1
|
Ju X, Jiang Z, Ma J, Yang D. Changes in Fecal Short-Chain Fatty Acids in IBS Patients and Effects of Different Interventions: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:1727. [PMID: 38892659 PMCID: PMC11174707 DOI: 10.3390/nu16111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
CONTEXT Short-chain fatty acids (SCFAs) have been reported to be associated with the pathogenesis of irritable bowel syndrome (IBS), but the results are conflicting. OBJECTIVE Here, a systematic review of case-control studies detecting fecal SCFAs in IBS patients compared with healthy controls (HCs) and self-controlled studies or randomized controlled trials (RCTs) investigating fecal SCFA alterations after interventions were identified from several databases. DATA SOURCES A systematic search of databases (PubMed, Web of Science, and Embase) identified 21 studies published before 24 February 2023. Data extractions: Three independent reviewers completed the relevant data extraction. DATA ANALYSIS It was found that the fecal propionate concentration in IBS patients was significantly higher than that in HCs, while the acetate proportion was significantly lower. Low-FODMAP diets significantly reduced the fecal propionate concentration in the IBS patients while fecal microbiota transplantation and probiotic administration did not significantly change the fecal propionate concentration or acetate proportion. CONCLUSIONS The results suggested that the fecal propionate concentration and acetate proportion could be used as biomarkers for IBS diagnosis. A low-FODMAP diet intervention could potentially serve as a treatment for IBS while FMT and probiotic administration need more robust trials.
Collapse
Affiliation(s)
| | | | | | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.J.); (Z.J.); (J.M.)
| |
Collapse
|
2
|
Tang QQ, Wu Y, Tao Q, Shen Y, An X, Liu D, Xu Z. Direct paraventricular thalamus-basolateral amygdala circuit modulates neuropathic pain and emotional anxiety. Neuropsychopharmacology 2024; 49:455-466. [PMID: 37848732 PMCID: PMC10724280 DOI: 10.1038/s41386-023-01748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
The comorbidity of chronic pain and mental dysfunctions such as anxiety disorders has long been recognized, but the underlying mechanisms remained poorly understood. Here, using a mouse model of neuropathic pain, we demonstrated that the thalamic paraventricular nucleus (PVT) played a critical role in chronic pain-induced anxiety-like behavioral abnormalities. Fiber photometry and electrophysiology demonstrated that chronic pain increased the activities in PVT glutamatergic neurons. Chemogenetic manipulation revealed that suppression of PVT glutamatergic neurons relieved pain-like behavior and anxiety-like behaviors. Conversely, selective activation of PVT glutamatergic neurons showed algesic and anxiogenic effects. Furthermore, the elevated excitability of PVT glutamatergic neurons resulted in increased excitatory inputs to the basolateral complex (BLA) neurons. Optogenetic manipulation of the PVT-BLA pathway bilaterally modulates both the pain-like behavior and anxiety-like phenotypes. These findings shed light on how the PVT-BLA pathway contributed to the processing of pain-like behavior and maladaptive anxiety, and targeting this pathway might be a straightforward therapeutic strategy to both alleviate nociceptive hypersensitivity and rescue anxiety behaviors in chronic pain conditions.
Collapse
Affiliation(s)
- Qian-Qian Tang
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Yuanyuan Wu
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Qiang Tao
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Yanan Shen
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Xiaohu An
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China
| | - Di Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zifeng Xu
- Department of Anesthesiology, the International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, China.
| |
Collapse
|
3
|
Neves ML, Karvat J, Simões RR, Speretta GFF, Lataro RM, da Silva MD, Santos ARS. The antinociceptive effect of manual acupuncture in the auricular branch of the vagus nerve in visceral and somatic acute pain models and its laterality dependence. Life Sci 2022; 309:121000. [PMID: 36174710 DOI: 10.1016/j.lfs.2022.121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022]
Abstract
AIMS The vagus nerve provides an important route to the central nervous system, and its brain projections are involved in nociceptive control and pain perception. We investigated the effect of ABVN stimulation on the inhibition of nociceptive signaling and the role of the cholinergic system in its neurobiological effects in models of visceral-somatic pain in rats, as well as the potential difference in stimulus laterality. MATERIALS AND METHODS Male and female Wistar rats were pretreated with auricular acupuncture in the ABVN and submitted to the visceral-somatic nociception model by acetic acid or somatic nociception by formalin. Vagotomy and pharmacological tools were used to verify the participation of the cholinergic system in the experiments. KEY FINDINGS Acupuncture on the left, but not the right, in the ABVN inhibited nociceptive signaling in the visceral-somatic nociception model in male and female rats. Acupuncture on the left ABVN reduced the response time in the formalin test. The cervical vagotomy of the left branch, but not the right, also inhibited nociceptive signaling in the visceral-somatic nociception model and reduced the effect of ABVN stimulation. Furthermore, cholinergic antagonists reduced the left ABVN stimulation effects in the same model. SIGNIFICANCE Our data show that only the stimulation in the left ABVN is capable of producing antinociceptive effect in acute pain models in rats, and that it is dependent on the activation of the vagus nerve caudal to the nodose ganglion, as well as the muscarinic and nicotinic cholinergic receptors.
Collapse
Affiliation(s)
- Marcos Lisboa Neves
- Program of Post-graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC 88040-900, Brazil.
| | - Jhenifer Karvat
- Program of Post-graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC 88040-900, Brazil
| | - Róli Rodrigues Simões
- Program of Post-graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC 88040-900, Brazil; Nova Palhoça College, Av. Vidal Procópio Lohn, 1081 - Nova Palhoça, Palhoça, SC, 88131-551, Brazil
| | - Guilherme Fleury Fina Speretta
- Program of Post-graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC 88040-900, Brazil; Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC 88040-900, Brazil
| | - Renata Maria Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC 88040-900, Brazil
| | - Morgana Duarte da Silva
- Program of Post-graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC 88040-900, Brazil
| | - Adair Roberto Soares Santos
- Program of Post-graduation in Neuroscience, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
4
|
Li H, Page AJ. Altered Vagal Signaling and Its Pathophysiological Roles in Functional Dyspepsia. Front Neurosci 2022; 16:858612. [PMID: 35527812 PMCID: PMC9072791 DOI: 10.3389/fnins.2022.858612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
The vagus nerve is crucial in the bidirectional communication between the gut and the brain. It is involved in the modulation of a variety of gut and brain functions. Human studies indicate that the descending vagal signaling from the brain is impaired in functional dyspepsia. Growing evidence indicate that the vagal signaling from gut to brain may also be altered, due to the alteration of a variety of gut signals identified in this disorder. The pathophysiological roles of vagal signaling in functional dyspepsia is still largely unknown, although some studies suggested it may contribute to reduced food intake and gastric motility, increased psychological disorders and pain sensation, nausea and vomiting. Understanding the alteration in vagal signaling and its pathophysiological roles in functional dyspepsia may provide information for new potential therapeutic treatments of this disorder. In this review, we summarize and speculate possible alterations in vagal gut-to-brain and brain-to-gut signaling and the potential pathophysiological roles in functional dyspepsia.
Collapse
Affiliation(s)
- Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Hui Li,
| | - Amanda J. Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
5
|
Cordner ZA, Li Q, Liu L, Tamashiro KL, Bhargava A, Moran TH, Pasricha PJ. Vagal gut-brain signaling mediates amygdaloid plasticity, affect, and pain in a functional dyspepsia model. JCI Insight 2021; 6:144046. [PMID: 33591956 PMCID: PMC8026195 DOI: 10.1172/jci.insight.144046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Functional dyspepsia (FD) is associated with chronic gastrointestinal distress and with anxiety and depression. Here, we hypothesized that aberrant gastric signals, transmitted by the vagus nerve, may alter key brain regions modulating affective and pain behavior. Using a previously validated rat model of FD characterized by gastric hypersensitivity, depression-like behavior, and anxiety-like behavior, we found that vagal activity - in response to gastric distention - was increased in FD rats. The FD phenotype was associated with gastric mast cell hyperplasia and increased expression of corticotrophin-releasing factor (Crh) and decreased brain-derived neurotrophic factor genes in the central amygdala. Subdiaphragmatic vagotomy reversed these changes and restored affective behavior to that of controls. Vagotomy partially attenuated pain responses to gastric distention, which may be mediated by central reflexes in the periaqueductal gray, as determined by local injection of lidocaine. Ketotifen, a mast cell stabilizer, reduced vagal hypersensitivity, normalized affective behavior, and attenuated gastric hyperalgesia. In conclusion, vagal activity, partially driven by gastric mast cells, induces long-lasting changes in Crh signaling in the amygdala that may be responsible for enhanced pain and enhanced anxiety- and depression-like behaviors. Together, these results support a "bottom-up" pathway involving the gut-brain axis in the pathogenesis of both gastric pain and psychiatric comorbidity in FD.
Collapse
Affiliation(s)
| | - Qian Li
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liansheng Liu
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Aditi Bhargava
- Department of Obstetrics and Gynecology and The Center for Reproductive Sciences, UCSF, San Francisco, California, USA
| | | | - Pankaj Jay Pasricha
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. Nat Commun 2020; 11:2501. [PMID: 32427844 PMCID: PMC7237711 DOI: 10.1038/s41467-020-16198-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/21/2020] [Indexed: 01/30/2023] Open
Abstract
Anxiety is common in patients suffering from chronic pain. Here, we report anxiety-like behaviors in mouse models of chronic pain and reveal that nNOS-expressing neurons in ventromedial prefrontal cortex (vmPFC) are essential for pain-induced anxiety but not algesia, using optogenetic and chemogenetic strategies. Additionally, we determined that excitatory projections from the posterior subregion of paraventricular thalamic nucleus (pPVT) provide a neuronal input that drives the activation of vmPFC nNOS-expressing neurons in our chronic pain models. Our results suggest that the pain signal becomes an anxiety signal after activation of vmPFC nNOS-expressing neurons, which causes subsequent release of nitric oxide (NO). Finally, we show that the downstream molecular mechanisms of NO likely involve enhanced glutamate transmission in vmPFC CaMKIIα-expressing neurons through S-nitrosylation-induced AMPAR trafficking. Overall, our data suggest that pPVT excitatory neurons drive chronic pain-induced anxiety through activation of vmPFC nNOS-expressing neurons, resulting in NO-mediated AMPAR trafficking in vmPFC pyramidal neurons. Chronic pain usually induces anxiety. Here, the authors report that vmPFC nNOS-expressing neurons are activated by excitatory inputs from pPVT during chronic pain and subsequently induce anxiety-like behaviors in mice through promoting AMPAR trafficking.
Collapse
|
7
|
Page AJ, Li H. Meal-Sensing Signaling Pathways in Functional Dyspepsia. Front Syst Neurosci 2018; 12:10. [PMID: 29674959 PMCID: PMC5895752 DOI: 10.3389/fnsys.2018.00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
The upper gastrointestinal tract plays an important role in sensing the arrival, amount and chemical composition of a meal. Ingestion of a meal triggers a number of sensory signals in the gastrointestinal tract. These include the response to mechanical stimulation (e.g., gastric distension), from the presence of food in the gut, and the interaction of various dietary nutrients with specific "taste" receptors on specialized enteroendocrine cells in the small intestine culminating in the release of gut hormones. These signals are then transmitted to the brain where they contribute to food intake regulation by modulating appetite as well as feedback control of gastrointestinal functions (e.g., gut motility). There is evidence that the sensitivity to these food related stimuli is abnormally enhanced in functional dyspepsia leading to symptoms such nausea and bloating. In addition, these gut-brain signals can modulate the signaling pathways involved in visceral pain. This review will discuss the role of gut-brain signals in appetite regulation and the role dysregulation of this system play in functional dyspepsia.
Collapse
Affiliation(s)
- Amanda J Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Hui Li
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
8
|
Bhattarai Y, Muniz Pedrogo DA, Kashyap PC. Irritable bowel syndrome: a gut microbiota-related disorder? Am J Physiol Gastrointest Liver Physiol 2017; 312:G52-G62. [PMID: 27881403 PMCID: PMC5283907 DOI: 10.1152/ajpgi.00338.2016] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal (GI) disorders. Despite its prevalence, the pathophysiology of IBS is not well understood although multiple peripheral and central factors are implicated. Recent studies suggest a role for alterations in gut microbiota in IBS. Significant advances in next-generation sequencing technology and bioinformatics and the declining cost have now allowed us to better investigate the role of gut microbiota in IBS. In the following review, we propose gut microbiota as a unifying factor in the pathophysiology of IBS. We first describe how gut microbiota can be influenced by factors predisposing individuals to IBS such as host genetics, stress, diet, antibiotics, and early life experiences. We then highlight the known effects of gut microbiota on mechanisms implicated in the pathophysiology of IBS including disrupted gut brain axis (GBA), visceral hypersensitivity (VH), altered GI motility, epithelial barrier dysfunction, and immune activation. While there are several gaps in the field that preclude us from connecting the dots to establish causation, we hope this overview will allow us to identify and fill in the voids.
Collapse
Affiliation(s)
- Yogesh Bhattarai
- 1Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David A. Muniz Pedrogo
- 1Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Purna C. Kashyap
- 1Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception. Pain 2016; 156:2479-2491. [PMID: 26262826 DOI: 10.1097/j.pain.0000000000000318] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical "feedforward inhibition" in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs.
Collapse
|
10
|
de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol 2016; 594:5791-5815. [PMID: 26959077 DOI: 10.1113/jp271538] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 12/21/2022] Open
Abstract
This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie-rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high-fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade-induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- The John B. Pierce Laboratory, New Haven, CT, USA. .,Dept Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Differential effects of naloxone on rewarding electrical stimulation of the central nucleus of the amygdala and parabrachial complex in a place preference study. Brain Res Bull 2016; 124:182-9. [PMID: 27173444 DOI: 10.1016/j.brainresbull.2016.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 12/29/2022]
Abstract
The central nucleus of the amygdala (CeA) is considered to be involved in different affective, sensory, regulatory, and acquisition processes. This study analyzed whether electrical stimulation of the PB-CeA system induces preferences in a concurrent place preference (cPP) task, as observed after stimulation of the parabrachial-insular cortex (PB-IC) axis. It also examined whether the rewarding effects are naloxone-dependent. The results show that electrical stimulation of the CeA and external lateral parabrachial subnucleus (LPBe) induces consistent preference behaviors in a cPP task. However, subcutaneous administration of an opiate antagonist (naloxone; 4mg/ml/kg) blocked the rewarding effect of the parabrachial stimulation but not that of the amygdala stimulation. These results are interpreted in the context of multiple brain reward systems that appear to differ both anatomically and neurochemically, notably with respect to the opiate system.
Collapse
|
12
|
Jain P, Hassan AM, Koyani CN, Mayerhofer R, Reichmann F, Farzi A, Schuligoi R, Malle E, Holzer P. Behavioral and molecular processing of visceral pain in the brain of mice: impact of colitis and psychological stress. Front Behav Neurosci 2015. [PMID: 26217204 PMCID: PMC4498125 DOI: 10.3389/fnbeh.2015.00177] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal disorders with abdominal pain are associated with central sensitization and psychopathologies that are often exacerbated by stress. Here we investigated the impact of colitis induced by dextran sulfate sodium (DSS) and repeated water avoidance stress (WAS) on spontaneous and nociception-related behavior and molecular signaling in the mouse brain. DSS increased the mechanical pain sensitivity of the abdominal skin while both WAS and DSS enhanced the mechanical and thermal pain sensitivity of the plantar skin. These manifestations of central sensitization were associated with augmented c-Fos expression in spinal cord, thalamus, hypothalamus, amygdala and prefrontal cortex. While WAS stimulated phosphorylation of mitogen-activated protein kinase (MAPK) p42/44, DSS activated another signaling pathway, both of which converged on c-Fos. The DSS- and WAS-induced hyperalgesia in the abdominal and plantar skin and c-Fos expression in the brain disappeared when the mice were subjected to WAS+DSS treatment. Intrarectal allyl isothiocyanate (AITC) evoked aversive behavior (freezing, reduction of locomotion and exploration) in association with p42/44 MAPK and c-Fos activation in spinal cord and brain. These effects were inhibited by morphine, which attests to their relationship with nociception. DSS and WAS exerted opposite effects on AITC-evoked p42/44 MAPK and c-Fos activation, which indicates that these transduction pathways subserve different aspects of visceral pain processing in the brain. In summary, behavioral perturbations caused by colitis and psychological stress are associated with distinct alterations in cerebral signaling. These findings provide novel perspectives on central sensitization and the sensory and emotional processing of visceral pain stimuli in the brain.
Collapse
Affiliation(s)
- Piyush Jain
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz Graz, Austria
| | - Ahmed M Hassan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz Graz, Austria
| | - Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz Graz, Austria
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz Graz, Austria
| | - Rufina Schuligoi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz Graz, Austria
| |
Collapse
|
13
|
Herrity AN, Rau KK, Petruska JC, Stirling DP, Hubscher CH. Identification of bladder and colon afferents in the nodose ganglia of male rats. J Comp Neurol 2014; 522:3667-82. [PMID: 24845615 DOI: 10.1002/cne.23629] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022]
Abstract
The sensory neurons innervating the urinary bladder and distal colon project to similar regions of the central nervous system and often are affected simultaneously by various diseases and disorders, including spinal cord injury. Anatomical and physiological commonalities between the two organs involve the participation of shared spinally derived pathways, allowing mechanisms of communication between the bladder and colon. Prior electrophysiological data from our laboratory suggest that the bladder also may receive sensory innervation from a nonspinal source through the vagus nerve, which innervates the distal colon as well. The present study therefore aimed to determine whether anatomical evidence exists for vagal innervation of the male rat urinary bladder and to assess whether those vagal afferents also innervate the colon. Additionally, the relative contribution to bladder and colon sensory innervation of spinal and vagal sources was determined. By using lipophilic tracers, neurons that innervated the bladder and colon in both the nodose ganglia (NG) and L6/S1 and L1/L2 dorsal root ganglia (DRG) were quantified. Some single vagal and spinal neurons provided dual innervation to both organs. The proportions of NG afferents labeled from the bladder did not differ from spinal afferents labeled from the bladder when considering the collective population of total neurons from either group. Our results demonstrate evidence for vagal innervation of the bladder and colon and suggest that dichotomizing vagal afferents may provide a neural mechanism for cross-talk between the organs.
Collapse
Affiliation(s)
- April N Herrity
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202; Kentucky Spinal Cord Injury Research Center University of Louisville, Louisville, Kentucky, 40202
| | | | | | | | | |
Collapse
|
14
|
Bonfrate L, Tack J, Grattagliano I, Cuomo R, Portincasa P. Microbiota in health and irritable bowel syndrome: current knowledge, perspectives and therapeutic options. Scand J Gastroenterol 2013; 48:995-1009. [PMID: 23964766 DOI: 10.3109/00365521.2013.799220] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gastrointestinal tract is a natural reservoir of microbiota. The gut is germ-free at birth, but rapidly becomes host to various bacteria establishing a progressively mutual relationship. The composition of gut microbiota is individual-specific and depends on the genotype of the host and environmental factors. Novel techniques have been used to characterize gastrointestinal microbiota, including genomic approaches. The bacterial profile shows that dominant and minor phyla are present in the gastrointestinal tract. From the proximal to the distal segments of the gut the bacterial density gradually increases, reaching an estimated 10(11) to 10(12) bacteria per gram of colonic content. Dynamic interactions between gut and microbiota play a physiological role in metabolic, protective and structural functions, while dysbiosis contributes to several diseases. Microbiota appear to play a role in IBS, where qualitative and quantitative changes of bacteriaoccur in IBS subtypes. Initial therapeutic approaches in IBS have focused on microbiota. The relationship between perturbations of the microbiota, mucosal inflammation and IBS remains to be further investigated.
Collapse
Affiliation(s)
- Leonilde Bonfrate
- Department of Biomedical Sciences and Human Oncology DIMO, Clinica Medica A. Murri, University of Bari Medical School, Bari, Italy
| | | | | | | | | |
Collapse
|
15
|
Mediavilla C, Bernal A, Mahía J, Puerto A. Nucleus of the solitary tract and flavor aversion learning: Relevance in concurrent but not sequential behavioral test. Behav Brain Res 2011; 223:287-92. [DOI: 10.1016/j.bbr.2011.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/25/2011] [Indexed: 12/26/2022]
|
16
|
Pirnik Z, Bundziková J, Holubová M, Pýchová M, Fehrentz JA, Martinez J, Zelezná B, Maletínská L, Kiss A. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice. Neurochem Int 2011; 59:889-95. [PMID: 21843570 DOI: 10.1016/j.neuint.2011.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/18/2022]
Abstract
Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr(3)ghr ([Dpr(N-octanoyl)(3)] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH(2)), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in trials for clinical purposes.
Collapse
Affiliation(s)
- Z Pirnik
- Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska Str. 3, 83306 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ruiz-Medina J, Ledent C, Valverde O. GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury and regulates morphine-induced antinociception. Neuropharmacology 2011; 61:43-50. [DOI: 10.1016/j.neuropharm.2011.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
18
|
Liu L, Li Q, Sapolsky R, Liao M, Mehta K, Bhargava A, Pasricha PJ. Transient gastric irritation in the neonatal rats leads to changes in hypothalamic CRF expression, depression- and anxiety-like behavior as adults. PLoS One 2011; 6:e19498. [PMID: 21589865 PMCID: PMC3093391 DOI: 10.1371/journal.pone.0019498] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/05/2011] [Indexed: 12/27/2022] Open
Abstract
AIMS A disturbance of the brain-gut axis is a prominent feature in functional bowel disorders (such as irritable bowel syndrome and functional dyspepsia) and psychological abnormalities are often implicated in their pathogenesis. We hypothesized that psychological morbidity in these conditions may result from gastrointestinal problems, rather than causing them. METHODS Functional dyspepsia was induced by neonatal gastric irritation in male rats. 10-day old male Sprague-Dawley rats received 0.1% iodoacetamide (IA) or vehicle by oral gavage for 6 days. At 8-10 weeks of age, rats were tested with sucrose preference and forced-swimming tests to examine depression-like behavior. Elevated plus maze, open field and light-dark box tests were used to test anxiety-like behaviors. ACTH and corticosterone responses to a minor stressor, saline injection, and hypothalamic CRF expression were also measured. RESULTS Behavioral tests revealed changes of anxiety- and depression-like behaviors in IA-treated, but not control rats. As compared with controls, hypothalamic and amygdaloid CRF immunoreactivity, basal levels of plasma corticosterone and stress-induced ACTH were significantly higher in IA-treated rats. Gastric sensory ablation with resiniferatoxin had no effect on behaviors but treatment with CRF type 1 receptor antagonist, antalarmin, reversed the depression-like behavior in IA-treated rats CONCLUSIONS The present results suggest that transient gastric irritation in the neonatal period can induce a long lasting increase in depression- and anxiety-like behaviors, increased expression of CRF in the hypothalamus, and an increased sensitivity of HPA axis to stress. The depression-like behavior may be mediated by the CRF1 receptor. These findings have significant implications for the pathogenesis of psychological co-morbidity in patients with functional bowel disorders.
Collapse
Affiliation(s)
- Liansheng Liu
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, United States of America
| | - Qian Li
- Department of Pharmacology and Toxicology, University of Kansas, Kansas City, Kansas, United States of America
| | - Robert Sapolsky
- Department of Biology, School of Humanities and Sciences, Stanford University, Stanford, California, United States of America
| | - Min Liao
- Department of Surgery, University of California San Francisco, San Francisco, United States of America
| | - Kshama Mehta
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, United States of America
| | - Aditi Bhargava
- Department of Surgery, University of California San Francisco, San Francisco, United States of America
| | - Pankaj J. Pasricha
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil 2010; 22:512-9, e114-5. [PMID: 19903265 DOI: 10.1111/j.1365-2982.2009.01427.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The profile of intestinal organic acids in irritable bowel syndrome (IBS) and its correlation with gastrointestinal (GI) symptoms are not clear. We hypothesized in this study that altered GI microbiota contribute to IBS symptoms through increased levels of organic acids. METHODS Subjects were 26 IBS patients and 26 age- and sex-matched controls. Fecal samples were collected for microbiota analysis using quantitative real-time polymerase chain reaction and culture methods, and the determination of organic acid levels using high-performance liquid chromatography. Abdominal gas was quantified by image analyses of abdominal X-ray films. Subjects completed a questionnaire for GI symptoms, quality of life (QOL) and negative emotion. KEY RESULTS Irritable bowel syndrome patients showed significantly higher counts of Veillonella (P = 0.046) and Lactobacillus (P = 0.031) than controls. They also expressed significantly higher levels of acetic acid (P = 0.049), propionic acid (P = 0.025) and total organic acids (P = 0.014) than controls. The quantity of bowel gas was not significantly different between controls and IBS patients. Finally, IBS patients with high acetic acid or propionic acid levels presented with significantly worse GI symptoms, QOL and negative emotions than those with low acetic acid or propionic acid levels or controls. CONCLUSIONS & INFERENCES These results support the hypothesis that both fecal microbiota and organic acids are altered in IBS patients. A combination of Veillonella and Lactobacillus is known to produce acetic and propionic acid. High levels of acetic and propionic acid may associate with abdominal symptoms, impaired QOL and negative emotions in IBS.
Collapse
Affiliation(s)
- C Tana
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The distribution in the thalamus of terminal projections from lamina I neurons of the trigeminal, cervical, and lumbosacral dorsal horn was investigated with the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. Iontophoretic injections were guided by single- and multi-unit physiological recordings. The injections in particular cases were essentially restricted to lamina I, whereas in others they spread across laminae I-III or laminae I-V. The trigemino- and spinothalamic (TSTT) terminations were identified immunohistochemically. In all cases, regardless of the level of the injections, terminal fibers were consistently distributed in three main locations: the submedial nucleus; the ventral aspect of the basal ventral medial nucleus and ventral posterior nuclei; and, the dorsomedial aspect of the ventral posterior medial nucleus. The terminal fields in the submedial nucleus and the ventral aspect of the ventral posterior group were topographically organized. Terminations along the ventral aspect of the ventral posterior group extended posterolaterally into the caudal part of the posterior nucleus and anteromedially into the ventromedial part of the ventral lateral nucleus. In several cases with trigeminal lamina I injections, a terminal labeling patch was observed within the core of the ventral posterior medial nucleus. In cases with spinal lamina I injections, terminations were also consistently found in the lateral habenula, the parafascicular nucleus, and the nucleus reuniens. Isolated terminal fibers were occasionally seen in the zona incerta, the dorsomedial hypothalamus, and other locations. These anatomical observations extend prior studies of TSTT projections and identify lamina I projection targets that are important for nociceptive, thermoreceptive, and homeostatic processing in the cat. The findings are consistent with evidence from physiological (single-unit and antidromic mapping) and behavioral studies. The novel identification of spinal lamina I input to the lateral habenula could be significant for homeostatic behaviors.
Collapse
Affiliation(s)
- A D Craig
- Atkinson Pain Research Laboratory, Barrow Neurological Institute, Phoenix, AZ 85013, USA.
| |
Collapse
|
21
|
Pirodda A, Brandolini C, Ferri GG, Modugno GC, Esposti DD, Borghi C. Inner ear dysfunction of uncertain origin: A multidisciplinary approach could give something more. Med Hypotheses 2009; 72:188-9. [DOI: 10.1016/j.mehy.2008.07.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 06/13/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
|
22
|
Narita M, Hashimoto K, Amano T, Narita M, Niikura K, Nakamura A, Suzuki T. Post-synaptic action of morphine on glutamatergic neuronal transmission related to the descending antinociceptive pathway in the rat thalamus. J Neurochem 2008; 104:469-78. [PMID: 18173804 DOI: 10.1111/j.1471-4159.2007.05059.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Morphine is a prototypical mu-opioid receptor (MOR) agonist, and can directly inhibit pain transmission at both spinal and supraspinal levels. In the present study, we investigated the properties of thalamic neurons in an opioid-sensitive pain-modulating circuit. Application of morphine to cultured thalamic neurons evoked a potentiation of glutamate-induced peak currents, which was blocked by the MOR antagonist. Application of the protein kinase C inhibitor chelerythrine significantly inhibited the morphine-evoked enhancement of glutamate-induced currents. Immunoreactivity for MOR was observed with high density in the habenular nucleus (Hb) of the thalamus in rats, which was clearly co-localized with NMDA receptor subunit 1 (NRI). In this study, we show that microinjection of morphine into the Hb produced a dose-dependent increase in the tail-flick latency and enhanced the antinociceptive effect induced by the intra-Hb injection of glutamate. When fluoro-gold (FG) was used as a retrograde tracer, we found that FG-labeled neurons in the Hb after the microinjection of FG into the periaqueductal gray expressed both MOR and NR1. The present data suggest that the stimulation of MOR in the Hb may be involved in activation of the descending antinociceptive pathway through glutamatergic neurotransmission via the NMDA receptor.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara, Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Navarro JR, Barragán G, Rincón DA, Eslava JH. Analgesia preventiva en mujeres programadas para esterilización definitiva con electrofulguración de trompas uterinas por laparoscopia. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2008. [DOI: 10.1016/s0120-3347(08)61002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Takayama K, Iwazaki H, Hirabayashi M, Yakabi K, Ro S. Distribution of c-Fos immunoreactive neurons in the brain after intraperitoneal injection of apelin-12 in Wistar rats. Neurosci Lett 2008; 431:247-50. [DOI: 10.1016/j.neulet.2007.11.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
|
25
|
Shigematsu N, Fukuda T, Yamamoto T, Nishioku T, Yamaguchi T, Himeno M, Nakayama KI, Tsukuba T, Kadowaki T, Okamoto K, Higuchi S, Yamamoto K. Association of cathepsin E deficiency with the increased territorial aggressive response of mice. J Neurochem 2008; 105:1394-404. [PMID: 18221376 DOI: 10.1111/j.1471-4159.2008.05242.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cathepsin E is an endolysosomal aspartic proteinase predominantly expressed in cells of the immune system, but physiological functions of this protein in the brain remains unclear. In this study, we investigate the behavioral effect of disrupting the gene encoding cathepsin E in mice. We found that the cathepsin E-deficient (CatE-/-) mice were behaviorally normal when housed communally, but they became more aggressive compared with the wild-type littermates when housed individually in a single cage. The increased aggressive response of CatE-/- mice was reduced to the level comparable to that seen for CatE+/+ mice by pretreatment with an NK-1-specific antagonist. Consistent with this, the neurotransmitter substance P (SP) level in affective brain areas including amygdala, hypothalamus, and periaqueductal gray was significantly increased in CatE-/- mice compared with CatE+/+ mice, indicating that the increased aggressive behavior of CatE-/- mice by isolation housing followed by territorial challenge is mainly because of the enhanced SP/NK-1 receptor signaling system. Double immunofluorescence microscopy also revealed the co-localization of SP with synaptophysin but not with microtubule-associated protein-2. Our data thus indicate that cathepsin E is associated with the SP/NK-1 receptor signaling system and thereby regulates the aggressive response of the animals to stressors such as territorial challenge.
Collapse
Affiliation(s)
- Naoki Shigematsu
- Department of Pharmacology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Banerjee B, Medda BK, Lazarova Z, Bansal N, Shaker R, Sengupta JN. Effect of reflux-induced inflammation on transient receptor potential vanilloid one (TRPV1) expression in primary sensory neurons innervating the oesophagus of rats. Neurogastroenterol Motil 2007; 19:681-91. [PMID: 17640184 DOI: 10.1111/j.1365-2982.2007.00947.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A possible mechanism of oesophageal hypersensitivity is the acid-induced activation of transient receptor potential vanilloid receptor 1 (TRPV1) in the primary sensory neurons. We investigated TRPV1 expression and its colocalization with substance P (SP) and isolectin B4 (IB4)-positive cells in the thoracic dorsal root ganglia (DRGs) and nodose ganglia (NGs) of rats with reflux-induced oesophagitis (RO). RO was developed by fundus ligation and partial obstruction of the pylorus of Sprague-Dawley rats. Four groups of rats were used; fundus ligated acute (RO 48 h), chronic 7 days (RO 7D), RO 7D + omeprazole (7D + Omz, 40 mg kg(-1), i.p.) and sham-operated controls. Immunohistochemical analysis of TRPV1, SP and IB4 expression were carried out in spinal cord (SC), DRGs and NGs. RO rats exhibited significant inflammation and increase in TRPV1-ir and SP-ir expressions in the SC, DRGs and NGs. The maximum colocalization of TRPV1 and SP was observed in RO 7D rats, but Omz prevented inflammation and over expression of TRPV1 and SP. TRPV1-ir significantly increased in IB4-positive cells in DRGs and SC, but not in the NGs. Results document that acid-induced oesophagitis increases TRPV1 expression in both SP- and IB4-positive sensory neurons. The over expression of TRPV1 may contribute to oesophageal hypersensitivity observed in gastro-oesophageal reflux disease (GORD).
Collapse
Affiliation(s)
- B Banerjee
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Wultsch T, Painsipp E, Shahbazian A, Mitrovic M, Edelsbrunner M, Waldmann R, Lazdunski M, Holzer P. Deletion of the acid-sensing ion channel ASIC3 prevents gastritis-induced acid hyperresponsiveness of the stomach-brainstem axis. Pain 2007; 134:245-253. [PMID: 17531389 PMCID: PMC4359900 DOI: 10.1016/j.pain.2007.04.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 03/05/2007] [Accepted: 04/16/2007] [Indexed: 02/08/2023]
Abstract
Gastric acid challenge of the rat and mouse stomach is signalled to the brainstem as revealed by expression of c-Fos. The molecular sensors relevant to the detection of gastric mucosal acidosis are not known. Since the acid-sensing ion channels ASIC2 and ASIC3 are expressed by primary afferent neurons, we examined whether knockout of the ASIC2 or ASIC3 gene modifies afferent signalling of a gastric acid insult in the normal and inflamed stomach. The stomach of conscious mice (C57BL/6) was challenged with intragastric HCl; two hours later the activation of neurons in the nucleus tractus solitarii (NTS) of the brainstem was visualized by c-Fos immunocytochemistry. Mild gastritis was induced by addition of iodoacetamide (0.1%) to the drinking water for 7 days. Exposure of the gastric mucosa to HCl (0.25M) caused a 3-fold increase in the number of c-Fos-positive neurons in the NTS. This afferent input to the NTS remained unchanged by ASIC3 knockout, whereas ASIC2 knockout augmented the c-Fos response to gastric HCl challenge by 33% (P<0.01). Pretreatment of wild-type mice with iodoacetamide induced mild gastritis, as revealed by increased myeloperoxidase activity, and enhanced the number of NTS neurons responding to gastric HCl challenge by 41% (P<0.01). This gastric acid hyperresponsiveness was absent in ASIC3 knockout mice but fully preserved in ASIC2 knockout mice. The current data indicate that ASIC3 plays a major role in the acid hyperresponsiveness associated with experimental gastritis. In contrast, ASIC2 appears to dampen acid-evoked input from the stomach to the NTS.
Collapse
Affiliation(s)
- Thomas Wultsch
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Anaid Shahbazian
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Martina Mitrovic
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Martin Edelsbrunner
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Rainer Waldmann
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UNSA UMR 6097, Sophia Antipolis, Valbonne, France
| | - Michel Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UNSA UMR 6097, Sophia Antipolis, Valbonne, France
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
28
|
Yasoshima Y, Scott TR, Yamamoto T. Differential activation of anterior and midline thalamic nuclei following retrieval of aversively motivated learning tasks. Neuroscience 2007; 146:922-30. [PMID: 17412515 DOI: 10.1016/j.neuroscience.2007.02.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/19/2007] [Accepted: 02/20/2007] [Indexed: 11/21/2022]
Abstract
Two thalamic nuclear groups, the anterior thalamic nuclei (ATN) and midline and intralaminar thalamic complex (MITC) have connections to the prefrontal cortex, amygdala, hippocampus and accumbens that are important for learning and memory. However, the anatomical proximity between the ATN and MITC makes it difficult to reveal their roles in memory retrieval of aversive conditioned behavior. To address the issue, we explored the activation of the ATN and MITC, as represented by the expression of the immediate early gene c-fos, following either the retrieval of a conditioned taste aversion (CTA) induced by taste-LiCl pairing (visceral aversion) or of inhibitory avoidance (IA) induced by context-foot shock pairing (somatic aversion) in rats. The anterodorsal (AD) nucleus in the ATN was activated by foot shock and the recall of IA, but not by i.p. injection of LiCl or the recall of CTA. No significant elevation was observed in the other ATN following these treatments. Among nuclei of the MITC, the paraventricular thalamic nucleus (PVT) was activated by the delivery of shock or LiCl and by the recall of both CTA and IA, while the mediodorsal thalamus (MD) and central medial and intermediate thalamus (CM/IMD) were not. The innately aversive taste of quinine did not elevate c-fos expression in either the ATN or MITC. These results suggest that the PVT in the MITC is involved in the processing and retrieval of both taste-malaise and context-shock association tasks, while the AD in the ATN is involved in those of context-shock association only. The difference of the activity between the ATN and MITC demonstrates their functional and anatomical heterogeneity in neural substrates for aversive learning tasks.
Collapse
Affiliation(s)
- Y Yasoshima
- Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, 1-2 Yamada-oka, Suita 565-0871, Japan
| | | | | |
Collapse
|
29
|
Takayama K, Johno Y, Hayashi K, Yakabi K, Tanaka T, Ro S. Expression of c-Fos protein in the brain after intravenous injection of ghrelin in rats. Neurosci Lett 2007; 417:292-6. [PMID: 17433545 DOI: 10.1016/j.neulet.2007.02.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 02/16/2007] [Accepted: 02/21/2007] [Indexed: 02/05/2023]
Abstract
In this study, we surveyed central neurons that might be activated after peripheral administration of a gut-brain peptide ghrelin, by examining neurons expressing c-Fos protein. First, we examined the relationship between the dose of ghrelin and the amount of gastric acid secreted. Ghrelin induced a significant increase in the amount of gastric acid secretion in a dose-dependent manner. Secondly, we examined central neurons that expressed c-Fos protein after intravenous injection of ghrelin. We found that intravenously injected ghrelin induced the neural expression of c-Fos protein in several nuclei and circumventricular organs in the brain. These results suggest that ghrelin released into the circulation may stimulate central neurons that have some role in the control mechanism for gastric acid secretion.
Collapse
Affiliation(s)
- Kiyoshige Takayama
- Department of Laboratory Sciences, Gunma University School of Health Sciences, 3-39-15 Showa-machi, Maebashi-shi, Gunma 371-8514, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Increase in gastric acid-induced afferent input to the brainstem in mice with gastritis. Neuroscience 2007; 145:1108-19. [PMID: 17303342 DOI: 10.1016/j.neuroscience.2006.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/25/2006] [Accepted: 12/12/2006] [Indexed: 01/17/2023]
Abstract
Acid challenge of the gastric mucosa is signaled to the brainstem. This study examined whether mild gastritis due to dextrane sulfate sodium (DSS) or iodoacetamide (IAA) enhances gastric acid-evoked input to the brainstem and whether this effect is related to gastric myeloperoxidase activity, gastric histology, gastric volume retention or cyclooxygenase stimulation. The stomach of conscious mice was challenged with NaCl (0.15 M) or HCl (0.15 and 0.25 M) administered via gastric gavage. Two hours later, activation of neurons in the nucleus tractus solitarii (NTS) was visualized by c-Fos immunocytochemistry. Gastritis was induced by DSS (molecular weight 8000; 5%) or IAA (0.1%) added to the drinking water for 7 days. Relative to NaCl, intragastric HCl increased the number of c-Fos protein-expressing cells in the NTS. Pretreatment with DSS or IAA for 1 week did not alter the c-Fos response to NaCl but significantly enhanced the response to HCl by 54 and 74%, respectively. Either pretreatment elevated gastric myeloperoxidase activity and induced histological injury of the mucosal surface. In addition, DSS caused dilation of the gastric glands and damage to the parietal cells. HCl-induced gastric volume retention was not altered by IAA but attenuated by DSS pretreatment. Indomethacin (5 mg/kg) failed to significantly alter HCl-evoked expression of c-Fos in the NTS of control, DSS-pretreated and IAA-pretreated mice. We conclude that the gastritis-evoked increase in the gastric acid-evoked c-Fos expression in the NTS is related to disruption of the gastric mucosal barrier, mucosal inflammation, mucosal acid influx and enhanced activation of the afferent stomach-NTS axis.
Collapse
|
31
|
Dallman MF, Pecoraro NC, La Fleur SE, Warne JP, Ginsberg AB, Akana SF, Laugero KC, Houshyar H, Strack AM, Bhatnagar S, Bell ME. Glucocorticoids, chronic stress, and obesity. PROGRESS IN BRAIN RESEARCH 2006; 153:75-105. [PMID: 16876569 DOI: 10.1016/s0079-6123(06)53004-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a chronic stressor, the steroids act in brain in a feed-forward fashion to recruit a stress-response network that biases ongoing autonomic, neuroendocrine, and behavioral outflow as well as responses to novel stressors. We review evidence for the role of glucocorticoids in activating the central stress-response network, and for mediation of this network by corticotropin-releasing factor (CRF). We briefly review the effects of CRF and its receptor antagonists on motor outflows in rodents, and examine the effects of glucocorticoids and CRF on monoaminergic neurons in brain. Corticosteroids stimulate behaviors that are mediated by dopaminergic mesolimbic "reward" pathways, and increase palatable feeding in rats. Moreover, in the absence of corticosteroids, the typical deficits in adrenalectomized rats are normalized by providing sucrose solutions to drink, suggesting that there is, in addition to the feed-forward action of glucocorticoids on brain, also a feedback action that is based on metabolic well being. Finally, we briefly discuss the problems with this network that normally serves to aid in responses to chronic stress, in our current overindulged, and underexercised society.
Collapse
Affiliation(s)
- Mary F Dallman
- University of California at San Francisco, San Francisco, CA 94143-0444, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Solomon A, De Fanti BA, Martínez JA. The nucleus tractus solitari (NTS) participates in peripheral ghrelin glucostatic hunger signalling mediated by insulin. Neuropeptides 2006; 40:169-75. [PMID: 16677709 DOI: 10.1016/j.npep.2006.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/25/2006] [Accepted: 03/07/2006] [Indexed: 11/17/2022]
Abstract
Three extrahypothalamic areas, the nucleus of the tractus solitari (NTS), the central nucleus of the amygdala (CeA) and the dorsal raphe nucleus (DRN), all potentially involved in peripheral ghrelin signalling of appetite control mediated by the glucose levels were examined. Thus, a specific anti-ghrelin antibody (AGA) was intravenously administered in order to remove the ghrelin signalling and then, subsequently, 4-h food intake, plasma glucose levels and the brain c-fos expression in the NTS, CeA and DRN were assessed. Food intake significantly decreased when the AGA was administered. NTS c-Fos expression was significantly augmented by insulin, while it was significantly decreased by the AGA. These results suggest that the NTS is a part of the ghrelin pathway that regulates the orexigenic signalling cascade, which may be triggered by a drop in blood glucose levels mediated by insulin.
Collapse
Affiliation(s)
- A Solomon
- Department of Physiology and Nutrition, University of Navarra, C/Irunlarrea, 1, 31008, Pamplona, Spain
| | | | | |
Collapse
|
33
|
Reynolds PJ, Fan W, Andresen MC. Capsaicin-resistant arterial baroreceptors. J Negat Results Biomed 2006; 5:6. [PMID: 16709252 PMCID: PMC1481593 DOI: 10.1186/1477-5751-5-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 05/18/2006] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aortic baroreceptors (BRs) comprise a class of cranial afferents arising from major arteries closest to the heart whose axons form the aortic depressor nerve. BRs are mechanoreceptors that are largely devoted to cardiovascular autonomic reflexes. Such cranial afferents have either lightly myelinated (A-type) or non-myelinated (C-type) axons and share remarkable cellular similarities to spinal primary afferent neurons. Our goal was to test whether vanilloid receptor (TRPV1) agonists, capsaicin (CAP) and resiniferatoxin (RTX), altered the pressure-discharge properties of peripheral aortic BRs. RESULTS Periaxonal application of 1 microM CAP decreased the amplitude of the C-wave in the compound action potential conducting at <1 m/sec along the aortic depressor nerve. 10 microM CAP eliminated the C-wave while leaving intact the A-wave conducting in the A-delta range (<12 m/sec). These whole nerve results suggest that TRPV1 receptors are expressed along the axons of C- but not A-conducting BR axons. In an aortic arch--aortic nerve preparation, intralumenal perfusion with 1 microM CAP had no effect on the pressure-discharge relations of regularly discharging, single fiber BRs (A-type)--including the pressure threshold, sensitivity, frequency at threshold, or maximum discharge frequency (n = 8, p > 0.50) but completely inhibited discharge of an irregularly discharging BR (C-type). CAP at high concentrations (10-100 microM) depressed BR sensitivity in regularly discharging BRs, an effect attributed to non-specific actions. RTX (< or = 10 microM) did not affect the discharge properties of regularly discharging BRs (n = 7, p > 0.18). A CAP-sensitive BR had significantly lower discharge regularity expressed as the coefficient of variation than the CAP-resistant fibers (p < 0.002). CONCLUSION We conclude that functional TRPV1 channels are present in C-type but not A-type (A-delta) myelinated aortic arch BRs. CAP has nonspecific inhibitory actions that are unlikely to be related to TRV1 binding since such effects were absent with the highly specific TRPV1 agonist RTX. Thus, CAP must be used with caution at very high concentrations.
Collapse
Affiliation(s)
- Patrick J Reynolds
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| | - Wei Fan
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| | - Michael C Andresen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| |
Collapse
|
34
|
Holzer P. Efferent-like roles of afferent neurons in the gut: Blood flow regulation and tissue protection. Auton Neurosci 2006; 125:70-5. [PMID: 16542883 PMCID: PMC4363547 DOI: 10.1016/j.autneu.2006.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 01/14/2006] [Accepted: 01/14/2006] [Indexed: 10/24/2022]
Abstract
The maintenance of gastrointestinal mucosal integrity depends on the rapid alarm of protective mechanisms in the face of pending injury. To this end, the gastric mucosa is innervated by intrinsic sensory neurons and two populations of extrinsic sensory neurons: vagal and spinal afferents. Extrinsic afferent neurons constitute an emergency system that is called into operation when the gastrointestinal mucosa is endangered by noxious chemicals. The function of these chemoceptive afferents can selectively be manipulated and explored with the use of capsaicin which acts via a cation channel termed TRPV1. Many of the homeostatic actions of spinal afferents are brought about by transmitter release from their peripheral endings. When stimulated by noxious chemicals, these afferents enhance gastrointestinal blood flow and activate hyperaemia-dependent and hyperaemia-independent mechanisms of protection and repair. In the rodent foregut these local regulatory roles of sensory neurons are mediated by calcitonin gene-related peptide and nitric oxide. The pathophysiological potential of the neural emergency system is best portrayed by the gastric hyperaemic response to acid back-diffusion, which is governed by spinal afferent nerve fibres. This mechanism limits damage to the surface of the mucosa and creates favourable conditions for rapid restitution and healing of the wounded mucosa. Other extrinsic afferent neurons, particularly in the vagus nerve, subserve gastrointestinal homeostasis by signalling noxious events in the foregut to the central nervous system and eliciting autonomic, emotional-affective and neuroendocrine reactions. Under conditions of inflammation and injury, chemoceptive afferents are sensitized to peripheral stimuli and in this functional state contribute to the hyperalgesia associated with functional dyspepsia and irritable bowel syndrome. Thus, if GI pain is to be treated by sensory neuron-directed drugs it needs to be considered that these drugs do not inhibit nociception at the expense of GI mucosal vulnerability.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
35
|
Sugiura T, Dang K, Lamb K, Bielefeldt K, Gebhart GF. Acid-sensing properties in rat gastric sensory neurons from normal and ulcerated stomach. J Neurosci 2006; 25:2617-27. [PMID: 15758172 PMCID: PMC6725180 DOI: 10.1523/jneurosci.2894-04.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gastric acid contributes to dyspeptic symptoms, including abdominal pain, in patients with disorders of the proximal gastrointestinal tract. To examine the molecular sensor(s) of gastric acid chemonociception, we characterized acid-elicited currents in dorsal root ganglion (DRG) and nodose ganglion (NG) neurons that innervate the stomach and examined their modulation after induction of gastric ulcers. A fluorescent dye (DiI) was injected into the stomach wall to retrogradely label gastric sensory neurons. After 1-2 weeks, gastric ulcers were induced by 45 s of luminal exposure of the stomach to 60% acetic acid injected into a clamped area of the distal stomach; control animals received saline. In whole-cell voltage-clamp recordings, all gastric DRG neurons and 55% of NG neurons exhibited transient, amiloride-sensitive, acid-sensing ion-channel (ASIC) currents. In the remaining 45% of NG neurons, protons activated a slow, sustained current that was attenuated by the transient receptor potential vanilloid subtype 1 antagonist, capsazepine. The kinetics and proton sensitivity of amiloride-sensitive ASIC currents differed between NG and DRG neurons. NG neurons had a lower proton sensitivity and faster kinetics, suggesting expression of specific subtypes of ASICs in the vagal and splanchnic innervation of the stomach. Effects of Zn2+ and N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine on acid-elicited currents suggest contributions of ASIC1a and ASIC2a subunits. Gastric ulcers altered the properties of acid-elicited currents by increasing pH sensitivity and current density and changing current kinetics in gastric DRG neurons. The distinct properties of NG and DRG neurons and their modulation after injury suggest differential contributions of vagal and spinal afferent neurons to chemosensation and chemonociception.
Collapse
Affiliation(s)
- Takeshi Sugiura
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
36
|
Holzer P. Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 2006; 8:107-23. [PMID: 15102553 DOI: 10.1517/14728222.8.2.107] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional bowel disorders (FBDs) are defined by symptoms of gastrointestinal (GI) dysfunction, discomfort and pain in the absence of a demonstrable organic cause. Since the prevalence of FBDs, particularly functional dyspepsia and irritable bowel syndrome, can be as high as 20%, FBDs represent a significant burden in terms of direct healthcare and productivity costs. There is emerging evidence that the discomfort and pain experienced by many FBD patients is due to persistent hypersensitivity of primary afferent neurons, which may develop in response to infection, inflammation or other insults. This concept identifies vagal and spinal sensory neurons as important targets for novel therapies of GI hyperalgesia. Sensory neuron-specific targets can be grouped into three categories: receptors and sensors at the peripheral nerve terminals, ion channels relevant to nerve excitability and conduction and transmitter receptors. Particular therapeutic potential is attributed to targets that are selectively expressed by afferent neurons, such as the transient receptor potential channel TRPV1, acid-sensing ion channels and tetrodotoxin-resistant Na + channels.
Collapse
Affiliation(s)
- Peter Holzer
- Medical University of Graz, Department of Experimental and Clinical Pharmacology, Austria.
| |
Collapse
|
37
|
Zhang FF, Mo JZ, Chen XY, Peng YS, Chen SL, Xiao SD. Gastric distention enhances FOS and calcitonin gene-related peptide expression in the spinal cord and brain of rats. ACTA ACUST UNITED AC 2006; 7:19-23. [PMID: 16412033 DOI: 10.1111/j.1443-9573.2006.00239.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the pathway and mode of transmission of visceral stimuli by investigating the distribution of the FOS and calcitonin gene-related peptide (CGRP) proteins in the central nervous system. METHODS Twenty-four Sprague-Dawley rats were divided into three groups: study group (n = 12), sham control group (n = 6), and normal control group (n = 6). A balloon was implanted into the stomach of the rats in the study and sham control groups. After 48 h, the rats in the study group had the stomach distended (80 mmHg) for 2 h, after which they were killed and the antrum, thoracic spinal cord and brain were isolated or dissected. The expression of Fos and CGRP in these tissues was detected immunohistochemically. RESULTS FOS expression in the dorsal horn of the spinal cord, dorsal nucleus of the vagal nerve, nucleus of the solitary tract in the study rats was significantly higher than in the sham and normal controls. However, no difference was found between the three groups in FOS expression in the myenteric plexus. Similarly, gastric distention enhanced CGRP expression significantly in the spinal cord and medulla oblongata and correlated closely with FOS expression in these two areas. CONCLUSIONS Gastric distention can activate the limbic system, and CGRP plays an important role in the input of visceral stimuli.
Collapse
Affiliation(s)
- Fei Fei Zhang
- Department of Gastroenterology, Shanghai Armed Police Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
38
|
Wultsch T, Painsipp E, Thoeringer CK, Herzog H, Sperk G, Holzer P. Endogenous neuropeptide Y depresses the afferent signaling of gastric acid challenge to the mouse brainstem via neuropeptide Y type Y2 and Y4 receptors. Neuroscience 2005; 136:1097-107. [PMID: 16216428 PMCID: PMC4359901 DOI: 10.1016/j.neuroscience.2005.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/29/2005] [Accepted: 08/10/2005] [Indexed: 01/04/2023]
Abstract
Vagal afferents signal gastric acid challenge to the nucleus tractus solitarii of the rat brainstem. This study investigated whether nucleus tractus solitarii neurons in the mouse also respond to gastric acid challenge and whether this chemonociceptive input is modified by neuropeptide Y acting via neuropeptide Y receptors of type Y2 or Y4. The gastric mucosa of female mice was exposed to different concentrations of HCl or saline, excitation of neurons in the nucleus tractus solitarii visualized by c-Fos immunohistochemistry, gastric emptying deduced from the gastric volume recovery, and gastric lesion formation evaluated by planimetry. Relative to saline, intragastric HCl (0.15-0.35 M) increased the number of c-Fos-expressing cells in the nucleus tractus solitarii in a concentration-dependent manner, inhibited gastric emptying but failed to cause significant hemorrhagic injury in the stomach. Mice in which the Y2 or Y4 receptor gene had been deleted responded to gastric acid challenge with a significantly higher expression of c-Fos in the nucleus tractus solitarii, the increases amounting to 39 and 31%, respectively. The HCl-induced inhibition of gastric emptying was not altered by deletion of the Y2 or Y4 receptor gene. BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e] azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl] acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide; 0.03 mmol/kg s.c.), a Y2 receptor antagonist which does not cross the blood-brain barrier, did not modify the c-Fos response to gastric acid challenge. The Y2 receptor agonist peptide YY-(3-36) (0.1 mg/kg intraperitoneally) likewise failed to alter the gastric HCl-evoked expression of c-Fos in the nucleus tractus solitarii. BIIE0246, however, prevented the effect of peptide YY-(3-36) to inhibit gastric acid secretion as deduced from measurement of intragastric pH. The current data indicate that gastric challenge with acid concentrations that do not induce overt injury but inhibit gastric emptying is signaled to the mouse nucleus tractus solitarii. Endogenous neuropeptide Y acting via Y2 and Y4 receptors depresses the afferent input to the nucleus tractus solitarii by a presumably central site of action.
Collapse
Affiliation(s)
- T Wultsch
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Holzer P, Painsipp E, Schuligoi R. Differential effects of intragastric acid and capsaicin on gastric emptying and afferent input to the rat spinal cord and brainstem. BMC Neurosci 2005; 6:60. [PMID: 16162281 PMCID: PMC1239919 DOI: 10.1186/1471-2202-6-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 09/14/2005] [Indexed: 11/25/2022] Open
Abstract
Background Hydrochloric acid (HCl) is a potential threat to the integrity of the gastric mucosa and is known to contribute to upper abdominal pain. We have previously found that gastric mucosal challenge with excess HCl is signalled to the rat brainstem, but not spinal cord, as visualized by expression of c-fos messenger ribonucleic acid (mRNA), a surrogate marker of neuronal excitation. This study examined whether gastric mucosal exposure to capsaicin, a stimulant of nociceptive afferents that does not damage the gastric mucosa, is signalled to both brainstem and spinal cord and whether differences in the afferent signalling of gastric HCl and capsaicin challenge are related to different effects on gastric emptying. Results Rats were treated intragastrically with vehicle, HCl or capsaicin, activation of neurons in the brainstem and spinal cord was visualized by in situ hybridization autoradiography for c-fos mRNA, and gastric emptying deduced from the retention of intragastrically administered fluid. Relative to vehicle, HCl (0.5 M) and capsaicin (3.2 mM) increased c-fos transcription in the nucleus tractus solitarii by factors of 7.0 and 2.1, respectively. Capsaicin also caused a 5.2-fold rise of c-fos mRNA expression in lamina I of the caudal thoracic spinal cord, although the number of c-fos mRNA-positive cells in this lamina was very small. Thus, on average only 0.13 and 0.68 c-fos mRNA-positive cells were counted in 0.01 mm sections of the unilateral lamina I following intragastric administration of vehicle and capsaicin, respectively. In contrast, intragastric HCl failed to induce c-fos mRNA in the spinal cord. Measurement of gastric fluid retention revealed that HCl suppressed gastric emptying while capsaicin did not. Conclusion The findings of this study show that gastric mucosal exposure to HCl and capsaicin is differentially transmitted to the brainstem and spinal cord. Since only HCl blocks gastric emptying, it is hypothesized that the two stimuli are transduced by different afferent pathways. We infer that HCl is exclusively signalled by gastric vagal afferents whereas capsaicin is processed both by gastric vagal and intestinal spinal afferents.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Evelin Painsipp
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Rufina Schuligoi
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| |
Collapse
|
40
|
Bielefeldt K, Christianson JA, Davis BM. Basic and clinical aspects of visceral sensation: transmission in the CNS. Neurogastroenterol Motil 2005; 17:488-99. [PMID: 16078937 DOI: 10.1111/j.1365-2982.2005.00671.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pain and discomfort are the leading cause for consultative visits to gastroenterologists. Acute pain should be considered a symptom of an underlying disease, thereby serving a physiologically important function. However, many patients experience chronic pain in the absence of potentially harmful stimuli or disorders, turning pain into the primary problem rather than a symptom. Vagal and spinal afferents both contribute to the sensory component of the gut-brain axis. Current evidence suggests that they convey different elements of the complex sensory experience. Spinal afferents play a key role in the discriminatory dimension, while vagal input primarily affects the strong emotional and autonomic reactions to noxious visceral stimuli. Drugs, surgical and non-pharmacological treatments can target these pathways and provide therapeutic options for patients with chronic visceral pain syndromes.
Collapse
Affiliation(s)
- K Bielefeldt
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
41
|
|
42
|
Li Y, Wu X, Zhu J, Yan J, Owyang C. Hypothalamic regulation of pancreatic secretion is mediated by central cholinergic pathways in the rat. J Physiol 2004; 552:571-87. [PMID: 14561838 PMCID: PMC2343380 DOI: 10.1113/jphysiol.2003.049122] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The vago-vagal reflex plays an important role in mediating pancreatic secretion evoked by cholecystokinin and non-cholecystokinin-dependent luminal factors. We hypothesize that the vago-vagal reflex mediating pancreatic secretion in the rat is under central control and regulated by cholinergic pathways in the hypothalamus. To test this hypothesis, we demonstrated that chronic decerebration decreased basal pancreatic enzyme secretion from 318 +/- 12 to 233 +/- 9 mg h-1 and reduced the net increase in pancreatic secretion stimulated by intraduodenal infusion of 5 % peptone and hypertonic NaCl by 54 % and 45 %, respectively. Intracerebroventricular administration of methscopolamine (MSCP, 50 nmol (5 mul)-1), a blood-brain barrier-impermeant cholinergic muscarinic receptor antagonist, evoked results similar to those achieved by chronic decerebration. To localize the sites of action, we demonstrated that microinjection of MSCP (20 nmol) into the lateral hypothalamic nucleus or the paraventricular nucleus resulted in inhibition of both basal pancreatic protein secretion and luminally stimulated pancreatic secretion by 48 % and 52 %, respectively. Intracerebroventricular injection of hemicholinium-3 at doses known to deplete the endogenous ACh store produced similar inhibitory results. In addition, microinjection of ACh (5 pmol) or the muscarinic M1 receptor agonist McN-A-343 (30 ng) into the lateral hypothalamic nucleus increased pancreatic secretion over basal levels by 46 % and 40 %, respectively. Selective lesions of lateral septal cholinergic neurons decreased basal pancreatic secretion and inhibited peptone-induced pancreatic secretion by 30 %. Destruction of the lateral parabrachial nucleus produced a 44 % inhibition of peptone-induced pancreatic section. Finally, microinjection of glutamate into the lateral septum or the lateral parabrachial nucleus stimulated vagal pancreatic efferent nerve firings from a basal level of 0 +/- 0.5 impulses (30 s)-1 to 4.5 +/- 0.5 and 14 +/- 2 impulses (30 s)-1, respectively, and pancreatic protein output increased 50 % and 84 % over basal levels. Administration of MSCP to the paraventricular nucleus eliminated these effects. These observations suggest that cholinergic neurons of the lateral septum and lateral parabrachial nucleus regulate pancreatic secretion. Further, cholinergic input from the lateral parabrachial nucleus to the hypothalamus plays a major role in the modulation of vagal pancreatic efferent nerve activity and pancreatic secretion evoked by the vago-vagal reflex.
Collapse
Affiliation(s)
- Ying Li
- Gastroenterology Research Unit, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
43
|
Dang K, Bielefeldt K, Gebhart GF. Gastric ulcers reduce A-type potassium currents in rat gastric sensory ganglion neurons. Am J Physiol Gastrointest Liver Physiol 2004; 286:G573-9. [PMID: 14525728 DOI: 10.1152/ajpgi.00258.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Voltage-dependent potassium currents are important contributors to neuron excitability and thus also to hypersensitivity after tissue insult. We hypothesized that gastric ulcers would alter K(+) current properties in primary sensory neurons. The rat stomach was surgically exposed, and a retrograde tracer (1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine methanesulfonate) was injected into multiple sites in the stomach wall. Inflammation and ulcers were produced by 10 injections of 20% acetic acid (HAc) in the gastric wall. Saline (Sal) injections served as control. Nodose or T9-10 dorsal root ganglia (DRG) cells were harvested and cultured 7 days later to record whole cell K(+) currents. Gastric sensory neurons expressed transient and sustained outward currents. Gastric inflammation significantly decreased the A-type K(+) current density in DRG and nodose neurons (Sal vs. HAc-DRG: 82.9 +/- 7.9 vs. 46.5 +/- 6.1 pA/pF; nodose: 149.2 +/- 10.9 vs. 71.4 +/- 11.8 pA/pF), whereas the sustained current was not altered. In addition, there was a significant shift in the steady-state inactivation to more hyperpolarized potentials in nodose neurons (Sal vs. HAc: -76.3 +/- 1.0 vs. -83.6 +/- 2.2 mV) associated with an acceleration of inactivation kinetics. These data suggest that a reduction in K(+) currents contributes, in part, to increased neuron excitability that may lead to development of dyspeptic symptoms.
Collapse
Affiliation(s)
- K Dang
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
44
|
Danzer M, Jocic M, Samberger C, Painsipp E, Bock E, Pabst MA, Crailsheim K, Schicho R, Lippe IT, Holzer P. Stomach-brain communication by vagal afferents in response to luminal acid backdiffusion, gastrin, and gastric acid secretion. Am J Physiol Gastrointest Liver Physiol 2004; 286:G403-11. [PMID: 14592947 DOI: 10.1152/ajpgi.00308.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vagal afferents play a role in gut-brain signaling of physiological and pathological stimuli. Here, we investigated how backdiffusion of luminal HCl or NH(4)OH and pentagastrin-stimulated acid secretion interact in the communication between rat stomach and brain stem. Rats were pretreated intraperitoneally with vehicle or appropriate doses of cimetidine, omeprazole, pentagastrin, dexloxiglumide (CCK(1) receptor antagonist), and itriglumide (CCK(2) receptor antagonist) before intragastric administration of saline or backdiffusing concentrations of HCl or NH(4)OH. Two hours later, neuronal activation in the nucleus of the solitary tract (NTS) and area postrema was visualized by c-Fos immunohistochemistry. Exposure of the rat gastric mucosa to HCl (0.15-0.5 M) or NH(4)OH (0.1-0.3 M) led to a concentration-dependent expression of c-Fos in the NTS, which was not related to gender, gastric mucosal injury, or gastropyloric motor alterations. The c-Fos response to HCl was diminished by cimetidine and omeprazole, enhanced by pentagastrin, and left unchanged by dexloxiglumide and itriglumide. Pentagastrin alone caused an omeprazole-resistant expression of c-fos, which in the NTS was attenuated by itriglumide and prevented by dexloxiglumide but in the area postrema was reduced by dexloxiglumide and abolished by itriglumide. We conclude that vagal afferents transmit physiological stimuli (gastrin) and pathological events (backdiffusion of luminal HCl or NH(4)OH) from the stomach to the brain stem. These communication modalities interact because, firstly, acid secretion enhances afferent signaling of gastric acid backdiffusion and, secondly, gastrin activates NTS neurons through stimulation of CCK(1) receptors on vagal afferents and of CCK(2) receptors on area postrema neurons projecting to the NTS.
Collapse
Affiliation(s)
- Marion Danzer
- Deartment of Experimental and Clinical Pharmacology, University of Graz, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Danzer M, Samberger C, Schicho R, Lippe IT, Holzer P. Immunocytochemical characterization of rat brainstem neurons with vagal afferent input from the stomach challenged by acid or ammonia. Eur J Neurosci 2004; 19:85-92. [PMID: 14750966 DOI: 10.1111/j.1460-9568.2004.03109.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure of the gastric mucosa to backdiffusing acid is signalled to the brainstem via vagal afferents. This study examined whether exposure of the Sprague-Dawley rat stomach to hydrochloric acid (HCl) or ammonium hydroxide (NH4OH), a noxious chemical produced by Helicobacter pylori, activates different vagal afferent pathways as reflected by different circuitries in the medullary brainstem. Two hours after intragastric treatment with HCl or NH4OH the activation of neurons in the nucleus tractus solitarii at the rostrocaudal extension of the area postrema (NTSAP) was visualized by c-Fos immunohistochemistry and their chemical coding characterized by double-labelling immunohistochemistry. Exposure of the rat gastric mucosa to HCl (0.15-0.5 M) or NH4OH (0.1-0.3 M) led to a concentration-dependent expression of c-Fos in the NTSAP. The number and distribution of NTSAP neurons activated by 0.35 M HCl and 0.3 M NH4OH were similar; the highest number of activated neurons occurring in the medial part of the NTSAP. Some 60% of the NTSAP neurons activated by intragastric HCl and NH4OH stained for the high affinity glutamate transporter EAAC1, while some 30% contained calbindin or neuropeptide Y. Glutamate receptors of the N-methyl-D-aspartate type were found on approximately 50% of the c-Fos-positive cells in the NTSAP, whereas tachykinin NK1, NK2 and NK3 receptors were present on 5-10% of the activated neurons. The similar number and distribution of c-Fos-expressing neurons within the NTSAP and their identical chemical coding indicate that exposure of the rat stomach to backdiffusing concentrations of HCl and NH4OH activates the same vagal afferent-NTSAP pathway.
Collapse
Affiliation(s)
- Marion Danzer
- Department of Experimental and Clinical Pharmacology, University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
46
|
Holzer P, Danzer M, Schicho R, Samberger C, Painsipp E, Lippe IT. Vagal afferent input from the acid-challenged rat stomach to the brainstem: Enhancement by interleukin-1β. Neuroscience 2004; 129:439-45. [PMID: 15501601 DOI: 10.1016/j.neuroscience.2004.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2004] [Indexed: 11/18/2022]
Abstract
Exposure of the gastric mucosa to back-diffusing concentrations of HCl (0.25 M, pH 0.51) stimulates vagal afferent input to the brainstem. Here we have examined whether pretreatment of rats with the proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha causes sensitization of vagal afferent pathways to HCl. Rats were pretreated i.p. with interleukin-1beta, tumor necrosis factor-alpha (10 microg/kg) or their vehicle (sterile saline) 24, 48 and 96 h before intragastric administration of HCl (0.25 M, 1 ml/100 g). Activation of neurons in the nucleus tractus solitarii was visualized by c-Fos immunohistochemistry 2 h after the HCl challenge. I.p. administration of interleukin-1beta and tumor necrosis factor-alpha alone induced c-Fos in the brainstem, an effect that was gone after 24 h. At this time, however, the effect of HCl to cause expression of c-Fos in the nucleus tractus solitarii was significantly enhanced by pretreatment with interleukin-1beta and tumor necrosis factor-alpha. The sensitizing effect of i.p.-administered interleukin-1beta was sustained for more than 48 h and prevented by the interleukin-1 receptor antagonist anakinra. Intracisternal administration of interleukin-1beta and tumor necrosis factor-alpha (100 ng) failed to amplify the HCl-evoked expression of c-Fos in the brainstem. These results show that peripheral administration of the proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha induces prolonged sensitization of vagal afferent pathways to gastric HCl challenge. This effect seems to arise from a peripheral action on vagal afferents and may be of relevance to gastric chemonociception.
Collapse
Affiliation(s)
- P Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND & AIMS Changes in visceral sensation contribute to the development of dyspepsia. Nonhuman models have previously focused on responses to mechanical stimulation. We studied the response to acid stimulation in the normal and inflamed stomach in rats. METHODS A balloon and gastrostomy catheter were implanted into the stomach. Electromyographic responses to gastric balloon distention or acid administration through the gastrostomy were recorded from the acromiotrapezius muscle. To characterize chemonociceptive pathways, 0.75 mL HCl (0.05-0.3 N) or saline were given intragastrically in controls and animals after vagotomy, splanchnic nerve resection, or chemical denervation with capsaicin. The effect of inflammation was examined after induction of mild diffuse gastritis using iodoacetamide or creating gastric ulcers by injecting 60% acetic acid for 45 seconds into a clamped area of the stomach. RESULTS Visceromotor electromyographic responses increased within 2 minutes after HCl administration (0.15 and 0.3 mol/L) but not saline or lower acid concentrations. Vagotomy and pretreatment with capsaicin but not splanchnic nerve resection abolished this response. Prior acid administration did not acutely sensitize animals to subsequent gastric distention. Gastritis and gastric ulcers enhanced the visceromotor responses to intragastric acid. CONCLUSIONS In awake rats, visceromotor responses to intragastric acid are quantifiable, reliable, and reproducible. Aversive responses to acute noxious chemical stimuli primarily require vagal but not spinal sensory pathways. Injury-induced sensitization to intragastric acid administration is consistent with a potential role of chemical stimulation in triggering dyspeptic symptoms.
Collapse
Affiliation(s)
- Kenneth Lamb
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|
48
|
Patterson LM, Zheng H, Ward SM, Berthoud HR. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract. Cell Tissue Res 2003; 311:277-87. [PMID: 12658436 DOI: 10.1007/s00441-002-0682-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 11/14/2002] [Indexed: 12/18/2022]
Abstract
The vanilloid receptor VR1 is a nonselective cation channel activated by capsaicin as well as increases in temperature and acidity, and can be viewed as molecular integrator of chemical and physical stimuli that elicit pain. The distribution of VR1 receptors in peripheral and central processes of rat primary vagal afferent neurons innervating the gastrointestinal tract was investigated by immunohistochemistry. Forty-two percent of neurons in the nodose ganglia retrogradely labeled from the stomach wall expressed low to moderate VR1 immunoreactivity (VR1-IR). VR1-IR was considerably lower in the nodose ganglia as compared to the jugular and dorsal root ganglia. In the vagus nerve, strongly VR1-IR fibers ran in separate fascicles that supplied mainly cervical and thoracic targets, leaving only weakly VR1-IR fibers in the subdiaphragmatic portion. Vagal afferent intraganglionic laminar endings (IGLEs) in the gastric and duodenal myenteric plexus did not express VR1-IR. Similarly, VR1-IR was contained in fibers running in perfect register with vagal afferents, but was not colocalized with horseradish peroxidase in the same varicosities of intramuscular arrays (IMAs) and vagal afferent fibers in the duodenal submucosa anterogradely labeled from the nodose ganglia. Only in the gastric mucosa did we find evidence for colocalization of VR1-IR in vagal afferent terminals. In contrast, many nerve fibers coursing through the myenteric and submucosal plexuses contained detectable VR1-IR, the majority of which colocalized calcitonin gene-related peptide immunoreactivity. In the dorsal medulla there was a dense plexus of VR1-IR varicose fibers in the commissural, dorsomedial and gelatinosus subnuclei of the medial NTS and the lateral aspects of the area postrema, which was substantially reduced, but not eliminated on the ipsilateral side after supranodose vagotomy. It is concluded that about half of the vagal afferents innervating the gastrointestinal tract express low levels of VR1-IR, but that presence in most of the peripheral terminal structures is below the immunohistochemical detection threshold.
Collapse
Affiliation(s)
- Laurel M Patterson
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
49
|
Tien D, Ohara PT, Larson AA, Jasmin L. Vagal afferents are necessary for the establishment but not the maintenance of kainic acid-induced hyperalgesia in mice. Pain 2003; 102:39-49. [PMID: 12620595 DOI: 10.1016/s0304-3959(02)00336-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Systemic administration of a single, sub-convulsive dose (20mg/kg) of kainic acid (KA) produces long-term hyperalgesia. The robustness and reproducibility of this effect makes this a valuable model of chronic pain. However, the mechanism by which KA produces hyperalgesia remains unknown. We evaluated the role of vagal afferents on KA-induced hyperalgesia in mice by assessing the influence of bilateral subdiaphragmatic vagotomy and of direct application of KA to vagal afferents on the development of hyperalgesia. The hot plate and tail flick tests were used to assess pain behavior. Central nervous system (CNS) activity evoked by acute administration of KA or exposure to a nociceptive stimulus was also determined by the immunocytochemical detection of Fos and of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (pErk). Mice exhibited a persistent hyperalgesia after either systemic application of KA or topical treatment with KA on vagal afferents. Vagotomy performed 2 weeks before the application of KA was able to prevent the establishment of hyperalgesia, but vagotomy performed 2 weeks after the application of KA was unable to reverse the already established hyperalgesia. This result establishes that vagal afferents are pivotal to the onset of hyperalgesia. Consistent with this, KA evoked the expression of Fos in vagal related areas of the brainstem, including the nucleus tractus solitarius (NTS) and area postrema (AP), as well as widespread areas of the forebrain. Vagotomy selectively decreased KA-evoked Fos in the NTS while sparing that in other brain areas. In addition to hyperalgesia, weeks after KA treatment, stimulus induced pErk was increased in spinal nociceptive neurons and the medial hypothalamus, a phenomenon that was prevented by prior vagotomy. No signs of cell death were detected using in situ nick end-labeling (TUNEL) assay and Nissl staining at 1, 5, 24, 36 h and 12 days post-KA. These findings suggest that the mechanism underlying KA-induced hyperalgesia is a long-term dysfunction of CNS areas that are activated by vagal afferents and involved in descending control of spinal nociceptive neurons.
Collapse
Affiliation(s)
- Duc Tien
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus, Box 0112, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Numerous medical, surgical, psychiatric, gynecologic, and obstetric disorders can cause abdominal pain during pregnancy. The patient history, physical examination, laboratory data, and radiologic findings usually provide the diagnosis. The pregnant woman has physiologic alterations that affect the clinical presentation, including atypical normative laboratory values. Abdominal ultrasound is generally the recommended radiologic imaging modality; roentgenograms are generally contraindicated during pregnancy because of radiation teratogenicity. Concerns about the fetus limit the pharmacotherapy. Maternal and fetal survival have recently increased in many life-threatening conditions, such as ectopic pregnancy, appendicitis, and eclampsia, because of improved diagnostic technology, better maternal and fetal monitoring, improved laparoscopic technology, and earlier therapy.
Collapse
Affiliation(s)
- Mitchell S Cappell
- Division of Gastroenterology, Department of Medicine, Woodhull Medical Center, 760 Broadway Avenue, Brooklyn, NY 11206, USA
| | | |
Collapse
|