1
|
Niquet J, Nguyen D, de Araujo Furtado M, Lumley L. Treatment of cholinergic-induced status epilepticus with polytherapy targeting GABA and glutamate receptors. Epilepsia Open 2023; 8 Suppl 1:S117-S140. [PMID: 36807554 PMCID: PMC10173853 DOI: 10.1002/epi4.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Despite new antiseizure medications, the development of cholinergic-induced refractory status epilepticus (RSE) continues to be a therapeutic challenge as pharmacoresistance to benzodiazepines and other antiseizure medications quickly develops. Studies conducted by Epilepsia. 2005;46:142 demonstrated that the initiation and maintenance of cholinergic-induced RSE are associated with trafficking and inactivation of gamma-aminobutyric acid A receptors (GABAA R) thought to contribute to the development of benzodiazepine pharmacoresistance. In addition, Dr. Wasterlain's laboratory reported that increased N-methyl-d-aspartate receptors (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) contribute to enhanced glutamatergic excitation (Neurobiol Dis. 2013;54:225; Epilepsia. 2013;54:78). Thus, Dr. Wasterlain postulated that targeting both maladaptive responses of reduced inhibition and increased excitation that is associated with cholinergic-induced RSE should improve therapeutic outcome. We currently review studies in several animal models of cholinergic-induced RSE that demonstrate that benzodiazepine monotherapy has reduced efficacy when treatment is delayed and that polytherapy with drugs that include a benzodiazepine (eg midazolam and diazepam) to counter loss of inhibition, concurrent with an NMDA antagonist (eg ketamine) to reduce excitation provide improved efficacy. Improved efficacy with polytherapy against cholinergic-induced seizure is demonstrated by reduction in (1) seizure severity, (2) epileptogenesis, and (3) neurodegeneration compared with monotherapy. Animal models reviewed include pilocarpine-induced seizure in rats, organophosphorus nerve agent (OPNA)-induced seizure in rats, and OPNA-induced seizure in two mouse models: (1) carboxylesterase knockout (Es1-/- ) mice which, similarly to humans, lack plasma carboxylesterase and (2) human acetylcholinesterase knock-in carboxylesterase knockout (KIKO) mice. We also review studies showing that supplementing midazolam and ketamine with a third antiseizure medication (valproate or phenobarbital) that targets a nonbenzodiazepine site rapidly terminates RSE and provides further protection against cholinergic-induced SE. Finally, we review studies on the benefits of simultaneous compared with sequential drug treatments and the clinical implications that lead us to predict improved efficacy of early combination drug therapies. The data generated from seminal rodent studies of efficacious treatment of cholinergic-induced RSE conducted under Dr. Wasterlain's guidance suggest that future clinical trials should treat the inadequate inhibition and temper the excess excitation that characterize RSE and that early combination therapies may provide improved outcome over benzodiazepine monotherapy.
Collapse
Affiliation(s)
- Jerome Niquet
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Epilepsy Research LaboratoryVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Donna Nguyen
- Neuroscience DepartmentU.S. Army Medical Research Institute of Chemical Defense (USAMRICD)Aberdeen Proving GroundMarylandUSA
| | | | - Lucille Lumley
- Neuroscience DepartmentU.S. Army Medical Research Institute of Chemical Defense (USAMRICD)Aberdeen Proving GroundMarylandUSA
| |
Collapse
|
2
|
Shih TM. A novel genetically modified mouse seizure model for evaluating anticonvulsive and neuroprotective efficacy of an A 1 adenosine receptor agonist following soman intoxication. Toxicol Appl Pharmacol 2023; 464:116437. [PMID: 36849019 PMCID: PMC10228141 DOI: 10.1016/j.taap.2023.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2022] [Revised: 01/27/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Recently a novel humanized mouse strain has been successfully generated, in which serum carboxylesterase (CES) knock out (KO) mice (Es1-/-) were further genetically modified by knocking in (KI), or adding, the gene that encodes the human form of acetylcholinesterase (AChE). The resulting human AChE KI and serum CES KO (or KIKO) mouse strain should not only exhibit organophosphorus nerve agent (NA) intoxication in a manner more similar to humans, but also display AChE-specific treatment responses more closely mimicking those of humans to facilitate data translation to pre-clinic trials. In this study, we utilized the KIKO mouse to develop a seizure model for NA medical countermeasure investigation, and then applied it to evaluate the anticonvulsant and neuroprotectant (A/N) efficacy of a specific A1 adenosine receptor (A1AR) agonist, N-bicyclo-(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), which has been shown in a rat seizure model to be a potent A/N compound. Male mice surgically implanted with cortical electroencephalographic (EEG) electrodes a week earlier were pretreated with HI-6 and challenged with various doses (26 to 47 μg/kg, SC) of soman (GD) to determine a minimum effective dose (MED) that induced sustained status epilepticus (SSE) activity in 100% of animals while causing minimum lethality at 24 h. The GD dose selected was then used to investigate the MED doses of ENBA when given either immediately following SSE initiation (similar to wartime military first aid application) or at 15 min after ongoing SSE seizure activity (applicable to civilian chemical attack emergency triage). The selected GD dose of 33 μg/kg (1.4 x LD50) generated SSE in 100% of KIKO mice and produced only 30% mortality. ENBA at a dose as little as 10 mg/kg, IP, caused isoelectric EEG activity within minutes after administration in naïve un-exposed KIKO mice. The MED doses of ENBA to terminate GD-induced SSE activity were determined to be 10 and 15 mg/kg when treatment was given at the time of SSE onset and when seizure activity was ongoing for 15 min, respectively. These doses were much lower than in the non-genetically modified rat model, which required an ENBA dose of 60 mg/kg to terminate SSE in 100% GD-exposed rats. At MED doses, all mice survived for 24 h, and no neuropathology was observed when the SSE was stopped. The findings confirmed that ENBA is a potent A/N for both immediate and delayed (i.e., dual purposed) therapy to victims of NA exposure and serves as a promising neuroprotective antidotal and adjunctive medical countermeasure candidate for pre-clinical research and development for human application.
Collapse
Affiliation(s)
- Tsung-Ming Shih
- Neuroscience Department, Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD 21010-5400, USA..
| |
Collapse
|
3
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Morgan JE, Wilson SC, Travis BJ, Bagri KH, Pagarigan KT, Belski HM, Jackson C, Bounader KM, Coppola JM, Hornung EN, Johnson JE, McCarren HS. Refractory and Super-Refractory Status Epilepticus in Nerve Agent-Poisoned Rats Following Application of Standard Clinical Treatment Guidelines. Front Neurosci 2021; 15:732213. [PMID: 34566572 PMCID: PMC8462486 DOI: 10.3389/fnins.2021.732213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nerve agents (NAs) induce a severe cholinergic crisis that can lead to status epilepticus (SE). Current guidelines for treatment of NA-induced SE only include prehospital benzodiazepines, which may not fully resolve this life-threatening condition. This study examined the efficacy of general clinical protocols for treatment of SE in the specific context of NA poisoning in adult male rats. Treatment with both intramuscular and intravenous benzodiazepines was entirely insufficient to control SE. Second line intervention with valproate (VPA) initially terminated SE in 35% of rats, but seizures always returned. Phenobarbital (PHB) was more effective, with SE terminating in 56% of rats and 19% of rats remaining seizure-free for at least 24 h. The majority of rats demonstrated refractory SE (RSE) and required treatment with a continuous third-line anesthetic. Both ketamine (KET) and propofol (PRO) led to high levels of mortality, and nearly all rats on these therapies had breakthrough seizure activity, demonstrating super-refractory SE (SRSE). For the small subset of rats in which SE was fully resolved, significant improvements over controls were observed in recovery metrics, behavioral assays, and brain pathology. Together these data suggest that NA-induced SE is particularly severe, but aggressive treatment in the intensive care setting can lead to positive functional outcomes for casualties.
Collapse
Affiliation(s)
- Julia E Morgan
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Sara C Wilson
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Benjamin J Travis
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kathryn H Bagri
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kathleen T Pagarigan
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hannah M Belski
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Cecelia Jackson
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kevin M Bounader
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Jessica M Coppola
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Eden N Hornung
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - James E Johnson
- Comparative Pathology Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hilary S McCarren
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| |
Collapse
|
5
|
Vidaurre J, Albert DVF, Parker W, Naprawa J, Mittlesteadt J, Idris AS, Patel AD. Improving time for administration of second-line antiseizure medications for children with generalized convulsive status epilepticus using quality improvement methodology. Epilepsia 2021; 62:2496-2504. [PMID: 34328222 DOI: 10.1111/epi.17026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Status epilepticus is a life-threatening neurological emergency. However, delay in median time to administration of second-line antiseizure medication exists. The aim of this quality improvement initiative was to decrease the average delay before fosphenytoin is administered for pediatric patients with generalized convulsive status epilepticus from 30 min (baseline data collected in 2013) to 15 min (50% reduction) by December 2015 and sustain this for 1 year. METHODS Our team conducted an analysis of baseline data for patients with continuous generalized convulsive status epilepticus who received fosphenytoin after receiving first-line benzodiazepine treatment. Using quality improvement methodology, areas for improvement were identified and specific interventions developed and implemented. A timeline of 15 min to initiate fosphenytoin administration after failure of first-line treatment was considered reasonable and achievable as a project aim. RESULTS A total of 199 patients were included in the dataset for the project. The database included patients aged 1 month and older. Ninety-eight percent of patients were between 1 month and 19 years of age. The gender distribution was even, with 54% of patients being White or Caucasian, 30% African American or Black, and 16% classified as "other." From January 2014 through December 2019, the average time before initiating fosphenytoin administration after failure of benzodiazepine therapy, for patients with generalized convulsive status epilepticus, decreased from 30 min (SD = 45.7) to 11.4 min (SD = 8.2, p = .043), thus reducing time to administration by 62%. SIGNIFICANCE Quality improvement methodology can be successfully applied to decrease administration time between first- and second-line antiseizure medications for status epilepticus.
Collapse
Affiliation(s)
- Jorge Vidaurre
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital/Ohio State University, Columbus, Ohio, USA
| | - Dara V F Albert
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital/Ohio State University, Columbus, Ohio, USA
| | - William Parker
- Quality Improvement Services at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jim Naprawa
- Section of Emergency Medicine, Benioff Children's Hospital, University of California, San Francisco, Oakland, California, USA
| | - Jackson Mittlesteadt
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital/Ohio State University, Columbus, Ohio, USA
| | - Ali-Shan Idris
- Division of Neurology, Mount Carmel Health System, Columbus, Ohio, USA
| | - Anup D Patel
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital/Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Barker BS, Spampanato J, McCarren HS, Berger K, Jackson CE, Yeung DT, Dudek FE, McDonough JH. The K v7 Modulator, Retigabine, is an Efficacious Antiseizure Drug for Delayed Treatment of Organophosphate-induced Status Epilepticus. Neuroscience 2021; 463:143-158. [PMID: 33836243 PMCID: PMC8142924 DOI: 10.1016/j.neuroscience.2021.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Benzodiazepines are the primary treatment option for organophosphate (OP)-induced status epilepticus (SE), but these antiseizure drugs (ASDs) lose efficacy as treatment is delayed. In the event of a mass civilian or military exposure, significant treatment delays are likely. New ASDs that combat benzodiazepine-resistant, OP-induced SE are critically needed, particularly if they can be efficacious after a long treatment delay. This study evaluated the efficacy of the Kv7 channel modulator, retigabine, as a novel therapy for OP-induced SE. Adult, male rats were exposed to soman or diisopropyl fluorophosphate (DFP) to elicit SE and monitored by electroencephalogram (EEG) recording. Retigabine was administered alone or adjunctive to midazolam (MDZ) at delays of 20- or 40-min in the soman model, and 60-min in the DFP model. Following EEG recordings, rats were euthanized and brain tissue was collected for Fluoro-Jade B (FJB) staining to quantify neuronal death. In the DFP model, MDZ + 15 mg/kg retigabine suppressed seizure activity and was neuroprotective. In the soman model, MDZ + 30 mg/kg retigabine suppressed seizures at 20- and 40-min delays. Without MDZ, 15 mg/kg retigabine provided partial antiseizure and neuroprotectant efficacy in the DFP model, while 30 mg/kg without MDZ failed to attenuate soman-induced SE. At 60 mg/kg, retigabine without MDZ strongly reduced seizure activity and neuronal degeneration against soman-induce SE. This study demonstrates the antiseizure and neuroprotective efficacy of retigabine against OP-induced SE. Our data suggest retigabine could be a useful adjunct to standard-of-care and has potential for use in the absence of MDZ.
Collapse
Affiliation(s)
- Bryan S Barker
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | - Hilary S McCarren
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Kyle Berger
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Cecelia E Jackson
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - David T Yeung
- National Institutes of Health/National Institute of Allergy and Infectious Disease, Bethesda, MD 20892, USA
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - John H McDonough
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
7
|
Charalambous M, Volk HA, Van Ham L, Bhatti SFM. First-line management of canine status epilepticus at home and in hospital-opportunities and limitations of the various administration routes of benzodiazepines. BMC Vet Res 2021; 17:103. [PMID: 33663513 PMCID: PMC7934266 DOI: 10.1186/s12917-021-02805-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marios Charalambous
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
8
|
Lumley L, Niquet J, Marrero-Rosado B, Schultz M, Rossetti F, de Araujo Furtado M, Wasterlain C. Treatment of acetylcholinesterase inhibitor-induced seizures with polytherapy targeting GABA and glutamate receptors. Neuropharmacology 2021; 185:108444. [PMID: 33359073 PMCID: PMC7944923 DOI: 10.1016/j.neuropharm.2020.108444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2020] [Revised: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
The initiation and maintenance of cholinergic-induced status epilepticus (SE) are associated with decreased synaptic gamma-aminobutyric acid A receptors (GABAAR) and increased N-methyl-d-aspartate receptors (NMDAR) and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). We hypothesized that trafficking of synaptic GABAAR and glutamate receptors is maladaptive and contributes to the pharmacoresistance to antiseizure drugs; targeting these components should ameliorate the pathophysiological consequences of refractory SE (RSE). We review studies of rodent models of cholinergic-induced SE, in which we used a benzodiazepine allosteric GABAAR modulator to correct loss of inhibition, concurrent with the NMDA antagonist ketamine to reduce excitation caused by increased synaptic localization of NMDAR and AMPAR, which are NMDAR-dependent. Models included lithium/pilocarpine-induced SE in rats and soman-induced SE in rats and in Es1-/- mice, which similar to humans lack plasma carboxylesterase, and may better model soman toxicity. These model human soman toxicity and are refractory to benzodiazepines administered at 40 min after seizure onset, when enough synaptic GABAAR may not be available to restore inhibition. Ketamine-midazolam combination reduces seizure severity, epileptogenesis, performance deficits and neuropathology following cholinergic-induced SE. Supplementing that treatment with valproate, which targets a non-benzodiazepine site, effectively terminates RSE, providing further benefit against cholinergic-induced SE. The therapeutic index of drug combinations is also reviewed and we show the improved efficacy of simultaneous administration of midazolam, ketamine and valproate compared to sequential drug administration. These data suggest that future clinical trials should treat both the lack of sufficient inhibition and the excess excitation that characterize RSE, and include early combination drug therapies. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Lucille Lumley
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, USA.
| | - Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Brenda Marrero-Rosado
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, USA
| | - Mark Schultz
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD, USA
| | - Franco Rossetti
- Military Psychiatry and Neuroscience Department, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Claude Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
9
|
Barker BS, Spampanato J, McCarren HS, Smolik M, Jackson CE, Hornung EN, Yeung DT, Dudek FE, McDonough JH. Screening for Efficacious Anticonvulsants and Neuroprotectants in Delayed Treatment Models of Organophosphate-induced Status Epilepticus. Neuroscience 2020; 425:280-300. [PMID: 31783100 PMCID: PMC6935402 DOI: 10.1016/j.neuroscience.2019.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 01/04/2023]
Abstract
Organophosphorus (OP) compounds are deadly chemicals that exert their intoxicating effects through the irreversible inhibition of acetylcholinesterase (AChE). In addition to an excess of peripheral ailments, OP intoxication induces status epilepticus (SE) which if left untreated may lead to permanent brain damage or death. Benzodiazepines are typically the primary therapies for OP-induced SE, but these drugs lose efficacy as treatment time is delayed. The CounterACT Neurotherapeutic Screening (CNS) Program was therefore established by the National Institutes of Health (NIH) to discover novel treatments that may be administered adjunctively with the currently approved medical countermeasures for OP-induced SE in a delayed treatment scenario. The CNS program utilizes in vivo EEG recordings and Fluoro-JadeB (FJB) histopathology in two established rat models of OP-induced SE, soman (GD) and diisopropylfluorophosphate (DFP), to evaluate the anticonvulsant and neuroprotectant efficacy of novel adjunct therapies when administered at 20 or 60 min after the induction of OP-induced SE. Here we report the results of multiple compounds that have previously shown anticonvulsant or neuroprotectant efficacy in other models of epilepsy or trauma. Drugs tested were ganaxolone, diazoxide, bumetanide, propylparaben, citicoline, MDL-28170, and chloroquine. EEG analysis revealed that ganaxolone demonstrated the most robust anticonvulsant activity, whereas all other drugs failed to attenuate ictal activity in both models of OP-induced SE. FJB staining demonstrated that none of the tested drugs had widespread neuroprotective abilities. Overall these data suggest that neurosteroids may represent the most promising anticonvulsant option for OP-induced SE out of the seven unique mechanisms tested here. Additionally, these results suggest that drugs that provide significant neuroprotection from OP-induced SE without some degree of anticonvulsant activity are elusive, which further highlights the necessity to continue screening novel adjunct treatments through the CNS program.
Collapse
Affiliation(s)
- Bryan S Barker
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA.
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Hilary S McCarren
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Melissa Smolik
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Cecelia E Jackson
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Eden N Hornung
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - David T Yeung
- Chemical Countermeasures Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - John H McDonough
- Medical Toxicology Research Division, Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
10
|
Niquet J, Lumley L, Baldwin R, Rossetti F, Suchomelova L, Naylor D, Estrada IBF, Schultz M, Furtado MDA, Wasterlain CG. Rational polytherapy in the treatment of cholinergic seizures. Neurobiol Dis 2019; 133:104537. [PMID: 31454548 DOI: 10.1016/j.nbd.2019.104537] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022] Open
Abstract
The initiation and maintenance phases of cholinergic status epilepticus (SE) are associated with maladaptive trafficking of synaptic GABAA and glutamate receptors. The resulting pharmacoresistance reflects a decrease in synaptic GABAA receptors and increase in NMDA and AMPA receptors, which tilt the balance between inhibition and excitation in favor of the latter. If these changes are important to the pathophysiology of SE, both should be treated, and blocking their consequences should have therapeutic potential. We used a model of benzodiazepine-refractory SE (RSE) (Tetz et al., 2006) and a model of soman-induced SE to test this hypothesis. Treatment of RSE with combinations of the GABAAR agonists midazolam or diazepam and the NMDAR antagonists MK-801 or ketamine terminated RSE unresponsive to high-dose monotherapy with benzodiazepines, ketamine or other antiepileptic drugs (AEDs). It also reduced RSE-associated neuronal injury, spatial memory deficits and the occurrence of spontaneous recurrent seizures (SRS), tested several weeks after SE. Treatment of sc soman-induced SE similarly showed much greater reduction of EEG power by a combination of midazolam with ketamine, compared to midazolam monotherapy. When treating late (40 min after seizure onset), there may not be enough synaptic GABAAR left to be able to restore inhibition with maximal GABAAR stimulation, and further benefit is derived from the addition of an AED which increases inhibition or reduces excitation by a non-GABAergic mechanism. The midazolam-ketamine-valproate combination is effective in terminating RSE. 3-D isobolograms demonstrate positive cooperativity between midazolam, ketamine and valproate, without any interaction between the toxicity of these drugs, so that the therapeutic index is increased by combination therapy between GABAAR agonist, NMDAR antagonist and selective AEDs. We compared this drug combination based on the receptor trafficking hypothesis to treatments based on clinical practice. The midazolam-ketamine-valproate combination is far more effective in stopping RSE than the midazolam-fosphenytoin-valproate combination inspired from clinical guidelines. Furthermore, sequential administration of midazolam, ketamine and valproate is far less effective than simultaneous treatment with the same drugs at the same dose. These data suggest that we should re-evaluate our traditional treatment of RSE, and that treatment should be based on pathophysiology. The search for a better drug has to deal with the fact that most monotherapy leaves half the problem untreated. The search for a better benzodiazepine should acknowledge the main cause of pharmacoresistance, which is loss of synaptic GABAAR. Future clinical trials should consider treating both the failure of inhibition and the runaway excitation which characterize RSE, and should include an early polytherapy arm.
Collapse
Affiliation(s)
- Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Lucille Lumley
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Roger Baldwin
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Franco Rossetti
- Military Psychiatry and Neuroscience Department, Walter Reed Army institute of Research, Silver Spring, MD, USA
| | - Lucie Suchomelova
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - David Naylor
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ireri Betsabe Franco Estrada
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Mark Schultz
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
| | - Marcio de Araujo Furtado
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA; Military Psychiatry and Neuroscience Department, Walter Reed Army institute of Research, Silver Spring, MD, USA
| | - Claude G Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA., USA.
| |
Collapse
|
11
|
Gaínza-Lein M, Fernández IS, Ulate-Campos A, Loddenkemper T, Ostendorf AP. Timing in the treatment of status epilepticus: From basics to the clinic. Seizure 2019; 68:22-30. [DOI: 10.1016/j.seizure.2018.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
|
12
|
McCarren HS, Arbutus JA, Ardinger C, Dunn EN, Jackson CE, McDonough JH. Dexmedetomidine stops benzodiazepine-refractory nerve agent-induced status epilepticus. Epilepsy Res 2018; 141:1-12. [PMID: 29414381 DOI: 10.1016/j.eplepsyres.2018.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2017] [Revised: 12/21/2017] [Accepted: 01/07/2018] [Indexed: 12/15/2022]
Abstract
Nerve agents are highly toxic chemicals that pose an imminent threat to soldiers and civilians alike. Nerve agent exposure leads to an increase in acetylcholine within the central nervous system, resulting in development of protracted seizures known as status epilepticus (SE). Currently, benzodiazepines are the standard of care for nerve agent-induced SE, but their efficacy quickly wanes as the time to treatment increases. Here, we examine the role of the α2-adrenoceptor in termination of nerve agent-induced SE using the highly specific agonist dexmedetomidine (DEX). Adult male rats were exposed to soman and entered SE as confirmed by electroencephalograph (EEG). We observed that administration of DEX in combination with the benzodiazepine midazolam (MDZ) 20 or 40 min after the onset of SE stopped seizures and returned processed EEG measurements to baseline levels. The protective effect of DEX was blocked by the α2-adrenoceptor antagonist atipamezole (ATI), but ATI failed to restore seizure activity after it was already halted by DEX in most cases, suggesting that α2-adrenoceptors may be involved in initiating SE cessation rather than merely suppressing seizure activity. Histologically, treatment with DEX + MDZ significantly reduced the number of dying neurons as measured by FluoroJade B in the amygdala, thalamus, and piriform cortex, but did not protect the hippocampus or parietal cortex even when SE was successfully halted. We conclude that DEX serves not just as a valuable potential addition to the anticonvulsant regimen for nerve agent exposure, but also as a tool for dissecting the neural circuitry that drives SE.
Collapse
Affiliation(s)
- Hilary S McCarren
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States.
| | - Julia A Arbutus
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| | - Cherish Ardinger
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| | - Emily N Dunn
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| | - Cecelia E Jackson
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| | - John H McDonough
- USAMRICD, Medical Toxicology Research Division, Neuroscience Branch, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, United States
| |
Collapse
|
13
|
Rescue Medications in Epilepsy Patients: A Family Perspective. Seizure 2017; 52:188-194. [DOI: 10.1016/j.seizure.2017.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2017] [Revised: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 11/20/2022] Open
|
14
|
Joshi S, Rajasekaran K, Sun H, Williamson J, Kapur J. Enhanced AMPA receptor-mediated neurotransmission on CA1 pyramidal neurons during status epilepticus. Neurobiol Dis 2017; 103:45-53. [PMID: 28377128 PMCID: PMC5481781 DOI: 10.1016/j.nbd.2017.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022] Open
Abstract
Status epilepticus (SE) is a common neurological emergency that results from the failure of the mechanisms responsible for seizure termination or the initiation of mechanisms that lead to abnormally prolonged seizures. Although the failure of inhibitory mechanisms during SE is well understood, the seizure-initiating mechanisms are poorly understood. We tested whether hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission was enhanced during SE and assessed the underlying molecular mechanism. In animals in self-sustaining limbic SE the amplitudes of the miniature, spontaneous, and AMPA-evoked excitatory currents recorded from the CA1 pyramidal neurons were larger than those recorded in the controls. The evoked EPSCs rectified inwardly. In these animals, the surface expression of GluA1 subunit-containing AMPARs was increased in the CA1 pyramidal neurons. The phosphorylation of the GluA1 subunit on S831 and S845 residues was reduced in animals in SE. In contrast, the GluA1 subunit surface expression and AMPAR-mediated neurotransmission of dentate granule cells (DGCs) was not altered. Treating animals in SE with the NMDAR antagonist MK-801 or with diazaepam blocked the increased surface expression of the GluA1 subunits. NMDAR blockade also prevented the dephosphorylation of the S845 residue but not that of S831. Targeting NMDARs and AMPARs may provide novel strategies to treat benzodiazepine-refractory SE.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | - Karthik Rajasekaran
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States; Department of Neuroscience University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
15
|
Joshi S, Rajasekaran K, Williamson J, Kapur J. Neurosteroid-sensitive δ-GABA A receptors: A role in epileptogenesis? Epilepsia 2017; 58:494-504. [PMID: 28452419 DOI: 10.1111/epi.13660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE We determined the role of the neurosteroid-sensitive δ subunit-containing γ-aminobutyric acid A receptors (δ-GABARs) in epileptogenesis. METHODS Status epilepticus (SE) was induced via lithium pilocarpine in adult rats, and seizures were assessed by continuous video-electroencephalography (EEG) monitoring. Finasteride was administered to inhibit neurosteroid synthesis. The total and surface protein expression of hippocampal δ, α4, and γ2 GABAR subunits was studied using biotinylation assays and Western blotting. Neurosteroid potentiation of the tonic currents of dentate granule cells (DGCs) was measured by whole-cell patch-clamp technique. Finally, the effects of inhibiting N-methyl-d-aspartate receptors (NMDARs) during SE on the long-term plasticity of δ-GABARs, neurosteroid-induced modulation of tonic current, and epileptogenesis were studied. RESULTS The inhibition of neurosteroid synthesis 4 days after SE triggered acute seizures and accelerated the onset of chronic recurrent spontaneous seizures (epilepsy). The down-regulation of neurosteroid-sensitive δ-GABARs occurred prior to the onset of epilepsy, whereas an increased expression of the γ2-GABAR subunits occurred after seizure onset. MK801 blockade of NMDARs during SE preserved the expression of neurosteroid-sensitive δ-GABARs. NMDAR blockade during SE also prevented the onset of spontaneous seizures. SIGNIFICANCE Changes in neurosteroid-sensitive δ-GABAR expression correlated temporally with epileptogenesis. These findings raise the possibility that δ-GABAR plasticity may play a role in epileptogenesis.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, Virginia, U.S.A
| | - Karthik Rajasekaran
- Department of Neurology, University of Virginia, Charlottesville, Virginia, U.S.A
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, Virginia, U.S.A
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia, U.S.A.,Department of Neuroscience, University of Virginia, Charlottesville, Virginia, U.S.A
| |
Collapse
|
16
|
Walker MC. Pathophysiology of status epilepticus. Neurosci Lett 2016; 667:84-91. [PMID: 28011391 DOI: 10.1016/j.neulet.2016.12.044] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) is the maximal expression of epilepsy with a high morbidity and mortality. It occurs due to the failure of mechanisms that terminate seizures. Both human and animal data indicate that the longer a seizure lasts, the less likely it is to stop. Recent evidence suggests that there is a critical transition from an ictal to a post-ictal state, associated with a transition from a spatio-temporally desynchronized state to a highly synchronized state, respectively. As SE continues, it becomes progressively resistant to drugs, in particular benzodiazepines due partly to NMDA receptor-dependent internalization of GABA(A) receptors. Moreover, excessive calcium entry into neurons through excessive NMDA receptor activation results in activation of nitric oxide synthase, calpains, and NADPH oxidase. The latter enzyme plays a critical part in the generation of seizure-dependent reactive oxygen species. Calcium also accumulates in mitochondria resulting in mitochondrial failure (decreased ATP production), and opening of the mitochondrial permeability transition pore. Together these changes result in status epilepticus-dependent neuronal death via several pathways. Multiple downstream mechanisms including inflammation, break down of the blood-brain barrier, and changes in gene expression can contribute to later pathological processes including chronic epilepsy and cognitive decline.
Collapse
Affiliation(s)
- Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|
17
|
|
18
|
Shakarjian MP, Ali MS, Velíšková J, Stanton PK, Heck DE, Velíšek L. Combined diazepam and MK-801 therapy provides synergistic protection from tetramethylenedisulfotetramine-induced tonic-clonic seizures and lethality in mice. Neurotoxicology 2015; 48:100-8. [PMID: 25783504 DOI: 10.1016/j.neuro.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2015] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 12/21/2022]
Abstract
The synthetic rodenticide, tetramethylenedisulfotetramine (TMDT), is a persistent and highly lethal GABA-gated Cl(-) channel blocker. TMDT is clandestinely produced, remains popular in mainland China, and causes numerous unintentional and deliberate poisonings worldwide. TMDT is odorless, tasteless, and easy to manufacture, features that make it a potential weapon of terrorism. There is no effective treatment. We previously characterized the effects of TMDT in C57BL/6 mice and surveyed efficacies of GABAergic and glutamatergic anticonvulsant treatments. At 0.4 mg/kg i.p., TMDT produced neurotoxic symptomatology consisting of twitches, clonic and tonic-clonic seizures, often progressing to status epilepticus and death. If administered immediately after the occurrence of the first clonic seizure, the benzodiazepine diazepam (DZP) effectively prevented all subsequent seizure symptoms, whereas the NMDA receptor antagonist dizocilpine (MK-801) primarily prevented tonic-clonic seizures. The latter agent, however, appeared to be more effective at preventing delayed death. The present study further explored these phenomena, and characterized the therapeutic actions of DZP and MK-801 as combinations. Joint treatment with both DZP and MK-801 displayed synergistic protection against tonic-clonic seizures and 24 h lethality as determined by isobolographic analysis. Clonic seizures, however, remained poorly controlled. A modification of the treatment regimen, where DZP was followed 10 min later by MK-801, yielded a reduction in both types of seizures and improved overall outcome. Simultaneous monitoring of subjects via EEG and videography confirmed effectiveness of this sequential regimen. We conclude that TMDT blockage at GABAA receptors involves early activation of NMDA receptors, which contribute to persistent ictogenic activity. Our data predict that a sequential combination treatment with DZP followed by MK-801 will be superior to either individual therapy with, or simultaneous administration of, these two agents in treating TMDT poisoning.
Collapse
Affiliation(s)
- Michael P Shakarjian
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, NY 10595, United States; Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, United States; Department of Medicine, Division of Pulmonary and Critical Care Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| | - Mahil S Ali
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, NY 10595, United States.
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, United States; Department of Obstetrics and Gynecology, New York Medical College, Valhalla, NY 10595, United States; Department of Neurology, New York Medical College, Valhalla, NY 10595, United States.
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, United States; Department of Neurology, New York Medical College, Valhalla, NY 10595, United States.
| | - Diane E Heck
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, NY 10595, United States.
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, United States; Department of Neurology, New York Medical College, Valhalla, NY 10595, United States; Department of Pediatrics, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
19
|
Eckel R, Szulc B, Walker MC, Kittler JT. Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity. Neuropharmacology 2014; 88:82-90. [PMID: 25245802 PMCID: PMC4239296 DOI: 10.1016/j.neuropharm.2014.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022]
Abstract
Fast inhibitory signalling in the mammalian brain is mediated by gamma-aminobutyric acid type A receptors (GABAARs), which are targets for anti-epileptic therapy such as benzodiazepines. GABAARs undergo tightly regulated trafficking processes that are essential for maintenance and physiological modulation of inhibitory strength. The trafficking of GABAARs to and from the membrane is altered during prolonged seizures such as in Status Epilepticus (SE) and has been suggested to contribute to benzodiazepine pharmacoresistance in patients with SE. However, the intracellular signalling mechanisms that cause this modification in GABAAR trafficking remain poorly understood. In this study, we investigate the surface stability of GABAARs during SE utilising the low Mg(2+) model in hippocampal rat neurons. Live-cell imaging of super ecliptic pHluorin (SEP)-tagged α2 subunit containing GABAARs during low Mg(2+) conditions reveals that the somatic surface receptor pool undergoes down-regulation dependent on N-methyl-d-aspartate receptor (NMDAR) activity. Analysis of the intracellular Ca(2+) signal during low Mg(2+) using the Ca(2+)-indicator Fluo4 shows that this reduction of surface GABAARs correlates well with the timeline of intracellular Ca(2+) changes. Furthermore, we show that the activation of the phosphatase calcineurin was required for the decrease in surface GABAARs in neurons undergoing epileptiform activity. These results indicate that somatic modulation of GABAAR trafficking during epileptiform activity in vitro is mediated by calcineurin activation which is linked to changes in intracellular Ca(2+) concentrations. These mechanisms could account for benzodiazepine pharmacoresistance and the maintenance of recurrent seizure activity, and reveal potential novel targets for the treatment of SE.
Collapse
Affiliation(s)
- Ramona Eckel
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Blanka Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
20
|
Critical role of canonical transient receptor potential channel 7 in initiation of seizures. Proc Natl Acad Sci U S A 2014; 111:11533-8. [PMID: 25049394 DOI: 10.1073/pnas.1411442111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023] Open
Abstract
Status epilepticus (SE) is a life-threatening disease that has been recognized since antiquity but still causes over 50,000 deaths annually in the United States. The prevailing view on the pathophysiology of SE is that it is sustained by a loss of normal inhibitory mechanisms of neuronal activity. However, the early process leading to the initiation of SE is not well understood. Here, we show that, as seen in electroencephalograms, SE induced by the muscarinic agonist pilocarpine in mice is preceded by a specific increase in the gamma wave, and genetic ablation of canonical transient receptor potential channel (TRPC) 7 significantly reduces this pilocarpine-induced increase of gamma wave activity, preventing the occurrence of SE. At the cellular level, TRPC7 plays a critical role in the generation of spontaneous epileptiform burst firing in cornu ammonis (CA) 3 pyramidal neurons in brain slices. At the synaptic level, TRPC7 plays a significant role in the long-term potentiation at the CA3 recurrent collateral synapses and Schaffer collateral-CA1 synapses, but not at the mossy fiber-CA3 synapses. Taken together, our data suggest that epileptiform burst firing generated in the CA3 region by activity-dependent enhancement of recurrent collateral synapses may be an early event in the initiation process of SE and that TRPC7 plays a critical role in this cellular event. Our findings reveal that TRPC7 is intimately involved in the initiation of seizures both in vitro and in vivo. To our knowledge, this contribution to initiation of seizures is the first identified functional role for the TRPC7 ion channel.
Collapse
|
21
|
Hanada T, Ido K, Kosasa T. Effect of perampanel, a novel AMPA antagonist, on benzodiazepine-resistant status epilepticus in a lithium-pilocarpine rat model. Pharmacol Res Perspect 2014; 2:e00063. [PMID: 25505607 PMCID: PMC4186423 DOI: 10.1002/prp2.63] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2014] [Revised: 06/17/2014] [Accepted: 06/24/2014] [Indexed: 12/15/2022] Open
Abstract
This study assessed the efficacy of diazepam, and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonists perampanel and GYKI52466 in a lithium-pilocarpine status epilepticus (SE) model. SE was induced in rats using lithium chloride, scopolamine methyl bromide, and pilocarpine. Diazepam 10, 20, or 40 mg kg−1, or perampanel 1, 2.5, 5, or 8 mg kg−1 were administered intravenously at 10 or 30 min after seizure onset, and GYKI52466 50 mg kg−1, or combinations of diazepam 2.5–5 mg kg−1 and perampanel 0.5–1 mg kg−1, were administered intravenously at 30 min after seizure onset. Diazepam 20 mg kg−1 terminated seizures (based on electroencephalography and assessment of behavioral seizures) in 2/6 rats at 10 min and 0/6 rats at 30 min (ED50: 10 min, 30 mg kg−1; 30 min, not determined). Perampanel 8 mg kg−1 terminated seizures in 6/6 rats at both 10 and 30 min (ED50: 10 min 1.7 mg kg−1; 30 min, 5.1 mg kg−1). GYKI52466 50 mg kg−1 terminated seizures in 2/4 rats at 30 min. Co-administration of diazepam 5 mg kg−1 and perampanel 1 mg kg−1 terminated seizures in 9/9 rats at 30 min. In conclusion, perampanel and GYKI52466 provided efficacy in a lithium-pilocarpine SE model at 30 min after seizure onset, when SE was refractory to diazepam, supporting the therapeutic potential of AMPA receptor antagonists for refractory SE. The perampanel dose required to terminate seizures was reduced by combination with diazepam, suggesting synergy.
Collapse
Affiliation(s)
- Takahisa Hanada
- Global Biopharmacology, Neuroscience & General Medicine Product Creation System, Eisai Co., Ltd Tsukuba, Ibaraki, Japan ; Center for Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Ibaraki, Japan
| | - Katsutoshi Ido
- Global Biopharmacology, Neuroscience & General Medicine Product Creation System, Eisai Co., Ltd Tsukuba, Ibaraki, Japan
| | - Takashi Kosasa
- Global Biopharmacology, Neuroscience & General Medicine Product Creation System, Eisai Co., Ltd Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Deeb TZ, Nakamura Y, Frost GD, Davies PA, Moss SJ. Disrupted Cl(-) homeostasis contributes to reductions in the inhibitory efficacy of diazepam during hyperexcited states. Eur J Neurosci 2013; 38:2453-67. [PMID: 23627375 PMCID: PMC3735799 DOI: 10.1111/ejn.12241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2013] [Revised: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 11/28/2022]
Abstract
The K(+) -Cl(-) cotransporter type 2 is the major Cl(-) extrusion mechanism in most adult neurons. This process in turn leads to Cl(-) influx upon activation of γ-aminobutyric acid type A (GABAA ) receptors and the canonical hyperpolarising inhibitory postsynaptic potential. Several neurological disorders are treated with drugs that target and enhance GABAA receptor signaling, including the commonly used benzodiazepine diazepam and the anesthetic propofol. Some of these disorders are also associated with deficits in GABAA signaling and become less sensitive to therapeutic drugs that target GABAA receptors. To date, it is unknown if alterations in the neuronal Cl(-) gradient affect the efficacies of diazepam and propofol. We therefore used the in vitro model of glutamate-induced hyperexcitability to test if alterations in the Cl(-) gradient affect the efficacy of GABAA modulators. We exclusively utilised the gramicidin perforated-patch-clamp configuration to preserve the endogenous Cl(-) gradient in rat neurons. Brief exposure to glutamate reduced the inhibitory efficacy of diazepam within 5 min, which was caused by the collapse of the Cl(-) gradient, and not due to reductions in GABAA receptor number. Unlike diazepam, propofol retained its efficacy by shunting the membrane conductance despite the glutamate-induced appearance of depolarising GABAA -mediated currents. Similarly, pharmacological inhibition of K(+) -Cl(-) cotransporter type 2 by furosemide disrupted Cl(-) homeostasis and reduced the efficacy of diazepam but not propofol. Collectively our results suggest that pathological hyperexcitable conditions could cause the rapid accumulation of intracellular Cl(-) and the appearance of depolarising GABAA -mediated currents that would decrease the efficacy of diazepam.
Collapse
Affiliation(s)
- Tarek Z Deeb
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | | | | | | | | |
Collapse
|
23
|
Joshi S, Kapur J. N-methyl-D-aspartic acid receptor activation downregulates expression of δ subunit-containing GABAA receptors in cultured hippocampal neurons. Mol Pharmacol 2013; 84:1-11. [PMID: 23585058 PMCID: PMC3684822 DOI: 10.1124/mol.112.084715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2012] [Accepted: 04/09/2013] [Indexed: 01/26/2023] Open
Abstract
Neurosteroids are endogenous allosteric modulators of GABAA receptors (GABARs), and they enhance GABAR-mediated inhibition. However, GABARs expressed on hippocampal dentate granule neurons of epileptic animals are modified such that their neurosteroid sensitivity is reduced and δ subunit expression is diminished. We explored the molecular mechanisms triggering this GABAR plasticity. In the cultured hippocampal neurons, treatment with N-methyl-D-aspartic acid (NMDA) (10 μM) for 48 hours reduced the surface expression of δ and α4 subunits but did not increase the expression of γ2 subunits. The tonic current recorded from neurons in NMDA-treated cultures was reduced, and its neurosteroid modulation was also diminished. In contrast, synaptic inhibition and its modulation by neurosteroids were preserved in these neurons. The time course of NMDA's effects on surface and total δ subunit expression was distinct; shorter (6 hours) treatment decreased surface expression, whereas longer treatment reduced both surface and total expression. Dl-2-amino-5-phosphonopentanoic acid (APV) blocked NMDA's effects on δ subunit expression. Chelation of calcium ions by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) or blockade of extracellular signal-regulated kinase (ERK) 1/2 activation by UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) also prevented the effects of NMDA. Thus, prolonged activation of NMDA receptors in hippocampal neurons reduced GABAR δ subunit expression through Ca(2+) entry and at least in part by ERK1/2 activation.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, Box 800394, University of Virginia-HSC, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
24
|
Naylor DE, Liu H, Niquet J, Wasterlain CG. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol Dis 2013; 54:225-38. [PMID: 23313318 DOI: 10.1016/j.nbd.2012.12.015] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE.
Collapse
Affiliation(s)
- David E Naylor
- Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, USA; Department of Neurology, Veterans Administration Greater Los Angeles Healthcare System, USA.
| | | | | | | |
Collapse
|
25
|
Deeb TZ, Maguire J, Moss SJ. Possible alterations in GABAA receptor signaling that underlie benzodiazepine-resistant seizures. Epilepsia 2012; 53 Suppl 9:79-88. [PMID: 23216581 PMCID: PMC4402207 DOI: 10.1111/epi.12037] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Benzodiazepines have been used for decades as first-line treatment for status epilepticus (SE). For reasons that are not fully understood, the efficacy of benzodiazepines decreases with increasing duration of seizure activity. This often forces clinicians to resort to more drastic second- and third-line treatments that are not always successful. The antiseizure properties of benzodiazepines are mediated by γ-aminobutyric acid type A (GABA(A) ) receptors. Decades of research have focused on the failure of GABAergic inhibition after seizure onset as the likely cause of the development benzodiazepine resistance during SE. However, the details of the deficits in GABA(A) signaling are still largely unknown. Therefore, it is necessary to improve our understanding of the mechanisms of benzodiazepine resistance so that more effective strategies can be formulated. In this review we discuss evidence supporting the role of altered GABA(A) receptor function as the major underlying cause of benzodiazepine-resistant SE in both humans and animal models. We specifically address the prevailing hypothesis, which is based on changes in the number and subtypes of GABA(A) receptors, as well as the potential influence of perturbed chloride homeostasis in the mature brain.
Collapse
Affiliation(s)
- Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
26
|
Yu L, Zhou Y, Wang Y. Effect of mild hypothermia on glutamate receptor expression after status epilepticus. Epilepsy Res 2012; 101:56-69. [PMID: 22487868 DOI: 10.1016/j.eplepsyres.2012.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2011] [Revised: 02/27/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
Hypothermia has been shown to have neuroprotective effects in various models of neurological damage. However, its therapeutic effect on pediatric status epilepticus (SE) is still unknown. We conducted a study to investigate whether hypothermia can have an adjuvant effect on pilocarpine-induced status epilepticus in immature rats when combined with diazepam treatment. Pilocarpine-induced status epilepticus was maintained for either 30 min or 60 min, which was followed by injection with diazepam (10mg/kg body weight) and/or treatment with mild hypothermia (core temperature to 33°C). We found that the spike-wave amplitude and frequency after SE during treatment with diazepam and hypothermia was significantly lower than treatment with diazepam alone. Mild hypothermia significantly reduced the number of cells undergoing necrosis and apoptosis. In addition, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor subunit GluR1 was shown to be up-regulated by SE, while GluR2 was shown to be down-regulated. However, after combination therapy with diazepam and mild hypothermia for 8h, the expression of GluR1 was decreased and GluR2 was increased relative to the levels of diazepam alone treated juveniles. We also found that the expression of mGluR-1a was also decreased relative to diazepam alone. These findings suggest that mild hypothermia might further protect against pilocarpine-induced status epilepticus in immature rats by regulating glutamate receptor expression. This study was conducted using a pediatric model of SE so as to gain a better understanding of the role of hypothermia in the developing brain.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, China.
| | | | | |
Collapse
|
27
|
Oral ketamine controlled refractory nonconvulsive status epilepticus in an elderly patient. Seizure 2011; 20:723-6. [DOI: 10.1016/j.seizure.2011.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2011] [Revised: 04/24/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022] Open
|
28
|
Naylor DE. Glutamate and GABA in the balance: convergent pathways sustain seizures during status epilepticus. Epilepsia 2010; 51 Suppl 3:106-9. [PMID: 20618413 DOI: 10.1111/j.1528-1167.2010.02622.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
Seizures rapidly become self-sustaining and pharmacoresistant to benzodiazepines during status epilepticus (SE). A decrease in the number of postsynaptic gamma-aminobutyric acid (GABA)(A) receptors with SE causes a loss of synaptic inhibition, whereas increases in postsynaptic glutamatergic receptors further upset the balance between excitation and inhibition. Although extracellular GABA levels may increase during SE and contribute to postsynaptic GABA(A) receptor desensitization, other pathways involving glutamatergic activation ultimately may be responsible for the persistent down-regulation of postsynaptic GABA(A) receptors and erosion of synaptic inhibition.
Collapse
Affiliation(s)
- David E Naylor
- Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, University of California at Los Angeles, Torrance, California 90509, USA.
| |
Collapse
|
29
|
Liu X, Wen F, Yang J, Chen L, Wei YQ. A review of current applications of mass spectrometry for neuroproteomics in epilepsy. MASS SPECTROMETRY REVIEWS 2010; 29:197-246. [PMID: 19598206 DOI: 10.1002/mas.20243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
The brain is unquestionably the most fascinating organ, and the hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward an improved understanding of the complex molecular mechanisms that underlie functions of the brain and hippocampus is neuroproteomics. Mass spectrometry has been widely used to analyze biological samples, and has evolved into an indispensable tool for proteomics research. In this review, we present a general overview of the application of mass spectrometry in proteomics, summarize neuroproteomics and systems biology-based discovery of protein biomarkers for epilepsy, discuss the methodology needed to explore the epileptic hippocampus proteome, and also focus on applications of ingenuity pathway analysis (IPA) in disease research. This neuroproteomics survey presents a framework for large-scale protein research in epilepsy that can be applied for immediate epileptic biomarker discovery and the far-reaching systems biology understanding of the protein regulatory networks. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of epilepsy on society.
Collapse
Affiliation(s)
- Xinyu Liu
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
30
|
McDonough JH, McMonagle JD, Shih TM. Time-dependent reduction in the anticonvulsant effectiveness of diazepam against soman-induced seizures in guinea pigs. Drug Chem Toxicol 2010; 33:279-83. [DOI: 10.3109/01480540903483417] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
|
31
|
Nagarkatti N, Deshpande LS, DeLorenzo RJ. Development of the calcium plateau following status epilepticus: role of calcium in epileptogenesis. Expert Rev Neurother 2009; 9:813-24. [PMID: 19496685 DOI: 10.1586/ern.09.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Status epilepticus is a clinical emergency defined as continuous seizure activity or rapid, recurrent seizures without regaining consciousness and can lead to the development of acquired epilepsy, characterized by spontaneous, recurrent seizures. Understanding epileptogenesis--the transformation of healthy brain tissue into hyperexcitable neuronal networks--is an important challenge and the elucidation of molecular mechanisms can lend insight into new therapeutic targets to halt this progression. It has been demonstrated that intracellular calcium increases during status epilepticus and that these elevations are maintained past the duration of the injury (Ca(2+) plateau). As an important second messenger, Ca(2+) elevations can lead to changes in gene expression, neurotransmitter release and plasticity. Thus, characterization of the post-injury Ca(2+) plateau may be important in eventually understanding the pathophysiology of epileptogenesis and preventing the progression to chronic epilepsy after brain injury.
Collapse
Affiliation(s)
- Nisha Nagarkatti
- Department of , Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
32
|
Dorandeu F, Carpentier P, Dhote F, Mion G, Baille V, Testylier G, Lallement G. Re: Therapy against organophosphate poisoning: The importance of anticholinergic drugs with antiglutamatergic properties (Toxicol. Appl. Pharmacol. 232, 351–358, 2008). Toxicol Appl Pharmacol 2009; 238:188; author reply 189. [DOI: 10.1016/j.taap.2009.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2009] [Accepted: 05/04/2009] [Indexed: 11/15/2022]
|
33
|
Wang NC, Good LB, Marsh ST, Treiman DM. EEG stages predict treatment response in experimental status epilepticus. Epilepsia 2009; 50:949-52. [PMID: 19396952 DOI: 10.1111/j.1528-1167.2008.01911.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Progression of severity in experimental status epilepticus (SE), defined as refractoriness to first- and second-line abortive agents, may be related to a five-stage progression of electroencephalography (EEG) patterns. This was tested in the lithium-pilocarpine rat SE model. Abortive treatment with diazepam and phenobarbital was given at EEG stages I, III, and V. In stage I, the combination therapy resulted in 100% SE termination. However, stage III corresponded to high treatment resistance (0% abortion) and stage V to an intermediate response (63%). Comparisons of time-to-treatment durations showed overlap between stage I and stage III, despite having markedly different response rates to abortive medications. Therefore, EEG patterns reflect the dynamic pathophysiology of SE and can be used as reliable and specific markers to distinguish treatment-responsive from treatment-refractory SE more accurately than time alone.
Collapse
Affiliation(s)
- Norman C Wang
- Department of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA.
| | | | | | | |
Collapse
|
34
|
Lehmkuhle MJ, Thomson KE, Scheerlinck P, Pouliot W, Greger B, Dudek FE. A simple quantitative method for analyzing electrographic status epilepticus in rats. J Neurophysiol 2009; 101:1660-70. [PMID: 19129295 DOI: 10.1152/jn.91062.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Electrographic status epilepticus (ESE) is a medical emergency consisting of repetitive seizures and may result in death or severe brain damage. Epilepsy can develop following ESE. The properties of ESE (e.g., duration and intensity) are variable, as are the effects of putative therapeutic treatments. Therefore a straightforward method to quantify different components of ESE would be beneficial for both researchers and clinicians. A frequency range close to the gamma band was selected for extraction of seizure-related activity from the EEG. This filtering strategy reduced motion artifacts and other noise sources in the electrophysiological recordings, thus increasing the signal-to-noise ratio of the EEG spike activity. EEG spiking was quantified using an energy operator and modeled by an eighth-order polynomial. In a benzodiazepine-resistant rat model of pilocarpine-induced ESE, the efficacy of various pharmaceutical agents at suppressing ESE was analyzed with this and other methods on data collected for < or =24 h after ESE induction. This approach allows for the objective, quantitative, and rapid assessment of the effects of both short- and long-lasting pharmacological manipulations on ESE and other forms of prolonged repetitive electrical activity.
Collapse
Affiliation(s)
- M J Lehmkuhle
- Department of Physiology, University of Utah School of Medicine, 420 Chipeta Way, Suite 1700, Salt Lake City, UT 84108, USA
| | | | | | | | | | | |
Collapse
|
35
|
Prüss H, Holtkamp M. Ketamine successfully terminates malignant status epilepticus. Epilepsy Res 2008; 82:219-22. [DOI: 10.1016/j.eplepsyres.2008.08.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2008] [Revised: 08/02/2008] [Accepted: 08/10/2008] [Indexed: 11/28/2022]
|
36
|
Tang FR, Chen PM, Tang YC, Tsai MC, Lee WL. Two-methyl-6-phenylethynyl-pyridine (MPEP), a metabotropic glutamate receptor 5 antagonist, with low doses of MK801 and diazepam: A novel approach for controlling status epilepticus. Neuropharmacology 2007; 53:821-31. [PMID: 17904168 DOI: 10.1016/j.neuropharm.2007.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2007] [Revised: 08/06/2007] [Accepted: 08/08/2007] [Indexed: 11/23/2022]
Abstract
By intravenous administration of group I metabotropic glutamate receptor antagonists at 1 or 2h during pilocarpine induced status epilepticus (PISE), we showed that mGluR1 antagonists AIDA or LY367385 (at dosages ranging from 25 to 200mg/kg), mGluR5 antagonists SIB1757 (at dosages ranging from 25 to 200mg/kg), SIB1893 (from 25 to 100mg/kg), MPEP (from 25 to 100mg/kg) injected at 1 or 2h during PISE were ineffective in controlling status epilepticus (SE). However, when administered at 1h during PISE, MPEP at 200mg/kg, combination of MPEP (200mg/kg) with MK801 (0.1mg/kg) or with MK801 (0.1mg/kg) and diazepam (0.5mg/kg), combination of SIB1893 (200mg/kg) with MK801 (0.1mg/kg) could effectively control behavioral SE, and were neuroprotective. In particular, the combination of MPEP with MK801 and diazepam could stop both behavioral SE and electrical SE (under EEG monitoring) within a few minutes after the administration. HPLC study showed that a high level of MPEP was maintained in the blood and its metabolism rate was slow in experimental mice with PISE. We therefore concluded that the combination of MPEP (200mg/kg) with MK801 (0.1mg/kg) and diazepam (0.5mg/kg) could effectively stop SE and its subsequent neuronal loss in the hippocampus when administered 1h during PISE. It may provide a new approach to effectively control intractable SE.
Collapse
Affiliation(s)
- Feng Ru Tang
- Epilepsy Research Lab, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore.
| | | | | | | | | |
Collapse
|
37
|
Martin BS, Kapur J. A combination of ketamine and diazepam synergistically controls refractory status epilepticus induced by cholinergic stimulation. Epilepsia 2007; 49:248-55. [PMID: 17941842 DOI: 10.1111/j.1528-1167.2007.01384.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
PURPOSE New treatments are needed for status epilepticus (SE) that is refractory to drugs modulating GABA(A) receptors, and NMDA receptor antagonists are candidate drugs. METHODS Clinically available NMDA receptor antagonist ketamine was tested for effectiveness in terminating prolonged SE induced by a combination of lithium and pilocarpine. Animals were treated 10 min after first grade 5 behavioral seizure (Racine scoring scale) by intraperitoneal administration of ketamine, diazepam, or saline. Seizure termination was determined by electroencephalogram (EEG) recordings from the hippocampus and the cortex. RESULTS Animals treated with normal saline or either 20 mg/kg diazepam, or 50 mg/kg ketamine continued in SE for the next 300 min. However, combined treatment with diazepam and ketamine rapidly terminated prolonged cholinergic stimulation-induced SE. Detailed study of dose response relationships demonstrated that diazepam enhanced efficacy and potency of ketamine in terminating SE. DISCUSSION This study demonstrated synergistic action of diazepam and ketamine in terminating SE. It suggests that a ketamine-diazepam combination might be a clinically useful therapeutic option for the treatment of refractory SE.
Collapse
Affiliation(s)
- Brandon S Martin
- Department of Neurology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908-800394, U.S.A
| | | |
Collapse
|
38
|
Liu JX, Cao X, Tang YC, Liu Y, Tang FR. CCR7, CCR8, CCR9 and CCR10 in the mouse hippocampal CA1 area and the dentate gyrus during and after pilocarpine-induced status epilepticus. J Neurochem 2007; 100:1072-88. [PMID: 17181556 DOI: 10.1111/j.1471-4159.2006.04272.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The present study showed CCR7, CCR8, CCR9 and CCR10 in the normal Swiss mouse hippocampus at both protein and mRNA levels. CCR7, CCR9 and CCR10 were mainly localized in hippocampal principal cells and some interneurons. CCR9 was also found in the mossy fibres and/or terminals, suggesting an axonal or presynaptic localization, and CCR10 in apical dendrites of pyramidal neurons in the CA1 area. CCR8 was observed in interneurons. Double-labelling immunocytochemistry revealed that most of calbindin (CB)-, calretinin (CR)- and parvalbumin (PV)-immunopositive neurons expressed CCR7-10, except CR-immunopositive cells in which only 10 to 12% expressed CCR8. During and after pilocarpine-induced status epilepticus, progressive changes of each of CCR7, CCR8, CCR9 and CCR10 proteins occurred in different patterns at various time points. Sensitive real-time PCR showed similar change patterns at mRNA level. At the chronic stage, i.e. at 2 months after pilocarpine-induced status epilepticus, significant reduction of CCR7-10 expression in CB-, CR- and PV-immunpositive interneurons may suggest the phenotype change of surviving interneurons. Double labelling of CCR7, CCR8 and CCR9 with glial fibrillary acidic protein (GFAP) at the chronic stage may suggest an induced expression in reactive astrocytes. The present study may, therefore, for the first time, provide evidence that CCR7-10 may be involved in normal hippocampal activity. The demonstration of the progressive changes of CCR7-10 during and after status epilepticus may open a new area to reveal the mechanism of neuronal loss after status epilepticus and of epileptogenesis.
Collapse
Affiliation(s)
- Jian Xin Liu
- Institute of Neurobiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
39
|
Deshpande LS, Blair RE, Nagarkatti N, Sombati S, Martin BR, DeLorenzo RJ. Development of pharmacoresistance to benzodiazepines but not cannabinoids in the hippocampal neuronal culture model of status epilepticus. Exp Neurol 2007; 204:705-13. [PMID: 17289026 PMCID: PMC2094113 DOI: 10.1016/j.expneurol.2007.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2006] [Revised: 12/04/2006] [Accepted: 01/03/2007] [Indexed: 01/16/2023]
Abstract
Status epilepticus (SE) is a life-threatening neurological disorder associated with a significant morbidity and mortality. Benzodiazepines are the initial drugs of choice for the treatment of SE. Despite aggressive treatment, over 40% of SE cases are refractory to the initial treatment with two or more medications. It would be a major advance in the clinical management of SE to identify novel anticonvulsant agents that do not lose their ability to treat SE with increasing seizure duration. Cannabinoids have recently been demonstrated to regulate seizure activity in brain. However, it remains to be seen whether they develop pharmacoresistance upon prolonged SE. In this study, we used low Mg(2+) to induce SE in hippocampal neuronal cultures and in agreement with animal models and human SE confirm the development of resistance to benzodiazepine with increasing durations of SE. Thus, lorazepam (1 microM) was effective in blocking low Mg(2+) induced high-frequency spiking for up to 30 min into SE. However, by 1 h and 2 h of SE onset it was only 10-15% effective in suppressing SE. In contrast, the cannabinoid type-1 (CB1) receptor agonist, WIN 55,212-2 (1 microM) in a CB1 receptor-dependent manner completely abolished SE at all the time points tested even out to 2 h after SE onset, a condition where resistance developed to lorazepam. Thus, the use of cannabinoids in the treatment of SE may offer a unique approach to controlling SE without the development of pharmacoresistance observed with conventional treatments.
Collapse
|
40
|
Abstract
Generalised convulsive status epilepticus is one of the most common emergencies encountered in clinical practice. This review discusses the recent understanding of this life-threatening condition with reference to the definition, pathophysiology, evaluation, complications, refractory status and prognosis. Besides epilepsy, other neurological and medical illnesses could be associated with status epilepticus. The goals of management and pharmacological approach are outlined, considering the available evidence. Prompt recognition and timely intervention, including pre-hospital treatment, are therapeutically beneficial. Refractory status should be managed in intensive care units under close monitoring. More evidence is needed for evolving the optimal treatment. A suitable treatment protocol would guide in avoiding the pitfalls at various points along the management pathway.
Collapse
Affiliation(s)
- R Nandhagopal
- Department of Neurology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
41
|
Abstract
Epilepsy, a disorder of recurrent seizures, is a common and frequently devastating neurological condition. Available therapy is only symptomatic and often ineffective. Understanding epileptogenesis, the process by which a normal brain becomes epileptic, may help identify molecular targets for drugs that could prevent epilepsy. A number of acquired and genetic causes of this disorder have been identified, and various in vivo and in vitro models of epileptogenesis have been established. Here, we review current insights into the molecular signaling mechanisms underlying epileptogenesis, focusing on limbic epileptogenesis. Study of different models reveals that activation of various receptors on the surface of neurons can promote epileptogenesis; these receptors include ionotropic and metabotropic glutamate receptors as well as the TrkB neurotrophin receptor. These receptors are all found in the membrane of a discrete signaling domain within a particular type of cortical neuron--the dendritic spine of principal neurons. Activation of any of these receptors results in an increase Ca2+ concentration within the spine. Various Ca2+-regulated enzymes found in spines have been implicated in epileptogenesis; these include the nonreceptor protein tyrosine kinases Src and Fyn and a serine-threonine kinase [Ca2+-calmodulin-dependent protein kinase II (CaMKII)] and phosphatase (calcineurin). Cross-talk between astrocytes and neurons promotes increased dendritic Ca2+ and synchronous firing of neurons, a hallmark of epileptiform activity. The hypothesis is proposed that limbic epilepsy is a maladaptive consequence of homeostatic responses to increases of Ca2+ concentration within dendritic spines induced by abnormal neuronal activity.
Collapse
Affiliation(s)
- James O McNamara
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
42
|
|
43
|
Holtkamp M, Matzen J, van Landeghem F, Buchheim K, Meierkord H. Transient loss of inhibition precedes spontaneous seizures after experimental status epilepticus. Neurobiol Dis 2005; 19:162-70. [PMID: 15837571 DOI: 10.1016/j.nbd.2004.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2004] [Revised: 11/30/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022] Open
Abstract
The pathophysiological mechanisms that cause spontaneous seizures following status epilepticus are largely unknown. Erosion of inhibition is regarded as an important pathophysiological hallmark of ongoing status epilepticus. Therefore, we investigated if loss of inhibitory functions also plays an important role in the development of spontaneous seizures after status epilepticus. Furthermore, we analyzed possible changes in excitation that might contribute to epileptogenesis. Finally, neuronal cell loss in the dentate gyrus granule cell layer was analyzed. In rats, inhibition and excitation in the dentate gyrus were monitored 1, 4, and 8 weeks after electrically induced self-sustaining status epilepticus (SSSE). Control animals had electrodes implanted either without subsequent stimulation or with stimulation but under barbiturate anesthesia, neither of which resulted in subsequent spontaneous seizures or impairment of inhibition. Following SSSE 80% of animals developed seizures after 8 weeks. A pronounced impairment of inhibition 1 week after SSSE was followed by gradual recovery over 8 weeks. In the dentate gyrus, cell damage was highly variable most likely explaining the heterogeneity of changes in excitatory parameters. Loss of GABAergic inhibition in the dentate gyrus may facilitate initiation of epileptogenesis but impaired inhibition is not required for the process of epileptogenesis to be maintained.
Collapse
Affiliation(s)
- M Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin (Campus Mitte), Schumannstr. 20/21, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Raza M, Blair RE, Sombati S, Carter DS, Deshpande LS, DeLorenzo RJ. Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy. Proc Natl Acad Sci U S A 2004; 101:17522-7. [PMID: 15583136 PMCID: PMC535000 DOI: 10.1073/pnas.0408155101] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2004] [Indexed: 01/09/2023] Open
Abstract
Alterations in hippocampal neuronal Ca(2+) and Ca(2+)-dependent systems have been implicated in mediating some of the long-term neuroplasticity changes associated with acquired epilepsy (AE). However, there are no studies in an animal model of AE that directly evaluate alterations in intracellular calcium concentration ([Ca(2+)](i)) and Ca(2+) homeostatic mechanisms (Ca(2+) dynamics) during the development of AE. In this study, Ca(2+) dynamics were evaluated in acutely isolated rat CA1 hippocampal, frontal, and occipital neurons in the pilocarpine model by using [Ca(2+)](i) imaging fluorescence microscopy during the injury (acute), epileptogenesis (latency), and chronic-epilepsy phases of the development of AE. Immediately after status epilepticus (SE), hippocampal neurons, but not frontal and occipital neurons, had significantly elevated [Ca(2+)](i) compared with saline-injected control animals. Hippocampal neuronal [Ca(2+)](i) remained markedly elevated during epileptogenesis and was still elevated indefinitely in the chronic-epilepsy phase but was not elevated in SE animals that did not develop AE. Inhibiting the increase in [Ca(2+)](i) during SE with the NMDA channel inhibitor MK801 was associated in all three phases of AE with inhibition of the changes in Ca(2+) dynamics and the development of AE. Ca(2+) homeostatic mechanisms in hippocampal neurons also were altered in the brain-injury, epileptogenesis, and chronic-epilepsy phases of AE. These results provide evidence that [Ca(2+)](i) and Ca(2+)-homeostatic mechanisms are significantly altered during the development of AE and suggest that altered Ca(2+) dynamics may play a role in the induction and maintenance of AE and underlie some of the neuroplasticity changes associated with the epileptic phenotype.
Collapse
Affiliation(s)
- Mohsin Raza
- Departments of Neurology, Pharmacology and Toxicology, and Biochemistry and Molecular Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0599, USA
| | | | | | | | | | | |
Collapse
|
46
|
Fisher A, Wang X, Cock HR, Thom M, Patsalos PN, Walker MC. Synergism between Topiramate and Budipine in Refractory Status Epilepticus in the Rat. Epilepsia 2004; 45:1300-7. [PMID: 15509230 DOI: 10.1111/j.0013-9580.2004.26404.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate the antiepileptic and neuroprotective properties of topiramate (TPM) alone and with coadministration of the N-methyl-D-aspartate (NMDA)-receptor antagonist budipine in a rat model of refractory status epilepticus. METHODS Male Sprague-Dawley rats had electrodes implanted into the perforant path and dentate granule cell layer of the hippocampus under halothane anesthesia. Approximately 1 week after surgery, the perforant path of each animal was electrically stimulated for 2 h to induce self-sustaining status epilepticus. Successfully stimulated rats were given intraperitoneally vehicle (n = 6), TPM (20-320 mg/kg; n = 28), budipine (10 mg/kg; n = 5), or budipine (10 mg/kg) and TPM (80 mg/kg; n = 6) 10 min after the end of the stimulation and monitored behaviorally and electroencephalographically for a further 3 h. The animals were killed 14 days later, and histopathology was assessed. RESULTS Neither budipine alone nor TPM at any dose terminated status epilepticus. Despite this, TPM resulted in various degrees of neuroprotection at doses between 40 and 320 mg/kg. Coadministration of budipine with TPM terminated the status epilepticus in all rats. This combination also significantly improved the behavioral profile and prevented status-induced cell death compared with control. CONCLUSIONS Budipine and TPM are an effective drug combination in stopping self-sustained status epilepticus, and TPM alone was neuroprotective, despite the continuation of seizure activity.
Collapse
Affiliation(s)
- Andrew Fisher
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Yen W, Williamson J, Bertram EH, Kapur J. A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res 2004; 59:43-50. [PMID: 15135166 PMCID: PMC2892717 DOI: 10.1016/j.eplepsyres.2004.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2003] [Revised: 04/08/2003] [Accepted: 03/05/2004] [Indexed: 12/25/2022]
Abstract
Three different classes of NMDA receptor antagonists were compared for their effectiveness in terminating prolonged status epilepticus (SE), induced by continuous hippocampal stimulation. Animals were treated after 150 min of SE by intraperitoneal administration of increasing doses of 3-((R,S)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), MK-801 (dizocilpine), ifenprodil, or saline. EEG recordings were used to determine seizure termination. The first experiment (n = 57 animals) determined the most effective anticonvulsant dose of each agent by determining its ability to terminate SE within the next 300 min. Five control rats treated with normal saline after 150 min of SE continued to exhibit continuous seizures for the next 300 min. All drugs were administered after 150 min of SE. CPP terminated seizures with an ED(50) of 6.4 mg/kg; the maximal effective dose was 15 mg/kg. MK-801 has an ED(50) of 1.4 mg/kg; the maximal effective dose was 2 mg/kg. Ifenprodil was maximally effective at 30 mg/kg. However, an ED(50) could not be calculated. In a subsequent experiment, the NMDA antagonists were compared for their ability to terminate prolonged SE within 60 min of their administration at the most effective dose. MK-801 (2.0 mg/kg) terminated SE in 6 of 10 animals within 60 min, CPP (15 mg/kg) terminated it in 1 of 9 animals; ifenprodil (30 mg/kg) did not terminate it in any of 9 animals treated. In the 300 min following administration, CPP (6/9) and MK-801 (6/10) were equally efficacious in terminating SE but ifenprodil (2/7) was less effective (P = 0.065, chi-square test). The results indicate that the non-competitive NMDA receptor antagonist MK-801 was superior to the competitive antagonist CPP and the pH-sensitive site antagonist ifenprodil, in terminating prolonged experimental SE.
Collapse
Affiliation(s)
| | | | | | - Jaideep Kapur
- Corresponding author. Tel.: +1-434-924-5312; fax: +1-434-982-1726., (J. Kapur)
| |
Collapse
|
48
|
Tang FR, Chia SC, Chen PM, Gao H, Lee WL, Yeo TS, Burgunder JM, Probst A, Sim MK, Ling EA. Metabotropic glutamate receptor 2/3 in the hippocampus of patients with mesial temporal lobe epilepsy, and of rats and mice after pilocarpine-induced status epilepticus. Epilepsy Res 2004; 59:167-80. [PMID: 15246118 DOI: 10.1016/j.eplepsyres.2004.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2004] [Revised: 04/06/2004] [Accepted: 04/07/2004] [Indexed: 11/26/2022]
Abstract
A comparative study of the expression of metabotropic glutamate receptor 2/3 (mGluR2/3) was done in the hippocampus of rats and mice after pilocarpine-induced status epilepticus (APISE), and of patients with mesial temporal lobe epilepsy. At 1 day APISE, there was a marked increase in mGluR2/3 immunoreactivity in the stratum lacunosum moleculare (SLM) of CA1 area and in the middle one-third of the molecular layer (MM) of the dentate gyrus. Immuno-electron microscopic study showed degenerating mGluR2/3 positive axons in the SLM of CA1 area at 1 day APISE. From 7 days, mGluR2/3 immunopositive product decreased, and by 31 days APISE, it almost disappeared in two-thirds of the SLM near CA2. In the mouse model at 2 months APISE, mGluR2/3 immunopositive product in two-thirds of the SLM near the stratum radiatum disappeared, and so did in the whole SLM of CA1 area in patients with mesial temporal lobe epilepsy. Neuropharmacological study by intravenous injection of mGluR2/3 agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate [(2R,4R)-APDC] at different doses at 1h during pilocarpine induced status epilepticus showed that (2R,4R)-APDC could not stop seizures and neuronal death in the hilus of the dentate gyrus. The present study, therefore, suggests that the reduction of mGluR2/3 immunopositive product in the SLM of CA1 is a consequence of neuronal loss in either the entorhinal cortex or CA1 area of the hippocampus, and at the dosage range from 12.5 to 600 mg/kg, (2R,4R)-APDC may not be effective in the prevention of seizures or neuronal death in the hilus of the dentate gyrus.
Collapse
Affiliation(s)
- F R Tang
- Epilepsy Research Laboratories, National Neuroscience Institute, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Harrison PK, Sheridan RD, Green AC, Scott IR, Tattersall JEH. A guinea pig hippocampal slice model of organophosphate-induced seizure activity. J Pharmacol Exp Ther 2004; 310:678-86. [PMID: 15031302 DOI: 10.1124/jpet.104.065433] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular recording techniques have been used in the guinea pig hippocampal slice preparation to investigate the electrophysiological actions of the organophosphate (OP) anticholinesterase soman. When applied at a concentration of 100 nM, soman induced epileptiform activity in the CA1 region in approximately 75% of slices. This effect was mimicked by the anticholinesterases paraoxon (1 and 3 microM), physostigmine (30 microM), and neostigmine (30 microM), thus providing indirect evidence that the epileptiform response was mediated by elevated acetylcholine levels. Soman-induced bursting was inhibited by the muscarinic receptor antagonists atropine (concentrations tested, 0.1-10 microM), telenzepine (0.03-3 microM), AF-DX116 [11-(2-[(diethylamino)methyl]-1-piperidinyl acetyl)-5,11-dihydro-6H-pyrido 92.b-b) (1,4)-benzodiazepin-6-one] (0.3-300 microM), and biperiden (0.1-10 microM) and by the benzodiazepine anticonvulsants diazepam (3-30 microM) and midazolam (3-30 microM), but it was not inhibited by the nicotinic antagonists mecamylamine (30 microM) and methyllycaconitine (300 nM). In contrast to soman-induced epileptiform activity, bursting induced by the K(+) channel blocker 4-aminopyridine (30 microM), the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (30 nM) or perfusion with low Mg(2+) buffer was insensitive to atropine (10 microM). The ability of muscarinic antagonists and benzodiazepines to inhibit soman-induced epileptiform activity is in accordance with the in vivo pharmacology of soman-induced seizures and suggests that the guinea pig hippocampal slice preparation may provide a useful tool for the evaluation of novel anticonvulsant therapies for the treatment of seizures related to OP poisoning.
Collapse
Affiliation(s)
- Patrick K Harrison
- Biomedical Sciences, DSTL, Bldg. 04, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | | | | | | | | |
Collapse
|
50
|
Mewasingh LD, Sékhara T, Aeby A, Christiaens FJC, Dan B. Oral ketamine in paediatric non-convulsive status epilepticus. Seizure 2003; 12:483-9. [PMID: 12967577 DOI: 10.1016/s1059-1311(03)00028-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022] Open
Abstract
In children, non-convulsive status epilepticus (NCSE) is rare and difficult to treat. Response to steroids and GABAergic medication is variable and often decreases with increasing duration of NCSE. We present our experience with oral ketamine, an NMDA-receptor antagonist, administered to five children with severe epilepsy (Lennox-Gastaut Syndrome, myoclonic-astatic epilepsy, progressive myoclonic epilepsy and Pseudo-Lennox Syndrome) during an episode of NCSE. Resolution of NCSE was documented in all cases clinically and electroencephalographically within 24-48 hours of starting ketamine. No significant side effects were noted.
Collapse
Affiliation(s)
- L D Mewasingh
- Department of Neurology, Children's University Hospital Queen Fabiola, Free University of Brussels (ULB), Avenue JJ Crocq 15, 1020 Brussels, Belgium.
| | | | | | | | | |
Collapse
|