1
|
Morgado-Valle C, Smith JC, Fernandez-Ruiz J, Lopez-Meraz L, Beltran-Parrazal L. Modulation of inspiratory burst duration and frequency by bombesin in vitro. Pflugers Arch 2023; 475:101-117. [PMID: 35066612 DOI: 10.1007/s00424-022-02663-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 01/31/2023]
Abstract
Mammalian respiratory rhythm-generating circuits in the brainstem are subject to neuromodulation by multiple peptidergic afferent inputs controlling circuit behavior and outputs. Although functionally important, actions of neuropeptide modulators have not been fully characterized. We analyzed at cellular and circuit levels two inspiratory patterns intrinsically generated by the preBötzinger complex (preBötC) and their modulation by the neuropeptides bombesin and substance P (SP) in neonatal rat medullary slices in vitro. We found that, in recordings of hypoglossal nerve and preBötC neuron inspiratory activity, some inspiratory bursts occurring spontaneously under basal conditions have a biphasic shape with longer duration than normal inspiratory bursts and occur at a lower frequency. This biphasic burst pattern has been proposed to represent inspiratory activity underling periodic sighs. Bath-applied bombesin or SP decreased the period and increased the duration of both normal inspiratory and biphasic bursts and their underlying synaptic drives. The ratio of the biphasic long-duration burst period to the normal inspiratory burst period and the ratio of their burst durations remained the same before and after peptidergic modulation. Bombesin increased the frequency of the inspiratory rhythm in a Ca2+-independent manner and the frequency of long-duration bursts in a Ca2+-dependent manner. This finding suggests that period and burst duration coupling are due to intrinsic mechanisms controlling simultaneously timing and burst termination within the inspiratory rhythm-generating network. We propose a model in which signaling cascades activated by bombesin and SP modulate mechanisms controlling inspiratory burst frequency and duration to coordinate preBötC circuit behavioral outputs.
Collapse
Affiliation(s)
- Consuelo Morgado-Valle
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa Veracruz, México, 91190. .,Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS). National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke (NINDS). National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Juan Fernandez-Ruiz
- Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México City, 04510, México
| | - Leonor Lopez-Meraz
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa Veracruz, México, 91190
| | - Luis Beltran-Parrazal
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa Veracruz, México, 91190.
| |
Collapse
|
2
|
Ramos-Alvarez I, Lee L, Mantey SA, Jensen RT. Development and Characterization of a Novel, High-Affinity, Specific, Radiolabeled Ligand for BRS-3 Receptors. J Pharmacol Exp Ther 2019; 369:454-465. [PMID: 30971479 PMCID: PMC6519687 DOI: 10.1124/jpet.118.255141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
Bombesin (Bn) receptor subtype 3(BRS-3) is an orphan G-protein-coupled receptor of the Bn family, which does not bind any natural Bn peptide with high affinity. Receptor knockout studies show that the animals develop diabetes, obesity, altered temperature control, and other central nervous system (CNS)/endocrine/gastrointestinal changes. It is present in CNS, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology, as well as its receptor localization/pharmacology is largely unknown, in part due to the lack of a convenient, specific, direct radiolabeled ligand. This study was designed to address this problem and to develop and characterize a specific radiolabeled ligand for BRS-3. The peptide antagonist Bantag-1 had >10,000-fold selectivity for human BRS-3 (hBRS-3) over other mammalian Bn receptors (BnRs) [i.e., gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR)]. Using iodogen and basic conditions, it was radiolabeled to high specific activity (2200 Ci/mmol) and found to bind with high affinity/specificity to hBRS-3. Binding was saturable, rapid, and reversible. The ligand only interacted with known BRS-3 ligands, and not with other specific GRPR/NMBR ligands or ligands for unrelated receptors. The magnitude of 125I-Bantag-1 binding correlated with BRS-3 mRNA expression and the magnitude of activation of phospholipase C in lung cancer cells, as well as readily identifying BRS-3 in lung cancer cells and normal tissues, allowing the direct assessment of BRS-3 receptor pharmacology/numbers on cells containing BRS-3 with other BnRs, which is usually the case. This circumvents the need for subtraction assays, which are now frequently used to assess BRS-3 indirectly using radiolabeled pan-ligands, which interact with all BnRs.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Samuel A Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Maruyama M, Hotta N, Nio Y, Hamagami K, Nagi T, Funata M, Sakamoto J, Nakakariya M, Amano N, Nishida M, Okawa T, Arikawa Y, Sasaki S, Kasai S, Nagisa Y, Habata Y, Mori M. Bombesin receptor subtype-3-expressing neurons regulate energy homeostasis through a novel neuronal pathway in the hypothalamus. Brain Behav 2018; 8:e00881. [PMID: 29568682 PMCID: PMC5853643 DOI: 10.1002/brb3.881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Bombesin receptor subtype-3 (BRS-3) has been suggested to play a potential role in energy homeostasis. However, the physiological mechanism of BRS-3 on energy homeostasis remains unknown. Thus, we investigated the BRS-3-mediated neuronal pathway involved in food intake and energy expenditure. MATERIALS AND METHODS Expression of BRS-3 in the rat brain was histologically examined. The BRS-3 neurons activated by refeeding-induced satiety or a BRS-3 agonist were identified by c-Fos immunostaining. We also analyzed expression changes in feeding-relating peptides in the brain of fasted rats administered with the BRS-3 agonist. RESULTS In the paraventricular hypothalamic nucleus (PVH), dorsomedial hypothalamic nucleus (DMH), and medial preoptic area (MPA), strong c-Fos induction was observed in the BRS-3 neurons especially in PVH after refeeding. However, the BRS-3 neurons in the PVH did not express feeding-regulating peptides, while the BRS-3 agonist administration induced c-Fos expression in the DMH and MPA, which were not refeeding-sensitive, as well as in the PVH. The BRS-3 agonist administration changed the Pomc and Cart mRNA level in several brain regions of fasted rats. CONCLUSION These results suggest that BRS-3 neurons in the PVH are a novel functional subdivision in the PVH that regulates feeding behavior. As the MPA and DMH are reportedly involved in thermoregulation and energy metabolism, the BRS-3 neurons in the MPA/DMH might mediate the energy expenditure control. POMC and CART may contribute to BRS-3 neuron-mediated energy homeostasis regulation. In summary, BRS-3-expressing neurons could regulate energy homeostasis through a novel neuronal pathway.
Collapse
Affiliation(s)
- Minoru Maruyama
- Cardiovascular and Metabolic Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Natsu Hotta
- Cardiovascular and Metabolic Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Yasunori Nio
- Extra Value Generation & General Medicine Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Kenichi Hamagami
- Cardiovascular and Metabolic Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Toshimi Nagi
- Central Nervous System Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Masaaki Funata
- Biomolecular Research Laboratories Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Junichi Sakamoto
- Biomolecular Research Laboratories Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research LaboratoriesTakeda Pharmaceutical Company Limited Kanagawa Japan
| | - Nobuyuki Amano
- Drug Metabolism and Pharmacokinetics Research LaboratoriesTakeda Pharmaceutical Company Limited Kanagawa Japan
| | - Mayumi Nishida
- Integrated Technology Research Laboratories Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Tomohiro Okawa
- Central Nervous System Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Yasuyoshi Arikawa
- Central Nervous System Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Shinobu Sasaki
- Medicinal Chemistry Research Laboratories Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Shizuo Kasai
- Cardiovascular and Metabolic Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan
| | - Yasutaka Nagisa
- Cardiovascular and Metabolic Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan.,Present address: CVM Marketing Japan Pharma Business UnitTakeda Pharmaceutical Co. Ltd.12-10, Nihonbashi 2-Chome, Chuo-ku Tokyo 103-8686 Japan
| | - Yugo Habata
- Cardiovascular and Metabolic Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan.,Present address: Foods & Nutrients Yamanashi Gakuin Junior College Sakaori 2-4-5, Kofu Yamanashi 400-8575 Japan
| | - Masaaki Mori
- Cardiovascular and Metabolic Drug Discovery Unit Takeda Pharmaceutical Company Limited Kanagawa Japan
| |
Collapse
|
4
|
Bombesin-like receptor 3 (Brs3) expression in glutamatergic, but not GABAergic, neurons is required for regulation of energy metabolism. Mol Metab 2017; 6:1540-1550. [PMID: 29107299 PMCID: PMC5681273 DOI: 10.1016/j.molmet.2017.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 02/03/2023] Open
Abstract
Objective Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor. Brs3 null mice have reduced resting metabolic rate and body temperature, increased food intake, and obesity. Here we study the role of Brs3 in different neuron types. Methods Mice able to undergo Cre recombinase-dependent inactivation or re-expression of Brs3 were generated, respectively Brs3fl/y and Brs3loxTB/y. We then studied four groups of mice with Brs3 selectively inactivated or re-expressed in cells expressing Vglut2-Cre or Vgat-Cre. Results Deletion of Brs3 in glutamatergic neurons expressing Vglut2 reproduced the global null phenotype for regulation of food intake, metabolic rate, body temperature, adiposity, and insulin resistance. These mice also no longer responded to a BRS-3 agonist, MK-5046. In contrast, deletion of Brs3 in GABAergic neurons produced no detectable phenotype. Conversely, the wild type phenotype was restored by selective re-expression of Brs3 in glutamatergic neurons, with no normalization achieved by re-expressing Brs3 in GABAergic neurons. Conclusions Brs3 expression in glutamatergic neurons is both necessary and sufficient for full Brs3 function in energy metabolism. In these experiments, no function was identified for Brs3 in GABAergic neurons. The data suggest that the anti-obesity pharmacologic actions of BRS-3 agonists occur via agonism of receptors on glutamatergic neurons. Brs3 in glutamatergic neurons regulates food intake, metabolic rate, and body weight. Brs3 in glutamatergic neurons is both necessary and sufficient for these functions. No phenotypes were identified by Brs3 loss or re-expression in GABAergic neurons. BRS-3 agonists likely act on glutamatergic neurons for their anti-obesity effects.
Collapse
|
5
|
Nio Y, Hotta N, Maruyama M, Hamagami K, Nagi T, Funata M, Sakamoto J, Nakakariya M, Amano N, Okawa T, Arikawa Y, Sasaki S, Okuda S, Kasai S, Habata Y, Nagisa Y. A Selective Bombesin Receptor Subtype 3 Agonist Promotes Weight Loss in Male Diet-Induced-Obese Rats With Circadian Rhythm Change. Endocrinology 2017; 158:1298-1313. [PMID: 28324017 DOI: 10.1210/en.2016-1825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Bombesin receptor subtype 3 (BRS-3) is an orphan G protein-coupled receptor. Based on the obese phenotype of male BRS-3-deficient mice, BRS-3 has been considered an attractive target for obesity treatment. Here, we developed a selective BRS-3 agonist (compound-A) and evaluated its antiobesity effects. Compound-A showed anorectic effects and enhanced energy expenditure in diet-induced-obese (DIO)-F344 rats. Moreover, repeated oral administration of compound-A for 7 days resulted in a significant body weight reduction in DIO-F344 rats. We also evaluated compound-A for cardiovascular side effects using telemeterized Sprague-Dawley (SD) rats. Oral administration of compound-A resulted in transient blood pressure increases in SD rats. To investigate the underlying mechanisms of BRS-3 agonist effects, we focused on the suprachiasmatic nucleus (SCN), the main control center of circadian rhythms in the hypothalamus, also regulating sympathetic nervous system. Compound-A significantly increased the messenger RNA expression of Brs-3, c-fos, and circadian rhythm genes in SCN of DIO-F344 rats. Because SCN also controls the hypothalamic-pituitary-adrenal (HPA) axis, we evaluated the relationship between BRS-3 and the HPA axis. Oral administration of compound-A caused a significant increase of plasma corticosterone levels in DIO-F344 rats. On this basis, energy expenditure enhancement by compound-A may be due to a circadian rhythm change in central and peripheral tissues, enhancement of peripheral lipid metabolism, and stimulation of the sympathetic nervous system. Furthermore, the blood pressure increase by compound-A could be associated with sympathetic nervous system stimulation via SCN and elevation of plasma corticosterone levels through activation of the HPA axis.
Collapse
Affiliation(s)
- Yasunori Nio
- Extra Value Generation & General Medicine Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Natsu Hotta
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Maruyama
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Kenichi Hamagami
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimi Nagi
- Central Nervous System Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Funata
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Junichi Sakamoto
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Nobuyuki Amano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Okawa
- Central Nervous System Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuyoshi Arikawa
- Central Nervous System Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinobu Sasaki
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoki Okuda
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Shizuo Kasai
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Yugo Habata
- Foods & Nutrients, Yamanashi Gakuin Junior College, Kofu, Yamanashi 400-8575, Japan
| | - Yasutaka Nagisa
- CVM Marketing Japan Pharma Business Unit, Takeda Pharmaceutical Company Ltd, Chuo-ku, Tokyo 103-8686, Japan
| |
Collapse
|
6
|
Lateef DM, Xiao C, Brychta RJ, Diedrich A, Schnermann J, Reitman ML. Bombesin-like receptor 3 regulates blood pressure and heart rate via a central sympathetic mechanism. Am J Physiol Heart Circ Physiol 2016; 310:H891-8. [PMID: 26801314 DOI: 10.1152/ajpheart.00963.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023]
Abstract
Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor that regulates energy expenditure, food intake, and body weight. We examined the effects of BRS-3 deletion and activation on blood pressure and heart rate. In free-living, telemetered Brs3 null mice the resting heart rate was 10% lower than wild-type controls, while the resting mean arterial pressure was unchanged. During physical activity, the heart rate and blood pressure increased more in Brs3 null mice, reaching a similar heart rate and higher mean arterial pressure than control mice. When sympathetic input was blocked with propranolol, the heart rate of Brs3 null mice was unchanged, while the heart rate in control mice was reduced to the level of the null mice. The intrinsic heart rate, measured after both sympathetic and parasympathetic blockade, was similar in Brs3 null and control mice. Intravenous infusion of the BRS-3 agonist MK-5046 increased mean arterial pressure and heart rate in wild-type but not in Brs3 null mice, and this increase was blocked by pretreatment with clonidine, a sympatholytic, centrally acting α2-adrenergic agonist. In anesthetized mice, hypothalamic infusion of MK-5046 also increased both mean arterial pressure and heart rate. Taken together, these data demonstrate that BRS-3 contributes to resting cardiac sympathetic tone, but is not required for activity-induced increases in heart rate and blood pressure. The data suggest that BRS-3 activation increases heart rate and blood pressure via a central sympathetic mechanism.
Collapse
Affiliation(s)
- Dalya M Lateef
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - André Diedrich
- Autonomic Dysfunction Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Jurgen Schnermann
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
7
|
Ramos-Álvarez I, Nakamura T, Mantey SA, Moreno P, Nuche-Berenguer B, Jensen RT. Novel chiral-diazepines function as specific, selective receptor agonists with variable coupling and species variability in human, mouse and rat BRS-3 receptor cells. Peptides 2016; 75:8-17. [PMID: 26524625 PMCID: PMC5461819 DOI: 10.1016/j.peptides.2015.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/11/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Abstract
Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein coupled receptor which is classified in the bombesin receptor (BnR) family with which it shares high homology. It is present widely in the central nervous system and peripheral tissues and primarily receptor-knockout studies suggest it is involved in metabolic-glucose-insulin homeostasis, feeding and other CNS behaviors, gastrointestinal motility and cancer growth. However, the role of BRS-3 physiologically or in pathologic disorders has been not well defined because the natural ligand is unknown. Until recently, no selective agonists/antagonists were available; however, recently synthetic high-affinity agonists, chiral-diazepines nonpeptide-analogs (3F, 9D, 9F, 9G) with low CNS penetrance, were described, but are not well-categorized pharmacologically or in different labarotory species. The present study characterizes the affinities, potencies, selectivities of the chiral-diazepine BRS-3 agonists in human and rodents (mice,rat). In human BRS-3 receptors, the relative affinities of the chiral-diazepines was 9G>9D>9F>3F; each was selective for BRS-3. For stimulating PLC activity, in h-BRS-3 each of the four chiral diazepine analogs was fully efficacious and their relative potencies were: 9G (EC50: 9 nM)>9D (EC50: 9.4 nM)>9F (EC50: 39 nM)>3F (EC50: 48 nM). None of the four chiral diazepine analogs activated r,m,h-GRPR/NMBR. The nonpeptide agonists showed marked differences from each other and a peptide agonist in receptor-coupling-stiochiometry and in affinities/potencies in different species. These results demonstrate that chiral diazepine analogs (9G, 9D, 9F, 3F) have high/affinity/potency for the BRS-3 receptor in human and rodent cells, but different coupling-relationships and species differences from a peptide agonist.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
8
|
Search for an Endogenous Bombesin-Like Receptor 3 (BRS-3) Ligand Using Parabiotic Mice. PLoS One 2015; 10:e0142637. [PMID: 26562312 PMCID: PMC4643013 DOI: 10.1371/journal.pone.0142637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022] Open
Abstract
Bombesin-like receptor 3 (BRS-3) is an X-linked G protein-coupled receptor involved in the regulation of energy homeostasis. Brs3 null (Brs3-/y) mice become obese. To date, no high affinity endogenous ligand has been identified. In an effort to detect a circulating endogenous BRS-3 ligand, we generated parabiotic pairs of mice between Brs3-/y and wild type (WT) mice or between WT controls. Successful parabiosis was demonstrated by circulatory dye exchange. The Brs3-/y-WT and WT-WT pairs lost similar weight immediately after surgery. After 9 weeks on a high fat diet, the Brs3-/y-WT pairs weighed more than the WT-WT pairs. Within the Brs3-/y-WT pairs, the Brs3-/y mice had greater adiposity than the WT mice, but comparable lean and liver weights. Compared to WT mice in WT-WT pairs, Brs3-/y and WT mice in Brs3-/y-WT pairs each had greater lean mass, and the Brs3-/y mice also had greater adiposity. These results contrast to those reported for parabiotic pairs of leptin receptor null (Leprdb/db) and WT mice, where high leptin levels in the Leprdb/db mice cause the WT parabiotic partners to lose weight. Our data demonstrate that a circulating endogenous BRS-3 ligand, if present, is not sufficient to reduce adiposity in parabiotic partners of Brs3-/y mice.
Collapse
|
9
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-44. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
10
|
González N, Moreno P, Jensen RT. Bombesin receptor subtype 3 as a potential target for obesity and diabetes. Expert Opin Ther Targets 2015; 19:1153-70. [PMID: 26066663 DOI: 10.1517/14728222.2015.1056154] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Diabetes mellitus and obesity are important health issues; increasing in prevalence, both in the USA and globally. There are only limited pharmacological treatments, and although bariatric surgery is effective, new effective pharmacologic treatments would be of great value. This review covers one area of increasing interest that could yield new novel treatments of obesity/diabetes mellitus. It involves recognition of the central role the G-protein-coupled receptor, bombesin receptor subtype 3 (BRS-3) plays in energy/glucose metabolism. AREAS COVERED Since the initial observation that BRS-3 knockout mice develop obesity, hypertension, impaired glucose metabolism and hyperphagia, there have been numerous studies of the mechanisms involved and the development of selective BRS-3 agonists/antagonists, which have marked effects on body weight, feeding and glucose/insulin homeostasis. In this review, each of these areas is briefly reviewed. EXPERT OPINION BRS-3 plays an important role in glucose/energy homeostasis. The development of potent, selective BRS-3 agonists demonstrates promise as a novel approach to treat obesity/diabetic states. One important question that needs to be addressed is whether BRS-3 agonists need to be centrally acting. This is particularly important in light of recent animal and human studies that report transient cardiovascular side effects with centrally acting oral BRS agonists.
Collapse
Affiliation(s)
- Nieves González
- The Autonomous University of Madrid, IIS-Jiménez Díaz Foundation, Renal, Vascular and Diabetes Research Laboratory, Spanish Biomedical Research Network in Diabetes and, Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain
| | | | | |
Collapse
|
11
|
Lateef DM, Abreu-Vieira G, Xiao C, Reitman ML. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3. Am J Physiol Endocrinol Metab 2014; 306:E681-7. [PMID: 24452453 PMCID: PMC3948979 DOI: 10.1152/ajpendo.00615.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3(-/y) metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3(-/y) mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3(-/y) mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3(-/y) mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3(-/y) mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.
Collapse
MESH Headings
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/innervation
- Adipose Tissue, Brown/metabolism
- Adrenergic beta-3 Receptor Agonists/administration & dosage
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Animals
- Body Temperature Regulation/drug effects
- Cold-Shock Response/drug effects
- Crosses, Genetic
- Dioxoles/administration & dosage
- Dioxoles/pharmacology
- Efferent Pathways/drug effects
- Efferent Pathways/metabolism
- Energy Metabolism/drug effects
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Imidazoles/administration & dosage
- Imidazoles/pharmacology
- Infusions, Intravenous
- Infusions, Intraventricular
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Receptors, Bombesin/agonists
- Receptors, Bombesin/genetics
- Receptors, Bombesin/metabolism
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/metabolism
- Thermogenesis/drug effects
Collapse
Affiliation(s)
- Dalya M Lateef
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and
| | | | | | | |
Collapse
|
12
|
Parent MB, Darling JN, Henderson YO. Remembering to eat: hippocampal regulation of meal onset. Am J Physiol Regul Integr Comp Physiol 2014; 306:R701-13. [PMID: 24573183 DOI: 10.1152/ajpregu.00496.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A wide variety of species, including vertebrate and invertebrates, consume food in bouts (i.e., meals). Decades of research suggest that different mechanisms regulate meal initiation (when to start eating) versus meal termination (how much to eat in a meal, also known as satiety). There is a very limited understanding of the mechanisms that regulate meal onset and the duration of the postprandial intermeal interval (ppIMI). In the present review, we examine issues involved in measuring meal onset and some of the limited available evidence regarding how it is regulated. Then, we describe our recent work indicating that dorsal hippocampal neurons inhibit meal onset during the ppIMI and describe the processes that may be involved in this. We also synthesize recent evidence, including evidence from our laboratory, suggesting that overeating impairs hippocampal functioning and that impaired hippocampal functioning, in turn, contributes to the development and/or maintenance of diet-induced obesity. Finally, we identify critical questions and challenges for future research investigating neural controls of meal onset.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Jenna N Darling
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| |
Collapse
|
13
|
Application of radial basis function neural network and DFT quantum mechanical calculations for the prediction of the activity of 2-biarylethylimidazole derivatives as bombesin receptor subtype-3 (BRS-3) agonists. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0948-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Ramos-Álvarez I, Moreno-Villegas Z, Martín-Duce A, Sanz R, Aparicio C, Portal-Núñez S, Mantey SA, Jensen RT, González N. Human BRS-3 receptor: functions/role in cell signaling pathways and glucose metabolism in obese or diabetic myocytes. Peptides 2014; 51:91-9. [PMID: 24220502 DOI: 10.1016/j.peptides.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Several studies showed that the orphan Bombesin Receptor Subtype-3 (BRS-3) - member of the bombesin receptor family - has an important role in glucose homeostasis (v.g.: BRS-3-KO mice developed mild obesity, and decreased levels of BRS-3 mRNA/protein have been described in muscle from obese (OB) and type 2 diabetic (T2D) patients). In this work, to gain insight into BRS-3 receptor cell signaling pathways, and its implication on glucose metabolism, primary cultured myocytes from normal subjects, OB or T2D patients were tested using high affinity ligand - [d-Tyr(6),β-Ala(11),Phe(13),Nle(14)]bombesin6-14. In muscle cells from all metabolic conditions, the compound significantly increased not only MAPKs, p90RSK1, PKB and p70s6K phosphorylation levels, but also PI3K activity; moreover, it produced a dose-response stimulation of glycogen synthase a activity and glycogen synthesis. Myocytes from OB and T2D patients were more sensitive to the ligand than normal, and T2D cells even more than obese myocytes. These results widen the knowledge of human BRS-3 cell signaling pathways induced by a BRS-3 agonist, described its insulin-mimetic effects on glucose metabolism, showed the role of BRS-3 receptor in glucose homeostasis, and also propose the employing of BRS-3/ligand system, as participant in the obese and diabetic therapies.
Collapse
MESH Headings
- Adult
- Aged
- Bombesin/pharmacology
- Cells, Cultured
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Glucose/metabolism
- Glycogen/biosynthesis
- Glycogen Synthase/metabolism
- Homeostasis
- Humans
- Male
- Middle Aged
- Mitogen-Activated Protein Kinases/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Peptide Fragments/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Bombesin/agonists
- Receptors, Bombesin/physiology
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- I Ramos-Álvarez
- Department of Metabolism, Nutrition and Hormones, IIS-Fundación Jiménez Díaz, CIBERDEM, Madrid, Spain
| | - Z Moreno-Villegas
- Department of Metabolism, Nutrition and Hormones, IIS-Fundación Jiménez Díaz, CIBERDEM, Madrid, Spain
| | - A Martín-Duce
- Department of Nursery, Unit of Surgery, Universidad de Alcalá de Henares, Madrid, Spain
| | - R Sanz
- Department of Neurology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - C Aparicio
- Department of Vascular Surgery, Fundación Jiménez Díaz, Madrid, Spain
| | - S Portal-Núñez
- Department of Bone Mineral Metabolism, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - S A Mantey
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - R T Jensen
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - N González
- Department of Metabolism, Nutrition and Hormones, IIS-Fundación Jiménez Díaz, CIBERDEM, Madrid, Spain.
| |
Collapse
|
15
|
Zhang L, Parks GS, Wang Z, Wang L, Lew M, Civelli O. Anatomical characterization of bombesin receptor subtype-3 mRNA expression in the rodent central nervous system. J Comp Neurol 2013; 521:1020-39. [DOI: 10.1002/cne.23216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/07/2012] [Indexed: 11/10/2022]
|
16
|
Hermes MLHJ, Kolaj M, Coderre EM, Renaud LP. Gastrin-releasing peptide acts via postsynaptic BB2 receptors to modulate inward rectifier K+ and TRPV1-like conductances in rat paraventricular thalamic neurons. J Physiol 2013; 591:1823-39. [PMID: 23359674 DOI: 10.1113/jphysiol.2012.249227] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gastrin-releasing peptide (GRP) is a bombesin-like peptide with a widespread distribution in mammalian CNS, where it has a role in food intake, circadian rhythm generation, fear memory, itch sensation and sexual behaviour. While it has been established that GRP predominantly excites neurons, details of the membrane mechanism involved in this action remain largely undefined. We used perforated patch clamp recording in acute brain slice preparations to investigate GRP-affected receptors and ionic conductances in neurons of the rat paraventricular thalamic nucleus (PVT). PVT is a component of the midline and intralaminar thalamus that participates in arousal, motivational drives and stress responses, and exhibits a prominence of GRP-like immunoreactive fibres. Exposure of PVT neurons to low nanomolar concentrations of GRP induced sustained TTX-resistant membrane depolarizations that could trigger rhythmic burst discharges or tonic firing. Membrane current analyses in voltage clamp revealed an underlying postsynaptic bombesin type 2 receptor-mediated inward current that resulted from the simultaneous suppression of a Ba(2+)-sensitive inward rectifier K(+) conductance and activation of a non-selective cation conductance with biophysical and pharmacological properties reminiscent of transient receptor potential vanilloid (TRPV) 1. A role for a TRPV1-like conductance was further implied by a significant suppressant influence of a TRPV1 antagonist on GRP-induced membrane depolarization and rhythmic burst or tonic firing. The results provide a detailed picture of the receptor and ionic conductances that are involved in GRP's excitatory action in midline thalamus.
Collapse
Affiliation(s)
- M L H J Hermes
- Neuroscience Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1Y 4E9.
| | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review summarizes the results of recent studies regarding the biology and pharmacology of novel synthetic agonists and antagonists of the bombesin receptor subtype-3 (BRS-3). RECENT FINDINGS All three mammalian bombesin receptors including gastrin-releasing peptide receptor, the neuromedin B receptor, and the BRS-3 have been shown to regulate energy balance and appetite and satiety. Studies indicate that the orphan BRS-3 is an important regulator of body weight, energy expenditure, and glucose homeostasis. Endogenous bombesin-like peptides bombesin, gastrin-releasing peptide, and neuromedin B receptor do not bind to BRS-3 and the endogenous BRS-3 ligand remains unknown. The novel synthesis of selective, high-affinity BRS-3 agonists and antagonists has recently been accomplished and showed that BRS-3 regulates energy balance independent of other established pathways and glucose-stimulated insulin secretion in the pancreatic islet cells. The availability of new BRS-3 selective agonists and antagonists will facilitate further elucidation of its role in energy homeostasis, and provides a potential approach for the pharmacological treatment of obesity and type 2 diabetes. SUMMARY The native ligand of the G protein-coupled BRS-3 has not been identified as of now. However, novel synthesis of small-molecule, high-affinity agonists and antagonists on the BRS-3 was used in the recent studies and demonstrated an important role of BRS-3 in the regulation of energy homeostasis and glucose metabolism.
Collapse
Affiliation(s)
- Ishita D Majumdar
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
18
|
Abstract
Studies on bombesin-like peptides (BLP) and their respective mammalian receptors (Bn-r) have demonstrated a significant biological impact on a broad array of physiological and pathophysiological conditions. Pharmacological experiments in vitro and in vivo as well as utilization of genetic rodent models of the gastrin-releasing peptide receptor (GRP-R/BB2-receptor), neuromedin B receptor (NMB-R/BB1-receptor), and the bombesin receptor subtype-3 (BRS-3/BB3-receptor) further delineated their role in health and disease. All three mammalian bombesin receptors have been shown to possess some role in the regulation of energy balance and appetite and satiety. Compelling experimental evidence has accumulated indicating that the orphan BRS-3 is an important regulator of body weight, energy expenditure, and glucose homeostasis. BRS-3 possesses no high affinity to the endogenous bombesin-like peptides (BLP) bombesin, GRP, and NMB, and its endogenous ligand remains unknown. Recently, the synthesis of novel, selective high-affinity BRS-3 agonists and antagonists has been accomplished and has demonstrated that BRS-3 regulates energy balance independent of other established pathways. Accordingly, the availability of new BRS-3 selective agonists and antagonists will facilitate further elucidation of its role in energy homeostasis and provides a potential approach for the pharmacological treatment of obesity.
Collapse
|
19
|
Qin X, Qu X, Coy D, Weber HC. A Selective Human Bombesin Receptor Subtype-3 Peptide Agonist Mediates CREB Phosphorylation and Transactivation. J Mol Neurosci 2011; 46:88-99. [DOI: 10.1007/s12031-011-9675-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023]
|
20
|
Zogovic B, Pilowsky PM. Intrathecal bombesin is sympathoexcitatory and pressor in rat. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1486-94. [PMID: 21849634 DOI: 10.1152/ajpregu.00297.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bombesin, a 14 amino-acid peptide, is pressor when administered intravenously in rat and pressor and sympathoexcitatory when applied intracerebroventricularly. To determine the spinal effects of bombesin, the peptide was administered acutely in the intrathecal space at around thoracic spinal cord level six of urethane-anesthetized, paralyzed, and bilaterally vagotomized rats. Blood pressure, heart rate, splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, and end-tidal CO(2) were monitored to evaluate changes in the cardiorespiratory systems. Bombesin elicited a long-lasting excitation of sSNA associated with an increase in blood pressure and tachycardia. There was a mean increase in arterial blood pressure of 52 ± 5 mmHg (300 μM; P < 0.01). Heart rate and sSNA also increased by 40 ± 4 beats/min (P < 0.01) and 162 ± 33% (P < 0.01), respectively. Phrenic nerve amplitude (PNamp, 73 ± 8%, P < 0.01) and phrenic expiratory period (+0.16 ± 0.02 s, P < 0.05) increased following 300 μM bombesin. The gain of the sympathetic baroreflex increased from -2.8 ± 0.7 to -5.4 ± 0.9% (P < 0.01), whereas the sSNA range was increased by 99 ± 26% (P < 0.01). During hyperoxic hypercapnia (10% CO(2) in O(2), 90 s), bombesin potentiated the responses in heart rate (-25 ± 5 beats/min, P < 0.01) and sSNA (+136 ± 29%, P < 0.001) but reduced PNamp (from 58 ± 6 to 39 ± 7%, P < 0.05). Finally, ICI-216,140 (1 mM), an in vivo antagonist for the bombesin receptor 2, attenuated the effects of 300 μM bombesin on blood pressure (21 ± 7 mmHg, P < 0.01). We conclude that bombesin is sympathoexcitatory at thoracic spinal segments. The effect on phrenic nerve activity may the result of spinobulbar pathways and activation of local motoneuronal pools.
Collapse
Affiliation(s)
- Branimir Zogovic
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | | |
Collapse
|
21
|
Furutani N, Hondo M, Tsujino N, Sakurai T. Activation of Bombesin Receptor Subtype-3 Influences Activity of Orexin Neurons by Both Direct and Indirect Pathways. J Mol Neurosci 2010; 42:106-11. [DOI: 10.1007/s12031-010-9382-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 04/20/2010] [Indexed: 12/01/2022]
|
22
|
Liu J, He S, Jian T, Dobbelaar PH, Sebhat IK, Lin LS, Goodman A, Guo C, Guzzo PR, Hadden M, Henderson AJ, Pattamana K, Ruenz M, Sargent BJ, Swenson B, Yet L, Tamvakopoulos C, Peng Q, Pan J, Kan Y, Palyha O, Kelly TM, Guan XM, Howard AD, Marsh DJ, Metzger JM, Reitman ML, Wyvratt MJ, Nargund RP. Synthesis and SAR of derivatives based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity. Bioorg Med Chem Lett 2010; 20:2074-7. [DOI: 10.1016/j.bmcl.2010.02.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
23
|
Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metab 2010; 11:101-12. [PMID: 20096642 DOI: 10.1016/j.cmet.2009.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/02/2009] [Accepted: 12/18/2009] [Indexed: 01/04/2023]
Abstract
Bombesin receptor subtype 3 (BRS-3) is a G protein coupled receptor whose natural ligand is unknown. We developed potent, selective agonist (Bag-1, Bag-2) and antagonist (Bantag-1) ligands to explore BRS-3 function. BRS-3-binding sites were identified in the hypothalamus, caudal brainstem, and several midbrain nuclei that harbor monoaminergic cell bodies. Antagonist administration increased food intake and body weight, whereas agonists increased metabolic rate and reduced food intake and body weight. Prolonged high levels of receptor occupancy increased weight loss, suggesting a lack of tachyphylaxis. BRS-3 agonist effectiveness was absent in Brs3(-/Y) (BRS-3 null) mice but was maintained in Npy(-/-)Agrp(-/-), Mc4r(-/-), Cnr1(-/-), and Lepr(db/db) mice. In addition, Brs3(-/Y) mice lost weight upon treatment with either a MC4R agonist or a CB1R inverse agonist. These results demonstrate that BRS-3 has a role in energy homeostasis that complements several well-known pathways and that BRS-3 agonists represent a potential approach to the treatment of obesity.
Collapse
|
24
|
Zhang L, Nothacker HP, Wang Z, Bohn LM, Civelli O. Pharmacological characterization of a selective agonist for bombesin receptor subtype-3. Biochem Biophys Res Commun 2009; 387:283-8. [PMID: 19580790 DOI: 10.1016/j.bbrc.2009.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022]
Abstract
Bombesin receptor subtype-3 (BRS-3) is an orphan G protein-coupled receptor in the bombesin receptor family that still awaits identification of its natural ligand. BRS-3 deficient mice develop a mild late-onset obesity with metabolic defects, implicating BRS-3 plays a role in feeding and metabolism. We describe here the pharmacological characterization of a synthetic compound, 16a, which serves as a potent agonist for BRS-3. This compound is selective for BRS-3 as it does not activate neuromedin B or gastrin-releasing peptide receptors, two most closely related bombesin receptors, as well as a series of other GPCRs. We assessed the receptor trafficking of BRS-3 and found that compound 16a promoted beta-arrestin translocation to the cell membrane. Neither central nor peripheral administration of compound 16a affects locomotor activity in mice. Therefore compound 16a is a potential tool to study the function of the BRS-3 system in vitro and possibly in vivo.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
25
|
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60:1-42. [PMID: 18055507 PMCID: PMC2517428 DOI: 10.1124/pr.107.07108] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian bombesin receptor family comprises three G protein-coupled heptahelical receptors: the neuromedin B (NMB) receptor (BB(1)), the gastrin-releasing peptide (GRP) receptor (BB(2)), and the orphan receptor bombesin receptor subtype 3 (BRS-3) (BB(3)). Each receptor is widely distributed, especially in the gastrointestinal (GI) tract and central nervous system (CNS), and the receptors have a large range of effects in both normal physiology and pathophysiological conditions. The mammalian bombesin peptides, GRP and NMB, demonstrate a broad spectrum of pharmacological/biological responses. GRP stimulates smooth muscle contraction and GI motility, release of numerous GI hormones/neurotransmitters, and secretion and/or hormone release from the pancreas, stomach, colon, and numerous endocrine organs and has potent effects on immune cells, potent growth effects on both normal tissues and tumors, potent CNS effects, including regulation of circadian rhythm, thermoregulation; anxiety/fear responses, food intake, and numerous CNS effects on the GI tract as well as the spinal transmission of chronic pruritus. NMB causes contraction of smooth muscle, has growth effects in various tissues, has CNS effects, including effects on feeding and thermoregulation, regulates thyroid-stimulating hormone release, stimulates various CNS neurons, has behavioral effects, and has effects on spinal sensory transmission. GRP, and to a lesser extent NMB, affects growth and/or differentiation of various human tumors, including colon, prostate, lung, and some gynecologic cancers. Knockout studies show that BB(3) has important effects in energy balance, glucose homeostasis, control of body weight, lung development and response to injury, tumor growth, and perhaps GI motility. This review summarizes advances in our understanding of the biology/pharmacology of these receptors, including their classification, structure, pharmacology, physiology, and role in pathophysiological conditions.
Collapse
Affiliation(s)
- R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
26
|
Ladenheim EE, Hamilton NL, Behles RR, Bi S, Hampton LL, Battey JF, Moran TH. Factors contributing to obesity in bombesin receptor subtype-3-deficient mice. Endocrinology 2008; 149:971-8. [PMID: 18039774 PMCID: PMC2275361 DOI: 10.1210/en.2007-1319] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice with a targeted disruption of bombesin receptor subtype-3 (BRS-3 KO) develop hyperphagia, obesity, hypertension, and impaired glucose metabolism. However, the factors contributing to their phenotype have not been clearly established. To determine whether their obesity is a result of increased food intake or a defect in energy regulation, we matched the caloric intake of BRS-3 KO mice to wild-type (WT) ad libitum (ad lib)-fed controls over 21 wk. Although BRS-3 KO ad lib-fed mice were 29% heavier, the body weights of BRS-3 KO pair-fed mice did not differ from WT ad lib-fed mice. Pair-feeding BRS-3 KO mice normalized plasma insulin but failed to completely reverse increased adiposity and leptin levels. Hyperphagia in ad lib-fed KO mice was due to an increase in meal size without a compensatory decrease in meal frequency resulting in an increase in total daily food intake. An examination of neuropeptide Y, proopiomelanocortin, and agouti-related peptide gene expression in the arcuate nucleus revealed that BRS-3 KO mice have some deficits in their response to energy regulatory signals. An evaluation of the satiety effects of cholecystokinin, bombesin, and gastrin-releasing peptide found no differences in feeding suppression by these peptides. We conclude that hyperphagia is a major factor leading to increased body weight and hyperinsulinemia in BRS-3 KO mice. However, our finding that pair-feeding did not completely normalize fat distribution and plasma leptin levels suggests there is also a metabolic dysregulation that may contribute to, or sustain, their obese phenotype.
Collapse
Affiliation(s)
- Ellen E Ladenheim
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Yasufuku-Takano J, Nakajima S, Nakajima Y. Morphological and physiological properties of serotonergic neurons in dissociated cultures from the postnatal rat dorsal raphe nucleus. J Neurosci Methods 2007; 167:258-67. [PMID: 17920133 DOI: 10.1016/j.jneumeth.2007.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 11/30/2022]
Abstract
We have developed dissociated primary cultures of the dorsal raphe nucleus from postnatal 9-12-day-old rats. The nucleus was dissected out from brain slices, dissociated, and cultured over a glial feeder layer. Serotonin immunocytochemistry revealed that 62% of cultured neurons were serotonergic. There was no significant difference in diameters between serotonergic and non-serotonergic neurons. With the whole-cell patch-clamp method, cultured neurons were tested for responses to 8-hydroxydipropylaminotetraline (8-OH-DPAT, a selective agonist for 5-HT(1A)), and then treated with serotonin immunocytochemistry. Ninety-two percent of neurons responding to 8-OH-DPAT were serotonergic. These results were used to identify serotonergic neurons. In most cases, serotonergic neurons did not show spontaneous firings of action potentials. Constant current depolarizations elicited trains of action potentials that usually did not show marked adaptation. Application of 8-OH-DPAT inhibited action potential firing. The current-voltage relation of the 8-OH-DPAT-induced current indicated an inward rectification with its reversal potential near E(K). Serotonergic neurons were depolarized by phenylephrine, bombesin, and gastrin-releasing peptide. This culture system will serve as a useful tool for elucidating the cellular, physiological, and molecular properties of brain serotonergic neurons.
Collapse
Affiliation(s)
- Junko Yasufuku-Takano
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine (M/C 512), 808 South Wood Street, Chicago, IL 60612, USA
| | | | | |
Collapse
|
28
|
Tan YR, Qin XQ, Xiang Y, Yang T, Qu F, Wang Y, Liu HJ, Weber H. PPARalpha and AP-2alpha regulate bombesin receptor subtype 3 expression in ozone-stressed bronchial epithelial cells. Biochem J 2007; 405:131-7. [PMID: 17355223 PMCID: PMC1925247 DOI: 10.1042/bj20061754] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 03/06/2007] [Accepted: 03/13/2007] [Indexed: 11/17/2022]
Abstract
Previously, we found that bombesin receptor subtype 3 (BRS-3) significantly increased in an ozone-stressed airway hyperresponsiveness animal model and resulted in induced wound repair and protection from acute lung injury. In the present study, we determined molecular mechanisms of BRS-3 regulation in human BECs (bronchial epithelial cells) in response to ozone stress. Ten oligonucleotide probes corresponding to various regions of the BRS-3 promoter were used in EMSA (electrophoretic mobilityshift assays). Four were found to have an enhanced mobility shift with extracts from ozone-stressed cells. On the basis of the assay of mutated probes binding with extracts and antibody supershift, they were verified as MTF-1 (metal-regulatory-element-binding transcription factor-1), PPARalpha (peroxisome-proliferator-activated receptor alpha), AP-2alpha (activator protein 2alpha) and HSF-1 (heat-shock factor 1). Next, ChIP (chromatin immunoprecipitation) assay, site-directed mutagenesis technology and antisense oligonucleotide technology were used to observe these transcription factors associated with the BRS-3 promoter. Only AP-2alpha and PPARalpha increased ozone-inducible DNA binding on the BRS-3 promoter and BRS-3 expression. The time courses of AP-2alpha and PPARalpha activation, followed by BRS-3 expression, were also examined. It was shown that ozone-inducible BRS-3 expression and AP-2alpha- and PPARalpha-binding activity correlated over a 48 h period. The translocation of PPARalpha was observed by immunofluorescence assay, which showed that PPARalpha nuclear translocation increased after ozone exposure. Our data suggest that AP-2alpha and PPARalpha may be especially involved in this ozone-inducible up-regulation mechanism of BRS-3 expression.
Collapse
Key Words
- activator protein 2α (ap-2α)
- airway hyperresponsiveness
- bombesin receptor subtype-3 (brs-3)
- human bronchial epithelial cell
- ozone
- peroxisome-proliferator-activated receptor α (pparα)
- ahr, airway hyperresponsiveness
- ap-2, activator protein 2
- aso, antisense oligonucleotide
- bec, bronchial epithelial cell
- blp, bombesin-like peptide
- brs-3, bombesin receptor subtype 3
- chip, chromatin immunoprecipitation
- dmem, dulbecco's modified eagle's medium
- emsa, electrophoretic mobility-shift assay
- fam, 5-carboxyfluorescein
- fbs, fetal bovine serum
- fr, flanking region
- β-gal, β-galactosidase
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- grp, gastrin-releasing peptide
- hlf, human lung fibroblast
- hsf-1, heat-shock factor 1
- mtf-1, metal-regulatory-element-binding transcription factor-1
- nmb, neuromedin b
- ppar, peroxisome-proliferator-activated receptor
- rxr, retinoid x receptor
- tamra, 6-carboxytetramethylrhodamine
Collapse
Affiliation(s)
- Yu-rong Tan
- *Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Xiao-qun Qin
- *Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Yang Xiang
- *Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Tao Yang
- *Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Fei Qu
- *Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Yue Wang
- *Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Hui-jun Liu
- *Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - H. Christian Weber
- †Section of Gastroenterology, Boston University School of Medicine, Boston, MA 02118, U.S.A
| |
Collapse
|
29
|
Tan YR, Qi MM, Qin XQ, Xiang Y, Li X, Wang Y, Qu F, Liu HJ, Zhang JS. Wound repair and proliferation of bronchial epithelial cells enhanced by bombesin receptor subtype 3 activation. Peptides 2006; 27:1852-8. [PMID: 16426703 DOI: 10.1016/j.peptides.2005.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 12/19/2005] [Accepted: 12/19/2005] [Indexed: 11/26/2022]
Abstract
The present study was designed to investigate the role of bombesin receptor subtype 3 (BRS-3) in airway wound repair. The results showed that: (1) There was few expression of BRS-3 mRNA in the control group. In contrast, the expression of BRS-3 mRNA was gradually increased in the early 2 days, and peaked on the fourth day, and then decreased in the ozone-stressed AHR animal. BRS-3 mRNA was distributed in the ciliated columnar epithelium, monolayer columnar epithelium cells, scattered mesenchymal cells and Type II alveolar cells; (2) The wound repair and proliferation of bronchial epithelial cells (BECs) were accelerated in a concentration-dependent manner by BRS-3 activation with P3513, which could be inhibited by PKA inhibitor H89. The study demostrated that activation of BRS-3 may play an important role in wound repair of AHR.
Collapse
Affiliation(s)
- Yu-Rong Tan
- Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Porcher C, Juhem A, Peinnequin A, Bonaz B. Bombesin receptor subtype-3 is expressed by the enteric nervous system and by interstitial cells of Cajal in the rat gastrointestinal tract. Cell Tissue Res 2005; 320:21-31. [PMID: 15726424 DOI: 10.1007/s00441-004-1032-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 10/25/2004] [Indexed: 11/30/2022]
Abstract
Bombesin receptor subtype-3 (BRS-3), a G-protein-coupled orphan receptor, shares 47% and 55% homology with other known mammalian bombesin receptors. Despite the molecular characterization of BRS-3, its function remains unclear as a consequence of its low affinity for bombesin and the absence of an identified natural ligand. Although the other mammalian bombesin receptors are widely distributed in the gut and central nervous system, expression of BRS-3 in the gastrointestinal tract has not been previously described. We report the expression of BRS-3 mRNA and protein in the tunica muscularis of the rat gastrointestinal tract. The mRNA expression pattern was studied by reverse transcription followed by quantitative polymerase chain reaction. To identify the cellular sites of expression of BRS-3, we performed immunocytochemistry by using a N-terminus-specific affinity-purified antiserum. BRS-3 was found to be widely expressed in the rat gastrointestinal tract at both the mRNA and protein levels. BRS-3-like immunoreactivity (BRS-3-LI) was localized in neurons of the myenteric and submucosal ganglia, being primarily concentrated near the neuronal plasma membrane, and in fibers distributed in the longitudinal and circular muscle layers. In addition, BRS-3-LI was observed in the cell bodies and processes of c-kit+ interstitial cells of Cajal. These data have functional applications for the effects mediated by the activation of BRS-3 on gut motility through distinct neuronal and non-neuronal pathways.
Collapse
Affiliation(s)
- Christophe Porcher
- Groupe d'Etude du Stress et des Interactions Neuro-Digestives (EA3744), Department of Gastroenterology, CHU de Grenoble, 217, Grenoble, 38043.
| | | | | | | |
Collapse
|
31
|
Kamichi S, Wada E, Aoki S, Sekiguchi M, Kimura I, Wada K. Immunohistochemical localization of gastrin-releasing peptide receptor in the mouse brain. Brain Res 2005; 1032:162-70. [PMID: 15680955 DOI: 10.1016/j.brainres.2004.10.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 11/23/2022]
Abstract
Gastrin-releasing peptide (GRP) is a mammalian bombesin (BN)-like peptide that binds with high affinity to the GRP receptor (GRP-R). Previous behavioral studies using mice and rats showed that the GRP/GRP-R system mediates learning and memory by modulating neurotransmitter release in the local GABAergic network of the amygdala and the nucleus tractus solitarius (NTS). To date, the precise distribution of GRP-R in the brain has not been elucidated. We used a synthetic peptide derived from mouse GRP-R to generate affinity-purified antibodies to GRP-R and used immunohistochemistry to determine the distribution of GRP-R in the mouse brain. The specificity of anti-GRP-R antibody was confirmed in vitro using COS-7 cells transiently expressing GRP-R and in vivo using GRP-R-deficient and wild-type mouse brain sections. GRP-R immunoreactivity was widely distributed in the isocortex, hippocampal formation, piriform cortex, amygdala, hypothalamus, and brain stem. In particular, GRP-R immunoreactivity was observed in the lateral (LA), central, and basolateral amygdaloid (BLA) nuclei and NTS, which are important regions for memory performance. Double-labeling immunohistochemistry demonstrated that subpopulations of GRP-R are present in GABAergic neurons in the amygdala. Consequently, GRP-R immunoreactivity was observed in the GABAergic neurons of the limbic region. These anatomical results provide support for the idea that the GRP/GRP-R system mediates memory performance by modulating neurotransmitter release in the local GABAergic network.
Collapse
Affiliation(s)
- Sari Kamichi
- Department of Cell Biology, School of Human Sciences, Waseda University, 2-579-15, Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Mantey SA, Coy DH, Entsuah LK, Jensen RT. Development of bombesin analogs with conformationally restricted amino acid substitutions with enhanced selectivity for the orphan receptor human bombesin receptor subtype 3. J Pharmacol Exp Ther 2004; 310:1161-70. [PMID: 15102928 DOI: 10.1124/jpet.104.066761] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human bombesin receptor subtype 3 (hBRS-3) orphan receptor, which has a high homology to bombesin (Bn) receptors [gastrin-releasing peptide (GRP) and neuromedin B (NMB) receptors], is widely distributed in the rat central nervous system. Its natural ligand or role in physiology is unknown due to lack of selective ligands. Its target disruption leads to obesity, diabetes, and hypertension. A synthetic high-affinity agonist, [D-Tyr6,beta-Ala11,Phe13,Nle14]Bn(6-14), has been described, but it is nonselective for hBRS-3 over other Bn receptors; however, substitution of (R)- or (S)-amino-3-phenylpropionic acid (Apa) for beta-Ala11 resulted in a modestly selective ligand. In the present study, we have attempted to develop a more selective hBRS-3 ligand by using two strategies: substitutions on phenyl ring of Apa11 and the substitution of other conformationally restricted amino acids into position 11 of [D-Tyr6,beta-Ala11,Phe13,Nle14]Bn(6-14). Fifteen analogs were synthesized and affinities were determined for hBRS-3 and Bn receptors (hGRP-R and hNMB-R). Selective analogs were tested for their ability to activate each receptor by stimulating phospholipase C. One analog, [D-Tyr6,Apa-4Cl,Phe13,Nle14]Bn(6-14), retained high affinity for the hBRS-3 (Ki=8 nM) and had enhanced selectivity (>230-fold) for hBRS-3 over hGRP-R or hNMB-R. This analog specifically interacted with hBRS-3, fully activated hBRS-3 receptors, and was a potent agonist at the hBRS-3 receptor. This enhanced selectivity should allow this analog to be useful for investigating the possible role of hBRS-3 in physiological or pathological processes.
Collapse
Affiliation(s)
- Samuel A Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Room 9C-103, 10 Center Dr., MSC 1804, Bethesda, MD 20892-1804l, USA
| | | | | | | |
Collapse
|
33
|
Sano H, Feighner SD, Hreniuk DL, Iwaasa H, Sailer AW, Pan J, Reitman ML, Kanatani A, Howard AD, Tan CP. Characterization of the bombesin-like peptide receptor family in primates. Genomics 2004; 84:139-46. [PMID: 15203211 DOI: 10.1016/j.ygeno.2004.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 01/23/2004] [Indexed: 10/26/2022]
Abstract
In mammals, bombesin-like peptides mediate a broad range of physiological functions through binding to three highly conserved G-protein-coupled receptors: the neuromedin B-preferring, the gastrin-releasing peptide-preferring, and the bombesin-receptor subtype 3. Selective modulation of these receptors presents opportunities for the development of novel therapeutics. To ascertain if rhesus monkey could serve as a surrogate animal model for the development of modulators of bombesin-like receptor function, we undertook a search for additional receptor family members and studied the expression profiles of the three known bombesin-related receptors. We found no evidence for additional receptor family members in mammals, suggesting that the expression of the previously described bombesin-receptor subtype 4 is limited to amphibians. We studied the distribution of the three receptors in a broad array of human and rhesus monkey tissues. Based on the similarity between the human and the rhesus expression profiles, we conclude that the rhesus monkey may be a suitable animal model to evaluate the clinical efficacy and potential side effects of bombesin-like peptide ligands.
Collapse
Affiliation(s)
- Hideki Sano
- Department of Metabolic Disorders, Merck Research Laboratories, P.O. Box 2000, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Moody TW, Merali Z. Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides 2004; 25:511-20. [PMID: 15134870 DOI: 10.1016/j.peptides.2004.02.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As we commemorate the 25th anniversary of the journal Peptides, it is timely to review the functional significance of the bombesin (BB)-like peptides and receptors in the CNS. Over two decades ago we published an article in the journal Peptides demonstrating that BB-like peptides are present in high densities in certain rat brain regions (such as the paraventricular nucleus of the hypothalamus). Subsequently, one of the mammalian forms of BB, gastrin-releasing peptide (GRP) containing cell bodies were found in the suprachiasmatic nucleus of the hypothalamus and nucleus of the solitary tract of the hindbrain. Another related peptide, namely neuromedin (NM)B, was detected in the olfactory bulb and dentate gyrus. BB and GRP bind with high affinity to BB(2) receptors, whereas NMB binds with high affinity to BB(1) receptors. The actions of BB or GRP are blocked by BB(2) receptor antagonists such as (Psi(13,14)-Leu(14))BB whereas PD168368 is a BB(1) receptor antagonist. Exogenous administration of BB into the rat brain causes hypothermia, hyperglycemia, grooming and satiety. BB-like peptides activate the sympathetic nervous system and appear to modulate stress, fear and anxiety responses. GRP and NMB modulate distinct biological processes through discrete brain regions or circuits, and globally these peptidergic systems may serve in an integrative or homeostatic function.
Collapse
Affiliation(s)
- Terry W Moody
- CCR, National Cancer Institute Office of the Director, National Institutes of Health, Department of Health and Human Services, Room 3A34, Building 31, 31 Center Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|