1
|
Sivakumar S, Ghasemi M, Schachter SC. Targeting NMDA Receptor Complex in Management of Epilepsy. Pharmaceuticals (Basel) 2022; 15:ph15101297. [PMID: 36297409 PMCID: PMC9609646 DOI: 10.3390/ph15101297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the central nervous system (CNS) and play critical roles in neuronal excitability in the CNS. Both clinical and preclinical studies have revealed that the abnormal expression or function of these receptors can underlie the pathophysiology of seizure disorders and epilepsy. Accordingly, NMDAR modulators have been shown to exert anticonvulsive effects in various preclinical models of seizures, as well as in patients with epilepsy. In this review, we provide an update on the pathologic role of NMDARs in epilepsy and an overview of the NMDAR antagonists that have been evaluated as anticonvulsive agents in clinical studies, as well as in preclinical seizure models.
Collapse
Affiliation(s)
- Shravan Sivakumar
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
- Correspondence: (M.G.); (S.C.S.)
| | - Steven C. Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02114, USA
- Consortia for Improving Medicine with Innovation & Technology (CIMIT), Boston, MA 02114, USA
- Correspondence: (M.G.); (S.C.S.)
| |
Collapse
|
2
|
Carrillo-Mora P, Silva-Adaya D, Villaseñor-Aguayo K. Glutamate in Parkinson's disease: Role of antiglutamatergic drugs. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.baga.2013.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Abstract
In the last fifteen years, new antiepileptic medications have been offered for the treatment of patients with epilepsy. Nevertheless, despite optimal medical treatment, up to 30% of patients still experience recurrent seizures and the challenge for new, more efficacious and better-tolerated drugs continues. New antiepileptic drugs include the evolution of pre-existing drugs and new compounds identified through the investigation of additional molecular targets, such as SV2A synaptic vesicle protein, voltage-gated potassium channels, ionotropic and metabotropic glutamate receptors, and gap junctions. This paper reviews the available information on various classes of molecules that are in the pipeline as well as on the innovative approaches to the treatment of epilepsy.
Collapse
Affiliation(s)
- Pasquale Striano
- Muscular & Neurodegenerative Diseases Unit, Institute G. Gaslini, Genova, Italy
| | | |
Collapse
|
4
|
Łuszczki JJ. Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions. Pharmacol Rep 2009; 61:197-216. [DOI: 10.1016/s1734-1140(09)70024-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 02/13/2009] [Indexed: 01/23/2023]
|
5
|
Borowicz KK, Malek R, Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ. Isobolographic analysis of interactions between remacemide and conventional antiepileptic drugs in the mouse model of maximal electroshock. Epilepsy Behav 2007; 11:6-12. [PMID: 17602881 DOI: 10.1016/j.yebeh.2007.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/25/2007] [Accepted: 04/29/2007] [Indexed: 11/30/2022]
Abstract
Using the mouse maximal electroshock-induced seizure model, indicative of tonic-clonic seizures in humans, the present study was aimed at characterizing the interaction between remacemide and valproate, carbamazepine, phenytoin, and phenobarbital. Isobolographic analysis indicated additive interactions between remacemide and valproate, carbamazepine, and phenytoin (for all fixed ratios of tested drugs: 1:3, 1:1, and 3:1). Additivity was also observed between remacemide and phenobarbital applied in proportions of 1:1 and 3:1. In contrast, the combination of remacemide and phenobarbital at the fixed-ratio of 1:3 resulted in antagonism. Neither motor performance nor long-term memory was impaired by remacemide or by carbamazepine, phenobarbital, phenytoin, and valproate whether or not these drugs were administered singly or in combination. In combination with remacemide, brain concentrations of carbamazepine, phenobarbital, and phenytoin were increased by 71, 21, and 16%, respectively. Although brain valproate concentrations were unaffected by remacemide co-administration, brain concentrations of remacemide and its active metabolite, desglycinyl-remacemide, were increased by 68 and 162%, respectively. In contrast, phenobarbital co-administration was associated with decreases in brain remacemide (27%) and desglycinyl-remacemide (9%) concentrations, whereas only remacemide concentrations (increased by 131%) were affected by carbamazepine co-administration. In conclusion, significant and desirable pharmacodynamic interactions were observed between remacemide and valproate, carbamazepine, phenytoin, and phenobarbital. However, the concurrent pharmacokinetic interactions associated with remacemide complicate these observations and do not make remacemide a good candidate for adjunctive treatment of epilepsy.
Collapse
Affiliation(s)
- Kinga K Borowicz
- Department of Pathophysiology, Medical University, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
6
|
Saulle E, Gubellini P, Picconi B, Centonze D, Tropepi D, Pisani A, Morari M, Marti M, Rossi L, Papa M, Bernardi G, Calabresi P. Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease. Mol Cell Neurosci 2004; 25:9-20. [PMID: 14962736 DOI: 10.1016/j.mcn.2003.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 09/16/2003] [Accepted: 09/29/2003] [Indexed: 11/28/2022] Open
Abstract
An impaired complex II (succinate dehydrogenase, SD) striatal mitochondrial activity is one of the prominent metabolic alterations in Huntington's disease (HD), and intoxication with 3-nitropropionic acid (3-NP), an inhibitor of mitochondrial complex II, mimics the motor abnormalities and the pathology of HD. We found that striatal spiny neurons responded to this toxin with an irreversible membrane depolarization/inward current, while cholinergic interneurons showed a hyperpolarization/outward current. Both these currents were sensitive to intracellular concentration of ATP. The 3-NP-induced depolarization was associated with an increased release of endogenous GABA, while acetylcholine levels were reduced. Moreover, 3-NP induced a higher depolarization in presymptomatic R6/2 HD transgenic mice compared to wild-type (WT) mice, showing an increased susceptibility to SD inhibition. Conversely, the hyperpolarization did not significantly differ from the one recorded in WT mice. The diverse membrane changes induced by SD inhibition may contribute to the cell-type-specific neuronal death in HD.
Collapse
Affiliation(s)
- Emilia Saulle
- Clinica Neurologica, Dipartimento di Medicina Clinica e Sperimentale, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Miyamoto O, Pang J, Sumitani K, Negi T, Hayashida Y, Itano T. Mechanisms of the anti-ischemic effect of vagus nerve stimulation in the gerbil hippocampus. Neuroreport 2003; 14:1971-4. [PMID: 14561931 DOI: 10.1097/00001756-200310270-00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neuroprotective mechanisms of cervical vagus nerve stimulation (VNS) in transient ischemia were investigated. Left VNS (0.4 mA, 40 Hz) was performed during 5 min ischemia in gerbils. About 50% of the hippocampal neurons were rescued from ischemic insult by VNS, and this effect was prevented by transection of the vagus nerve centrally to the site of cervical stimulation. VNS significantly attenuated both ischemia-induced glutamate release and transient increase of hippocampal blood flow during reperfusion. Hyperemia as well as excessive glutamate release after ischemia is regarded as an important factor in ischemic brain damage as it leads to generate considerable reactive oxygen species. Thus, VNS might protect neurons from ischemia-induced glutamate excitotoxicity and reperfusion injury via the afferent path-way of the vagus.
Collapse
Affiliation(s)
- Osamu Miyamoto
- Department of Neurobiology, Kagawa Medical University, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Calabresi P, Marti M, Picconi B, Saulle E, Costa C, Centonze D, Pisani F, Bernardi G. Lamotrigine and remacemide protect striatal neurons against in vitro ischemia: an electrophysiological study. Exp Neurol 2003; 182:461-9. [PMID: 12895457 DOI: 10.1016/s0014-4886(03)00117-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we investigated the cellular and synaptic mechanisms underlying the neuroprotective action of lamotrigine and remacemide. Both drugs, in fact, have been reported to exert a neuroprotective action in in vivo animal models of ischemia. To address this issue, electrophysiological recordings and cell swelling measurements were performed from striatal neurons in control condition and during combined oxygen and glucose deprivation (in vitro ischemia) in a brain slice preparation. Lamotrigine, remacemide, and the active desglycinyl metabolite of remacemide, D-REMA, induced a concentration-dependent reduction of both repetitive firing discharge and excitatory postsynaptic potentials. However, while remacemide and D-REMA exerted their inhibitory action on glutamatergic transmission by blocking NMDA receptors, lamotrigine exerted a preferential presynaptic action, as indicated by its ability to increase paired-pulse facilitation. Both remacemide and lamotrigine were found to be neuroprotective against the irreversible field potential loss and cell swelling induced by in vitro ischemia, and coadministration of low concentrations of these drugs exerted an additive neuroprotective action. A combined use of lamotrigine and remacemide could be employed in clinical trials to enhance neuroprotection in neurological disorders involving an abnormal striatal glutamatergic transmission.
Collapse
Affiliation(s)
- P Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Calabresi P, Cupini LM, Centonze D, Pisani F, Bernardi G. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann Neurol 2003; 53:693-702. [PMID: 12783414 DOI: 10.1002/ana.10603] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several new antiepileptic drugs (AEDs) have been introduced for clinical use recently. These new AEDs, as did the classic AEDs, target multiple cellular sites both pre- and postsynaptically. The major common goal of the pharmacological treatment using AEDs is to counteract abnormal brain excitability by either decreasing excitatory transmission or enhancing neuronal inhibition. Interestingly, an excessive release of excitatory amino acids and a reduced neuronal inhibition also occur in brain ischemia. Thus, recently, the use of AEDs as a possible neuroprotective strategy in brain ischemia is receiving increasing attention, and many AEDs have been tested in animal models of stroke, providing encouraging results. Experimental studies utilizing global or focal ischemia in rodents have provided insights into the possible neuroprotective action of the various AEDs. However, the implication of these studies in the treatment of acute stroke in humans is not always direct. In fact, various clinical studies with drugs targeting the same voltage- and ligand-gated channels modulated by most of the AEDs failed to show neuroprotection. The differential mechanisms that underlie the development of focal ischemic injury in experimental animal models versus human stroke require further investigation to open a new therapeutic perspective for neuroprotection that might be applicable in the future.
Collapse
Affiliation(s)
- Paolo Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Italy.
| | | | | | | | | |
Collapse
|
10
|
Leker RR, Neufeld MY. Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:187-203. [PMID: 12791439 DOI: 10.1016/s0165-0173(03)00170-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many similarities exist between cerebral ischemia and epilepsy regarding brain-damaging and auto-protective mechanisms that are activated following the injurious insult. Therefore, drugs that are effective in minimizing seizure-induced brain damage may also be useful in minimizing ischemic injury. Use of such drugs in stroke victims may have important clinical and financial advantages. Therefore, the authors conducted a Medline search of studies involving the use of anti-epileptic drugs (AEDs) as possible neuroprotectants and summarize the data. Most AEDs have been tested in animal models of focal or global ischemia and some were already tested in humans, for a possible neuroprotective effect. The existing data is rather scant and insufficient but it appears that only drugs that have multiple mechanisms of action seem to have some potential in conferring a degree of neuroprotection that could be clinically applicable to stroke patients. In conclusion, some of the newer AEDs show promise as possible neuroprotectants in the setup of acute ischemic stroke but more studies are needed before clinical trials in humans could be undertaken.
Collapse
Affiliation(s)
- R R Leker
- Department of Neurology and the Agnes Ginges Center for Human Neurogenetics, Hebrew University-Hadassah Medical School, Hadassah University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
11
|
Calabresi P, Centonze D, Cupini LM, Costa C, Pisani F, Bernardi G. Ionotropic glutamate receptors: still a target for neuroprotection in brain ischemia? Insights from in vitro studies. Neurobiol Dis 2003; 12:82-8. [PMID: 12609492 DOI: 10.1016/s0969-9961(02)00016-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although experimental studies have widely shown that the pharmacological blockade of ionotropic glutamate receptors reduces ischemic damage, clinical trials with classical AMPA and NMDA glutamate receptor antagonists have provided negative results. To address the involvement of ionotropic glutamate receptors in ischemic damage, corticostriatal brain slices were prepared from adult rats. Extracellular recordings were performed in the striatum after stimulation of the glutamatergic corticostriatal fibres. In vitro ischemia was induced for a 10-min period by omitting oxygen and glucose from the external medium. Under control conditions, ischemia produced an irreversible loss of the corticostriatal field potential amplitude, AP5, a competitive NMDA receptor antagonist, induced a slight rescue of the potential, while ifenprodil, a positive modulator of the proton sensor of the NMDA receptors, allowed a complete recovery from the ischemic insult. Similar neuroprotection was achieved by utilizing either CNQX, a broad spectrum AMPA receptors antagonist, or Joro spider toxin, a selective blocker of calcium permeable AMPA receptors. Interestingly, while CNZX also fully suppressed physiological excitatory transmission, Joro spider toxin was ineffective on this parameter. Finally, lamotrigine and remacemide, two antiepileptic drugs that differentially affect excitatory transmission, exerted neuroprotective effects against ischemia. Noticeably, a combination of low concentrations of these two drugs exerted a stronger neuroprotection than a single drug given in isolation. Thus, it might be possible to reach a neuroprotective action by utilizing doses of these compounds low enough to avoid side effects. Our experimental data still support the idea that a negative modulation of excitatory transmission can be neuroprotective against ischemia. In addition, our findings support the concept that it is possible to produce a significant neuroprotective action in the absence of a relevant interference with normal synaptic transmission.
Collapse
Affiliation(s)
- Paolo Calabresi
- Dipartimento di Neuroscienze, Universitá di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Sills GJ, Santangeli S, Forrest G, Brodie MJ. Influence of cytochrome P450 induction on the pharmacokinetics and pharmacodynamics of remacemide hydrochloride. Epilepsy Res 2002; 49:247-54. [PMID: 12076846 DOI: 10.1016/s0920-1211(02)00049-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Remacemide hydrochloride (RMD) is a putative anticonvulsant agent with an active metabolite, desglycinyl-remacemide (DGR) and a broad spectrum of activity in experimental seizure models. In clinical trials, however, the efficacy of RMD is questionable. In the case of add-on studies, the inconclusive findings may be related to pharmacokinetic interactions between RMD and established antiepileptic drugs. We have investigated the influence of cytochrome P450 (CYP(450)) induction following repeated treatment with phenobarbital (PB) on the pharmacokinetics and pharmacodynamics of RMD in mice. Pre-treatment with PB (80 mg/kg; once daily for 4 days) significantly increased CYP(450) content and activity in mouse liver. This was associated with a consistent reduction in the brain concentrations of both RMD and DGR and attenuation of the anticonvulsant effects of RMD in the maximal electroshock model. Pharmacokinetic analysis suggested that DGR was proportionately more susceptible to CYP(450) induction than the parent compound. As the principal active moiety, the selectively enhanced metabolism of DGR under induced conditions may underlie the debatable findings of add-on trials with RMD in refractory epilepsy. However, this hypothesis does not explain the similarly questionable efficacy of RMD monotherapy in newly diagnosed epilepsy, an observation that may have wider pharmacological implications.
Collapse
Affiliation(s)
- Graeme J Sills
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow G116NT, UK.
| | | | | | | |
Collapse
|
13
|
Santangeli S, Sills GJ, Stone TW, Brodie MJ. Differential effects of remacemide and desglycinyl-remacemide on epileptiform burst firing in the rat hippocampal slice. Neurosci Lett 2002; 321:33-6. [PMID: 11872250 DOI: 10.1016/s0304-3940(01)02511-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Remacemide is a potential anticonvulsant drug with an active metabolite, desglycinyl-remacemide (DGR). Both moieties have been reported to block neuronal Na(+) channels and the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. The effects of remacemide and DGR on zero Mg(2+)/4-aminopyridine-induced epileptiform discharges were investigated in the rat hippocampal slice preparation and compared with carbamazepine (CBZ), a prototypic Na(+) channel blocker, and AR-R15896AR, a putative NMDA channel blocker. Remacemide (0-100 microM) was without significant effect, while DGR, CBZ and AR-R15896AR all decreased burst frequency in a concentration (0-100 microM) dependent manner. These findings suggest that remacemide is not sufficiently potent at the Na(+) channel or NMDA receptor to attenuate epileptiform activity in this model and that the anticonvulsant effects of the drug may be mediated by DGR.
Collapse
Affiliation(s)
- Sarah Santangeli
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow G11 6NT, Scotland, UK
| | | | | | | |
Collapse
|
14
|
Santangeli S, Sills GJ, Thompson GG, Brodie MJ. Na(+) channel effects of remacemide and desglycinyl-remacemide in rat cortical synaptosomes. Eur J Pharmacol 2002; 438:63-8. [PMID: 11906711 DOI: 10.1016/s0014-2999(02)01297-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of the novel anticonvulsant, remacemide hydrochloride and its active metabolite, desglycinyl-remacemide, on veratridine-induced Na(+) influx in rat cortical synaptosomes were investigated and compared to established Na(+) channel blocking antiepileptic drugs. Remacemide and desglycinyl-remacemide reduced veratridine-stimulated Na(+) influx to 30.7% (IC(50)=160.6 microM) and 13.2% (IC(50)=85.1 microM) of control, respectively. Carbamazepine, phenytoin and lamotrigine similarly reduced Na(+) influx to 20.1% (IC(50)=325.9 microM), 79.8% and 27.9% (IC(50)=23.0 microM) of control, respectively. Resting internal Na(+) concentrations were significantly increased by desglycinyl-remacemide (1 and 10 microM) and, conversely, decreased by desglycinyl-remacemide and carbamazepine (both 1000 microM). These studies support previous electrophysiological investigations, which suggest that remacemide and desglycinyl-remacemide exert their antiepileptic effects, at least in part, by an inhibitory action on voltage-gated Na(+) channels. Desglycinyl-remacemide may have an additional action on Na(+) homeostasis that merits further exploration.
Collapse
Affiliation(s)
- Sarah Santangeli
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow G11 6NT, Scotland, UK
| | | | | | | |
Collapse
|
15
|
Pisani F, Pedale S, Macaione V, Torre V, Oteri G, Avanzini G, Ientile R. Neuroprotective effects of lamotrigine and remacemide on excitotoxicity induced by glutamate agonists in isolated chick retina. Exp Neurol 2001; 170:162-70. [PMID: 11421593 DOI: 10.1006/exnr.2001.7681] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possible neuroprotective effects of two recently developed antiepileptic compounds, lamotrigine (LTG) and remacemide (REMA), against glutamate agonist-induced excitotoxicity have been investigated in the isolated chick embryo retina model. Retina segments from 15- or 16-day-old embryos were incubated in 1 ml of balanced salt solution, at 25 degrees C for 30 min, in the presence or absence of N-methyl-d-aspartate (NMDA), kainic acid (KA), or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (10 to 200 microM). LTG, REMA, and the active desglycinyl metabolite of REMA (d-REMA) (10-200 microM) were added separately 5 min before glutamate agonists. Retina damage was assessed after 24 h (i) by measuring LDH activity present in the medium, expressed as percentage of total retina LDH activity, and (ii) by histological analysis of retina specimens through scoring for the presence or absence of edema, necrosis, nuclear pyknosis, and cell layer damage. LTG, REMA, and d-REMA reduced LDH release produced by NMDA 58-70% in a dose-dependent manner, with d-REMA being the most potent (EC(50): d-REMA, 25.75 +/- 3.27 microM; REMA, 64.75 +/- 7.75 microM; LTG, 60.50 +/- 6.80 microM; P < 0.001). The drugs had less effect on the LDH release produced by AMPA and KA. Histological analysis confirmed these biochemical results, with all three compounds reducing edema and the number of necrotic and pyknotic nuclei in the ganglion layer. d-REMA provided almost complete protection of the ganglion cell layer against damage produced by NMDA. Combinations of d-REMA and LTG showed additive rather than potentiative effects against NMDA-induced cell injury. The present data provide pharmacological evidence that LTG, REMA, and d-REMA decrease glutamate agonist-induced excitotoxicity in isolated chick retina, findings that might have therapeutic implications for various neurological disorders.
Collapse
Affiliation(s)
- F Pisani
- Istituto di Scienze Biochimiche e Biochimica Clinica, University of Messina, 98100 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Barber PA, Auer RN, Buchan AM, Sutherland GR. Understanding and managing ischemic stroke. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y00-125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient or permanent focal brain injury following acute thromboembolic occlusion develops from a complex cascade of pathophysiological events. The processes of excitotoxicity, peri-infarct depolarisation, inflammation, and apoptosis within the ischemic penumbra are proposed. While the translation of therapeutic agents from the animal models to human clinical trials have been disappointing, there remains an atmosphere of optimism as a result of the development of new diagnostic and therapeutic approaches, which include physiological, as opposed to pharmacological, intervention. This article provides an insight into the understanding of cerebral ischemia, together with current and future treatment strategies.Key words: cerebral ischemia, stroke, pathophysiology.
Collapse
|
17
|
Santangeli S, McNeill C, Sills GJ, Brodie MJ. Simultaneous determination of remacemide hydrochloride and desglycinylremacemide (AR-R12495XX) in brain tissue by high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 746:325-9. [PMID: 11076087 DOI: 10.1016/s0378-4347(00)00329-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Remacemide hydrochloride, a novel anticonvulsant agent, and its major active metabolite, desglycinylremacemide, were measured simultaneously in brain tissue by high-performance liquid chromatography with UV detection. Intra- and inter-assay variations for remacemide (1, 5, 10 microg/ml) were 5.1, 10.5 and 3.1% and 3.1, 4.0 and 1.3%, respectively. Intra- and inter-assay variations for desglycinylremacemide (1, 5, 10 microg/ml) were 4.2, 3.8 and 8.4% and 7.9, 8.8 and 3.1%, respectively. Limits of detection and quantification for both analytes were 4 and 31 ng/ml, respectively, with recovery consistently > or =85%. This reliable assay has applications in the pre-clinical neuropharmacokinetic and neuropharmacodynamic investigation of remacemide hydrochloride.
Collapse
Affiliation(s)
- S Santangeli
- University Department of Medicine and Therapeutics, Western Infirmary, Glasgow, UK
| | | | | | | |
Collapse
|
18
|
Abstract
A brief review of epilepsy as a disease, anti-epileptic drugs and methods of evaluation of anti-epileptic drugs are presented as a background for assessment of zonisamide, which has been approved by the FDA as add-on therapy for the treatment of partial seizures with or without secondary generalisation in adults. Chemically, zonisamide is classified as a sulphonamide and is unrelated to other anti-epileptic drugs. The mode of action of zonisamide remains unclear, but likely mechanisms are blockade of sodium and T-type calcium channels. It is also shown to have some neuroprotective effect against hypoxia and ischaemia. It has a liner pharmacokinetics with excellent oral bioavailability. Zonisamide has been approved for use in Japan for ten years prior to approval in USA and Europe. Clinical experience with zonisamide in Japan has documented its efficacy in the treatment of partial seizures (partial-onset generalised tonic-clonic, simple partial and/or complex partial seizures) and to a more variable extent, generalised tonic-clonic, generalised tonic (mainly seen in symptomatic generalised epilepsies including Lennox-Gastaut Syndrome) and compound/combination seizures. The efficacy and safety was confirmed in trials conducted in USA and Europe in adults as well as children. Zonisamide compares favourably with other newly introduced drugs and has the potential for development as a monotherapy for epilepsy.
Collapse
Affiliation(s)
- K K Jain
- Jain PharmaBiotech, Bläsiring 7, CH-4057 Basel, Switzerland.
| |
Collapse
|
19
|
Jain KK. An assessment of rufinamide as an anti-epileptic in comparison with other drugs in clinical development. Expert Opin Investig Drugs 2000; 9:829-40. [PMID: 11060713 DOI: 10.1517/13543784.9.4.829] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This article evaluates rufinamide, a new anti-epileptic drug (AED) in Phase III development. This review is done against the background of therapeutic challenges of epilepsy, old established AEDs, newly introduced AEDs and AEDs in clinical development. Pharmacological properties of 12 AEDs in clinical trials (Phases I - III) are compared: ADCI, AWD 131-138, DP-VPA, ganaxolone, levetiracetam, losigamone, pregabalin, remacemide hydrochloride, retigabine, rufinamide, soretolide and TV1901. One of these, levetiracetam has been approved in the USA and is waiting approval in other countries. The protective index of rufinamide, as shown in rodent models of epilepsy, is much higher than that of most common AEDs. Features which make it a desirable AED are: (i) a broad spectrum of anti-epileptic actions including both partial and symptomatic generalised epilepsy; (ii) a statistically significant reduction in seizure frequency in clinical trials; (iii) efficacy and safety shown in a broad range of age groups including children and the elderly; (iv) rapid oral absorption enabling quick titration to effective dose and (v) a benign adverse event profile. Most of the events did not lead to discontinuation in clinical trials. These features offer considerable advantages over the existing anti-epileptic drugs. It is one of the two drugs in development which have reached Phase III and is expected to be approved by the year 2001 - 2002.
Collapse
Affiliation(s)
- K K Jain
- Jain PharmaBiotech, Bläsiring 7, CH-4057 Basel, Switzerland.
| |
Collapse
|
20
|
Abstract
Remacemide (RMC) is a non-competitive, low-affinity N-methyl-D-aspartate (NMDA) receptor antagonist that does not cause the behavioural and neuropathological side effects seen with other NMDA receptor antagonists. RMC and its active metabolite, AR-R 12495 AR, which has moderate affinity for the NMDA receptor, also interact with voltage-dependent neuronal sodium channels. Both agents show efficacy in a variety of animal models of epilepsy, parkinsonism and cerebral ischaemia. There is no evidence for teratogenicity or genotoxicity. RMC delays the absorption of L-dopa and elevates the concentrations of drugs metabolised by the hepatic cytochrome P450 3A4 isoform. RMC and AR-R 12495 AR have moderate protein binding and linear pharmacokinetics. Controlled studies show evidence of efficacy in treating epilepsy and Parkinson's disease. Post-surgical outcomes in RMC-treated patients at risk for intra-operative cerebral ischaemia are also encouraging. Adverse effects are related to the gastrointestinal and central nervous systems. RMC is a promising drug with numerous potential applications for both acute or chronic conditions associated with glutamate-mediated neurotoxicity.
Collapse
Affiliation(s)
- S C Schachter
- Departments of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, K-478, Boston, MA 02215, USA.
| | | |
Collapse
|