1
|
Chachlaki K, Prevot V. Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 2020; 177:5437-5458. [PMID: 31347144 PMCID: PMC7707094 DOI: 10.1111/bph.14800] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a versatile molecule that plays key roles in the development and survival of mammalian species by endowing brain neuronal networks with the ability to make continual adjustments to function in response to moment-to-moment changes in physiological input. Here, we summarize the progress in the field and argue that NO-synthetizing neurons and NO signalling in the brain provide a core hub for integrating sensory- and homeostatic-related cues, control key bodily functions, and provide a potential target for new therapeutic opportunities against several neuroendocrine and behavioural abnormalities.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| |
Collapse
|
2
|
Chachlaki K, Garthwaite J, Prevot V. The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nat Rev Endocrinol 2017. [PMID: 28621341 DOI: 10.1038/nrendo.2017.69] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chemical signalling molecule nitric oxide (NO), which freely diffuses through aqueous and lipid environments, subserves an array of functions in the mammalian central nervous system, such as the regulation of synaptic plasticity, blood flow and neurohormone secretion. In this Review, we consider the cellular and molecular mechanisms by which NO evokes short-term and long-term changes in neuronal activity. We also highlight recent studies showing that discrete populations of neurons that synthesize NO in the hypothalamus constitute integrative systems that support life by relaying metabolic and gonadal signals to the neuroendocrine brain, and thus gate the onset of puberty and adult fertility. The putative involvement and therapeutic potential of NO in the pathophysiology of brain diseases, for which hormonal imbalances during postnatal development could be risk factors, is also discussed.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, UMR-S 1172, 1 place de Verdun, F-59000 Lille, France
- University of Lille, University Hospital Federations (FHU) 1,000 days for Health, School of Medicine, 1 place de Verdun, F-59000 Lille, France
| | - John Garthwaite
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, UMR-S 1172, 1 place de Verdun, F-59000 Lille, France
- University of Lille, University Hospital Federations (FHU) 1,000 days for Health, School of Medicine, 1 place de Verdun, F-59000 Lille, France
| |
Collapse
|
3
|
Authors' Reply. Ann Pharmacother 2016. [DOI: 10.1177/106002800203601201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
4
|
Deep SN, Baitharu I, Sharma A, Gurjar AKS, Prasad D, Singh SB. Neuroprotective Role of L-NG-Nitroarginine Methyl Ester (L-NAME) against Chronic Hypobaric Hypoxia with Crowding Stress (CHC) Induced Depression-Like Behaviour. PLoS One 2016; 11:e0153371. [PMID: 27082990 PMCID: PMC4833384 DOI: 10.1371/journal.pone.0153371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
Improper neuroimmune responses following chronic stress exposure have been reported to cause neuronal dysfunctions leading to memory impairment, anxiety and depression like behaviours. Though several factors affecting microglial activation and consequent alteration in neuro-inflammatory responses have been well studied, role of NO and its association with microglia in stress induced depression model is yet to be explored. In the present study, we validated combination of chronic hypobaric hypoxia and crowding (CHC) as a stress model for depression and investigated the role of chronic stress induced elevated nitric oxide (NO) level in microglia activation and its effect on neuro-inflammatory responses in brain. Further, we evaluated the ameliorative effect of L-NG-Nitroarginine Methyl Ester (L-NAME) to reverse the stress induced depressive mood state. Four groups of male Sprague Dawley rat were taken and divided into control and CHC stress exposed group with and without treatment of L-NAME. Depression like behaviour and anhedonia in rats were assessed by Forced Swim Test (FST) and Sucrose Preference Test (SPT). Microglial activation was evaluated using Iba-1 immunohistochemistry and proinflammatory cytokines were assessed in the hippocampal region. Our result showed that exposure to CHC stress increased the number of active microglia with corresponding increase in inflammatory cytokines and altered behavioural responses. The inhibition of NO synthesis by L-NAME during CHC exposure decreased the number of active microglia in hippocampus as evident from decreased Iba-1 positive cells. Further, L-NAME administration decreased pro-inflammatory cytokines in hippocampus and improved behaviour of rats. Our study demonstrate that stress induced elevation of NO plays pivotal role in altered microglial activation and consequent neurodegenerative processes leading to depression like behaviour in rat.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi- 54, India
| | - Iswar Baitharu
- Post Graduate Department of Environmental Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Apurva Sharma
- Department of Pharmacology, Punjab Technical University, Chandigarh, Punjab, India
| | | | - Dipti Prasad
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi- 54, India
- * E-mail:
| | - Shashi Bala Singh
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi- 54, India
| |
Collapse
|
5
|
Figueira L, Israel A. Cerebellar Adrenomedullinergic System. Role in Cardiovascular Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:541-560. [PMID: 27614623 DOI: 10.1007/5584_2016_48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adrenomedullin (AM) is a multifunctional peptide which exerts numerous biological activities through the activation of AM1 (CRLR + RAMP2) and AM2 (CRLR + RAMP3) receptors. AM immunoreactivity, AM binding sites and CRLR, RAMP1, RAMP2 and RAMP3 are expressed in rat cerebellar vermis. AM binding sites are discretely and differentially distributed in the rat cerebellar cortex with higher levels detected in SHR when compared with WKY rats. In addition, there is an up-regulation of cerebellar CGRP1 (CRLR + RAMP1) and AM2 (CRLR + RAMP3) receptors and a down-regulation of AM1 (CRLR + RAMP2) receptor during hypertension associated with a decreased AM expression. These changes may constitute a mechanism which contributes to the development of hypertension, and supports the notion that cerebellar AM is involved in the regulation of blood pressure. Cerebellar AM activates ERK, increases cAMP, cGMP and nitric oxide, and decreases antioxidant enzyme activity. These effects are mediated through AM1 receptor since they are blunted by AM(22-52). AM-stimulated cAMP production is mediated through AM2 and CGRP receptors. In vivo administration of AM into the cerebellar vermis caused a profound, specific and dose-dependent hypotensive effect in SHR, but not in normotensive WKY rats. This effect was mediated through AM1 receptor since it was abolished by AM(22-52). In addition, AM injected into the cerebellar vermis reduced vasopressor response to footshock stress. These findings demonstrate dysregulation of cerebellar AM system during hypertension, and suggest that cerebellar AM plays an important role in the regulation of blood pressure. Likewise, they constitute a novel mechanism of blood pressure control which has not been described so far.
Collapse
Affiliation(s)
- Leticia Figueira
- Laboratory of Neuropeptides, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela.,School of Bioanalysis, Department of Health Sciences, Universidad de Carabobo, Carabobo, Venezuela
| | - Anita Israel
- Laboratory of Neuropeptides, School of Pharmacy, Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
6
|
Garthwaite J. From synaptically localized to volume transmission by nitric oxide. J Physiol 2015; 594:9-18. [PMID: 26486504 DOI: 10.1113/jp270297] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) functions widely as a transmitter/diffusible second messenger in the central nervous system, exerting physiological effects in target cells by binding to specialized guanylyl cyclase-coupled receptors, resulting in cGMP generation. Despite having many context-dependent physiological roles and being implicated in numerous disease states, there has been a lack of clarity about the ways that NO operates at the cellular and subcellular levels. Recently, several approaches have been used to try to gain a more concrete, quantitative understanding of this unique signalling pathway. These approaches have included analysing the kinetics of NO receptor function, real-time imaging of cellular NO signal transduction in target cells, and the use of ultrasensitive detector cells to record NO as it is being generated from native sources in brain tissue. The current picture is that, when formed in a synapse, NO is likely to act only very locally, probably mostly within the confines of that synapse, and to exist only in picomolar concentrations. Nevertheless, closely neighbouring synapses may also be within reach, raising the possibility of synaptic crosstalk. By engaging its enzyme-coupled receptors, the low NO concentrations are able to stimulate physiological (submicromolar) increases in cGMP concentration in an activity-dependent manner. When many NO-emitting neurones or synapses are active simultaneously in a tissue region, NO can act more like a volume transmitter to influence, and perhaps coordinate, the behaviour of cells within that region, irrespective of their identity and anatomical connectivity.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
7
|
Barbaresi P, Mensà E, Lariccia V, Desiato G, Fabri M, Gratteri S. Intracallosal neuronal nitric oxide synthase neurons colocalize with neurokinin 1 substance P receptor in the rat. J Comp Neurol 2014; 523:589-607. [PMID: 25312245 DOI: 10.1002/cne.23695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022]
Abstract
The corpus callosum (cc) contains nitric oxide (NO)-producing neurons. Because NO is a potent vasodilator, these neurons could translate neuronal signals into vascular responses that can be detected by functional brain imaging. Substance P (SP), one of the most widely expressed peptides in the CNS, also produces vasomotor responses by inducing calcium release from intracellular stores through its preferred neurokinin 1 (NK1) receptor, thus inducing NO production via activation of neuronal NO synthase (nNOS). Single- and double-labeling experiments were performed to establish whether NK1-immunopositive neurons (NK1IP -n) are found in the rat cc and the extent of NK1 colocalization with nNOS. NK1IP -n were seen to constitute a large neuronal population in the cc and had a distribution similar to that of nNOSIP neurons (nNOSIP -n). NK1IP -n were numerous in the lateral cc and gradually decreased in the more medial portions, where they were few or absent. Intracallosal NK1IP -n and their dendritic trees were intensely labeled, allowing classification into four morphological types: bipolar, round, polygonal, and pyramidal. Confocal microscopic examination demonstrated that nearly all NK1IP -n contained nNOS (96.43%) and that 84.59% of nNOSIP -n co-expressed NK1. These data suggest that the majority of intracallosal neurons can release NO as a result of the action of SP. A small proportion of nNOSIP -n does not contain NK1 and is not activated by SP; these neurons may release NO via alternative mechanisms. The possible mechanisms by which intracallosal neurons release NO are also reviewed.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, I-60020, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Czarnecka A, Lenda T, Domin H, Konieczny J, Śmiałowska M, Lorenc-Koci E. Alterations in the expression of nNOS in the substantia nigra and subthalamic nucleus of 6-OHDA-lesioned rats: The effects of chronic treatment with l-DOPA and the nitric oxide donor, molsidomine. Brain Res 2013; 1541:92-105. [DOI: 10.1016/j.brainres.2013.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 01/02/2023]
|
9
|
Korkmaz A, Kolankaya D. Inhibiting inducible nitric oxide synthase with rutin reduces renal ischemia/reperfusion injury. Can J Surg 2013. [PMID: 23187035 DOI: 10.1503/cjs.004811] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Nitric oxide (NO) seems to play an important role during renal ischemia/reperfusion (I/R) injury. We investigated whether rutin inhibits inducible nitric oxide synthase (iNOS) and reduces 3-nitrotyrosine (3-NT) formation in the kidneys of rats during I/R. METHODS Wistar albino rats were nephrectomized unilaterally and, 2 weeks later, subjected to 45 minutes of left renal pedicle occlusion followed by 3 hours of reperfusion. We intraperitoneally administered L-N6-(1-iminoethyl)lysine (L-NIL; 3 mg/kg) for 30 minutes or rutin (1 g/kg) for 60 minutes before I/R. After reperfusion, kidney samples were taken for immunohistochemical analysis of iNOS and 3-NT. We measured plasma nitrite/nitrate and cyclic guanosine monophosphate (cGMP) to evaluate NO levels. RESULTS Ischemia/reperfusion caused plasma cGMP to increase significantly. Similarly, plasma nitrite/nitrate was elevated in the I/R group compared with the control group. Histochemical staining was positive for iNOS and 3-NT in the I/R group. Pretreatment with L-NIL or rutin significantly mitigated the elevation of plasma cGMP and nitrite/nitrate. These changes in biochemical parameters were also associated with changes in immunohistochemical appearance. Pretreatment with L-NIL or rutin significantly decreased the incidence and severity of iNOS and 3-NT formation in the kidney tissues. CONCLUSION Our findings suggest that high activity of iNOS causes renal I/R injury, and that rutin exerts protective effects, probably by inhibiting iNOS.
Collapse
Affiliation(s)
- Asli Korkmaz
- The Ministry of Agriculture and Rural Affairs, National Food Reference Laboratory, Yenimahalle, Turkey.
| | | |
Collapse
|
10
|
Abstract
In the hippocampus, as in many other CNS areas, nitric oxide (NO) participates in synaptic plasticity, manifested as changes in pre- and/or postsynaptic function. While it is known that these changes are brought about by cGMP following activation of guanylyl cyclase-coupled NO receptors attempts to locate cGMP by immunocytochemistry in hippocampal slices in response to NO have failed to detect the cGMP elevation where expected, i.e. in the pyramidal neurones. Instead, astrocytes, unidentified varicose fibres and GABA-ergic nerve terminals are reported to be the prominent NO targets, raising the possibility that NO acts indirectly via other cells. We have re-investigated the distribution of cGMP generated in response to endogenous and exogenous NO in hippocampal slices using immunohistochemistry and new conditions designed to optimise cGMP accumulation and, hence, its detectability. The conditions included use of tissue from the developing rat hippocampus, a potent inhibitor of phosphodiesterase-2, and an allosteric enhancer of the NO-receptive guanylyl cyclase. Under these conditions, cGMP was formed in response to endogenous NO and was found in a population of pyramidal cell somata in area CA3 and subiculum as well as in structures described previously. The additional presence of exogenous NO resulted in hippocampal cGMP reaching the highest level recorded for brain tissue (1700 pmol/mg protein) and in cGMP immunolabelling throughout the pyramidal cell layer. Populations of axons and interneurones were also stained. According with these results, immunohistochemistry for the common NO receptor β1-subunit indicated widespread expression. A similar staining pattern for the α1-subunit with an antibody used previously in the hippocampus and elsewhere, however, proved to be artefactual. The results indicate that the targets of NO in the hippocampus are more varied and extensive than previous evidence had suggested and, in particular, that the pyramidal neurones participating in NO-dependent synaptic plasticity are direct NO targets.
Collapse
|
11
|
Contestabile A, Monti B, Polazzi E. Neuronal-glial Interactions Define the Role of Nitric Oxide in Neural Functional Processes. Curr Neuropharmacol 2012; 10:303-10. [PMID: 23730254 PMCID: PMC3520040 DOI: 10.2174/157015912804143522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/07/2012] [Accepted: 06/24/2012] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide (NO) is a versatile cellular messenger performing a variety of physiologic and pathologic actions in most tissues. It is particularly important in the nervous system, where it is involved in multiple functions, as well as in neuropathology, when produced in excess. Several of these functions are based on interactions between NO produced by neurons and NO produced by glial cells, mainly astrocytes and microglia. The present paper briefly reviews some of these interactions, in particular those involved in metabolic regulation, control of cerebral blood flow, axonogenesis, synaptic function and neurogenesis. Aim of the paper is mainly to underline the physiologic aspects of these interactions rather than the pathologic ones.
Collapse
|
12
|
Mitkovski M, Padovan-Neto FE, Raisman-Vozari R, Ginestet L, da-Silva CA, Del-Bel EA. Investigations into Potential Extrasynaptic Communication between the Dopaminergic and Nitrergic Systems. Front Physiol 2012; 3:372. [PMID: 23055978 PMCID: PMC3457048 DOI: 10.3389/fphys.2012.00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide is unconstrained by cell membranes and can therefore act along a broad distance as a volume transmitter. Spillover of nitric oxide between neurons may have a major impact on central nervous system diseases and particularly on neurodegeneration. There is evidence whereby communication between nitrergic and dopaminergic systems plays an essential role in the control of the nigrostriatal pathway. However, there is sparse information for either the coexistence or overlap of nitric oxide and dopaminergic structures. The dual localization of immunoreactivity for nitric oxide synthase (NOS) and tyrosine hydroxylase, enzymes responsible for the synthesis of nitric oxide and dopamine, respectively, was examined in neurons of the nigrostriatal pathway in the rat brain by means of a double-immunohistochemical method and confocal laser scanning microscopy, acquired at the resolution limit. After perfusional fixation, the brains were cut and double-immunostained. A proximity analysis of tyrosine hydroxylase and NOS structures was done using binary masks generated from the respective maximum projections, using confocal laser microscopy. Unrevealed regions were determined somatodendritic positive for both NOS and tyrosine hydroxylase, within an image limit resolution at 2 μm-wide margin. The described interconnected localization of nNOS(+) and TH(+) containing neuronal fibers and cells bodies in the nigrostriatal pathway propose a close anatomical link between the two neurotransmitters.
Collapse
Affiliation(s)
- M Mitkovski
- Light Microscopy Facility, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Higgins M, Miller M, Nighorn A. Nitric oxide has differential effects on currents in different subsets of Manduca sexta antennal lobe neurons. PLoS One 2012; 7:e42556. [PMID: 22880032 PMCID: PMC3411793 DOI: 10.1371/journal.pone.0042556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/10/2012] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide has been shown to regulate many biological systems including olfaction. In the moth olfactory system nitric oxide is produced in the antennal lobe in response to odor stimulation and has complex effects on the activity of both projection neurons and local interneurons. To examine the cell autonomous effects of nitric oxide on these cells, we used patch-clamp recording in conjunction with pharmacological manipulation of nitric oxide to test the hypothesis that nitric oxide differentially regulates the channel properties of these different antennal lobe neuron subsets. We found that nitric oxide caused increasing inward currents in a subset of projection neurons while the effects on local neurons were variable but consistent within identifiable morphological subtypes.
Collapse
Affiliation(s)
| | | | - Alan Nighorn
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
14
|
Brand L, van Zyl J, Minnaar EL, Viljoen F, du Preez JL, Wegener G, Harvey BH. Corticolimbic changes in acetylcholine and cyclic guanosine monophosphate in the Flinders Sensitive Line rat: a genetic model of depression. Acta Neuropsychiatr 2012; 24:215-25. [PMID: 25286814 DOI: 10.1111/j.1601-5215.2011.00622.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective: Depression is suggested to involve disturbances in cholinergic as well as glutamatergic pathways, particularly the N-methyl-d-aspartate receptor-mediated release of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP). The aim of this study was to determine whether the Flinders Sensitive Line (FSL) rat, a genetic model of depression, presents with corticolimbic changes in basal acetylcholine (ACh) levels and NO/cGMP signalling.Methods: Basal levels of nitrogen oxides (NOx) and both basal and l-arginine-stimulated nitric oxide synthase (NOS) formation of l-citrulline were analysed in hippocampus and frontal cortex in FSL and control Flinders resistant line (FRL) rats by fluorometric and electrochemical high-performance liquid chromatography, respectively. In addition, ACh and cGMP levels were analysed by liquid chromatography tandem mass spectrometry and radioimmunoassay, respectively.Results: Significantly elevated frontal cortical but reduced hippocampal ACh levels were observed in FSL versus FRL rats. Basal cGMP levels were significantly reduced in the frontal cortex, but not hippocampus, of FSL rats without changes in NOx and l-citrulline, suggesting that the reduction of cGMP follows through an NOS-independent mechanism.Conclusions: These data confirm a bidirectional change in ACh in the frontal cortex and hippocampus of the FSL rat, as well as provide evidence for a frontal cortical ACh-cGMP interaction in the depressive-like behaviour of the FSL rat.
Collapse
Affiliation(s)
- Linda Brand
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Jurgens van Zyl
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Estella L Minnaar
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Francois Viljoen
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Jan L du Preez
- Analytical Technology Laboratory, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Gregers Wegener
- Centre for Psychiatric Research, University of Aarhus, Denmark
| | - Brian H Harvey
- Division of Pharmacology, Unit for Drug Research and Development, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
15
|
Peng YL, Liu YN, Liu L, Wang X, Jiang CL, Wang YX. Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. J Neuroinflammation 2012; 9:75. [PMID: 22531370 PMCID: PMC3390904 DOI: 10.1186/1742-2094-9-75] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/25/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Experiences and inflammatory mediators are fundamental in the provocation of major depressive disorders (MDDs). We investigated the roles and mechanisms of inducible nitric oxide synthase (iNOS) in stress-induced depression. METHODS We used a depressive-like state mouse model induced by unpredictable chronic mild stress (UCMS). Depressive-like behaviors were evaluated after 4 weeks of UCMS, in the presence and absence of the iNOS inhibitor N-(3-(aminomethyl)benzyl)acetamidine (1400 W) compared with the control group. Immunohistochemistry was used to check the loss of Nissl bodies in cerebral cortex neurons. The levels of iNOS mRNA expression in the cortex and nitrites in the plasma were measured with real-time reverse transcription PCR (RT-PCR) and Griess reagent respectively. RESULTS Results showed that the 4-week UCMS significantly induced depressive-like behaviors, including decreased sucrose preference in a sucrose preference test, increased duration of immobility in a forced swim test, and decreased hole-searching time in a locomotor activity test. Meanwhile, in the locomotor activity test, UCMS had no effect on normal locomotor activities, such as resting time, active time and total travel distance. Furthermore, the levels of iNOS mRNA expression in the cortex and nitrites in the plasma of UCMS-exposed mice were significantly increased compared with that of the control group. Neurons of cerebral cortex in UCMS-exposed mice were shrunken with dark staining, together with loss of Nissl bodies. The above-mentioned stress-related depressive-like behaviors, increase of iNOS mRNA expression in the cortex and nitrites in the plasma, and neuron damage, could be abrogated remarkably by pretreating the mice with an iNOS inhibitor (1400 W). Moreover, neurons with abundant Nissl bodies were significantly increased in the 1400 W + UCMS group. CONCLUSIONS These results support the notion that stress-related NO (derived from iNOS) may contribute to depressive-like behaviors in a mouse model, potentially concurrent with neurodegenerative effects within the cerebral cortex.
Collapse
Affiliation(s)
- Yun-Li Peng
- Department of Nautical Medicine, Second Military Medical University, Shanghai, P R China
| | | | | | | | | | | |
Collapse
|
16
|
Lin LH, Nitschke Dragon D, Jin J, Tian X, Chu Y, Sigmund C, Talman WT. Decreased expression of neuronal nitric oxide synthase in the nucleus tractus solitarii inhibits sympathetically mediated baroreflex responses in rat. J Physiol 2012; 590:3545-59. [PMID: 22687614 DOI: 10.1113/jphysiol.2012.237966] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite numerous studies it remains controversial whether nitric oxide (NO·) synthesized by neuronal NOS (nNOS) plays an excitatory or inhibitory role in transmission of baroreflex signals in the nucleus tractus solitarii (NTS). In the current studies we sought to test the hypothesis that nNOS is involved in excitation of baroreflex pathways in NTS while excluding pharmacological interventions in assessing the influence of nNOS. We therefore developed, validated and utilized a short hairpin RNA (shRNA) to reduce expression of nNOS in the NTS of rats whose baroreflex activity was then studied. We demonstrate downregulation of nNOS through transduction with adeno-associated virus type 2 (AAV2) carrying shRNA for nNOS. When injected bilaterally into NTS AAV2nNOSshRNA significantly reduced reflex tachycardic responses to acute hypotension while not affecting reflex bradycardic responses to acute increases of arterial pressure. Control animals treated with intravenous propranolol to block sympathetically mediated chronotropic responses manifested the same baroreflex responses as animals that had been treated with AAV2nNOSshRNA. Neither AAV2 eGFP nor AAV2nNOScDNA affected baroreflex responses. Blocking cardiac vagal influences with atropine similarly reduced baroreflex-mediated bradycardic responses to increases in arterial pressure both in control animals and in those treated with AAV2nNOSshRNA. We conclude that NO· synthesized by nNOS in the NTS is integral to excitation of baroreflex pathways involved in reflex tachycardia, a largely sympathetically mediated response, but not reflex bradycardia, a largely parasympathetically mediated response. We suggest that, at the basal state, nNOS is maximally engaged. Thus, its upregulation does not augment the baroreflex.
Collapse
Affiliation(s)
- Li-Hsien Lin
- Laboratory of Neurobiology, Department of Neurology, Roy and Lucille Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Modulation of in vivo GABA-evoked responses by nitric oxide-active compounds in the globus pallidus of rat. J Neural Transm (Vienna) 2012; 119:911-21. [DOI: 10.1007/s00702-011-0760-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/25/2011] [Indexed: 10/14/2022]
|
18
|
Fernández-Alvarez A, Gómez-Sena L, Fabbiani MG, Budelli R, Abudara V. Endogenous presynaptic nitric oxide supports an anterograde signaling in the central nervous system. J Neurochem 2011; 118:546-57. [PMID: 21644995 DOI: 10.1111/j.1471-4159.2011.07336.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The source size and density determine the extent of nitric oxide (NO) diffusion which critically influences NO signaling. In the brain, NO released from postsynaptic somas following NMDA-mediated activation of neuronal nitric oxide synthase (nNOS) retrogradely affects smaller presynaptic targets. By contrast, in guinea pig trigeminal motor nucleus (TMN), NO is produced presynaptically by tiny and disperse nNOS-containing terminals that innervate large nNOS-negative motoneurons expressing the soluble guanylyl-cyclase (sGC); consequently, it is uncertain whether endogenous NO supports an anterograde signaling between pre-motor terminals and postsynaptic trigeminal motoneurons. In retrogradely labeled motoneurons, we indirectly monitored NO using triazolofluorescein (DAF-2T) fluorescence, and evaluated sGC activity by confocal cGMP immunofluorescence. Multiple fibers stimulation enhanced NO content and cGMP immunofluorescence into numerous nNOS-negative motoneurons; NOS inhibitors prevented depolarization-induced effects, whereas NO donors mimicked them. Enhance of cGMP immunofluorescence required extracellular Ca(2+), a nNOS-physiological activator, and was prevented by inhibiting sGC, silencing neuronal activity or impeding NO diffusion. In conclusion, NO released presynaptically from multiple cooperative tiny fibers attains concentrations sufficient to activate sGC in many motoneurons despite of the low source/target size ratio and source dispersion; thus, endogenous NO is an effective anterograde neuromodulator. By adjusting nNOS activation, presynaptic Ca(2+) might modulate the NO diffusion field in the TMN.
Collapse
|
19
|
Sardo P, Carletti F, Rizzo V, Lonobile G, Friscia S, Ferraro G. Nitric oxide-active compounds modulate the intensity of glutamate-evoked responses in the globus pallidus of the rat. Life Sci 2011; 88:1113-20. [DOI: 10.1016/j.lfs.2011.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/28/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022]
|
20
|
Flanagan-Cato LM. Sex differences in the neural circuit that mediates female sexual receptivity. Front Neuroendocrinol 2011; 32:124-36. [PMID: 21338620 PMCID: PMC3085563 DOI: 10.1016/j.yfrne.2011.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/05/2011] [Accepted: 02/14/2011] [Indexed: 01/28/2023]
Abstract
Female sexual behavior in rodents, typified by the lordosis posture, is hormone-dependent and sex-specific. Ovarian hormones control this behavior via receptors in the hypothalamic ventromedial nucleus (VMH). This review considers the sex differences in the morphology, neurochemistry and neural circuitry of the VMH to gain insights into the mechanisms that control lordosis. The VMH is larger in males compared with females, due to more synaptic connections. Another sex difference is the responsiveness to estradiol, with males exhibiting muted, and in some cases reverse, effects compared with females. The lack of lordosis in males may be explained by differences in synaptic organization or estrogen responsiveness, or both, in the VMH. However, given that damage to other brain regions unmasks lordosis behavior in males, a male-typical VMH is unlikely the main factor that prevents lordosis. In females, key questions remain regarding the mechanisms whereby ovarian hormones modulate VMH function to promote lordosis.
Collapse
Affiliation(s)
- Loretta M Flanagan-Cato
- Department of Psychology and Mahoney Institute of Neurological Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Rijkers K, Aalbers M, Hoogland G, van Winden L, Vles J, Steinbusch H, Majoie M. Acute seizure-suppressing effect of vagus nerve stimulation in the amygdala kindled rat. Brain Res 2010; 1319:155-63. [DOI: 10.1016/j.brainres.2010.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/03/2010] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
|
22
|
Wegener G, Volke V. Nitric Oxide Synthase Inhibitors as Antidepressants. Pharmaceuticals (Basel) 2010; 3:273-299. [PMID: 27713253 PMCID: PMC3991030 DOI: 10.3390/ph3010273] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/07/2010] [Accepted: 01/19/2010] [Indexed: 11/22/2022] Open
Abstract
Affective and anxiety disorders are widely distributed disorders with severe social and economic effects. Evidence is emphatic that effective treatment helps to restore function and quality of life. Due to the action of most modern antidepressant drugs, serotonergic mechanisms have traditionally been suggested to play major roles in the pathophysiology of mood and stress-related disorders. However, a few clinical and several pre-clinical studies, strongly suggest involvement of the nitric oxide (NO) signaling pathway in these disorders. Moreover, several of the conventional neurotransmitters, including serotonin, glutamate and GABA, are intimately regulated by NO, and distinct classes of antidepressants have been found to modulate the hippocampal NO level in vivo. The NO system is therefore a potential target for antidepressant and anxiolytic drug action in acute therapy as well as in prophylaxis. This paper reviews the effect of drugs modulating NO synthesis in anxiety and depression.
Collapse
Affiliation(s)
- Gregers Wegener
- Centre for Psychiatric Research, University of Aarhus, Skovagervej 2, DK-8240 Risskov, Denmark.
| | - Vallo Volke
- Department of Physiology, University of Tartu, Ravila 19, EE-70111 Tartu, Estonia.
| |
Collapse
|
23
|
Marsollier N, Kassis N, Mezghenna K, Soty M, Fioramonti X, Lacombe A, Joly A, Pillot B, Zitoun C, Vilar J, Mithieux G, Gross R, Lajoix AD, Routh V, Magnan C, Cruciani-Guglielmacci C. Deregulation of hepatic insulin sensitivity induced by central lipid infusion in rats is mediated by nitric oxide. PLoS One 2009; 4:e6649. [PMID: 19680547 PMCID: PMC2721417 DOI: 10.1371/journal.pone.0006649] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 07/16/2009] [Indexed: 01/25/2023] Open
Abstract
Background Deregulation of hypothalamic fatty acid sensing lead to hepatic insulin-resistance which may partly contribute to further impairment of glucose homeostasis. Methodology We investigated here whether hypothalamic nitric oxide (NO) could mediate deleterious peripheral effect of central lipid overload. Thus we infused rats for 24 hours into carotid artery towards brain, either with heparinized triglyceride emulsion (Intralipid, IL) or heparinized saline (control rats). Principal Findings Lipids infusion led to hepatic insulin-resistance partly related to a decreased parasympathetic activity in the liver assessed by an increased acetylcholinesterase activity. Hypothalamic nitric oxide synthases (NOS) activities were significantly increased in IL rats, as the catalytically active neuronal NOS (nNOS) dimers compared to controls. This was related to a decrease in expression of protein inhibitor of nNOS (PIN). Effect of IL infusion on deregulated hepatic insulin-sensitivity was reversed by carotid injection of non selective NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) and also by a selective inhibitor of the nNOS isoform, 7-Nitro-Indazole (7-Ni). In addition, NO donor injection (L-arginine and SNP) within carotid in control rats mimicked lipid effects onto impaired hepatic insulin sensitivity. In parallel we showed that cultured VMH neurons produce NO in response to fatty acid (oleic acid). Conclusions/Significance We conclude that cerebral fatty acid overload induces an enhancement of nNOS activity within hypothalamus which is, at least in part, responsible fatty acid increased hepatic glucose production.
Collapse
|
24
|
Sardo P, Carletti F, D'Agostino S, Rizzo V, La Grutta V, Ferraro G. Intensity of GABA-evoked responses is modified by nitric oxide-active compounds in the subthalamic nucleus of the rat: A microiontophoretic study. J Neurosci Res 2009; 87:2340-50. [DOI: 10.1002/jnr.22043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Immunoreactivity for neuronal NOS and fluorescent indication of NO formation in the NTS of juvenile rats submitted to chronic intermittent hypoxia. Auton Neurosci 2009; 148:55-62. [DOI: 10.1016/j.autneu.2009.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/23/2009] [Accepted: 03/05/2009] [Indexed: 02/05/2023]
|
26
|
Nitric oxide- and cGMP-active compounds affect the discharge of substantia nigra pars reticulata neurons: in vivo evidences in the rat. J Neural Transm (Vienna) 2009; 116:539-49. [PMID: 19350217 DOI: 10.1007/s00702-009-0216-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/17/2009] [Indexed: 12/22/2022]
Abstract
The nitric oxide (NO)-active drugs influence on the bioelectric activity of neurons of the pars reticulata of the substantia nigra was studied in urethane-anesthetized rats. A first group of animals was treated with 7-nitro-indazole (7-NI), a preferential inhibitor of neuronal NO synthase. In a second group of rats, electrophysiological recordings were coupled with microiontophoretic administration of Nomega-nitro-L-arginine methyl ester (L-NAME, a NO synthase inhibitor), 3-morpholino-sydnonimin-hydrocloride (SIN-1, a NO donor) and 8-Br-cGMP (a cell-permeable analogue of cGMP, the main second-messenger of NO neurotransmission). 7-NI and L-NAME caused a statistically significant decrease in the firing rate of most of the responsive cells, while application of SIN-1 and 8-Br-CGMP induced statistically significant excitatory effects. The results suggest a NO mediated excitatory modulation of the SNr neurons activity with a possible involvement of the cGMP pathway.
Collapse
|
27
|
Abstract
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays a crucial role in the control of cardiovascular and gastrointestinal homeostastis, but its effects on neuronal functions are less established. This review summarizes recent biochemical and functional data on the role of the cGMP signalling pathway in the mammalian brain, with a focus on the regulation of synaptic plasticity, learning, and other complex behaviours. Expression profiling, along with pharmacological and genetic manipulations, indicates important functions of nitric oxide (NO)-sensitive soluble guanylyl cyclases (sGCs), cGMP-dependent protein kinases (cGKs), and cGMP-regulated phosphodiesterases (PDEs) as generators, effectors, and modulators of cGMP signals in the brain, respectively. In addition, neuronal cGMP signalling can be transmitted through cyclic nucleotide-gated (CNG) or hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. The canonical NO/sGC/cGMP/cGK pathway modulates long-term changes of synaptic activity in the hippocampus, amygdala, cerebellum, and other brain regions, and contributes to distinct forms of learning and memory, such as fear conditioning, motor adaptation, and object recognition. Behavioural studies indicate that cGMP signalling is also involved in anxiety, addiction, and the pathogenesis of depression and schizophrenia. At the molecular level, different cGK isoforms appear to mediate effects of cGMP on presynaptic transmitter release and postsynaptic functions. The cGKs have been suggested to modulate cytoskeletal organization, vesicle and AMPA receptor trafficking, and gene expression via phosphorylation of various substrates including VASP, RhoA, RGS2, hSERT, GluR1, G-substrate, and DARPP-32. These and other components of the cGMP signalling cascade may be attractive new targets for the treatment of cognitive impairment, drug abuse, and psychiatric disorders.
Collapse
|
28
|
Activation of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II in response to Morris water maze learning in rats. Pharmacol Biochem Behav 2008; 92:260-6. [PMID: 19135080 DOI: 10.1016/j.pbb.2008.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 11/23/2022]
Abstract
This study investigates the interactive roles of nitric oxide (NO) and CaM-kinase II (calcium/calmodulin-dependent protein kinase II) in Morris water maze learning. In Experiment I, experimental rats received 5 days of training on a Morris water maze, where the controls were trained in the water maze with no spatial cue condition or were trained via a visually guided landmark condition. The experimental rats showed improvement in their rate of spatial learning in the water maze. The escape latencies were significantly correlated with the Ca2+-independent activity of the hippocampal CaM-kinase II. Moreover, there was a significant increase in the endogenous phosphorylation of neuronal NOS and CaM-kinase II in the experimental group when compared to the controls. The intra-hippocampal infusion of 7-NI, KN-93, or AP5 did disrupt water maze learning. SDS-PAGE analysis showed that these drugs significantly depressed phosphorylation of hippocampal NOS. The Ca2+-independent activity of hippocampal CaM-kinase II was significantly lower in the KN-93 or the AP5 infused group when compared to the controls. Although these depressed activities were not reversed by the infusion of NO donor (sodium nitroprusside, SNP), the rats' water maze learning behavior were ameliorated significantly. These results, taken together, indicate that the NOS activation is essential for water maze learning, which may be triggered via the CaM-kinase II activation in hippocampus.
Collapse
|
29
|
Abstract
As a chemical transmitter in the mammalian central nervous system, nitric oxide (NO) is still thought a bit of an oddity, yet this role extends back to the beginnings of the evolution of the nervous system, predating many of the more familiar neurotransmitters. During the 20 years since it became known, evidence has accumulated for NO subserving an increasing number of functions in the mammalian central nervous system, as anticipated from the wide distribution of its synthetic and signal transduction machinery within it. This review attempts to probe beneath those functions and consider the cellular and molecular mechanisms through which NO evokes short- and long-term modifications in neural performance. With any transmitter, understanding its receptors is vital for decoding the language of communication. The receptor proteins specialised to detect NO are coupled to cGMP formation and provide an astonishing degree of amplification of even brief, low amplitude NO signals. Emphasis is given to the diverse ways in which NO receptor activation initiates changes in neuronal excitability and synaptic strength by acting at pre- and/or postsynaptic locations. Signalling to non-neuronal cells and an unexpected line of communication between endothelial cells and brain cells are also covered. Viewed from a mechanistic perspective, NO conforms to many of the rules governing more conventional neurotransmission, particularly of the metabotropic type, but stands out as being more economical and versatile, attributes that presumably account for its spectacular evolutionary success.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WCIE 6BT, UK.
| |
Collapse
|
30
|
Powers-Martin K, Phillips JK, Phillip JK, Biancardi VC, Stern JE. Heterogeneous distribution of basal cyclic guanosine monophosphate within distinct neuronal populations in the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1341-50. [PMID: 18703416 DOI: 10.1152/ajpregu.00063.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The supraoptic (SON) and the paraventricular (PVN) hypothalamic nuclei constitute major neuronal substrates underlying nitric oxide (NO) effects on autonomic and neuroendocrine control. Within these nuclei, constitutively produced NO restrains the firing activity of magnocellular neurosecretory and preautonomic neurons, actions thought to be mediated by a cGMP-dependent enhancement of GABAergic inhibitory transmission. In the present study, we expanded on this knowledge by performing a detailed anatomical characterization of constitutive NO-receptive, cGMP-producing neurons within the PVN. To this end, we combined tract-tracing techniques and immunohistochemistry to visualize cGMP immunoreactivity within functionally, neurochemically, and topographically discrete PVN neuronal populations in Wistar rats. Basal cGMP immunoreactivity was readily observed in the PVN, both in neuronal and vascular profiles. The incidence of cGMP immunoreactivity was significantly higher in magnocellular (69%) compared with preautonomic ( approximately 10%) neuronal populations (P < 0.01). No differences were observed between oxytocin (OT) and vasopressin (VP) magnocellular neurons. In preautonomic neurons, the incidence of cGMP was independent of their subnuclei distribution, innervated target (i.e., intermediolateral cell column, nucleus tractus solitarii, or rostral ventrolateral medulla) or their neurochemical phenotype (i.e., OT or VP). Finally, high levels of cGMP immunoreactivity were observed in GABAergic somata and terminals within the PVN of eGFP-GAD67 transgenic mice. Altogether, these data support a highly heterogeneous distribution of basal cGMP levels within the PVN and further support the notion that constitutive NO actions in the PVN involve intricate cell-cell interactions, as well as heterogeneous signaling modalities.
Collapse
|
31
|
García-Pascual A, Sancho M, Costa G, Triguero D. Interstitial cells of Cajal in the urethra are cGMP-mediated targets of nitrergic neurotransmission. Am J Physiol Renal Physiol 2008; 295:F971-83. [PMID: 18632793 DOI: 10.1152/ajprenal.90301.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While interstitial cells of Cajal (ICC) in the urethra respond to nitric oxide (NO) donors by increasing cGMP, it remains unclear whether urethral ICC are functionally innervated by nitrergic nerves. We have addressed this issue in the rat and sheep urethra, where cGMP production and relaxation were compared in preparations subjected to electrical field stimulation (EFS; 2 Hz, 4 min) of nitrergic nerves or to exogenous S-nitroso-L-cysteine (SNC; 0.1 mM, 4 min). Upon EFS, cGMP immunoreactivity (cGMP-ir) was observed in both smooth muscle cells (SMC) and in spindle-shaped cells that contained c-kit and vimentin, features of ICC. Similarly, cGMP-ir was preferentially, but inconsistently, found in ICC of the outer muscle layer on exposure to SNC. We found separate functional groups of ICC within the urethra. Thus only ICC present in the muscle layers (ICC-M) but not those in the serosa (ICC-SR) and lamina propia (ICC-LP) seem to be specifically influenced by activation of neuronal NO synthase (nNOS). Thus the increase in cGMP-ir in the ICC-M induced by EFS was prevented by Nomega-nitro-L-arginine and ODQ. Urethral ICC did not express nNOS, although they were closely associated with nitrergic nerves. cGMP-ir was also present in the urothelium (in the rat but not in the sheep) and the vascular endothelium but not in neural structures, such as the nerve trunks and nerve terminals. Together, these results suggest a model of parallel innervation in which both SMC and ICC-M are effectors of nerve-released NO in the urethra.
Collapse
Affiliation(s)
- Angeles García-Pascual
- Department of Physiology, Veterinary Faculty, Complutense University, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
32
|
Powers-Martin K, Barron AM, Auckland CH, McCooke JK, McKitrick DJ, Arnolda LF, Phillips JK. Immunohistochemical assessment of cyclic guanosine monophosphate (cGMP) and soluble guanylate cyclase (sGC) within the rostral ventrolateral medulla. J Biomed Sci 2008; 15:801-12. [PMID: 18604639 DOI: 10.1007/s11373-008-9269-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 06/29/2008] [Indexed: 12/15/2022] Open
Abstract
Functional evidence suggests that nitric oxide (NO) signalling in the rostral ventrolateral medulla (RVLM) is cGMP-dependent and that this pathway is impaired in hypertension. We examined cGMP expression as a marker of active NO signalling in the C1 region of the RVLM, comparing adult (>18 weeks) Wistar-Kyoto (WKY, n = 4) and spontaneously hypertensive rats (SHR, n = 4). Double label immunohistochemistry for cGMP-immunoreactivity (IR) and C1 neurons [as identified by phenylethanolamine N-methyltransferase (PNMT-IR) or tyrosine hydroxylase TH-IR)], or neuronal NO synthase (nNOS) neurones, failed to reveal cGMP-IR neurons in the RVLM of either strain, despite consistent detection of cGMP-IR in the nucleus ambiguus (NA). This was unchanged in the presence of isobutylmethylxanthine (IBMX; 0.5 mM, WKY, n = 4, SHR n = 2) and in young animals (WKY, 10-weeks, n = 3). Incubation of RVLM-slices (WKY, 10-weeks, n = 9) in DETA-NO (100 mum; 10 min) or NMDA (10 muM; 2 min) did not uncover cGMP-IR. In all studies, cGMP was prominent within the vasculature. Soluble guanylate cyclase (sGC)-IR was found throughout neurones of the RVLM, but did not co-localise with PNMT, TH or nNOS-IR neurons (WKY, 10-weeks, n = 6). Results indicate that within the RVLM, cGMP is not detectable using immunohistochemistry in the basal state and cannot be elicited by phosphodiesterase inhibition, NMDA receptor stimulation or NO donor application.
Collapse
Affiliation(s)
- Kellysan Powers-Martin
- Division of Health Sciences, School of Veterinary and Biomedical Science, Murdoch University, South St. Murdoch, Perth, WA, 6150, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
de Vente J, Abildayeva K, van de Waarenburg M, Markerink-van Ittersum M, Steinbusch HWM, Mulder M. NO-mediated cGMP synthesis in cultured cholinergic neurons from the basal forebrain of the fetal rat. Brain Res 2008; 1217:25-36. [PMID: 18501878 DOI: 10.1016/j.brainres.2008.03.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/21/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Previously, using brain slices, we reported NO-mediated cGMP synthesis in all cholinergic fibers in the rat neocortex. In order to answer the question whether this property of cholinergic fibers was present before or developed after birth, we investigated properties of NO-responsiveness of cultured cholinergic forebrain neurons. Basal forebrain neurons of E16 fetal rat were cultured. Under the conditions chosen and after one day of culturing, all cells had attained a cholinergic phenotype using choline acetyltransferase or the vesicular acetylcholine transporter molecule as markers. Between 95-99% of the cells also expressed neuronal NOS. In the presence of 1 mM IBMX, a non-selective phosphodiesterase (PDE) inhibitor, 10 microM of the NO donor diethylamine-NONOate (DEANO) increased cGMP synthesis in 80% of the cells. cGMP levels in the cultured forebrain neurons were also increased when cells were stimulated with DEANO in the presence of the selective PDE inhibitors BAY 60-7550 (PDE2), sildenafil (PDE5), or the mixed type inhibitor papaverine (PDE2,5,10). Subpopulations of cells from the basal forebrain expressed mRNA for PDE2, PDE5, and PDE9. Atropine increased cGMP levels in an NO-dependent manner in a small population of cultured forebrain cells in the presence of IBMX. In conclusion, cultured cholinergic basal forebrain neurons present a heterogeneous cell population in the magnitude of their response to NO. NO-responsiveness of the cultured cholinergic neurons is already detectable after one day of culturing and indicates that NO-sensitivity of the cholinergic neurons of the rat basal forebrain is present well before birth.
Collapse
Affiliation(s)
- J de Vente
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience, Maastricht University, UNS50, POB 616, MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
Chu X, Ågmo A. Sexual incentive motivation in old male rats: The effects of sildenafil and a compound (Impaza) stimulating endothelial NO synthase. Pharmacol Biochem Behav 2008; 89:209-17. [DOI: 10.1016/j.pbb.2007.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/13/2007] [Accepted: 12/11/2007] [Indexed: 01/23/2023]
|
35
|
Wright CL, Burgoon PW, Bishop GA, Boulant JA. Cyclic GMP alters the firing rate and thermosensitivity of hypothalamic neurons. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1704-15. [PMID: 18321955 DOI: 10.1152/ajpregu.00714.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rostral hypothalamus, especially the preoptic-anterior hypothalamus (POAH), contains temperature-sensitive and -insensitive neurons that form synaptic networks to control thermoregulatory responses. Previous studies suggest that the cyclic nucleotide cGMP is an important mediator in this neuronal network, since hypothalamic microinjections of cGMP analogs produce hypothermia in several species. In the present study, immunohistochemisty showed that rostral hypothalamic neurons contain cGMP, guanylate cyclase (necessary for cGMP synthesis), and CNG A2 (an important cyclic nucleotide-gated channel). Extracellular electrophysiological activity was recorded from different types of neurons in rat hypothalamic tissue slices. Each recorded neuron was classified according to its thermosensitivity as well as its firing rate response to 2-100 microM 8-bromo-cGMP (a membrane-permeable cGMP analog). cGMP has specific effects on different neurons in the rostral hypothalamus. In the POAH, the cGMP analog decreased the spontaneous firing rate in 45% of temperature-sensitive and -insensitive neurons, an effect that is likely due to cGMP-enhanced hyperpolarizing K(+) currents. This decreased POAH activity could attenuate thermoregulatory responses and produce hypothermia during exposures to cool or neutral ambient temperatures. Although 8-bromo-cGMP did not affect the thermosensitivity of most POAH neurons, it did increase the warm sensitivity of neurons in other hypothalamic regions located dorsal, lateral, and posterior to the POAH. This increased thermosensitivity may be due to pacemaker currents that are facilitated by cyclic nucleotides. If some of these non-POAH thermosensitive neurons promote heat loss or inhibit heat production, then their increased thermosensitivity could contribute to cGMP-induced decreases in body temperature.
Collapse
Affiliation(s)
- Chadwick L Wright
- Department of Physiology & Cell Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
36
|
Currie DA, de Vente J, Moody WJ. Developmental appearance of cyclic guanosine monophosphate (cGMP) production and nitric oxide responsiveness in embryonic mouse cortex and striatum. Dev Dyn 2007; 235:1668-77. [PMID: 16518821 DOI: 10.1002/dvdy.20732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) regulates multiple aspects of both structural development and physiological function in the developing nervous system. Recent in vitro experiments have shown that cGMP also modulates the response of developing vertebrate neurons to guidance molecules. This has led to the proposal that in vivo cGMP plays a critical role in directing the outgrowth of the apical dendrites of developing neurons in the cerebral cortex. Despite this proposed role, the onset, localization, and dynamics of cGMP production in the embryonic cortex are unknown. To investigate the potential contribution of cGMP in the embryo, we have used a pharmacological and immunohistochemical approach to test whether the endogenous production of cGMP, and the capacity to produce cGMP in response to nitric oxide (NO), in the cerebral cortex is compatible with the proposed developmental roles for cGMP. We find that cortical cGMP production and NO sensitivity are regionally and developmentally regulated. Cortical cGMP production begins at E15, later than in the ganglionic eminences, becomes high in the cortical plate but not the ventricular zone, and is dependent on nitric oxide synthase activity. Furthermore, although radially migrating neurons were not NO responsive until they reached the cortical plate, NO exposure revealed an additional population of tangentially migrating presumptive interneurons from the ganglionic eminences with the capacity to produce cGMP. These results provide a new level of understanding of the stage and cell type specific regulation of the NO/cGMP pathway during embryonic development.
Collapse
Affiliation(s)
- Douglas A Currie
- Department of Biology, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
37
|
de Jongh R, van Koeveringe GA, van Kerrebroeck PEV, Markerink-van Ittersum M, de Vente J, Gillespie JI. Alterations to network of NO/cGMP-responsive interstitial cells induced by outlet obstruction in guinea-pig bladder. Cell Tissue Res 2007; 330:147-60. [PMID: 17710439 DOI: 10.1007/s00441-007-0454-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/21/2007] [Indexed: 01/25/2023]
Abstract
Interstitial cells (ICs) play a role in regulating normal bladder activity. This study explores the possibility that the sub-urothelial and muscle networks of NO/cGMP-responsive ICs are altered in animals with surgically induced outflow obstruction. In sham-operated animals, the urothelium comprised NO-stimulated cGMP-positive (cGMP(+)) umbrella cells, an intermediate layer and a basal layer that stained for nNOS. cGMP(+) sub-urothelial interstitial cells (su-ICs) were found below the urothelium. cGMP(+) cells were also associated with the outer muscle layers: on the serosal surface, on the surface of the muscle bundles and within the muscle bundles. Several differences were noted in tissues from obstructed animals: (1) the number of cGMP(+) umbrella cells and intensity of staining was reduced; (2) the intermediate layer of the urothelium consisted of multiple cell layers; (3) the su-IC layer was increased, with cells dispersed being throughout the lamina propria; (4) cGMP(+) cells were found within the inner muscle layer forming nodes between the muscle bundles; (5) the number of cells forming the muscle coat (serosa) was increased; (6) an extensive network of cGMP(+) cells penetrated the muscle bundles; (7) cGMP(+) cells surrounded the muscle bundles and nodes of ICs were apparent, these nodes being associated with nerve fibres; (8) nerves were found in the lamina propria but rarely associated with the urothelium. Thus, changes occur in the networks of ICs following bladder outflow obstruction. These changes must have functional consequences, some of which are discussed.
Collapse
Affiliation(s)
- R de Jongh
- Department of Urology, University Hospital Maastricht, 6202 AZ, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Reyes-Irisarri E, Markerink-Van Ittersum M, Mengod G, de Vente J. Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer's disease human brains. Eur J Neurosci 2007; 25:3332-8. [PMID: 17553001 DOI: 10.1111/j.1460-9568.2007.05589.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the mRNA expression of cGMP-hydrolysing phosphodiesterases (PDEs) in selected brain areas of normal elderly people and patients with Alzheimer's disease. Using radioactive in-situ hybridization histochemistry we found a widespread distribution of the mRNA for PDE2 and PDE9, whereas no specific hybridization signal was observed for PDE5. We observed PDE2 and PDE9 mRNA in all cortical areas studied (insular cortex, entorhinal cortex and visual cortex), although to a different extent. PDE2 mRNA was high in the claustrum, whereas PDE9 mRNA was moderate. PDE2 and PDE9 mRNAs was present in the putamen. No cGMP-hydrolysing PDE expression was observed in the globus pallidus. PDE2 and PDE9 mRNA was observed in all subareas of the hippocampus; however, there were significant differences in the amount of expression. In the Purkinje and cerebellar granule cells only PDE9 expression was observed. PDE2 and PDE9 mRNA expression was not significantly different in Alzheimer's disease brains.
Collapse
Affiliation(s)
- Elisabet Reyes-Irisarri
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), Barcelona, Spain
| | | | | | | |
Collapse
|
39
|
Mathison Y, del Garrido MR, Israel A. Multiple signaling pathways involved in the effect of endothelin type B receptor in rat median eminence. ACTA BIOLOGICA HUNGARICA 2007; 58:139-50. [PMID: 17585504 DOI: 10.1556/abiol.58.2007.2.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We assessed the possible link between endothelin receptor mediated phosphoinositide breakdown and NO/cGMP signaling pathways in rat arcuate nucleus-median eminence fragments (AN-ME), brain structures known to contain a rich plexus of nitric oxide synthase (NOS)-containing neurons and fibers, together with densely arranged endothelin ETB-receptors-like immunoreactive fibres. Our data show that ET-1, ET-3 and the ETB-receptors agonist, IRL 1620, increased inositol monophosphate (InsP1) accumulation, NOS activity and cGMP formation, in a similar degree. The stimulatory effect of ETs on InsP1 accumulation and cGMP formation was inhibited by the phospholipase C (PLC) inhibitor, neomycin, and the absence of extracellular calcium, suggesting that calcium is involved in endothelin receptor-induced PLC activation. The L-arginine analog, L-NAME, inhibited ET-1 or IRL1620-stimulated cGMP formation. The ETA receptor antagonists BQ 123, did not alter, while the ETB receptor antagonists BQ788 inhibited ETs-induced increase in the PI metabolism, NOS activity and cGMP generation. Our data indicate that in AN-ME, ETB receptor signals through receptor-mediated calcium dependent-stimulation of phosphoinositide breakdown and activation of NOS/cGMP signaling pathway.
Collapse
Affiliation(s)
- Yaira Mathison
- School of Medicine José María Vargas, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | |
Collapse
|
40
|
Tan SE. Roles of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II in inhibitory avoidance learning in rats. Behav Pharmacol 2007; 18:29-38. [PMID: 17218795 DOI: 10.1097/fbp.0b013e3280142636] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study investigated the interactive roles of nitric oxide and calcium/calmodulin-dependent protein kinase II in inhibitory avoidance learning. In Experiment I, rats were trained on a one-trial step-through inhibitory avoidance learning task, whereas the controls were trained in a noncontingent stimulus-pairing condition. The experimental rats showed significantly higher retention scores than the control rats. Correspondingly, the rats in the experimental group showed significantly higher Ca2+-independent activity of the hippocampal calcium/calmodulin-dependent protein kinase II and a significant increase in the endogenous phosphorylation of neuronal nitric oxide synthase. The intrahippocampal infusion of 7-nitro-indazole, 2-[N-(2-hidroxyethyl)-N-(4-methoxy-benzenesulfonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, or 2-amino-5-phosphonopentanoic acid disrupted inhibitory avoidance learning. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that these drugs significantly depressed phosphorylation of hippocampal nitric oxide synthase. The Ca2+-independent activity of hippocampal calcium/calmodulin-dependent protein kinase II was significantly lower in the 2-[N-(2-hidroxyethyl)-N-(4-methoxy-benzenesulfonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine or the 2-amino-5-phosphonopentanoic acid-infused group compared with the controls. Although these depressed activities were not reversed by the infusion of a nitric oxide donor (sodium nitroprusside), this did significantly improve the rats' inhibitory avoidance deficit. These results, taken together, indicate that the nitric oxide synthase activation is essential for inhibitory avoidance learning, which may be triggered via the calcium/calmodulin-dependent protein kinase II activation in the hippocampus.
Collapse
Affiliation(s)
- Soon-Eng Tan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
41
|
Riediger T, Giannini P, Erguven E, Lutz T. Nitric oxide directly inhibits ghrelin-activated neurons of the arcuate nucleus. Brain Res 2006; 1125:37-45. [PMID: 17109829 DOI: 10.1016/j.brainres.2006.09.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 01/12/2023]
Abstract
The hypothalamic arcuate nucleus (Arc) is a target site for signals regulating energy homeostasis. The orexigenic hormone ghrelin directly activates neurons of the medial arcuate nucleus (ArcM) in rats. Nitric oxide (NO) is a neuromodulator implicated in the control of food intake and body weight. NO is produced by nitric oxide synthase (NOS) and induces the formation of cyclic guanosine monophosphate (cGMP) via a stimulation of soluble guanylate cyclase (sGC). Both enzymes NOS and sGC have been identified in the Arc. Using extracellular recordings we characterized the effects of NO signaling on ArcM neurons and their co-sensitivity to ghrelin. The artificial NO donor sodium nitroprusside (10(-4) M) reversibly inhibited 91% of all ArcM neurons by a direct postsynaptic mechanism. 52% of ArcM neurons were excited by ghrelin. In all but one of these neurons SNP caused inhibitory responses. The SNP-induced inhibitions were mediated by cGMP since they were blocked by the specific sGC inhibitor ODQ (1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, 10(-4) M). Furthermore, the membrane permeating cGMP analogue 8-Br-cGMP (10(-4) M) mimicked the inhibitory responses of SNP. In immunohistological in vitro studies SNP induced a cGMP formation, which could also be blocked by ODQ. The current studies demonstrate that NO/cGMP signaling inhibits a large population of ArcM neurons including ghrelin-excited cells. Since an activation of the latter neurons is regarded as a correlate of negative energy balance, NO may represent an anorectic neuromodulator in the Arc and/or restrain the action of signals promoting energy intake. NO signaling in the Arc is also induced following inflammation suggesting a possible role of Arc-intrinsic NO in disease-related anorexia.
Collapse
Affiliation(s)
- Thomas Riediger
- Institute of Veterinary Physiology and Center of Integrative Human Physiology, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
42
|
Sardo P, Carletti F, D'Agostino S, Rizzo V, Ferraro G. Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat. Eur J Neurosci 2006; 24:1995-2002. [PMID: 17040472 DOI: 10.1111/j.1460-9568.2006.05097.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of nitric oxide (NO) synthase and of soluble guanylyl cyclase, the main NO-activated metabolic pathway, has been demonstrated in many cells of the subthalamic nucleus. In this study, the effects induced on the firing of 96 subthalamic neurons by microiontophoretically administering drugs modifying NO neurotransmission were explored in anaesthetized rats. Recorded neurons were classified into regularly and irregularly discharging on the basis of their firing pattern. Nomega-nitro-L-arginine methyl ester (L-NAME; a NO synthase inhibitor), 3-morpholino-sydnonimin-hydrocloride (SIN-1; a NO donor), S-nitroso-glutathione (SNOG; another NO donor) and 8-Br-cGMP (a cell-permeable analogue of cGMP, the main second-messenger of NO neurotransmission) were iontophoretically applied while performing single-unit extracellular recordings. The activity of most neurons was influenced in a statistically significant way: in particular, both current-related inhibitory L-NAME-induced effects (20/39 tested cells) and excitatory effects of SIN-1 (25/41 tested neurons), SNOG (19/32 tested cells) and 8-Br-cGMP (13/19 tested neurons) were demonstrated. Neither statistically significant differences between the responses of regularly and irregularly discharging cells, nor specific topographical clustering of responding neurons, were demonstrated. Neurons administered drugs oppositely modulating the NO neurotransmission often displayed responses to only one treatment. We hypothesize that NO neurotransmission could exert a modulatory influence upon subthalamic neurons, with a prevalent excitatory effect. However, in the light of the presence of some responses of opposite sign to the same drug displayed by different subthalamic neurons, more complex effects of NO neurotransmission could be suggested, probably due to interactions with other classical neurotransmitter systems.
Collapse
Affiliation(s)
- Pierangelo Sardo
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia umana, Università degli Studi di Palermo, Corso Tukory, 129-90134 Palermo, Italy.
| | | | | | | | | |
Collapse
|
43
|
Lagou M, Drake MJ, Markerink-VAN Ittersum M, DE Vente J, Gillespie JI. Interstitial cells and phasic activity in the isolated mouse bladder. BJU Int 2006; 98:643-50. [PMID: 16925766 DOI: 10.1111/j.1464-410x.2006.06255.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To describe the distribution of interstitial cells (ICs, defined as cells which show an increase in cGMP in response to nitric oxide, NO) in the isolated mouse bladder, and changes in phasic contractile activity after exposure to a NO donor. MATERIALS AND METHODS The whole bladder was removed from 17 female mice, killed by cervical dislocation. For immunohistochemistry (six mice) the bladder was incubated in carboxygenated Krebs' solution at 36 degrees C, containing 1 mm of the phosphodiesterase inhibitor isobutyl-methyl-xanthine. Individual pieces of tissue were exposed to 100 microm of the NO donor diethylamine NONOate for 10 min; control tissues remained in Krebs' solution. Tissues were then fixed in 4% paraformaldehyde and processed for cGMP immunohistochemistry. Bladder pressure was measured in bladders from 11 mice; the bladders were cannulated via the urethra and suspended in a heated chamber containing carboxygenated Tyrode solution at 33-35 degrees C and intravesical pressure recorded. All drugs were added to the solution bathing the abluminal surface. RESULTS NO induced an increase in cGMP in cells in the outer layers of the bladder wall, forming two distinct types based on their location; cells lying on the surface of the muscle bundles (surface muscle ICs) and cells within the muscle bundles (intramuscular ICs). Cholinergic nerve fibres were identified by the expression of vesicular acetylcholine transporter and neuronal NO synthase (nNOS). Choline acetyltransferase- and nNOS-positive nerves also had high cGMP levels in response to 100 microm diethylamine NONOate. In vitro exposure of an isolated whole unstimulated bladder to 100 microm diethylamine NONOate had no effect on resting bladder pressure. When whole bladders were exposed to muscarinic stimulation (30-100 nm arecaidine) there was an initial large transient rise in pressure followed by complex phasic changes in pressure. Adding 100 microm diethylamine NONOate abolished this phasic activity. Interestingly, the phasic activity was inhibited midway between the peak and trough of a phasic cycle. Such a pattern of inhibition might reflect the complexity of the phasic activity involving both excitatory and inhibitory components. CONCLUSIONS These data show the presence of NO/cGMP-sensitive ICs in the outer muscle layers of the mouse bladder. Activating these cells alters the pattern of muscarinic-induced phasic activity. We suggest that the role of the ICs in the outer muscle layers is to generate and modulate phasic activity. If so, then this is the first report of a functional role for ICs in the bladder.
Collapse
Affiliation(s)
- Magdalini Lagou
- The Urophysiology Research Group, School of Surgical and Reproductive Sciences, The Medical School, The University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
44
|
Abstract
Nitric oxide (NO) functions as an intercellular messenger throughout the brain. For this role to be performed efficiently, there must be a mechanism for neutralizing NO, but whether an active biological process exists, or whether NO is lost mainly through diffusion is unclear. To investigate this issue, rat cerebellar slices were exposed to constant levels of NO and the cGMP generated within the slice used as an indicator of NO concentrations therein. NO was about 1000-fold less potent in slices (EC50, 1 microM) than in separated cells from the same tissue (EC50, 1.6 nM), consistent with access of NO to the slice interior being greatly hindered by inactivation. Supporting this interpretation, immunohistochemical analysis indicated a marked concentration gradient of cGMP across the thickness of slices exposed to subsaturating NO concentrations, signifying a marked NO gradient. Several known NO-degrading processes, including reaction with lipid peroxyl radicals, erythrocytes and superoxide ions, were eliminated as contributing factors, indicating a novel mechanism. A diffusion-inactivation model was used to estimate the kinetics of NO consumption by the slices. The best fits to experimental data indicated a Michaelis-Menten-type reaction having a Vmax of 1-2 microM s-1 and a Km of around 10 nM. The rates predict that inactivation would impose a very short half-life (<10 ms) on NO in physiological concentrations (up to 10 nM) and that it would play an important role in shaping the NO concentration profiles when it is synthesized by multiple nearby sites.
Collapse
Affiliation(s)
- C N Hall
- Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
45
|
Powers-Martin K, McKitrick DJ, Arnolda LF, Phillips JK. Distinct subpopulations of cyclic guanosine monophosphate (cGMP) and neuronal nitric oxide synthase (nNOS) containing sympathetic preganglionic neurons in spontaneously hypertensive and Wistar-Kyoto rats. J Comp Neurol 2006; 497:566-74. [PMID: 16739165 DOI: 10.1002/cne.20998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sympathetic preganglionic neurons (SPN) of the intermediolateral cell column (IML) play a critical role in the maintenance of vascular tone. We undertook a comparative neuroanatomical analysis of neuronal nitric oxide synthase (nNOS) expression in the SPN of the mature normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rat (SHR). The anatomical relationship between nNOS and the NO signaling molecule cyclic guanosine monophosphate (cGMP) was also determined. All animals were male, age > 6 months. Fluorogold (FG) retrograde labeling of SPN (detected with immunohistochemistry) was combined with NADPH-diaphorase histochemistry for NOS in the thoracic spinal cord (T1-11, n = 5 WKY, 5 SHR). There was no difference in the total number of FG-labeled SPN (WKY 6,542 +/- 828, SHR 6,091 +/- 820), but the proportion of FG-labeled cells expressing NOS was significantly less in the SHR (WKY 64.4 +/- 5.1 vs. SHR 55.6 +/- 2.1, P < 0.05). Fluorescence immunohistochemistry for nNOS/cGMP (n = 4 WKY, 4 SHR) was also performed. Confocal microscopy revealed that all nNOS-positive SPN contain cGMP and confirmed a strain-specific anatomical arrangement of SPN cell clusters. A novel subpopulation of cGMP-only cells were also identified. Double labeling for cGMP and choline acetyltransferase (n = 3 WKY, 3 SHR), confirmed these cells as SPN in both WKY and SHR. These results suggest that cGMP is a key signaling molecule in SPN, and that a reduced number of NOS neurons in the SHR may play a role in the increase in sympathetic tone associated with hypertension in these animals.
Collapse
|
46
|
Garthwaite G, Bartus K, Malcolm D, Goodwin D, Kollb-Sielecka M, Kollb-Sielecka M, Dooldeniya C, Garthwaite J. Signaling from blood vessels to CNS axons through nitric oxide. J Neurosci 2006; 26:7730-40. [PMID: 16855101 PMCID: PMC6674268 DOI: 10.1523/jneurosci.1528-06.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain function is usually perceived as being performed by neurons with the support of glial cells, the network of blood vessels situated nearby serving simply to provide nutrient and to dispose of metabolic waste. Revising this view, we find from experiments on a rodent central white matter tract (the optic nerve) in vitro that microvascular endothelial cells signal persistently to axons using nitric oxide (NO) derived from the endothelial NO synthase (eNOS). The endogenous NO acts to stimulate guanylyl cyclase-coupled NO receptors in the axons, leading to a raised cGMP level which then causes membrane depolarization, apparently by directly engaging hyperpolarization-activated cyclic nucleotide-gated ion channels. The tonic depolarization and associated endogenous NO-dependent cGMP generation was absent in optic nerves from mice lacking eNOS, although such nerves responded to exogenous NO, with raised cGMP generation in the axons and associated depolarization. In addition to the tonic activity, exposure of optic nerves to bradykinin, a classical stimulator of eNOS in endothelial cells, elicited reversible NO- and cGMP-dependent depolarization through activation of bradykinin B2 receptors, to which eNOS is physically complexed. No contribution of other NO synthase isoforms to either the action of bradykinin or the continuous ambient NO level could be detected. The results suggest that microvascular endothelial cells participate in signal processing in the brain and can do so by generating both tonic and phasic NO signals.
Collapse
Affiliation(s)
- Giti Garthwaite
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Marcoli M, Maura G, Cervetto C, Giacomini C, Oliveri D, Candiani S, Pestarino M. Nitric oxide-evoked cGMP production in Purkinje cells in rat cerebellum: an immunocytochemical and pharmacological study. Neurochem Int 2006; 49:683-90. [PMID: 16904241 DOI: 10.1016/j.neuint.2006.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/18/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
The cerebellar cells that account for glutamate-dependent cyclic GMP (cGMP) production, involving activation of the ionotropic glutamate receptors/nitric oxide synthase/soluble guanylyl cyclase pathway, are not fully established. In the present paper we have searched for the localisation of the cGMP response to the nitric oxide (NO) donor S-nitroso-penicillamine (SNAP 1muM), expected to generate local NO concentrations in the low nanomolar physiological range and evoking a cGMP response dependent on glutamate release and on the consequent activation of ionotropic glutamate NMDA/non-NMDA receptors, in cerebellar slices from adult rat. We have found that low concentration of exogenous NO evoked cGMP accumulation in Purkinje cells in an ionotropic glutamate receptor-dependent and tetrodotoxin-sensitive manner. Such immunocytochemical localisation appears consistent with functional evidence for physiologically relevant glutamate-dependent cGMP production in Purkinje cells in rat cerebellar cortex.
Collapse
Affiliation(s)
- Manuela Marcoli
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, 16148 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Lagou M, De Vente J, Kirkwood TB, Hedlund P, Andersson KE, Gillespie JI, Drake MJ. Location of interstitial cells and neurotransmitters in the mouse bladder. BJU Int 2006; 97:1332-7. [PMID: 16686734 DOI: 10.1111/j.1464-410x.2006.06203.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION To investigate whether interstitial cells (ICs) are present in the adult mouse bladder, and what transmitters characterize adjacent nerve fibres, as ICs in human and guinea-pig bladder lie close to nerve fibres but transmitters present in these nerves have not yet been reported. MATERIALS AND METHODS Sections of the bladder wall from 12 adult male mice (six each, aged 3-4 or 18-24 months) were incubated in carboxygenated Krebs' solution containing isobutyl-methyl-xanthene (1 mm), followed by the nitric oxide (NO) donor diethylamino-NONOate; control tissues remained in Krebs' solution. Samples were fixed in 4% paraformaldehyde and processed for immunofluorescence histochemistry for cGMP, neuronal NO synthase (nNOS), vesicular acetylcholine transferase (VAChT), calcitonin gene-related polypeptide (CGRP) and protein gene product (PGP) 9.5. ICs were identified as non-neuronal cells of appropriate morphology manifesting an increase in cGMP after exposure to the NO donor. RESULTS ICs were apparent in the outer muscle, but not the inner muscle or suburothelial region. nNOS- and CGRP-immunoreactive fibres were close to and alongside IC processes. In contrast, nerve fibres containing VAChT were only occasionally found close to ICs and rarely running alongside them. ICs showed no immunoreactivity to c-kit. There was no overt difference in IC cell distribution between young and aged adult specimens. Older mice showed patchy denervation of the detrusor, but ICs were not specifically affected. CONCLUSIONS ICs are confined to the outer part of the bladder wall in the mouse and may receive peptidergic and nitrergic innervation, which might serve to modulate their putative functional role. Alterations in the overall IC population do not appear to underlie ageing-related changes in lower urinary tract function.
Collapse
Affiliation(s)
- Magdalini Lagou
- School of Surgical and Reproductive Sciences, University of Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Ruscheweyh R, Goralczyk A, Wunderbaldinger G, Schober A, Sandkühler J. Possible sources and sites of action of the nitric oxide involved in synaptic plasticity at spinal lamina I projection neurons. Neuroscience 2006; 141:977-988. [PMID: 16725273 DOI: 10.1016/j.neuroscience.2006.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
The synaptic long-term potentiation between primary afferent C-fibers and spinal lamina I projection neurons is a cellular model for hyperalgesia [Ikeda H, Heinke B, Ruscheweyh R, Sandkühler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237-1240]. In lamina I neurons with a projection to the periaqueductal gray, this long-term potentiation is dependent on nitric oxide. In the present study, we used immunohistochemistry to detect possible sources and sites of action of the nitric oxide necessary for the long-term potentiation at lamina I spino-periaqueductal gray neurons in rats. None of the three isoforms of the nitric oxide synthase was expressed in a significant number of lamina I spino-periaqueductal gray neurons or primary afferent C-fibers (as evaluated by staining of their cell bodies in the dorsal root ganglia). However, endothelial and inducible nitric oxide synthase were found throughout the spinal cord vasculature and neuronal nitric oxide synthase was present in a number of neurons in laminae II and III. The nitric oxide target soluble guanylyl cyclase was detected in most lamina I spino-periaqueductal gray neurons and in approximately 12% of the dorsal root ganglion neurons, all of them nociceptive as evaluated by coexpression of substance P. Synthesis of cyclic 3',5'-guanosine monophosphate upon stimulation by a nitric oxide donor confirmed the presence of active guanylyl cyclase in at least a portion of the spino-periaqueductal gray neuronal cell bodies. We therefore propose that nitric oxide generated in neighboring neurons or blood vessels acts on the spino-periaqueductal gray neuron and/or the primary afferent C-fiber to enable long-term potentiation. Lamina I spino-parabrachial neurons were stained for comparison and yielded similar results.
Collapse
Affiliation(s)
- R Ruscheweyh
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - A Goralczyk
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria; Neuroanatomy and Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | - G Wunderbaldinger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - A Schober
- Neuroanatomy and Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | - J Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria.
| |
Collapse
|
50
|
Chalimoniuk M, Lukacova N, Marsala J, Langfort J. Alterations of the expression and activity of midbrain nitric oxide synthase and soluble guanylyl cyclase in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neuroscience 2006; 141:1033-1046. [PMID: 16716528 DOI: 10.1016/j.neuroscience.2006.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 04/10/2006] [Accepted: 04/13/2006] [Indexed: 12/21/2022]
Abstract
The study was aimed at investigating the expression and the activity of neuronal nitric oxide synthase, and of soluble guanylyl cyclase and phosphodiesterase activities that regulate guanosine 3',5'-cyclic monophosphate level in the midbrain, in a mouse model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections. Adult male mice of the C57/BL strain were given three i.p. injections of physiological saline or three i.p. injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine solution in physiological saline at 2 h intervals (summary 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine dose: 40 mg/kg), and were killed 3, 7, or 14 days later. mRNA, protein level, and/or activities of neuronal nitric oxide synthase, soluble guanylyl cyclase, phosphodiesterase and guanosine 3',5'-cyclic monophosphate were determined. Immunohistochemistry showed about 75% decrease in the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed increased midbrain guanylyl cyclase and total nitric oxide synthase activities at 3, 7, and 14 days post-treatment. The specific neuronal nitric oxide synthase inhibitor 7-nitroindazole (10 microM) and the specific inducible nitric oxide synthase inhibitor 1400W (10 microM) inhibited the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced excess in nitric oxide synthase activity by 63-70 and 13-25%, respectively. The increases in total midbrain nitric oxide synthase activity were accompanied by elevated guanosine 3',5'-cyclic monophosphate, enhanced expression of neuronal nitric oxide synthase and of the beta1 subunit of guanylyl cyclase at both mRNA and protein levels that persisted up to the end of the observation period, and by enhanced neuronal nitric oxide synthase and guanylyl cyclase beta1 immunoreactivities in substantia nigra pars compacta 7 and 14 days after the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. The increases in guanylyl cyclase activity were found to occur exclusively due to increased maximal enzyme activity. No 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced change in phosphodiesterase activity has been detected in any brain region studied. 7-Nitroindazole prevented a significant increase in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced midbrain guanosine 3',5'-cyclic monophosphate level and neurodegeneration of dopaminergic neurons. These results raise the possibility that the nitric oxide/guanylyl cyclase/guanosine 3',5'-cyclic monophosphate signaling pathway may play a role in maintaining dopaminergic neurons function in substantia nigra pars compacta.
Collapse
Affiliation(s)
- M Chalimoniuk
- Department of Cellular Signaling, Medical Research Center, Polish Academy of Sciences, 5 Pawínskiego St., 02-106 Warsaw, Poland.
| | - N Lukacova
- Institute of Neurobiology, Slovak Academy of Sciences, 4 Soltesovej St., 040 01 Kosice, Slovak Republic
| | - J Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, 4 Soltesovej St., 040 01 Kosice, Slovak Republic
| | - J Langfort
- Department of Experimental Pharmacology, Medical Research Center, Polish Academy of Sciences, 5 Pawínskiego St., 02-106 Warsaw, Poland
| |
Collapse
|