1
|
Iacono D, Hatch K, Murphy EK, Post J, Cole RN, Perl DP, Day RM. Proteomic changes in the hippocampus of large mammals after total-body low dose radiation. PLoS One 2024; 19:e0296903. [PMID: 38427613 PMCID: PMC10906861 DOI: 10.1371/journal.pone.0296903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
There is a growing interest in low dose radiation (LDR) to counteract neurodegeneration. However, LDR effects on normal brain have not been completely explored yet. Recent analyses showed that LDR exposure to normal brain tissue causes expression level changes of different proteins including neurodegeneration-associated proteins. We assessed the proteomic changes occurring in radiated vs. sham normal swine brains. Due to its involvement in various neurodegenerative processes, including those associated with cognitive changes after high dose radiation exposure, we focused on the hippocampus first. We observed significant proteomic changes in the hippocampus of radiated vs. sham swine after LDR (1.79Gy). Mass spectrometry results showed 190 up-regulated and 120 down-regulated proteins after LDR. Western blotting analyses confirmed increased levels of TPM1, TPM4, PCP4 and NPY (all proteins decreased in various neurodegenerative processes, with NPY and PCP4 known to be neuroprotective) in radiated vs. sham swine. These data support the use of LDR as a potential beneficial tool to interfere with neurodegenerative processes and perhaps other brain-related disorders, including behavioral disorders.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Neuroscience Program, Department of Anatomy, Physiology and Genetics (APG), F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
- Neurodegeneration Disorders Clinic, National Institute of Neurological Disorders and Stroke, NINDS, NIH, Bethesda, Maryland, United States of America
| | - Kathleen Hatch
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Erin K. Murphy
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, Maryland, United States of America
| | - Jeremy Post
- Mass Spectrometry and Proteomics, Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics, Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel P. Perl
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, Maryland, United States of America
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, United States of America
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University (USU), Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Whitney K, Song WM, Sharma A, Dangoor DK, Farrell K, Krassner MM, Ressler HW, Christie TD, Walker RH, Nirenberg MJ, Zhang B, Frucht SJ, Riboldi GM, Crary JF, Pereira AC. Single-cell transcriptomic and neuropathologic analysis reveals dysregulation of the integrated stress response in progressive supranuclear palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567587. [PMID: 38014079 PMCID: PMC10680842 DOI: 10.1101/2023.11.17.567587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing and analyzed 45,559 high quality nuclei targeting the subthalamic nucleus and adjacent structures from human post-mortem PSP brains with varying degrees of pathology compared to controls. Cell-type specific differential expression and pathway analysis identified both common and discrete changes in numerous pathways previously implicated in PSP and other neurodegenerative disorders. This included EIF2 signaling, an adaptive pathway activated in response to diverse stressors, which was the top activated pathway in vulnerable cell types. Using immunohistochemistry, we found that activated eIF2α was positively correlated with tau pathology burden in vulnerable brain regions. Multiplex immunofluorescence localized activated eIF2α positivity to hyperphosphorylated tau (p-tau) positive neurons and ALDH1L1-positive astrocytes, supporting the increased transcriptomic EIF2 activation observed in these vulnerable cell types. In conclusion, these data provide insights into cell-type-specific pathological changes in PSP and support the hypothesis that failure of adaptive stress pathways play a mechanistic role in the pathogenesis and progression of PSP.
Collapse
|
3
|
Hu D, Dong X, Wang Q, Liu M, Luo S, Meng Z, Feng Z, Zhou W, Song W. PCP4 Promotes Alzheimer's Disease Pathogenesis by Affecting Amyloid-β Protein Precursor Processing. J Alzheimers Dis 2023:JAD230192. [PMID: 37302034 DOI: 10.3233/jad-230192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Down syndrome (DS) is caused by an extra copy of all or part of chromosome 21. The patients with DS develop typical Alzheimer's disease (AD) neuropathology, indicating the role of genes on human chromosome 21 (HSA21) in the pathogenesis of AD. Purkinje cell protein 4 (PCP4), also known as brain-specific protein 19, is a critical gene located on HSA21. However, the role of PCP4 in DS and AD pathogenesis is not clear. OBJECTIVE To explore the role of PCP4 in amyloid-β protein precursor (AβPP) processing in AD. METHODS In this study, we investigated the role of PCP4 in AD progression in vitro and in vivo. In vitro experiments, we overexpressed PCP4 in human Swedish mutant AβPP stable expression or neural cell lines. In vitro experiments, APP23/PS45 double transgenic mice were selected and treated with AAV-PCP4. Multiple topics were detected by western blot, RT-PCR, immunohistochemical and behavioral test. RESULTS We found that PCP4 expression was altered in AD. PCP4 was overexpressed in APP23/PS45 transgenic mice and PCP4 affected the processing of AβPP. The production of amyloid-β protein (Aβ) was also promoted by PCP4. The upregulation of endogenous AβPP expression and the downregulation of ADAM10 were due to the transcriptional regulation of PCP4. In addition, PCP4 increased Aβ deposition and neural plaque formation in the brain, and exuberated learning and memory impairment in transgenic AD model mice. CONCLUSION Our finding reveals that PCP4 contributes to the pathogenesis of AD by affecting AβPP processing and suggests PCP4 as a novel therapeutic target for AD by targeting Aβ pathology.
Collapse
Affiliation(s)
- Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Laszlo ZI, Hindley N, Sanchez Avila A, Kline RA, Eaton SL, Lamont DJ, Smith C, Spires-Jones TL, Wishart TM, Henstridge CM. Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex. Acta Neuropathol Commun 2022; 10:156. [DOI: 10.1186/s40478-022-01455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractIncreasing evidence suggests synaptic dysfunction is a central and possibly triggering factor in Amyotrophic Lateral Sclerosis (ALS). Despite this, we still know very little about the molecular profile of an ALS synapse. To address this gap, we designed a synaptic proteomics experiment to perform an unbiased assessment of the synaptic proteome in the ALS brain. We isolated synaptoneurosomes from fresh-frozen post-mortem human cortex (11 controls and 18 ALS) and stratified the ALS group based on cognitive profile (Edinburgh Cognitive and Behavioural ALS Screen (ECAS score)) and presence of a C9ORF72 hexanucleotide repeat expansion (C9ORF72-RE). This allowed us to assess regional differences and the impact of phenotype and genotype on the synaptic proteome, using Tandem Mass Tagging-based proteomics. We identified over 6000 proteins in our synaptoneurosomes and using robust bioinformatics analysis we validated the strong enrichment of synapses. We found more than 30 ALS-associated proteins in synaptoneurosomes, including TDP-43, FUS, SOD1 and C9ORF72. We identified almost 500 proteins with altered expression levels in ALS, with region-specific changes highlighting proteins and pathways with intriguing links to neurophysiology and pathology. Stratifying the ALS cohort by cognitive status revealed almost 150 specific alterations in cognitively impaired ALS synaptic preparations. Stratifying by C9ORF72-RE status revealed 330 protein alterations in the C9ORF72-RE +ve group, with KEGG pathway analysis highlighting strong enrichment for postsynaptic dysfunction, related to glutamatergic receptor signalling. We have validated some of these changes by western blot and at a single synapse level using array tomography imaging. In summary, we have generated the first unbiased map of the human ALS synaptic proteome, revealing novel insight into this key compartment in ALS pathophysiology and highlighting the influence of cognitive decline and C9ORF72-RE on synaptic composition.
Collapse
|
5
|
Transcriptome Sequencing Reveal That Rno-Rsf1_0012 Participates in Levodopa-Induced Dyskinesia in Parkinson's Disease Rats via Binding to Rno-mir-298-5p. Brain Sci 2022; 12:brainsci12091206. [PMID: 36138942 PMCID: PMC9496896 DOI: 10.3390/brainsci12091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Levodopa-induced dyskinesia (LID) is a common complication of chronic dopamine replacement therapy in the treatment of Parkinson’s disease (PD), and a noble cause of disability in advanced PD patients. Circular RNA (circRNA) is a novel type of non-coding RNA with a covalently closed-loop structure, which can regulate gene expression and participate in many biological processes. However, the biological roles of circRNAs in LID are not completely known. In the present study, we established typical LID rat models by unilateral lesions of the medial forebrain bundle and repeated levodopa therapy. High-throughput next-generation sequencing was used to screen circRNAs differentially expressed in the brain of LID and non-LID (NLID) rats, and key circRNAs were selected according to bioinformatics analyses. Regarding fold change ≥2 and p < 0.05 as the cutoff value, there were a total of 99 differential circRNAs, including 39 up-regulated and 60 down-regulated circRNAs between the NLID and LID groups. The expression of rno-Rsf1_0012 was significantly increased in the striatum of LID rats and competitively bound rno-mir-298-5p. The high expression of target genes PCP and TBP in LID rats also supports the conclusion that rno-Rsf1_0012 may be related to the occurrence of LID.
Collapse
|
6
|
Kapadia K, Trojniak AE, Guzmán Rodríguez KB, Klus NJ, Huntley C, McDonald P, Roy A, Frankowski KJ, Aubé J, Muma NA. Small-Molecule Disruptors of Mutant Huntingtin-Calmodulin Protein-Protein Interaction Attenuate Deleterious Effects of Mutant Huntingtin. ACS Chem Neurosci 2022; 13:2315-2337. [PMID: 35833925 PMCID: PMC11005818 DOI: 10.1021/acschemneuro.2c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Huntington's disease is a progressive and lethal neurodegenerative disease caused by an increased CAG repeat mutation in exon 1 of the huntingtin gene (mutant huntingtin). Current drug treatments provide only limited symptomatic relief without impacting disease progression. Previous studies in our lab and others identified the abnormal binding of mutant huntingtin protein with calmodulin, a key regulator of calcium signaling. Disrupting the abnormal binding of mutant huntingtin to calmodulin reduces perturbations caused by mutant huntingtin in cell and mouse models of Huntington's disease and importantly normalizes receptor-stimulated calcium release. Using a series of high-throughput in vitro and cell-based screening assays, we identified numerous small-molecule hits that disrupt the binding of mutant huntingtin to calmodulin and demonstrate protective effects. Iterative optimization of one hit resulted in nontoxic, selective compounds that are protective against mutant huntingtin cytotoxicity and normalized receptor-stimulated intracellular calcium release in PC12 cell models of Huntington's disease. Importantly, the compounds do not work by reducing the levels of mutant huntingtin, allowing this strategy to complement future molecular approaches to reduce mutant huntingtin expression. Our novel scaffold will serve as a prototype for further drug development in Huntington's disease. These studies indicate that the development of small-molecule compounds that disrupt the binding of mutant huntingtin to calmodulin is a promising approach for the advancement of therapeutics to treat Huntington's disease.
Collapse
Affiliation(s)
- Khushboo Kapadia
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Ashley E Trojniak
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Kenneth B Guzmán Rodríguez
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Nicholas J Klus
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Coral Huntley
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Peter McDonald
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Anuradha Roy
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Kevin J Frankowski
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Nancy A Muma
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Wang CW, Lee YC, Khalil MA, Lin KY, Yu CP, Lien HC. Fast cross-staining alignment of gigapixel whole slide images with application to prostate cancer and breast cancer analysis. Sci Rep 2022; 12:11623. [PMID: 35803996 PMCID: PMC9270377 DOI: 10.1038/s41598-022-15962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
Joint analysis of multiple protein expressions and tissue morphology patterns is important for disease diagnosis, treatment planning, and drug development, requiring cross-staining alignment of multiple immunohistochemical and histopathological slides. However, cross-staining alignment of enormous gigapixel whole slide images (WSIs) at single cell precision is difficult. Apart from gigantic data dimensions of WSIs, there are large variations on the cell appearance and tissue morphology across different staining together with morphological deformations caused by slide preparation. The goal of this study is to build an image registration framework for cross-staining alignment of gigapixel WSIs of histopathological and immunohistochemical microscopic slides and assess its clinical applicability. To the authors' best knowledge, this is the first study to perform real time fully automatic cross staining alignment of WSIs with 40× and 20× objective magnification. The proposed WSI registration framework consists of a rapid global image registration module, a real time interactive field of view (FOV) localization model and a real time propagated multi-level image registration module. In this study, the proposed method is evaluated on two kinds of cancer datasets from two hospitals using different digital scanners, including a dual staining breast cancer data set with 43 hematoxylin and eosin (H&E) WSIs and 43 immunohistochemical (IHC) CK(AE1/AE3) WSIs, and a triple staining prostate cancer data set containing 30 H&E WSIs, 30 IHC CK18 WSIs, and 30 IHC HMCK WSIs. In evaluation, the registration performance is measured by not only registration accuracy but also computational time. The results show that the proposed method achieves high accuracy of 0.833 ± 0.0674 for the triple-staining prostate cancer data set and 0.931 ± 0.0455 for the dual-staining breast cancer data set, respectively, and takes only 4.34 s per WSI registration on average. In addition, for 30.23% data, the proposed method takes less than 1 s for WSI registration. In comparison with the benchmark methods, the proposed method demonstrates superior performance in registration accuracy and computational time, which has great potentials for assisting medical doctors to identify cancerous tissues and determine the cancer stage in clinical practice.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan. .,Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Yu-Ching Lee
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Muhammad-Adil Khalil
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kuan-Yu Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Ping Yu
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan.,Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Huang-Chun Lien
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Shafique A, Babaie M, Sajadi M, Batten A, Skdar S, Tizhoosh HR. Automatic Multi-Stain Registration of Whole Slide Images in Histopathology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3622-3625. [PMID: 34892022 DOI: 10.1109/embc46164.2021.9629970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Joint analysis of multiple biomarker images and tissue morphology is important for disease diagnosis, treatment planning and drug development. It requires cross-staining comparison among Whole Slide Images (WSIs) of immune-histochemical and hematoxylin and eosin (H&E) microscopic slides. However, automatic, and fast cross-staining alignment of enormous gigapixel WSIs at single-cell precision is challenging. In addition to morphological deformations introduced during slide preparation, there are large variations in cell appearance and tissue morphology across different staining. In this paper, we propose a two-step automatic feature-based cross-staining WSI alignment to assist localization of even tiny metastatic foci in the assessment of lymph node. Image pairs were aligned allowing for translation, rotation, and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale-invariant image transform (SIFT), followed by the fast sample consensus (FSC) protocol for finding point correspondences and finally aligned the images. The Registration results were evaluated using both visual and quantitative criteria using the Jaccard index. The average Jaccard similarity index of the results produced by the proposed system is 0.942 when compared with the manual registration.
Collapse
|
9
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
10
|
Sanders M, Petrasch-Parwez E, Habbes HW, Düring MV, Förster E. Postnatal Developmental Expression Profile Classifies the Indusium Griseum as a Distinct Subfield of the Hippocampal Formation. Front Cell Dev Biol 2021; 8:615571. [PMID: 33511122 PMCID: PMC7835525 DOI: 10.3389/fcell.2020.615571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The indusium griseum (IG) is a cortical structure overlying the corpus callosum along its anterior–posterior extent. It has been classified either as a vestige of the hippocampus or as an extension of the dentate gyrus via the fasciola cinerea, but its attribution to a specific hippocampal subregion is still under debate. To specify the identity of IG neurons more precisely, we investigated the spatiotemporal expression of calbindin, secretagogin, Necab2, PCP4, and Prox1 in the postnatal mouse IG, fasciola cinerea, and hippocampus. We identified the calcium-binding protein Necab2 as a first reliable marker for the IG and fasciola cinerea throughout postnatal development into adulthood. In contrast, calbindin, secretagogin, and PCP4 were expressed each with a different individual time course during maturation, and at no time point, IG or fasciola cinerea principal neurons expressed Prox1, a transcription factor known to define dentate granule cell fate. Concordantly, in a transgenic mouse line expressing enhanced green fluorescent protein (eGFP) in dentate granule cells, neurons of IG and fasciola cinerea were eGFP-negative. Our findings preclude that IG neurons represent dentate granule cells, as earlier hypothesized, and strongly support the view that the IG is an own hippocampal subfield composed of a distinct neuronal population.
Collapse
Affiliation(s)
- Marie Sanders
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | | | - Hans-Werner Habbes
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | - Monika V Düring
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Kitazono I, Hamada T, Yoshimura T, Kirishima M, Yokoyama S, Akahane T, Tanimoto A. PCP4/PEP19 downregulates neurite outgrowth via transcriptional regulation of Ascl1 and NeuroD1 expression in human neuroblastoma M17 cells. J Transl Med 2020; 100:1551-1563. [PMID: 32641824 DOI: 10.1038/s41374-020-0462-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
Purkinje cell protein 4/peptide 19 (PCP4/PEP19) is 7.6 kDa peptide originally found in Purkinje cells. PCP4/PEP19 is a differentiation maker of Purkinje cells, where it functions as an antiapoptotic factor. Cerebral neuronal cells also express PCP4/PEP19, which may be related to neuronal cell survival. However, evidence suggests that PCP4/PEP19 may also be involved in neuronal differentiation. Here, we investigated the effects of PCP4/PEP19 expression on neuronal differentiation by analyzing neurite outgrowth, and expression of neuronal differentiation markers in cultured human neuroblastoma M17 cells. When PCP4/PEP19 expression was reduced by siRNA-mediated knockdown, neurite outgrowth was significantly increased. Among many differentiation markers tested, expression of NeuroD1 was increased, while that of Ascl1 was decreased upon PCP4/PEP19 knockdown. Furthermore, luciferase reporter assays revealed that PCP4/PEP19 knockdown upregulated NeuroD1 and downregulated Ascl1 expression, at the transcriptional level. These results suggest a new function of PCP4/PEP19, which suppresses neurite outgrowth and neuronal differentiation through the regulation of NeuroD1 and Ascl1 expression in M17 cells. Furthermore, immunohistochemical studies showed that PCP4/PEP19 localizes in the nuclei of human neuroblastoma cells. Therefore, PCP4/PEP19 may also be an intranuclear negative regulator of neuronal differentiation and may thus be a potential therapeutic target to promote cellular differentiation in human neuroblastoma.
Collapse
Affiliation(s)
- Ikumi Kitazono
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Taiji Hamada
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuya Yoshimura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mari Kirishima
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiya Yokoyama
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiaki Akahane
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
12
|
Hildebrandt C, Fulton A, Rodan LH. Homozygous deletion of 21q22.2 in a patient with hypotonia, developmental delay, cortical visual impairment, and retinopathy. Am J Med Genet A 2020; 185:555-560. [PMID: 33170561 DOI: 10.1002/ajmg.a.61969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022]
Abstract
21q22 contains several dosage sensitive genes that are important in neurocognitive development. Determining impacts of gene dosage alterations in this region can be useful in establishing contributions of these genes to human development and disease. We describe a 15-month-old girl with a 1,140 kb homozygous deletion in the Down Syndrome Critical Region at 21q22.2 including 4 genes; B3GALT5, IGSF5, PCP4, DSCAM, and a microRNA (MIR4760). Clinical singleton genome sequencing did not report any candidate gene variants for the patient's phenotype. She presented with hypotonia, global developmental delay, cortical visual impairment, and mild facial dysmorphism. Ophthalmological exam was suggestive of retinopathy. We propose that the absence of DSCAM and PCP4 may contribute to the patient's neurological and retinal phenotype, while the role of absent B3GALT5 and IGSF5 in her presentation remain unclear at this time.
Collapse
Affiliation(s)
- Clara Hildebrandt
- Medical Biochemical Fellowship at Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lance H Rodan
- Department of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Sanfilippo C, Musumeci G, Kazakova M, Mazzone V, Castrogiovanni P, Imbesi R, Di Rosa M. GNG13 Is a Potential Marker of the State of Health of Alzheimer's Disease Patients' Cerebellum. J Mol Neurosci 2020; 71:1046-1060. [PMID: 33057964 DOI: 10.1007/s12031-020-01726-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Brain regions such as the cerebellum (CB) have been neglected for a long time in the study of Alzheimer's disease (AD) pathogenesis. In reference to a new emerging hypothesis according to which there is an altered cerebellar synaptic processing in AD, we verified the possible role played by new biomarkers in the CB of AD patients compared with not-demented healthy control subjects (NDHS). Using a bioinformatics approach, we have collected several microarray datasets and obtained 626 cerebella sample biopsies belonging to subjects who did not die from causes related to neurological diseases and 199 cerebella belonging to AD. The analysis of logical relations between the transcriptome dataset highlighted guanine nucleotide-binding protein (G protein) gamma 13 (GNG13) as a potential new biomarker for Purkinje cells (PCs). We have correlated GNG13 expression levels with already widely existing bibliography of PC marker genes, such as Purkinje cell protein 2 (PCP2), Purkinje cell protein 4 (PCP4), and cerebellin 3 (CBLN3). We showed that expression levels of GNG13 and PCP2, PCP4, and CBLN3 were significantly correlated with each other in NDHS and in AD and significantly reduced in AD patients compared with NDHS subjects. In addition, we highlighted a negative correlation between the expression levels of PC biomarkers and age. From the outcome of our investigation, it is possible to conclude that the identification of GNG13 as a potentially biomarker in PCs represents also a state of health of CB, in association with the expression of PCP2, PCP4, and CBLN3.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124, Messina, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Maria Kazakova
- Department of Medical Biology, Medical Faculty, Medical University, Plovdiv, Bulgaria
| | - Venera Mazzone
- Department G.F. Ingrassia, Anatomy, School of Medicine, University of Catania, Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
14
|
Monzón-Sandoval J, Poggiolini I, Ilmer T, Wade-Martins R, Webber C, Parkkinen L. Human-Specific Transcriptome of Ventral and Dorsal Midbrain Dopamine Neurons. Ann Neurol 2020; 87:853-868. [PMID: 32167609 PMCID: PMC8651008 DOI: 10.1002/ana.25719] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 02/01/2023]
Abstract
Objective Neuronal loss in the substantia nigra pars compacta (SNpc) in Parkinson disease (PD) is not uniform, as dopamine neurons from the ventral tier are lost more rapidly than those of the dorsal tier. Identifying the intrinsic differences that account for this differential vulnerability may provide a key for developing new treatments for PD. Methods Here, we compared the RNA‐sequenced transcriptomes of ~100 laser captured microdissected SNpc neurons from each tier from 7 healthy controls. Results Expression levels of dopaminergic markers were similar across the tiers, whereas markers specific to the neighboring ventral tegmental area were virtually undetected. After accounting for unwanted sources of variation, we identified 106 differentially expressed genes (DEGs) between the SNpc tiers. The genes higher in the dorsal/resistant SNpc tier neurons displayed coordinated patterns of expression across the human brain, their protein products had more interactions than expected by chance, and they demonstrated evidence of functional convergence. No significant shared functionality was found for genes higher in the ventral/vulnerable SNpc tier. Surprisingly but importantly, none of the identified DEGs was among the familial PD genes or genome‐wide associated loci. Finally, we found some DEGs in opposite tier orientation between human and analogous mouse populations. Interpretation Our results highlight functional enrichments of vesicular trafficking, ion transport/homeostasis and oxidative stress genes showing higher expression in the resistant neurons of the SNpc dorsal tier. Furthermore, the comparison of gene expression variation in human and mouse SNpc populations strongly argues for the need of human‐focused omics studies. ANN NEUROL 2020;87:853–868
Collapse
Affiliation(s)
- Jimena Monzón-Sandoval
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford.,UK Dementia Research Institute, Cardiff University, Cardiff
| | - Ilaria Poggiolini
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| | - Tobias Ilmer
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford.,Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caleb Webber
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford.,UK Dementia Research Institute, Cardiff University, Cardiff.,Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| |
Collapse
|
15
|
Pergande MR, Nguyen TTA, Haney-Ball C, Davidson CD, Cologna SM. Quantitative, Label-Free Proteomics in the Symptomatic Niemann-Pick, Type C1 Mouse Model Using Standard Flow Liquid Chromatography and Thermal Focusing Electrospray Ionization. Proteomics 2019; 19:e1800432. [PMID: 30888112 DOI: 10.1002/pmic.201800432] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Indexed: 01/30/2023]
Abstract
Niemann-Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. This abnormal accumulation results in a cascade of pathophysiological events including progressive, cerebellar neurodegeneration, among others. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive neurodegeneration remain unclear. In the current study, a) the use of a commercial, highly efficient standard flow-ESI platform for protein biomarker identification is implemented and b) protein biomarkers are identified and evaluated at a terminal time point in the NPC1 null mouse model. In this study, alterations are observed in proteins related to fatty acid homeostasis, calcium binding and regulation, lysosomal regulation, and inositol biosynthesis and metabolism, as well as signaling by Rho family GTPases. New observations from this study include altered expression of Pcp2 and Limp2 in Npc1 mutant mice relative to control, with Pcp2 exhibiting multiple isoforms and specific to the cerebella. This study provides valuable insight into pathways altered in the late-stage pathophysiology of NPC1.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Cristin D Davidson
- Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
16
|
He L, Lee GT, Zhou H, Buhimschi IA, Buhimschi CS, Weiner CP, Mason CW. Expression, Regulation, and Function of the Calmodulin Accessory Protein PCP4/PEP-19 in Myometrium. Reprod Sci 2019; 26:1650-1660. [PMID: 30744532 DOI: 10.1177/1933719119828072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Calmodulin (CaM) plays a key role in the orchestration of Ca2+ signaling events, and its regulation is considered an important component of cellular homeostasis. The control of uterine smooth muscle function is largely dependent on the regulation of Ca2+ and CaM signaling. The objective of this study was to investigate the expression, function, and regulation of CaM regulatory proteins in myometrium during pregnancy. STUDY DESIGN Myometrium was obtained from nonpregnant women and 4 groups of pregnant women at the time their primary cesarean delivery: (i) preterm not in labor, (ii) preterm in labor with clinical and/or histological diagnosis of chorioamnionitis, (3) term not in labor; and (4) term in labor. The effect of perinatal inflammation on pcp4/pep-19 expression was evaluated in a mouse model of Ureaplasma parvum-induced chorioamnionitis. Human myometrial cells stably expressing wild-type and mutant forms of PCP4/PEP-19 were used in the evaluation of agonist-induced intracellular Ca2+ mobilization. RESULTS Compared to other CaM regulatory proteins, PCP4/PEP-19 transcripts were more abundant in human myometrium. The expression of PCP4/PEP-19 was lowest in myometrium of women with preterm pregnancy and chorioamnionitis. In the mouse uterus, pcp4/pep-19 expression was lower in late compared to mid-gestation and decreased in mice injected intra-amniotic with Ureaplasma parvum. In myometrial smooth muscle cells, tumor necrosis factor alpha and progesterone decreased and PCP4/PEP-19 promoter activity increased. Finally, the overexpression of PCP4/PEP-19 reduced agonist-induced intracellular Ca2+ levels in myometrial cells. CONCLUSION The decreased expression of PCP4/PEP-19 in myometrium contributes to a loss of quiescence in response to infection-induced inflammation at preterm pregnancy.
Collapse
Affiliation(s)
- Lily He
- Department of Obstetrics and Gynecology, Division of Research, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Gene T Lee
- Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, USA.,The Center for Perinatal Research, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Helen Zhou
- Department of Obstetrics and Gynecology, Division of Research, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Irina A Buhimschi
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Catalin S Buhimschi
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA.,Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Carl P Weiner
- Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Clifford W Mason
- Department of Obstetrics and Gynecology, Division of Research, University of Kansas School of Medicine, Kansas City, KS, USA.,The Center for Perinatal Research, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
17
|
Choi SH, Labadorf AT, Myers RH, Lunetta KL, Dupuis J, DeStefano AL. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis. BMC Bioinformatics 2017; 18:91. [PMID: 28166718 PMCID: PMC5294900 DOI: 10.1186/s12859-017-1498-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. Results When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth’s logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. Conclusions We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth’s logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1498-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seung Hoan Choi
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue, Boston, Massachusetts, USA
| | - Adam T Labadorf
- Department of Neurology, Boston University, 72 East Concord Street, Boston, Massachusetts, USA
| | - Richard H Myers
- Department of Neurology, Boston University, 72 East Concord Street, Boston, Massachusetts, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue, Boston, Massachusetts, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue, Boston, Massachusetts, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue, Boston, Massachusetts, USA. .,Department of Neurology, Boston University, 72 East Concord Street, Boston, Massachusetts, USA.
| |
Collapse
|
18
|
Aerts J, Laeremans A, Minerva L, Boonen K, Harshavardhan B, D'hooge R, Valkenborg D, Baggerman G, Arckens L. MS imaging and mass spectrometric synaptosome profiling identify PEP-19/pcp4 as a synaptic molecule involved in spatial learning in mice. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:936-945. [PMID: 27760390 DOI: 10.1016/j.bbapap.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The Morris water maze (MWM) spatial learning task has been demonstrated to involve a cognitive switch of action control to serve the transition from an early towards a late learning phase. However, the molecular mechanisms governing this switch are largely unknown. We employed MALDI MS imaging (MSI) to screen for changes in expression of small proteins in brain structures implicated in the different learning phases. We compared mice trained for 3days and 30days in the MWM, reflecting an early and a late learning phase in relation to the acquisition of a spatial learning task. An ion with m/z of 6724, identified as PEP-19/pcp4 by top-down tandem MS, was detected at higher intensity in the dorsal striatum of the late learning phase group compared with the early learning phase group. In addition, mass spectrometric analysis of synaptosomes confirmed the presence of PEP-19/pcp4 at the synapse. PEP-19/pcp4 has previously been identified as a critical determinant of synaptic plasticity in locomotor learning. Our findings extend PEP-19/pcp4 function to spatial learning in the forebrain and put MSI forward as a valid and unbiased research strategy for the discovery and identification of the molecular machinery involved in learning, memory and synaptic plasticity. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Jeroen Aerts
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Annelies Laeremans
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Laurens Minerva
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Kurt Boonen
- KU Leuven, Department of Biology, Laboratory of Functional Genomics and Proteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | | | - Rudi D'hooge
- KU Leuven, Laboratory of Biological Psychology, Tiensestraat 102, 3000 Leuven, Belgium
| | - Dirk Valkenborg
- Center for Proteomics, UAntwerp, Antwerp, Belgium; Unit Environmental Risk & Health, VITO, Mol, Belgium
| | - Geert Baggerman
- Center for Proteomics, UAntwerp, Antwerp, Belgium; Unit Environmental Risk & Health, VITO, Mol, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Abstract
Hippocampal area CA2 has several features that distinguish it from CA1 and CA3, including a unique gene expression profile, failure to display long-term potentiation and relative resistance to cell death. A recent increase in interest in the CA2 region, combined with the development of new methods to define and manipulate its neurons, has led to some exciting new discoveries on the properties of CA2 neurons and their role in behaviour. Here, we review these findings and call attention to the idea that the definition of area CA2 ought to be revised in light of gene expression data.
Collapse
|
20
|
Schubert KO, Weiland F, Baune BT, Hoffmann P. The use of MALDI-MSI in the investigation of psychiatric and neurodegenerative disorders: A review. Proteomics 2016; 16:1747-58. [DOI: 10.1002/pmic.201500460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/08/2016] [Accepted: 02/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | - Florian Weiland
- Adelaide Proteomics Centre; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| | - Bernhard T. Baune
- Discipline of Psychiatry; The University of Adelaide; Adelaide Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| |
Collapse
|
21
|
Dallérac GM, Levasseur G, Vatsavayai SC, Milnerwood AJ, Cummings DM, Kraev I, Huetz C, Evans KA, Walters SW, Rezaie P, Cho Y, Hirst MC, Murphy KP. Dysfunctional Dopaminergic Neurones in Mouse Models of Huntington's Disease: A Role for SK3 Channels. NEURODEGENER DIS 2015; 15:93-108. [DOI: 10.1159/000375126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
|
22
|
Kim EE, Shekhar A, Lu J, Lin X, Liu FY, Zhang J, Delmar M, Fishman GI. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest 2014; 124:5027-36. [PMID: 25295538 DOI: 10.1172/jci77495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022] Open
Abstract
Cardiac Purkinje cells are important triggers of ventricular arrhythmias associated with heritable and acquired syndromes; however, the mechanisms responsible for this proarrhythmic behavior are incompletely understood. Here, through transcriptional profiling of genetically labeled cardiomyocytes, we identified expression of Purkinje cell protein-4 (Pcp4), a putative regulator of calmodulin and Ca2+/calmodulin-dependent kinase II (CaMKII) signaling, exclusively within the His-Purkinje network. Using Pcp4-null mice and acquired cardiomyopathy models, we determined that reduced expression of PCP4 is associated with CaMKII activation, abnormal electrophysiology, dysregulated intracellular calcium handling, and proarrhythmic behavior in isolated Purkinje cells. Pcp4-null mice also displayed profound autonomic dysregulation and arrhythmic behavior in vivo. Together, these results demonstrate that PCP4 regulates cardiac excitability through both Purkinje cell-autonomous and central mechanisms and identify this modulator of CaMKII signaling as a potential arrhythmia-susceptibility candidate.
Collapse
|
23
|
Renelt M, von Bohlen und Halbach V, von Bohlen und Halbach O. Distribution of PCP4 protein in the forebrain of adult mice. Acta Histochem 2014; 116:1056-61. [PMID: 24954028 DOI: 10.1016/j.acthis.2014.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/15/2022]
Abstract
Purkinje-cell protein 4 (PCP4) is a small calmodulin (CaM)-binding protein that has been discovered to be selectively expressed by cerebellar Purkinje cells in the adult rodent brain. In addition, expression of PCP4 mRNA has been detected in the hippocampus and in the cortex. In order to determine the expression of PCP4 protein in the brain, we performed an immunohistochemical analysis using adult mice. We could demonstrate that PCP4 is expressed in neocortical structures, especially in the deep layers, as well as in other cortical structures and parts of the hippocampal formation. Moreover, PCP4 protein is highly expressed in the olfactory bulb and caudate putamen. PCP4 positive cells were also detected in specific areas of the amygdala, thalamus (especially dorsal lateral geniculate nucleus) and hypothalamus. By performing double-labeling experiments together with NeuN (a neuronal marker), we could demonstrate that PCP4 expressing cells in the brain are of neuronal origin.
Collapse
Affiliation(s)
- Maria Renelt
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, D-17487 Greifswald, Germany
| | - Viola von Bohlen und Halbach
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, D-17487 Greifswald, Germany
| | - Oliver von Bohlen und Halbach
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, D-17487 Greifswald, Germany.
| |
Collapse
|
24
|
Ye H, Mandal R, Catherman A, Thomas PM, Kelleher NL, Ikonomidou C, Li L. Top-down proteomics with mass spectrometry imaging: a pilot study towards discovery of biomarkers for neurodevelopmental disorders. PLoS One 2014; 9:e92831. [PMID: 24710523 PMCID: PMC3978070 DOI: 10.1371/journal.pone.0092831] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
In the developing mammalian brain, inhibition of NMDA receptor can induce widespread neuroapoptosis, inhibit neurogenesis and cause impairment of learning and memory. Although some mechanistic insights into adverse neurological actions of these NMDA receptor antagonists exist, our understanding of the full spectrum of developmental events affected by early exposure to these chemical agents in the brain is still limited. Here we attempt to gain insights into the impact of pharmacologically induced excitatory/inhibitory imbalance in infancy on the brain proteome using mass spectrometric imaging (MSI). Our goal was to study changes in protein expression in postnatal day 10 (P10) rat brains following neonatal exposure to the NMDA receptor antagonist dizocilpine (MK801). Analysis of rat brains exposed to vehicle or MK801 and comparison of their MALDI MS images revealed differential relative abundances of several proteins. We then identified these markers such as ubiquitin, purkinje cell protein 4 (PEP-19), cytochrome c oxidase subunits and calmodulin, by a combination of reversed-phase (RP) HPLC fractionation and top-down tandem MS platform. More in-depth large scale study along with validation experiments will be carried out in the future. Overall, our findings indicate that a brief neonatal exposure to a compound that alters excitatory/inhibitory balance in the brain has a long term effect on protein expression patterns during subsequent development, highlighting the utility of MALDI-MSI as a discovery tool for potential biomarkers.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, PR China
- School of Pharmacy, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Rakesh Mandal
- Department of Neurology, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Adam Catherman
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States of America
| | - Paul M. Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States of America
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States of America
| | - Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- * E-mail: (CI); (LL)
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- * E-mail: (CI); (LL)
| |
Collapse
|
25
|
Xie YY, Sun MM, Lou XF, Zhang C, Han F, Zhang BY, Wang P, Lu YM. Overexpression of PEP-19 Suppresses Angiotensin II–Induced Cardiomyocyte Hypertrophy. J Pharmacol Sci 2014; 125:274-82. [DOI: 10.1254/jphs.13208fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Mouton-Liger F, Sahún I, Collin T, Lopes Pereira P, Masini D, Thomas S, Paly E, Luilier S, Même S, Jouhault Q, Bennaï S, Beloeil JC, Bizot JC, Hérault Y, Dierssen M, Créau N. Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: implications for Down syndrome. Neurobiol Dis 2013; 63:92-106. [PMID: 24291518 DOI: 10.1016/j.nbd.2013.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022] Open
Abstract
PCP4/PEP19 is a modulator of Ca(2+)-CaM signaling. In the brain, it is expressed in a very specific pattern in postmitotic neurons. In particular, Pcp4 is highly expressed in the Purkinje cell, the sole output neuron of the cerebellum. PCP4, located on human chromosome 21, is present in three copies in individuals with Down syndrome (DS). In a previous study using a transgenic mouse model (TgPCP4) to evaluate the consequences of 3 copies of this gene, we found that PCP4 overexpression induces precocious neuronal differentiation during mouse embryogenesis. Here, we report combined analyses of the cerebellum at postnatal stages (P14 and adult) in which we identified age-related molecular, electrophysiological, and behavioral alterations in the TgPCP4 mouse. While Pcp4 overexpression at P14 induces an earlier neuronal maturation, at adult stage it induces increase in cerebellar CaMK2alpha and in cerebellar LTD, as well as learning impairments. We therefore propose that PCP4 contributes significantly to the development of Down syndrome phenotypes through molecular and functional changes.
Collapse
Affiliation(s)
- François Mouton-Liger
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Ignasi Sahún
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Thibault Collin
- CNRS UMR8118, Brain Physiology Laboratory, Universite Paris-Descartes, Centre universitaire des Saints-Pères, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Patricia Lopes Pereira
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie, 45071 Orléans, France
| | - Debora Masini
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Sophie Thomas
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Evelyne Paly
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Sabrina Luilier
- Key-Obs SAS, 13 avenue Buffon, 45071 Orléans Cedex 2, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Quentin Jouhault
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Soumia Bennaï
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | | | | | - Yann Hérault
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, 3B rue de la Férollerie, 45071 Orléans, France; Institut Clinique de la Souris, ICS, 1 rue Laurent Fries, 67404 Illkirch, France; Institut de Génétique Biologie Moléculaire et Cellulaire, Translational medicine and Neuroscience program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Mara Dierssen
- Cellular and Systems Biology, Systems Biology Programme, Center for Genomic Regulation (CRG); Universitat Pompeu Fabra (UPF); Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER): Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France.
| |
Collapse
|
27
|
Mychasiuk R, Muhammad A, Ilnytskyy S, Kolb B. Persistent gene expression changes in NAc, mPFC, and OFC associated with previous nicotine or amphetamine exposure. Behav Brain Res 2013; 256:655-61. [PMID: 24021241 DOI: 10.1016/j.bbr.2013.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 01/03/2023]
Abstract
Highly addictive drugs like nicotine and amphetamine not only change an individual's behaviour in the short and long-term, they also induce persistent changes in neuronal excitability and morphology. Although research has started to examine the epigenetic changes that occur immediately after drug exposure, there has been little investigation into the persistent modifications to the epigenome that likely moderate the stable maintenance of the neurological changes. Male Long-Evans rats were administered amphetamine, nicotine, or saline for 14 consecutive days, given a 14 day withdrawal period, and then sacrificed. DNA from the mPFC, OFC, and nucleus accumbens (NAc) was used for global DNA methylation analysis and RNA from the same brain regions was used for gene expression analysis. Following the two-week withdrawal period, exposure to amphetamine or nicotine was associated with a decrease in global DNA methylation in each brain region examined. Previous exposure to nicotine was associated with changes in expression of 16 genes (NAc:6, mPFC:5, OFC:5) whereas exposure to amphetamine was associated with changes in expression of 25 genes (NAc:13, OFC:8, mPFC:4). The persistent epigenetic changes associated with exposure to amphetamine and nicotine were region and drug dependent, and differ from the latent epigenetic changes that occur immediately after drug exposure. The changes in DNA methylation are consistent with the gene expression results and provide further support to the notion that DNA methylation is the key regulatory mechanism for experience dependent changes.
Collapse
Affiliation(s)
- Richelle Mychasiuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada.
| | | | | | | |
Collapse
|
28
|
Wang X, Xiong LW, El Ayadi A, Boehning D, Putkey JA. The calmodulin regulator protein, PEP-19, sensitizes ATP-induced Ca2+ release. J Biol Chem 2012. [PMID: 23204517 DOI: 10.1074/jbc.m112.411314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PEP-19 is a small, intrinsically disordered protein that binds to the C-domain of calmodulin (CaM) via an IQ motif and tunes its Ca(2+) binding properties via an acidic sequence. We show here that the acidic sequence of PEP-19 has intrinsic Ca(2+) binding activity, which may modulate Ca(2+) binding to CaM by stabilizing an initial Ca(2+)-CaM complex or by electrostatically steering Ca(2+) to and from CaM. Because PEP-19 is expressed in cells that exhibit highly active Ca(2+) dynamics, we tested the hypothesis that it influences ligand-dependent Ca(2+) release. We show that PEP-19 increases the sensitivity of HeLa cells to ATP-induced Ca(2+) release to greatly increase the percentage of cells responding to sub-saturating doses of ATP and increases the frequency of Ca(2+) oscillations. Mutations in the acidic sequence of PEP-19 that inhibit or prevent it from modulating Ca(2+) binding to CaM greatly inhibit its effect on ATP-induced Ca(2+) release. Thus, this cellular effect of PEP-19 does not depend simply on binding to CaM via the IQ motif but requires its acidic metal binding domain. Tuning the activities of Ca(2+) mobilization pathways places PEP-19 at the top of CaM signaling cascades, with great potential to exert broad effects on downstream CaM targets, thus expanding the biological significance of this small regulator of CaM signaling.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biochemistry and Molecular Biology and Structural Biology Imaging Center, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
29
|
Herault Y, Duchon A, Velot E, Maréchal D, Brault V. The in vivo Down syndrome genomic library in mouse. PROGRESS IN BRAIN RESEARCH 2012; 197:169-97. [PMID: 22541293 DOI: 10.1016/b978-0-444-54299-1.00009-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse models are key elements to better understand the genotype-phenotype relationship and the physiopathology of Down syndrome (DS). Even though the mouse will never recapitulate the whole spectrum of intellectual disabilities observed in the DS, mouse models have been developed over the recent decades and have been used extensively to identify homologous genes or entire regions homologous to the human chromosome 21 (Hsa21) that are necessary or sufficient to induce DS cognitive features. In this chapter, we review the principal mouse DS models which have been selected and engineered over the years either for large genomic regions or for a few or a single gene of interest. Their analyses highlight the complexity of the genetic interactions that are involved in DS cognitive phenotypes and also strengthen the hypothesis on the multigenic nature of DS. This review also addresses future research challenges relative to the making of new models and their combination to go further in the characterization of candidates and modifier of the DS features.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational medicine and Neurogenetics program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, Strasbourg, France.
| | | | | | | | | |
Collapse
|
30
|
Mouton-Liger F, Thomas S, Rattenbach R, Magnol L, Larigaldie V, Ledru A, Herault Y, Verney C, Créau N. PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+) /calmodulin-dependent kinase II-δ activation in mouse models of Down syndrome. J Comp Neurol 2011; 519:2779-802. [PMID: 21491429 DOI: 10.1002/cne.22651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pcp4/pep19 is a modulator of Ca(2+) -CaM, a key molecule for calcium signaling, expressed in postmitotic neuroectoderm cells during mouse embryogenesis. The PCP4 gene is located on human chromosome 21 and is present in three copies in Down syndrome (DS). To evaluate the consequences of three copies of this gene on the development of these cells in the nervous system, we constructed a transgenic (TgPCP4) mouse model, with one copy of human PCP4, and investigated the effects in this model and in the Ts1Cje, a mouse model of DS. During embryogenesis, we analyzed 1) the level of pcp4 transcript and protein in the two models; 2) the extent of colabeling for markers of neuronal differentiation (βIII-tubulin, Map2c, calbindin, and calretinin) and pcp4 by immunofluorescence analysis and overall protein levels of these markers by Western blotting; and 3) the rate of activation of CaMKII, a Ca(2+) -CaM target, to evaluate the impact of pcp4 overexpression on the Ca(2+) -CaM signaling pathway. We showed that three copies of the pcp4 gene induced the overexpression of transcripts and proteins during embryogenesis. Pcp4 overexpression 1) induced precocious neuronal differentiation, as shown by the distribution and levels of early neuronal markers; and 2) was associated with an increase in CaMKIIδ activation, confirming involvement in neuronal differentiation in vivo via a Pcp4-Ca(2+) -CaM pathway. TgPCP4 and Ts1Cje mice developed similar modifications, demonstrating that these mechanisms may account for abnormal neuronal development in DS.
Collapse
Affiliation(s)
- François Mouton-Liger
- Functional Adaptive Biology (BFA), Centre National de la Recherche Scientifique (CNRS) EAC4413, Université Paris Diderot-Paris7, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wei P, Blundon JA, Rong Y, Zakharenko SS, Morgan JI. Impaired locomotor learning and altered cerebellar synaptic plasticity in pep-19/PCP4-null mice. Mol Cell Biol 2011; 31:2838-44. [PMID: 21576365 PMCID: PMC3133400 DOI: 10.1128/mcb.05208-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/18/2011] [Accepted: 05/02/2011] [Indexed: 12/31/2022] Open
Abstract
PEP-19/PCP4 maps within the Down syndrome critical region and encodes a small, predominantly neuronal, IQ motif protein. Pep-19 binds calmodulin and inhibits calmodulin-dependent signaling, which is critical for synaptic function, and therefore alterations in Pep-19 levels may affect synaptic plasticity and behavior. To investigate its possible role, we generated and characterized pep-19/pcp4-null mice. Synaptic plasticity at excitatory synapses of cerebellar Purkinje cells, which express the highest levels of Pep-19, was dramatically altered in pep-19/pcp4-null mice. Instead of long-term depression, pep-19/pcp4-null mice exhibited long-term potentiation at parallel fiber-Purkinje cell synapses. The mutant mice have a marked deficit in their ability to learn a locomotor task, as measured by improved performance upon repeated testing on an accelerating rotarod. Thus, our data indicate that pep-19/pcp4 is a critical determinant of synaptic plasticity in cerebellum and locomotor learning.
Collapse
Affiliation(s)
- Peng Wei
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| | - Jay A. Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| | - Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| | - James I. Morgan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 323, Memphis, Tennessee 38105-3678
| |
Collapse
|
32
|
Harashima SI, Wang Y, Horiuchi T, Seino Y, Inagaki N. Purkinje cell protein 4 positively regulates neurite outgrowth and neurotransmitter release. J Neurosci Res 2011; 89:1519-30. [PMID: 21671256 DOI: 10.1002/jnr.22688] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/06/2022]
Abstract
Purkinje cell protein 4 (PCP4), also called brain-specific polypeptide 19 (PEP19), is a neurospecific, small calmodulin-binding protein that binds both calcium-free and calcium-binding calmodulin to regulate the calmodulin-mediated signal. The expression level of this molecule is decreased in the brain in Alzheimer's disease, Huntington's disease, and alcoholism. However, little is known of the function of PCP4 regarding neuronal or neuroendocrine cell differentiation and neurotransmitter release. To address this, we established a PCP4 tetracycline-inducible rat chromaffin cell line, PC12. When PCP4 expression was induced with doxcycline, neurite outgrowth was significantly advanced in the presence of nerve growth factor (NGF) and dibutyryl cAMP, which was inhibited by W-7, a calmodulin inhibitor, and PD98059, an ERK inhibitor. In addition, size of the cell body also was increased by treatment with NGF in the PCP4-induced PC12 cells. Constitutive and potassium-evoked release of acetylcholine and dopamine was increased and apoptosis induced by hydrogen peroxide (H(2)O(2)) was inhibited in PCP4-induced PC12 cells. On the other hand, knockdown of PCP4 by siRNA transfection decreased neurite outgrowth and dopamine release and increased H(2)O(2)-induced apoptosis in PC12 cells. These results indicate that PCP4 promotes neuroendocrine cell differentiation and neurotransmitter release by activating calmodulin function.
Collapse
Affiliation(s)
- Shin-ichi Harashima
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
33
|
Wang X, Kleerekoper QK, Xiong LW, Putkey JA. Intrinsically disordered PEP-19 confers unique dynamic properties to apo and calcium calmodulin. Biochemistry 2010; 49:10287-97. [PMID: 20973509 DOI: 10.1021/bi100500m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PEP-19 (Purkinje cell protein 4) is an intrinsically disordered protein with an IQ calmodulin (CaM) binding motif. Expression of PEP-19 was recently shown to protect cells from apoptosis and cell death due to Ca(2+) overload. Our initial studies showed that PEP-19 causes novel and dramatic increases in the rates of association of Ca(2+) with and dissociation of Ca(2+) from the C-domain of CaM. The goal of this work was to study interactions between the C-domain of CaM (C-CaM) and PEP-19 by solution nuclear magnetic resonance (NMR) to identify mechanisms by which PEP-19 regulates binding of Ca(2+) to CaM. Our results show that PEP-19 causes a greater structural change in apo C-CaM than in Ca(2+)-C-CaM, and that the first Ca(2+) binds preferentially to site IV in the presence of PEP-19 with exchange characteristics that are consistent with a decrease in Ca(2+) binding cooperativity. Relatively weak binding of PEP-19 has distinct effects on chemical and conformational exchange on the microsecond to millisecond time scale. In apo C-CaM, PEP-19 binding causes a redistribution of residues that experience conformational exchange, leading to an increase in the number of residues around Ca(2+) binding site IV that undergo conformational exchange on the microsecond to millisecond time scale. This appears to be caused by an allosteric effect because these residues are not localized to the PEP-19 binding site. In contrast, PEP-19 increases the number of residues that exhibit conformational exchange in Ca(2+)-C-CaM. These residues are primarily localized to the PEP-19 binding site but also include Asp93 in site III. These results provide working models for the role of protein dynamics in the regulation of binding of Ca(2+) to CaM by PEP-19.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biochemistry and Molecular Biology and Structural Biology Center, University of Texas-Houston Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
34
|
Wiseman FK, Sheppard O, Linehan JM, Brandner S, Tybulewicz VLJ, Fisher EMC. Generation of a panel of antibodies against proteins encoded on human chromosome 21. J Negat Results Biomed 2010; 9:7. [PMID: 20727138 PMCID: PMC2936279 DOI: 10.1186/1477-5751-9-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/20/2010] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Down syndrome (DS) is caused by trisomy of all or part of chromosome 21. To further understanding of DS we are working with a mouse model, the Tc1 mouse, which carries most of human chromosome 21 in addition to the normal mouse chromosome complement. This mouse is a model for human DS and recapitulates many of the features of the human syndrome such as specific heart defects, and cerebellar neuronal loss. The Tc1 mouse is mosaic for the human chromosome such that not all cells in the model carry it. Thus to help our investigations we aimed to develop a method to identify cells that carry human chromosome 21 in the Tc1 mouse. To this end, we have generated a panel of antibodies raised against proteins encoded by genes on human chromosome 21 that are known to be expressed in the adult brain of Tc1 mice RESULTS We attempted to generate human specific antibodies against proteins encoded by human chromosome 21. We selected proteins that are expressed in the adult brain of Tc1 mice and contain regions of moderate/low homology with the mouse ortholog. We produced antibodies to seven human chromosome 21 encoded proteins. Of these, we successfully generated three antibodies that preferentially recognise human compared with mouse SOD1 and RRP1 proteins on western blots. However, these antibodies did not specifically label cells which carry a freely segregating copy of Hsa21 in the brains of our Tc1 mouse model of DS. CONCLUSIONS Although we have successfully isolated new antibodies to SOD1 and RRP1 for use on western blots, in our hands these antibodies have not been successfully used for immunohistochemistry studies. These antibodies are freely available to other researchers. Our data high-light the technical difficulty of producing species-specific antibodies for both western blotting and immunohistochemistry.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Olivia Sheppard
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jacqueline M Linehan
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Victor LJ Tybulewicz
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Elizabeth MC Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
35
|
Dudek NL, Dai Y, Muma NA. Neuroprotective effects of calmodulin peptide 76-121aa: disruption of calmodulin binding to mutant huntingtin. Brain Pathol 2009; 20:176-89. [PMID: 19338577 PMCID: PMC2805873 DOI: 10.1111/j.1750-3639.2008.00258.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by mutant huntingtin protein containing an expanded polyglutamine tract, which may cause abnormal protein–protein interactions such as increased association with calmodulin (CaM). We previously demonstrated in HEK293 cells that a peptide containing amino acids 76‐121 of CaM (CaM‐peptide) interrupted the interaction between CaM and mutant huntingtin, reduced mutant huntingtin‐induced cytotoxicity and reduced transglutaminase (TG)‐modified mutant huntingtin. We now report that adeno‐associated virus (AAV)‐mediated expression of CaM‐peptide in differentiated neuroblastoma SH‐SY5Y cells, stably expressing an N‐terminal fragment of huntingtin containing 148 glutamine repeats, significantly decreases the amount of TG‐modified huntingtin and attenuates cytotoxicity. Importantly, the effect of the CaM‐peptide shows selectivity, such that total TG activity is not significantly altered by expression of CaM‐peptide nor is the activity of another CaM‐dependent enzyme, CaM kinase II. In vitro, recombinant exon 1 of huntingtin with 44 glutamines (htt‐exon1‐44Q) binds to CaM‐agarose; the addition of 10 µM of CaM‐peptide significantly decreases the interaction of htt‐exon1‐44Q and CaM but not the binding between CaM and calcineurin, another CaM‐binding protein. These data support the hypothesis that CaM regulates TG‐catalyzed modifications of mutant huntingtin and that specific and selective disruption of the CaM‐huntingtin interaction is potentially a new target for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Nichole L Dudek
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
| | | | | |
Collapse
|
36
|
Pienaar IS, Daniels WMU, Götz J. Neuroproteomics as a promising tool in Parkinson's disease research. J Neural Transm (Vienna) 2008; 115:1413-30. [PMID: 18523721 PMCID: PMC2862282 DOI: 10.1007/s00702-008-0070-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/14/2008] [Indexed: 12/21/2022]
Abstract
Despite the vast number of studies on Parkinson's disease (PD), its effective diagnosis and treatment remains unsatisfactory. Hence, the relentless search for an optimal cure continues. The emergence of neuroproteomics, with its sophisticated techniques and non-biased ability to quantify proteins, provides a methodology with which to study the changes in neurons that are associated with neurodegeneration. Neuroproteomics is an emerging tool to establish disease-associated protein profiles, while also generating a greater understanding as to how these proteins interact and undergo post-translational modifications. Furthermore, due to the advances made in bioinformatics, insight is created concerning their functional characteristics. In this review, we first summarize the most prominent proteomics techniques and then discuss the major advances in the fast-growing field of neuroproteomics in PD. Ultimately, it is hoped that the application of this technology will lead towards a presymptomatic diagnosis of PD, and the identification of risk factors and new therapeutic targets at which pharmacological intervention can be aimed.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Department of Medical Physiology, University of Stellenbosch, Matieland, South Africa.
| | | | | |
Collapse
|
37
|
Necchi D, Lomoio S, Scherini E. Axonal abnormalities in cerebellar Purkinje cells of the Ts65Dn mouse. Brain Res 2008; 1238:181-8. [PMID: 18755166 DOI: 10.1016/j.brainres.2008.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 12/17/2022]
Abstract
Ts65Dn mice are a genetic model for Down syndrome. Among others, these mice have cerebellar pathology features which parallel those seen in Down syndrome patients. Both individuals with Down syndrome and Ts65Dn mice have reduced cerebellar volume and numbers of granule and Purkinje cells. In this report, we describe morphological abnormalities of axons of Purkinje cells in the cerebellum of Ts65Dn mice, by using anti-calbindin immunocytochemistry. A consistent number of Purkinje cells shows axons bearing giant varicosities along their transit through the granular layer. The cerebellar arbor vitae made by fasciculated Purkinje cell axons has a patchy appearance, some tracks being devoid of calbindin staining. The infraganglionic plexus, formed by recurrent collaterals of Purkinje cell axons, has enormously increased density, which is evidence for a compensatory reaction to degeneration of distal segments of axons. These alterations are accompanied by strong glial reaction as evidenced by GFAP immunocytochemistry. Moreover, the alterations are more consistent in the anterior lobules of the vermis and intermediate cortex. The axonal pathology of Purkinje cells may explain the impairment in cerebellar functions observed in Ts65Dn mice at the adulthood.
Collapse
Affiliation(s)
- Daniela Necchi
- Dipartimento di Biologia Animale, Laboratorio di Biologia Cellulare e Neurobiologia, Università di Pavia, Pavia, Italy
| | | | | |
Collapse
|
38
|
Protective effects of interrupting the binding of calmodulin to mutant huntingtin. J Neuropathol Exp Neurol 2008; 67:355-65. [PMID: 18379433 DOI: 10.1097/nen.0b013e31816a9e60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There is evidence suggesting that transglutaminase (TG) 2 plays a role in stabilizing monomeric and aggregated huntingtin, thereby contributing to the pathophysiology of Huntington disease. Calmodulin (CaM) regulates TG2 cross-linking of N-terminal mutant huntingtin in cells and colocalizes with TG and huntingtin in inclusions in Huntington disease cortex. The current study examined the effects of small fragments of CaM in human embryonic kidney 293T cells expressing N-terminal mutant huntingtin and transglutaminase 2. Four CaM fragments were developed: first 76 amino acids, last 72 amino acids, 77 amino acids in the center (CaM-center), and the overlapping region of last 72 amino acids and CaM-center (CaM-overlap). The last 72 amino acids, CaM-center, and CaM-overlap significantly decreased amounts of TG-modified huntingtin by 40% to 60%, and cytotoxicity decreased up to 40% compared with cells not expressing any CaM construct. Carbachol-stimulated release of intracellular calcium is significantly higher in cells expressing N-terminal mutant huntingtin and TG2 compared with vector-transfected cells; expression of either CaM-center or CaM-overlap in these cells returned the levels of carbachol-stimulated intracellular calcium release to control values. Furthermore, CaM-overlap expression significantly decreased huntingtin binding to CaM. These data further suggest that CaM regulates TG2 activity, plays a role in the disease-related modifications to mutant huntingtin, and that disruption of CaM-huntingtin interaction is potentially a new target for therapeutic intervention in Huntington disease.
Collapse
|
39
|
Kanazawa Y, Makino M, Morishima Y, Yamada K, Nabeshima T, Shirasaki Y. Degradation of PEP-19, a calmodulin-binding protein, by calpain is implicated in neuronal cell death induced by intracellular Ca2+ overload. Neuroscience 2008; 154:473-81. [PMID: 18502590 DOI: 10.1016/j.neuroscience.2008.03.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
Abstract
Excessive elevation of intracellular Ca2+ levels and, subsequently, hyperactivation of Ca2+/calmodulin-dependent processes might play an important role in the pathologic events following cerebral ischemia. PEP-19 is a neuronally expressed polypeptide that acts as an endogenous negative regulator of calmodulin by inhibiting the association of calmodulin with enzymes and other proteins. The aims of the present study were to investigate the effect of PEP-19 overexpression on cell death triggered by Ca2+ overload and how the polypeptide levels are affected by glutamate-induced excitotoxicity and cerebral ischemia. Expression of PEP-19 in HEK293T cells suppressed calmodulin-dependent signaling and protected against cell death elicited by Ca2+ ionophore. Likewise, primary cortical neurons overexpressing PEP-19 became resistant to glutamate-induced cell death. In immunoprecipitation assay, wild type PEP-19 associated with calmodulin, whereas mutated PEP-19, which contains mutations within the calmodulin binding site of PEP-19, failed to associate with calmodulin. We found that the mutation abrogates both the ability to suppress calmodulin-dependent signaling and to protect cells from death. Additionally, the endogenous PEP-19 levels in neurons were significantly reduced following glutamate exposure, this reduction precedes neuronal cell death and can be blocked by treatment with calpain inhibitors. These data suggest that PEP-19 is a substrate for calpain, and that the decreased PEP-19 levels result from its degradation by calpain. A similar reduction of PEP-19 also occurred in the hippocampus of gerbils subjected to transient global ischemia. In contrast to the reduction in PEP-19, no changes in calmodulin occurred following excitotoxicity, suggesting the loss of negative regulation of calmodulin by PEP-19. Taken together, these results provide evidence that PEP-19 overexpression enhances resistance to Ca2+-mediated cytotoxicity, which might be mediated through calmodulin inhibition, and also raises the possibility that PEP-19 degradation by calpain might produce an aberrant activation of calmodulin functions, which in turn causes neuronal cell death.
Collapse
Affiliation(s)
- Y Kanazawa
- Biological Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Cummings DM, Milnerwood AJ, Dallérac GM, Vatsavayai SC, Hirst MC, Murphy KPSJ. Abnormal cortical synaptic plasticity in a mouse model of Huntington's disease. Brain Res Bull 2007; 72:103-7. [PMID: 17352933 DOI: 10.1016/j.brainresbull.2006.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Huntington's disease is a fatal neurodegenerative disorder characterised by a progressive motor, psychiatric and cognitive decline and associated with a marked loss of neurons in the cortex and striatum of affected individuals. The disease is inherited in an autosomal dominant fashion and is caused by a trinucleotide (CAG) repeat expansion in the gene encoding the protein huntingtin. Predictive genetic testing has revealed early cognitive deficits in asymptomatic gene carriers such as altered working memory, executive function and recognition memory. The perirhinal cortex is believed to process aspects of recognition memory. Evidence from primate studies suggests that decrements in neuronal firing within this cortical region encode recognition memory and that the underlying mechanism is an activity-dependent long-term depression (LTD) of excitatory neurotransmission, the converse of long-term potentiation (LTP). We have used the R6/1 mouse model of HD to assess synaptic plasticity in the perirhinal cortex. This mouse model provides an ideal tool for investigating early and progressive changes in synaptic function in HD. We report here that LTD at perirhinal synapses is markedly reduced in R6/1 mice. We also provide evidence to suggest that a reduction in dopamine D2 receptor signalling may be implicated.
Collapse
Affiliation(s)
- Damian M Cummings
- Huntington's Disease Research Forum, Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | | | | | | | | | | |
Collapse
|
41
|
Groseclose MR, Andersson M, Hardesty WM, Caprioli RM. Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:254-62. [PMID: 17230433 DOI: 10.1002/jms.1177] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A novel method for on-tissue identification of proteins in spatially discrete regions is described using tryptic digestion followed by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) with MS/MS analysis. IMS is first used to reveal the protein and peptide spatial distribution in a tissue section and then a serial section is robotically spotted with small volumes of trypsin solution to carry out in situ protease digestion. After hydrolysis, 2,5-Dihydroxybenzoic acid (DHB) matrix solution is applied to the digested spots, with subsequent analysis by IMS to reveal the spatial distribution of the various tryptic fragments. Sequence determination of the tryptic fragments is performed using on-tissue MALDI MS/MS analysis directly from the individual digest spots. This protocol enables protein identification directly from tissue while preserving the spatial integrity of the tissue sample. The procedure is demonstrated with the identification of several proteins in the coronal sections of a rat brain.
Collapse
Affiliation(s)
- M Reid Groseclose
- Mass Spectrometry Research Center, Department of Chemistry, Vanderbilt University, 465 21st Avenue South, Medical Research Building 3, Room 9160, Nashville, Tennessee 37232-8575, USA
| | | | | | | |
Collapse
|
42
|
Heinitz K, Beck M, Schliebs R, Perez-Polo JR. Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells. J Neurochem 2006; 98:1930-45. [PMID: 16945109 DOI: 10.1111/j.1471-4159.2006.04015.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been assumed to be as a result of the extensive accumulation of beta-amyloid (Abeta). In addition to Abeta fibrillar assemblies, there are pre-fibrillar forms that have been shown to be neurotoxic, although their role in cholinergic degeneration is still not known. Using the cholinergic cell line SN56.B5.G4, we investigated the effect of different Abeta(1-42) aggregates on cell viability. In our model, only soluble oligomeric but not fibrillar Abeta(1-42) forms induced toxicity in cholinergic cells. To determine whether the neurotoxicity of oligomeric Abeta(1-42) was caused by its oxidative potential, we performed microarray analysis of SN56.B5.G4 cells treated either with oligomeric Abeta(1-42) or H(2)O(2). We showed that genes affected by Abeta(1-42) differed from those affected by non-specific oxidative stress. Many of the genes affected by Abeta(1-42) were present in the endoplasmic reticulum (ER), Golgi apparatus and/or otherwise involved in protein modification and degradation (chaperones, ATF6), indicating a possible role for ER-mediated stress in Abeta-mediated toxicity. Moreover, a number of genes, which are known to be involved in AD (clusterin, Slc18a3), were identified. This study provides important leads for the understanding of oligomeric Abeta(1-42) toxicity in cholinergic cells, which may account in part for cholinergic degeneration in AD.
Collapse
Affiliation(s)
- Katrin Heinitz
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
43
|
Cummings DM, Milnerwood AJ, Dallérac GM, Waights V, Brown JY, Vatsavayai SC, Hirst MC, Murphy KPSJ. Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of huntington's disease. Hum Mol Genet 2006; 15:2856-68. [PMID: 16905556 DOI: 10.1093/hmg/ddl224] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Predictive genetic testing for Huntington's disease (HD) has revealed early cognitive deficits in asymptomatic gene carriers, such as altered working memory, executive function and impaired recognition memory. The perirhinal cortex processes aspects of recognition memory and the underlying mechanism is believed to be long-term depression (LTD) of excitatory neurotransmission, the converse of long-term potentiation (LTP). We have used the R6/1 mouse model of HD to assess synaptic plasticity in the perirhinal cortex. We report here a progressive derailment of both LTD and short-term plasticity at perirhinal synapses. Layer II/III neurones gradually lose their ability to support LTD, show early nuclear localization of mutant huntingtin and display a progressive loss of membrane integrity (depolarization and loss of cell capacitance) accompanied by a reduction in the expression of D1 and D2 dopamine receptors visualized in layer I of the perirhinal cortex. Importantly, abnormalities in both short-term and long-term plasticity can be reversed by the introduction of a D2 dopamine receptor agonist (Quinpirole), suggesting that alterations in dopaminergic signalling may underlie early cognitive dysfunction in HD.
Collapse
Affiliation(s)
- Damian M Cummings
- Huntington's Disease Research Forum, Department of Biological Sciences, Open University, Milton Keynes, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu J, Wang J, Huang Q, Higdon J, Magdaleno S, Curran T, Zuo J. Gene expression profiles of mouse retinas during the second and third postnatal weeks. Brain Res 2006; 1098:113-25. [PMID: 16777074 DOI: 10.1016/j.brainres.2006.04.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 04/20/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
Mouse retina undergoes crucial changes during early postnatal development. By using Affymetrix microarrays, we analyzed gene expression profiles of wild-type 129SvEv/C57BL/6 mouse retinas at postnatal days (P) 7, 10, 14, 18, and 21 and found significantly altered expression of 355 genes. Characterization of these 355 genes provided insight into physiologic and pathologic processes of mouse retinal development during the second and third postnatal weeks, a period that corresponds to human embryogenesis between weeks 12 and 28. These genes formed 6 groups with similar change patterns. Among the genes, sixteen cause retinal diseases when mutated; most of these 16 genes were upregulated in retina during this period. Using the PathArt program, we identified the biological processes in which many of the 355 gene products function. Among the most active processes in the P7-P21 retina are those involved in neurogenesis, obesity, diabetes type II, apoptosis, growth and differentiation, and protein kinase activity. We examined the expression patterns of 58 genes in P7 and adult retinas by searching the Brain Gene Expression Map database. Although most genes were present in various cell types in retinas, many displayed high levels of expression specifically in the outer nuclear, inner nuclear, and/or ganglion cell layers. By combining our 3 analyses, we demonstrated that during this period of mouse retinal development, many genes play important roles in various cell types, multiple pathways are involved, and some genes in a pathway are expressed in coordinated patterns. Our results thus provide foundation for future detailed studies of specific genes and pathways in various genetic and environmental conditions during retinal development.
Collapse
Affiliation(s)
- Jiewu Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Dickerson JB, Morgan MA, Mishra A, Slaughter CA, Morgan JI, Zheng J. The influence of phosphorylation on the activity and structure of the neuronal IQ motif protein, PEP-19. Brain Res 2006; 1092:16-27. [PMID: 16740252 DOI: 10.1016/j.brainres.2006.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/02/2006] [Accepted: 03/06/2006] [Indexed: 11/24/2022]
Abstract
PEP-19 is a 7.6 kDa neuronally expressed polypeptide that contains a single calmodulin-binding IQ motif. The calmodulin-binding activity of several neuronal IQ motif proteins is regulated by phosphorylation of a conserved serine. We propose that the serine residue within the IQ motif of PEP-19 is phosphorylated, and that phosphorylation modifies the activity of PEP-19. Camstatin, a functionally active 25-residue fragment of PEP-19's IQ motif, binds calmodulin and inhibits neuronal nitric oxide synthase. A truncated camstatin-in which the IQ motif serine is the only phosphorylatable residue-was screened against 42 different kinases. Truncated camstatin is selectively phosphorylated by four isoforms of protein kinase C. Furthermore, treatment of full-length PEP-19 with PKCgamma catalyzes phosphorylation of the same serine residue. Fluorescent anisotropy shows that phosphorylation of camstatin inhibits its binding to calmodulin. NMR solution structures indicate that both camstatin and phospho-camstatin exist in similar dynamic turn-like conformations. This suggests that camstatin's greater affinity for calmodulin is due not to a change in the conformation of the phospho-peptide, but rather, to a disruption of hydrophobic interactions between phospho-camstatin and calmodulin caused by the presence of the hydrophilic phosphate group. The H(alpha) chemical shifts and the circular dichroism spectra of the camstatins are consistent with those of "nascent helices". We submit that PEP-19 is a PKC substrate, and that the phosphorylation state of PEP-19 may play a role in the modulation of calmodulin-dependent signaling.
Collapse
Affiliation(s)
- J Bradley Dickerson
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
46
|
Brandt I, De Vriendt K, Devreese B, Van Beeumen J, Van Dongen W, Augustyns K, De Meester I, Scharpé S, Lambeir AM. Search for substrates for prolyl oligopeptidase in porcine brain. Peptides 2005; 26:2536-46. [PMID: 15996789 DOI: 10.1016/j.peptides.2005.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/23/2005] [Accepted: 05/23/2005] [Indexed: 11/17/2022]
Abstract
The function of prolyl oligopeptidase (PO) has been associated with several disorders of the central nervous system. The purpose of this study was to identify endogenous substrates for recombinant porcine PO in porcine brain. The smaller polypeptides were extracted from total brain homogenates and fractionated by two-dimensional chromatography prior to incubation with PO. Shifts in the mass spectrum between the control and the incubated sample, marked potential substrates. Using MSMS peptide sequencing techniques, we identified several fragments of intracellular proteins as potential substrates, which opens new perspectives for finding the function of PO in the intracellular space.
Collapse
Affiliation(s)
- Inger Brandt
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Imamura S, Adams JC. Selective gentamicin uptake by cytochemical subpopulations of guinea-pig geniculate ganglion cells. Neuroscience 2005; 131:125-33. [PMID: 15680697 DOI: 10.1016/j.neuroscience.2004.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 11/29/2022]
Abstract
Cytochemical subpopulations of geniculate ganglion (GG) cells were identified in guinea-pigs using immunohistochemistry and selective gentamicin accumulation. Two subpopulations of GG cells were evident based upon their location and immunoreactivity for peptide 19 (PEP 19), for plasma membrane Ca2+-ATPase (PMCA-ATPase), and for neurofilament proteins. Cells within the posterior part of GG were positive for PEP 19 and PMCA-ATPase, but not for 68 kD or 160 kD neurofilament proteins. Cells within the anterior part showed complementary staining properties. Cells within these populations showed differences in accumulation of gentamicin, depending upon the administration route. Cells within the posterior part showed avid accumulation of gentamicin when animals received the drug systemically. When the drug was administered directly into the middle ear, cells within the anterior part showed avid gentamicin accumulation. Immunostaining for gentamicin in both cell populations was much more extreme and remained so for longer post-administration times when compared with spiral ganglion and vestibular ganglion cells. The results suggest that cells in the anterior part of GG have little exposure to gentamicin in the serum and that perhaps they innervate the middle ear mucosa or they absorb the drug through their axons within the middle ear. In contrast, cells in the posterior part of GG have greater access to systemically administered gentamicin either directly or via their axon terminals.
Collapse
Affiliation(s)
- S Imamura
- Department of Otorhinolaryngology, Yamanashi University, 1110 Shimokato, Tamaho, Yamanashi, Japan 409-3898.
| | | |
Collapse
|
48
|
Rho S, Kang M, Choi B, Sim D, Lee J, Lee E, Cho C, Oh JW, Park S, Ko S, Shin M, Hong M, Bae H. Effects of Yukmijihwang-tang Derivatives (YMJd), a Memory Enhancing Herbal Extract, on the Gene-Expression Profile in the Rat Hippocampus. Biol Pharm Bull 2005; 28:87-93. [PMID: 15635169 DOI: 10.1248/bpb.28.87] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The herbal extract Yukmijihwang-tang (YMJ) has been widely used for centuries as an anti-aging herbal medicine in Asian countries. Among the various modified prescriptions of YMJ, YMJ derivatives (YMJd) were formulated to enhance memory retention. This study has three goals: 1) to quantitatively evaluate the memory-enhancing effect of YMJd using behavior tasks; 2) to use cDNA micro-array tools to identify candidate genes responsible for enhancing memory; and 3) to statistically evaluate the specific gene expression patterns using Real-time PCR. Memory retention abilities are addressed by the passive avoidance task with SD male rat. The retention time of the YMJd group was significantly delayed (ca. 100%), whereas with Ginkgo biloba and Soya lecithin treatment, this was only delayed 20% and 10%, respectively. The cDNA from the hippocampi of YMJd and rat control groups were applied to an Incyte rat GEM2 cDNA microarray. The microarray results showed that transthyretin and PEP-19 were abundantly expressed in the YMJd treated group. Importantly, PEP-19 is a neuron-specific protein that inhibits apoptotic processes. On the other hand, neuronal genes involved in neuronal death or neurodegeneration, such as pentraxin and spectrin, were abundantly expressed in the control group. The list of differentially expressed genes may provide further insight into the action and mechanism behind the memory-enhancing effect of herbal extracts of YMJd.
Collapse
Affiliation(s)
- Samwoong Rho
- College of Oriental Medicine, Kyung-Hee University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Iwamoto K, Bundo M, Yamamoto M, Ozawa H, Saito T, Kato T. Decreased expression of NEFH and PCP4/PEP19 in the prefrontal cortex of alcoholics. Neurosci Res 2004; 49:379-85. [PMID: 15236863 DOI: 10.1016/j.neures.2004.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
Patients with alcoholism exhibit behavioral adaptations to ethanol such as tolerance, dependence, and addiction. Molecular mechanisms that underlie these altered behavioral responses to ethanol are largely unclear. We have performed oligonucleotide microarray analysis in postmortem prefrontal cortices of alcoholics. Among about 12,000 genes represented on microarray, a total of 79 genes showed differential expression changes in alcoholics compared with control subjects, consisting of 54 up- and 25 down-regulated genes. Altered expressions in alcoholics were observed in genes having a wide range of biological functions. The remarkable findings were up-regulation of myelin-related genes and molecular chaperones in alcoholics. Among the genes identified, decreased expressions of NEFH and PCP4/PEP19 were further examined. NEFH encodes a component of neurofilament protein in neurons. PCP4/PEP19 encodes protein involved in calcium signaling and neuronal apoptosis. Observation of their down-regulations in alcoholics in microarray analysis was confirmed by real-time quantitative RT-PCR, and was also confirmed in the independent set of postmortem brains of alcoholics. The present results may provide some insights into understanding the mechanism of ethanol-induced altered behavioral responses at the molecular level.
Collapse
Affiliation(s)
- Kazuya Iwamoto
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Zainelli GM, Ross CA, Troncoso JC, Fitzgerald JK, Muma NA. Calmodulin regulates transglutaminase 2 cross-linking of huntingtin. J Neurosci 2004; 24:1954-61. [PMID: 14985437 PMCID: PMC6730388 DOI: 10.1523/jneurosci.4424-03.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Striatal and cortical intranuclear inclusions and cytoplasmic aggregates of mutant huntingtin are prominent neuropathological hallmarks of Huntington's disease (HD). We demonstrated previously that transglutaminase 2 cross-links mutant huntingtin in cells in culture and demonstrated the presence of transglutaminase-catalyzed cross-links in the HD cortex that colocalize with transglutaminase 2 and huntingtin. Because calmodulin regulates transglutaminase activity in erythrocytes, platelets, and the gizzard, we hypothesized that calmodulin increases cross-linking of huntingtin in the HD brain. We found that calmodulin colocalizes at the confocal level with transglutaminase 2 and with huntingtin in HD intranuclear inclusions. Calmodulin coimmunoprecipitates with transglutaminase 2 and huntingtin in cells transfected with myc-tagged N-terminal huntingtin fragments containing 148 polyglutamine repeats (htt-N63-148Q-myc) and transglutaminase 2 but not in cells transfected with myc-tagged N-terminal huntingtin fragments containing 18 polyglutamine repeats. Our previous studies demonstrated that transfection with both htt-N63-148Q-myc and transglutaminase 2 resulted in cross-linking of mutant huntingtin protein fragments and the formation of insoluble high-molecular-weight aggregates of huntingtin protein fragments. Transfection with transglutaminase 2 and htt-N63-148Q-myc followed by treatment of cells with N-(6-aminohexyl)-1-naphthalenesulfonamide, a calmodulin inhibitor, resulted in a decrease in cross-linked huntingtin. Inhibiting the interaction of calmodulin with transglutaminase and huntingtin protein could decrease cross-linking and diminish huntingtin aggregate formation in the HD brain.
Collapse
Affiliation(s)
- Gina M Zainelli
- Department of Pharmacology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|