpha 1 (TRα1) was detected in the eNSCs both in vivo and in vitro. Silencing TRα1 protein expression with specific siRNA eliminated the effects of T3 on eNSCs. We also found that T3 decreased STAT3 phosphorylation and STAT3-DNA binding activity through TRα1. The over expression of STAT3 attenuated the promotive effects of T3 on neuronal differentiation of eNSCs. Taken together, these results suggest that T3 promotes the neuronal differentiation of eNSCs by inhibiting STAT3 signaling activity through TRα1 and contributes to early neurogenesis in the embryonic telencephalon. Our studies reveal the physiological effects of TH in regulating eNSCs differentiation and suggest that eNSCs are one of the major cellular targets in the central nervous system by which TH influences early brain development. These findings also provide new insights into the mechanisms of neurological deficits caused by TH deficiency during embryogenesis.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|