1
|
Fokuhl V, Gerlach EL, Glomb MA. Singlet Oxygen Produced by Aspalathin and Ascorbic Acid Leads to Fragmentation of Dihydrochalcones and Adduct Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22316-22326. [PMID: 39326013 PMCID: PMC11468778 DOI: 10.1021/acs.jafc.4c07633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Singlet oxygen-mediated fragmentation of various dihydrochalcones and chalcones was reported. (Dihydro)cinnamic acids formed in the fragmentation showed a B-ring substitution pattern of the precursor (dihydro)chalcone. For the first time, the intrinsic generation of singlet oxygen by aspalathin and ascorbic acid under mild aqueous conditions (37 °C, pH 7.0) and exclusion of light was verified using HPLC-(+)-APCI-MS2 experiments. If a 4 molar excess of aspalathin or ascorbic acid was used, fragmentation of dihydrochalcones with monohydroxy and o-hydroxymethoxy B-ring substitution was induced up to 2 mol %, respectively. Incubations of the dihydrochalcone phloretin with ascorbic acid not only led to p-dihydrocoumaric acid but also to a novel ascorbyl adduct, which was isolated and identified as 2,4,6-trihydroxy-5-[3-(4-hydroxyphenyl)propanoyl]-2-[(1R, 2S)-1,2,3-trihydroxypropyl]-1-benzofuran-3(2H)-one. The impact of different structural elements on adduct formation was evaluated and verified to be a phloroglucinol structure linked to an acyl moiety. Formation of the ascorbyl adduct was shown to occur in apple puree when both ascorbic acid and phloretin were present at the same time.
Collapse
Affiliation(s)
- Vanessa
K. Fokuhl
- Institute of Chemistry, Food
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Emma L. Gerlach
- Institute of Chemistry, Food
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Marcus A. Glomb
- Institute of Chemistry, Food
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| |
Collapse
|
2
|
Zhou H, Chen DS, Hu CJ, Hong X, Shi J, Xiao Y. Stimuli-Responsive Nanotechnology for RNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303597. [PMID: 37915127 PMCID: PMC10754096 DOI: 10.1002/advs.202303597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Indexed: 11/03/2023]
Abstract
Ribonucleic acid (RNA) drugs have shown promising therapeutic effects for various diseases in clinical and preclinical studies, owing to their capability to regulate the expression of genes of interest or control protein synthesis. Different strategies, such as chemical modification, ligand conjugation, and nanotechnology, have contributed to the successful clinical translation of RNA medicine, including small interfering RNA (siRNA) for gene silencing and messenger RNA (mRNA) for vaccine development. Among these, nanotechnology can protect RNAs from enzymatic degradation, increase cellular uptake and cytosolic transportation, prolong systemic circulation, and improve tissue/cell targeting. Here, a focused overview of stimuli-responsive nanotechnologies for RNA delivery, which have shown unique benefits in promoting RNA bioactivity and cell/organ selectivity, is provided. Many tissue/cell-specific microenvironmental features, such as pH, enzyme, hypoxia, and redox, are utilized in designing internal stimuli-responsive RNA nanoparticles (NPs). In addition, external stimuli, such as light, magnetic field, and ultrasound, have also been used for controlling RNA release and transportation. This review summarizes a wide range of stimuli-responsive NP systems for RNA delivery, which may facilitate the development of next-generation RNA medicines.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications210023NanjingChina
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Caleb J. Hu
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xuechuan Hong
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
3
|
Elumalai L, Palaniyandi S, Anbazhagan GK, Mohanam N, Munusamy S, G K SR, Pudukadu Munusamy A, Chinnasamy M, Ramasamy B. Synthesis of biogenic cadmium sulfide nanoparticles (MR03-CdSNPs) using marine Streptomyces kunmingensis - MR03 for in-vitro biological determinations and in silico analysis on biofilm virulence proteins: A novel approach. ENVIRONMENTAL RESEARCH 2023; 235:116698. [PMID: 37474092 DOI: 10.1016/j.envres.2023.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Lokesh Elumalai
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Sankarganesh Palaniyandi
- Department of Food Technology, Hindustan Institute of Technology and Science, Padur, OMR, Chennai, Tamil Nadu, 603103, India
| | - Ganesh Kumar Anbazhagan
- Centre for Research and Development, Department of Microbiology, Hindustan College of Arts & Science, Padur, OMR, Chennai, Tamil Nadu, 603103, India
| | - Nithyalakshmi Mohanam
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Santhakumar Munusamy
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Sri Ragavi G K
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Ayyasamy Pudukadu Munusamy
- Bioremediation Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Muthusamy Chinnasamy
- Department of Biotechnology, Srinivasan College of Arts and Science, (Affiliated to Bharathidasan University), Perambalur, Tamil Nadu, 621212, India
| | - Balagurunathan Ramasamy
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, 636011, India.
| |
Collapse
|
4
|
Schloss JV. Nutritional deficiencies that may predispose to long COVID. Inflammopharmacology 2023; 31:573-583. [PMID: 36920723 PMCID: PMC10015545 DOI: 10.1007/s10787-023-01183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clinical studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae, known as Long COVID.
Collapse
Affiliation(s)
- John V Schloss
- Departments of Pharmaceutical Science and Biochemistry & Molecular Biology, Schools of Pharmacy and Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill, CA, 90755, USA.
| |
Collapse
|
5
|
Lorca M, Cabezas D, Araque I, Terán A, Hernández S, Mellado M, Espinoza L, Mella J. Cancer and brassinosteroids: Mechanisms of action, SAR and future perspectives. Steroids 2023; 190:109153. [PMID: 36481216 DOI: 10.1016/j.steroids.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Brassinosteroids are plant hormones whose main function is to stimulate plant growth. However, they have been studied for their biological applications in humans. Brassinosteroid compounds have displayed an important role in the study of cancer pathology and show potential for developing novel anticancer drugs. In this review we describe the relationship of brassinosteroids with cancer with focus on the last decade, the mechanisms of cytotoxic activity described to date, and a structure-activity relationship based on the available information.
Collapse
Affiliation(s)
- Marcos Lorca
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - David Cabezas
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Ileana Araque
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Andrés Terán
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Santiago Hernández
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile.
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| |
Collapse
|
6
|
Zhang W, Huang W. Application of two on-site quantitative methods for the detection of total chlorine in the water in the hemodialysis industry. Bioengineered 2022; 13:8558-8566. [PMID: 35322730 PMCID: PMC9161933 DOI: 10.1080/21655979.2022.2051883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
To observe the application of two instruments for the quantitative detection of total chlorine in the water in the hemodialysis industry, thereby evaluating the accuracy of the two tools and the consistency of their results, and evaluating their practical significance for the safety of hemodialysis treatment. Two methods, based on diethyl-p-phenylenediamine spectrophotometry and amperometric methods, were employed to detect the total chlorine concentration in running water and in activated carbon tank effluent. Correlation analysis was performed to evaluate the accuracy of the two instruments. The Bland-Altman test was used to evaluate the consistency of the two methods. The total chlorine tester showed high accuracy and good repeatability in terms of detecting the total chlorine concentration in running water and activated carbon tank effluent. The residual chlorine sensor had high accuracy and good repeatability for detecting the concentrations of total and free chlorine, respectively, in running water. When detecting the concentrations of total and free chlorine in the effluent of the activated carbon tank, the two test results showed a moderate correlation. The two detection methods had good consistency for the detection of total chlorine concentrations in running water and activated carbon tank effluent. The two reviewed methods can monitor changes in the total chlorine in running water and activated carbon tank effluent. It is important to take timely measures when the total chlorine concentration of the activated carbon tank effluent reaches a certain warning value, and therefore to better ensure the safety of hemodialysis treatment.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Nephrology, BeijingTongren Hospital, Capital Medical University, Beijing, China
| | - Wen Huang
- Department of Nephrology, BeijingTongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system. Sci Rep 2022; 12:1089. [PMID: 35058551 PMCID: PMC8776969 DOI: 10.1038/s41598-022-05190-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
In the present study, galactan exopolysaccharide (EPS) from Weissella confusa KR780676 was evaluated for its potential to alleviate oxidative stress using in vitro assays and in vivo studies in Saccharomyces cerevisiae (wild type) and its antioxidant (sod1∆, sod2∆, tsa1∆, cta2∆ and ctt1∆), anti-apoptotic (pep4∆ and fis1∆) and anti-aging (sod2∆, tsa1∆ and ctt1∆)) isogenic gene deletion mutants. Galactan exhibited strong DPPH and nitric oxide scavenging activity with an IC50 value of 450 and 138 µg/mL respectively. In the yeast mutant model, oxidative stress generated by H2O2 was extensively scavenged by galactan in the medium as confirmed using spot assays followed by fluorescencent DCF-DA staining and microscopic studies. Galactan treatment resulted in reduction in the ROS generated in the yeast mutant cells as demonstrated by decreased fluorescence intensity. Furthermore, galactan exhibited protection against oxidative damage through H2O2 -induced apoptosis inhibition in the yeast mutant strains (pep4∆ and fis1∆) leading to increased survival rate by neutralizing the oxidative stress. In the chronological life span assay, WT cells treated with galactan EPS showed 8% increase in viability whereas sod2∆ mutant showed 10–15% increase indicating pronounced anti-aging effects. Galactan from W. confusa KR780676 has immense potential to be used as a natural antioxidant for nutraceutical, pharmaceutical and food technological applications. As per our knowledge, this is the first report on in-depth assessment of in vivo antioxidant properties of a bacterial EPS in a yeast deletion model system.
Collapse
|
8
|
Reactive Oxygen Species in the Reproductive System: Sources and Physiological Roles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:9-40. [DOI: 10.1007/978-3-030-89340-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Chemical and Antioxidant Characterization of the Portuguese Heather Honey from Calluna vulgaris. SEPARATIONS 2021. [DOI: 10.3390/separations8100177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Calluna vulgaris honey produced in Portugal, concerning its phenolic compounds and abscisic acids profiles, as well as its antioxidant activity and the protective effect against oxidative damage in human erythrocytes were herein performed for the first time. The phenolic and abscisic acid profiles were tentatively identified by LC-MS/MS (17 compounds). The total content of phenolics and abscisic acids was 15,446.4 µg/g of honey extract, with catechin derivatives and abscisic acids being major constituents. The highest scavenging capacity was found against reactive nitrogen species. Additionally, the honey extract prevented ROO•-induced oxidative damage in erythrocytes collected from human blood, by inhibiting hemolysis, lipid peroxidation and hemoglobin oxidation. In conclusion, C. vulgaris honey contains high content of catechin derivatives and abscisic acids that may be responsible for its biological activity, characterized by a strong antioxidant capacity, which adds up to the nutritional value of this delicacy.
Collapse
|
10
|
Xu Q, Feng H, Shao X. Light-induced activities of novel naphtho[1,8-ef]isoindole-7,8,10(9H)-trione and oxoisoaporphine derivatives towards mosquito larvae. Bioorg Med Chem Lett 2021; 48:128225. [PMID: 34174399 DOI: 10.1016/j.bmcl.2021.128225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
Infected mosquitoes are significant vectors of dengue, yellow fever, chikungunya, zika and other pathogens. In the view of increasing resistance in mosquito larvae control, photoactivated insecticides is a promising approach by utilizing highly toxic singlet oxygen produced by photosensitizer through irradiation. However, the choice of photosensitizer for mosquito control is limited. Here, we report a novel series of naphtho[1,8-ef]isoindole-7,8,10(9H)-trione and oxoisoaporphines derivatives as excellent type II photosensitizers. Meanwhile, the light-dependent activities against permethrin-susceptible and permethrin-resistant strain of Aedes aegypti mosquito larvae of these compounds were evaluated. Among them, compound 7b was proved to be potential photodynamic insecticide due to its excellent phototoxicity, the LC50 value was 0.19 μg mL-1 under visible light irradiation. The irradiation-generated enhancement in the activity was more than 520-fold. This compound could be the potential candidate in the search for new photoactivated insecticide leads. Importantly, 7b has good fluorescence quantum yield (ϕF = 0.70), it can be used as a fluorescence indicator in mosquito larvae to observe uptake and morphology change.
Collapse
Affiliation(s)
- Qi Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Supramolecular Control of Singlet Oxygen Generation. Molecules 2021; 26:molecules26092673. [PMID: 34063309 PMCID: PMC8124681 DOI: 10.3390/molecules26092673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Singlet oxygen (1O2) is the excited state electronic isomer and a reactive form of molecular oxygen, which is most efficiently produced through the photosensitized excitation of ambient triplet oxygen. Photochemical singlet oxygen generation (SOG) has received tremendous attention historically, both for its practical application as well as for the fundamental aspects of its reactivity. Applications of singlet oxygen in medicine, wastewater treatment, microbial disinfection, and synthetic chemistry are the direct results of active past research into this reaction. Such advancements were achieved through design factors focused predominantly on the photosensitizer (PS), whose photoactivity is relegated to self-regulated structure and energetics in ground and excited states. However, the relatively new supramolecular approach of dictating molecular structure through non-bonding interactions has allowed photochemists to render otherwise inactive or less effective PSs as efficient 1O2 generators. This concise and first of its kind review aims to compile progress in SOG research achieved through supramolecular photochemistry in an effort to serve as a reference for future research in this direction. The aim of this review is to highlight the value in the supramolecular photochemistry approach to tapping the unexploited technological potential within this historic reaction.
Collapse
|
12
|
Stawarz-Janeczek M, Kryczyk-Poprawa A, Muszyńska B, Opoka W, Pytko-Polończyk J. Disinfectants Used in Stomatology and SARS-CoV-2 Infection. Eur J Dent 2021; 15:388-400. [PMID: 33694135 PMCID: PMC8184310 DOI: 10.1055/s-0041-1724154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effective disinfection is a basic procedure in medical facilities, including those conducting dental surgeries, where treatments for tissue discontinuity are also performed, as it is an important element of infection prevention. Disinfectants used in dentistry and dental and maxillofacial surgery include both inorganic (hydrogen peroxide, sodium chlorite-hypochlorite) and organic compounds (ethanol, isopropanol, peracetic acid, chlorhexidine, eugenol). Various mechanisms of action of disinfectants have been reported, which include destruction of the structure of bacterial and fungal cell membranes; damage of nucleic acids; denaturation of proteins, which in turn causes inhibition of enzyme activity; loss of cell membrane integrity; and decomposition of cell components. This article discusses the most important examples of substances used as disinfectants in dentistry and presents the mechanisms of their action with particular focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The search was conducted in ScienceDirect, PubMed, and Scopus databases. The interest of scientists in the use of disinfectants in dental practice is constantly growing, which results in the increasing number of publications on disinfection, sterilization, and asepsis. Many disinfectants often possess several of the abovementioned mechanisms of action. In addition, disinfectant preparations used in dental practice either contain one compound or are frequently a mixture of active compounds, which increases their range and effectiveness of antimicrobial action. Currently available information on disinfectants that can be used to prevent SARS-CoV-2 infection in dental practices was summarized.
Collapse
Affiliation(s)
- Magdalena Stawarz-Janeczek
- Department of Integrated Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Kryczyk-Poprawa
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Włodzimierz Opoka
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Jolanta Pytko-Polończyk
- Department of Integrated Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
13
|
Ximenes VF, Ximenes TP, Morgon NH, de Souza AR. Taurine Chloramine and Hydrogen Peroxide as a Potential Source of Singlet Oxygen for Topical Application. Photochem Photobiol 2021; 97:963-970. [PMID: 33657673 DOI: 10.1111/php.13410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/30/2022]
Abstract
Singlet oxygen (1 O2 ) is the "active principle" in photodynamic therapy. Taurine chloramine (Tau-NHCl) and hydrogen peroxide (H2 O2 ) are well-tolerated and widely used antiseptics. Due to its mild oxidizing features and stability, Tau-NHCl can be directly used to treat skin diseases. We found that a diluted aqueous mixture of Tau-NHCl and H2 O2 acts as a slow and long-lasting potential source of 1 O2 . The reactions were studied by luminol-enhanced chemiluminescence. Evidence of the formation of 1 O2 was obtained using deuterium oxide, sodium azide and 9,10-Anthracenediyl-bis(methylene)dimalonic acid, a chemical trap of 1 O2 . The reaction was optimized, and a mechanism was proposed, including theoretical calculations at B3LYP/6-311++G(3df,2p) level of theory, adding D3Bj empirical dispersion and SMD (Water) solvent effects. Chloramines produced by the reactions between HOCl and L-alanine, 3-amino-1-propanesulfonic acid and gamma-aminobutyric acid were also prepared, and their reactivity and stability were compared with Tau-NHCl. We found that Tau-NHCl is more stable and adequate for the production of 1 O2 . In conclusion, we propose applying these drugs combination as a potential source of 1 O2 with applications for skin diseases treatment.
Collapse
Affiliation(s)
- Valdecir F Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, Bauru, São Paulo, Brazil
| | - Thomaz P Ximenes
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, Bauru, São Paulo, Brazil
| | - Nelson H Morgon
- Department of Physical Chemistry, Institute of Chemistry, Campinas State University (UNICAMP), Campinas, São Paulo, Brazil
| | - Aguinaldo R de Souza
- Department of Chemistry, Faculty of Sciences, UNESP - São Paulo State University, Bauru, São Paulo, Brazil
| |
Collapse
|
14
|
Shah N, Zhou L. Regulation of Ion Channel Function by Gas Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:139-164. [DOI: 10.1007/978-981-16-4254-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Free radical-releasing systems for targeting biofilms. J Control Release 2020; 322:248-273. [PMID: 32243972 DOI: 10.1016/j.jconrel.2020.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/05/2023]
Abstract
The recent rise in antibiotic drug resistance and biofilm formation by microorganisms has driven scientists from different fields to develop newer strategies to target microorganisms responsible for infectious diseases. There is a growing interest in free radicals as therapeutic agents for antimicrobial applications. However, limitations such as short half-life has hindered their usage. Currently, several research groups are exploring various biomaterials that can prolong the half-life, increase storage duration and control the release of the therapeutic ranges of free radicals required for different applications, including biofilm eradication. This review paper initially provides a background to, and theoretical knowledge on, free radicals; and then proceeds to review studies that have employed various free radical-incorporated drug delivery systems as an approach to target biofilm formation and eradication. Some of the free radical releasing systems highlighted include polymers, nanoparticles and hydrogels, with a focus on biofilm eradication, where they impact significantly. The various challenges associated with their application are also discussed. Further, the review identifies future research and strategies that can potentiate the application of free radical-incorporated drug delivery systems for inhibiting biofilm formation and eradicating formed biofilms.
Collapse
|
16
|
Easwar Rao D, Viswanatha Chaitanya K. Changes in the antioxidant intensities of seven different soybean (Glycine max (L.) Merr.) cultivars during drought. J Food Biochem 2020; 44:e13118. [PMID: 31845369 DOI: 10.1111/jfbc.13118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022]
Abstract
Drought stress-induced antioxidative defense responses were studied in seven soybean (Glycine max (L) Merr.) cultivars PUSA 9712, LSB 1, JS 335, ADB 22, NRC 37, DSB 20, and MAUS 61, respectively. Drought stress was imposed by withholding irrigation till the leaf water potentials reached -1.0, -1.5, and -2.0 MPa. Lipid peroxidation and superoxide, H2 O2 , • OH, DPPH radical scavenging assays were performed. Antioxidants during drought stress were studied by quantifying the ascorbic acid, glutathione, α-tocopherol, phenolics, flavonoids, tannins, enzymes superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Antioxidant levels were significantly high in soybean foliages exposed to drought with the increased concentrations of radicals and enhanced lipid peroxidation rates. Isoenzyme analysis of SOD has shown the upregulation of Cu/Zn and MnSODs. Our results demonstrate that cultivars PUSA 9712 and LSB1 have shown to possess a high rate of antioxidants and a very efficient antioxidative defense system when compared with other cultivars. PRACTICAL APPLICATIONS: Soybean (Glycine max (L.) Merr.) is an economically important cash crop, cultivated globally for its rich protein, oil, nutraceutical, and antioxidant constituents. It is also cultivated for its rich enriched food, animal feed as well as several other commercial products. In India, most of the soybean cultivation is being done under rainfed conditions. Hence, identification of superior soybean cultivars rich in antioxidants is very important. The work presented here is the output of the investigation carried out on cramming the changes in antioxidative defense mechanisms of seven popular soybean cultivars that are regularly cultivated in India. A study was performed by quantifying the radicals, H2 O2 concentrations, lipid peroxidation, determination of enzymatic, and nonenzymatic antioxidants in all selected soybean cultivars exposed to control and increased the duration of drought stress, for the identification of superior cultivars with a rich avenue of enzymatic and nonenzymatic antioxidants.
Collapse
Affiliation(s)
- Duvvarapu Easwar Rao
- Department of Biotechnology, GITAM Institute of Technology, GITAM University, Visakhapatnam, India
| | | |
Collapse
|
17
|
Rehman R, Dar F, Pirzadah T, Tahir I. Deciphering the in vitro antioxidant potential and mineral analysis of Fagopyrum species from Kashmir and Ladakh regions. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2020. [DOI: 10.4103/jrptps.jrptps_70_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Abinaya M, Rekha R, Sivakumar S, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Alobaidi AS, Al-Anbr MN, Vaseeharan B. Novel and Facile Synthesis of Sea Anemone Adhesive Protein-Coated ZnO Nanoparticles: Antioxidant, Antibiofilm, and Mosquito Larvicidal Activity Against Aedes aegypti. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01581-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Korneev D, Kurskaya O, Sharshov K, Eastwood J, Strakhovskaya M. Ultrastructural Aspects of Photodynamic Inactivation of Highly Pathogenic Avian H5N8 Influenza Virus. Viruses 2019; 11:v11100955. [PMID: 31623281 PMCID: PMC6832225 DOI: 10.3390/v11100955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Ultrastructural studies revealing morphological differences between intact and photodynamically inactivated virions can point to inactivation mechanisms and molecular targets. Using influenza as a model system, we show that photodynamic virus inactivation is possible without total virion destruction. Indeed, irradiation with a relatively low concentration of the photosensitizer (octacationic octakis(cholinyl) zinc phthalocyanine) inactivated viral particles (the virus titer was determined in Madin Darby Canine Kidney (MDCK) cells) but did not destroy them. Transmission electron microscopy (TEM) revealed that virion membranes kept structural integrity but lost their surface glycoproteins. Such structures are known as “bald” virions, which were first described as a result of protease treatment. At a higher photosensitizer concentration, the lipid membranes were also destroyed. Therefore, photodynamic inactivation of influenza virus initially results from surface protein removal, followed by complete virion destruction. This study suggests that photodynamic treatment can be used to manufacture “bald” virions for experimental purposes. Photodynamic inactivation is based on the production of reactive oxygen species which attack and destroy biomolecules. Thus, the results of this study can potentially apply to other enveloped viruses and sources of singlet oxygen.
Collapse
Affiliation(s)
- Denis Korneev
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria 3800, Australia.
| | - Olga Kurskaya
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia.
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia.
| | - Justin Eastwood
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria 3800, Australia.
| | - Marina Strakhovskaya
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA, 115682 Moscow, Russia.
| |
Collapse
|
20
|
Abstract
This year marks the 50th anniversary of the discovery of σ70 as a protein factor that was needed for bacterial RNA polymerase to accurately transcribe a promoter in vitro. It was 25 years later that the Group IV alternative σs were described as a distinct family of proteins related to σ70 . In the intervening time, there has been an ever-growing list of Group IV σs, numbers of genes they transcribe, insight into the diverse suite of processes they control, and appreciation for their impact on bacterial lifestyles. This work summarizes knowledge of the Rhodobacter sphaeroides σE -ChrR pair, a member of the ECF11 subfamily of Group IV alternative σs, in protecting cells from the reactive oxygen species, singlet oxygen. It describes lessons learned from analyzing ChrR, a zinc-dependent anti-σ factor, that are generally applicable to Group IV σs and relevant to the response to single oxygen. This MicroReview also illustrates insights into stress responses in this and other bacteria that have been acquired by analyzing or modeling the activity of the σE -ChrR across the bacterial phylogeny.
Collapse
Affiliation(s)
- Timothy J. Donohue
- Bacteriology Department, Great Lakes Bioenergy Research CenterWisconsin Energy Institute, University of Wisconsin‐MadisonMadisonWI53726USA
| |
Collapse
|
21
|
Maity GN, Maity P, Dasgupta A, Acharya K, Dalai S, Mondal S. Structural and antioxidant studies of a new arabinoxylan from green stem Andrographis paniculata (Kalmegh). Carbohydr Polym 2019; 212:297-303. [DOI: 10.1016/j.carbpol.2019.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
|
22
|
Abstract
Growing evidence indicates intermediacy of singlet dioxygen (1O2) in a variety of pathophysiological processes. 1O2 has also found great utility of destructive actions for clinical and environmental applications. However, many details of the molecular mechanisms mediated by 1O2 remain insufficiently understood. Efforts to elucidate the 1O2 chemistry have been hampered by the lack of chemical tools capable of generation and detection of 1O2. In this review, I summarize the recent advances in the development of the chemical tools of 1O2. This article focuses on two topics. The first part introduces chemical methods for ground-state generation of 1O2. Designs of the molecular carriers of 1O2 are also explained. The second part discloses molecular probes of 1O2. The probes are categorized into three groups, depending on signaling modalities: absorption-based probes, photoluminescent probes, and chemiluminescent probes. Focus is on the molecular design to maximize the signaling actions. Disadvantages of using the probes are also discussed to motivate the future research. I hope that this review will serve as helpful guidance to the exploitation and development of the chemical tools of 1O2.
Collapse
Affiliation(s)
- Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
23
|
Foszpańczyk M, Bednarczyk K, Drozdek E, Martins RC, Ledakowicz S, Gmurek M. Comparison of Photocatalytic and Photosensitized Oxidation of Paraben Aqueous Solutions Under Sunlight. WATER, AIR, AND SOIL POLLUTION 2018; 229:362. [PMID: 30416222 PMCID: PMC6208757 DOI: 10.1007/s11270-018-3991-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/26/2018] [Indexed: 05/06/2023]
Abstract
It is well-established that aquatic wildlife is exposed to natural and synthetic endocrine disrupting compounds which are able to interfere with the hormonal system. Although advanced oxidation processes (AOPs) have shown to be effective, their application is limited by a relatively high operational cost. In order to reduce the cost of energy consumed in the AOPs, widely available solar energy instead of UV light may be applied either as photocatalytic oxidation or as photosensitized oxidation. The main goal of the present study was to investigate the sunlight photodegradation of paraben mixture. Two processes, namely the photocatalytic oxidation with modified TiO2 nanoparticles and photosensitized oxidation with photosensitive chitosan beads, were applied. The oxidants were identified as singlet oxygen and hydroxyl radicals for photosensitized and photocatalytic oxidation, respectively. The toxicity, as well as ability to water disinfection of both processes under natural sunlight, has been investigated. Application of sunlight for the processes led to degradation of parabens. The efficiency of both processes was comparable. Despite the fact that singlet oxygen is weaker oxidant than hydroxyl radicals, the photosensitized oxidation seems to be more promising for wastewater purification, due to the possibility of chitosan bead reuse and more effective water disinfection. Graphical Abstractᅟ.
Collapse
Affiliation(s)
- M. Foszpańczyk
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
| | - K. Bednarczyk
- Department of Safety Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
| | - E. Drozdek
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
| | - R. C. Martins
- CIEPQPF – Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - S. Ledakowicz
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
| | - M. Gmurek
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
- CIEPQPF – Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
24
|
Unsal V. Natural Phytotherapeutic Antioxidants in the Treatment of Mercury Intoxication-A Review. Adv Pharm Bull 2018; 8:365-376. [PMID: 30276132 PMCID: PMC6156483 DOI: 10.15171/apb.2018.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Heavy metals taken into the organism can make the toxic effects on the metabolism in various ways. For example, they may interact with proteins to alter and inhibit their enzymatic and structural functions. Mercury is one of the toxic elements that are widely distributed in nature. Mercury toxicity poses a serious threat to human health. It is an element that causes oxidative stress to increase in individuals, leading to tissue damage. Oxidative stress is the result of the imbalance between the production of oxidative species and cellular antioxidant defense. Phytotherapy continues to play an important role in health care. Natural phytotherapeutic antioxidants, exhibit a broad sequence of biological impacts, including anti-oxidative stress, anti-aging, anti-toxicicity and anticancer. Many studies have also shown that the phytotherapeutic agents play an important role in the removal of mercury from the tissue and in reducing oxidative stress. Our goal in this review was to investigate alternative ways of extracting the mercury in the tissue.
Collapse
Affiliation(s)
- Velid Unsal
- Corresponding author: Velid Unsal, Tel: 0482 2121395,
| |
Collapse
|
25
|
An ellagic acid isolated from Clerodendrum viscosum leaves ameliorates iron-overload induced hepatotoxicity in Swiss albino mice through inhibition of oxidative stress and the apoptotic pathway. Biomed Pharmacother 2018; 106:454-465. [PMID: 29990833 DOI: 10.1016/j.biopha.2018.06.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/02/2023] Open
Abstract
Iron is a vital element required for normal cellular physiology in animal systems, but excess iron accumulation in the biological system accelerates oxidative stress, cellular toxicity, tissue injury and organ fibrosis, which ultimately leads to the generation of chronic liver diseases including cancer. A natural antioxidant, ellagic acid (EA) has been previously reported for its pharmacological properties; however, there is no significant evidence available that could illustrate its protective potential against iron-overload induced hepatotoxicity. In the present work, EA was evaluated for its in vitro free radical scavenging and iron chelation potentials. Further, EA was tested in vivo for its protective activity against iron overload-induced hepatotoxicity in Swiss albino mice by evaluating liver iron content, reactive oxygen species (ROS), liver antioxidant enzymes, serum marker levels, liver damage and fibrosis, histopathological study and finally western blotting analysis. EA treatment significantly decreased liver iron and serum ferritin levels. Elevated ROS levels, decreased antioxidant parameters and elevated serum markers were normalized upon treatment with EA. Cellular morphology, iron -overload and liver fibrosis were found to be effectively ameliorated. Finally, the protective effect of EA against iron overload-induced apoptosis was confirmed by western blotting when its treatment upregulated the expressions of caspase-3 and poly(ADP-ribose) polymerase (PARP) proteins. EA revealed hepatoprotective activity against iron overload-induced toxicity through scavenging free radicals, inhibiting excess ROS production, normalizing liver damage parameters and upregulating caspase-3, PARP expression. Collectively, our findings support the possible use of the natural antioxidant EA as a promising candidate against iron-overloaded diseases.
Collapse
|
26
|
Basu T, Panja S, Shendge AK, Das A, Mandal N. A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation. ENVIRONMENTAL TOXICOLOGY 2018; 33:603-618. [PMID: 29446234 DOI: 10.1002/tox.22549] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Tannic acid (TA), a water soluble natural polyphenol with 8 gallic acids groups, is abundantly present in various medicinal plants. Previously TA has been investigated for its antimicrobial and antifungal properties. Being a large polyphenol, TA chelates more than 1 metal. Hence TA has been explored for potent antioxidant activities against reactive oxygen species (ROS), reactive nitrogen species (RNS) and as iron chelator in vitro thereby mitigating iron-overload induced hepatotoxicity in vivo. Iron dextran was injected intraperitoneally in Swiss albino mice to induce iron-overload triggered hepatotoxicity, followed by oral administration of TA for remediation. After treatment, liver, spleen, and blood samples were processed from sacrificed animals. The liver iron, serum ferritin, serum markers, ROS, liver antioxidant status, and liver damage parameters were assessed, followed by histopathology and protein expression studies. Our results show that TA is a prominent ROS and RNS scavenger as well as iron chelator in vitro. It also reversed the ROS levels in vivo and restricted the liver damage parameters as compared to the standard drug, desirox. Moreover, this natural polyphenol exclusively ameliorates the histopathological and fibrotic changes in liver sections reducing the iron-overload, along with chelation of liver iron and normalization of serum ferritin. The protective role of TA against iron-overload induced apoptosis in liver was further supported by changed levels of caspase 3, PARP as well as Bax/BCl-2 ratio. Thus, TA can be envisaged as a better orally administrable iron chelator to reduce iron-overload induced hepatotoxicity through ROS regulation.
Collapse
Affiliation(s)
- Tapasree Basu
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| | - Anil Khushalrao Shendge
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme-VIIM, Kolkata, West Bengal, 700054, India
| |
Collapse
|
27
|
Chloramine T induced oxidative stress and the response of antioxidant system in Phanerochaete chrysosporium. Folia Microbiol (Praha) 2017; 63:325-333. [PMID: 29197993 DOI: 10.1007/s12223-017-0571-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Abstract
In this study, the effect of chloramine T (Chl-T) on the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione S-transferase (GST); the levels of reduced (GSH) and oxidised glutathione (GSSG) and their ratios; and also membrane lipid peroxidation (LPO) levels in Phanerochaete chrysosporium were investigated in a dose- (0.25-1 mmol/L) and time-dependent (1.5-9 h) manner. The highest SOD activity was observed in 0.5 mmol/L Chl-T at 6th hour as 1.48-fold of its control. The observed highest level in CAT activities was 4.6-fold of control in 0.5 and 0.75 mmol/L at the 6th hour. The GSH levels that were over the control showed decreasing tendency from the beginning of incubation, except 0.25 mmol/L. In contrast with GSH level variations, GSSG levels reached 10.0-fold of its control by showing increasing tendency with the increases in concentration and time. While the GSH/GSSG ratios were over the control at 0.25 mmol/L during all incubation, they fell under the control values at the earlier hours of incubation with the increasing concentrations of Chl-T. Glutathione-related enzymes GSH-Px, GR and GST were also induced with Chl-T treatment, and the highest activities were 3.29-, 7.5- and 6.56-fold of their controls, respectively. On the other hand, the increases in LPO levels with increasing concentration and time up to 5.27-fold of its control showed that the inductions observed in antioxidant system could not prevent the Chl-T-based oxidative stress.
Collapse
|
28
|
Mustedanagic J, Ximenes VF, Nagl M. Microbicidal activity of N-chlorotaurine in combination with hydrogen peroxide. AMB Express 2017; 7:102. [PMID: 28545261 PMCID: PMC5442072 DOI: 10.1186/s13568-017-0404-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023] Open
Abstract
N-chlorotaurine (NCT) and hydrogen peroxide are powerful endogenous antiseptics. In vivo, the reaction between hydrogen peroxide and metal ions leads to the formation of free hydroxyl radicals, which have an increased bactericidal activity. This study examined whether there is an additive antimicrobial effect of NCT combined with hydrogen peroxide. Additionally, it was tested if the additive effect is based on the formation of free radicals. We found by luminometry that, in the presence of H2O2, NCT caused a slow and long-lasting production of singlet oxygen in contrast to HOCl, where this burst occurred instantaneously. Both NCT and hydrogen peroxide (1.0 and 0.1%) demonstrated bactericidal and fungicidal activity. At pH 7.1 and 37 °C, hydrogen peroxide (1%, 294 mM) showed a stronger bactericidal and particularly fungicidal activity than NCT (1%, 55 mM), whereas at pH 4.0 and also in the presence of 5.0% peptone NCT revealed a stronger bactericidal activity. A combination of NCT and hydrogen peroxide led to an increased bactericidal but no increased fungicidal activity compared to both substances alone. The additive effect against bacteria was not removed in the presence of the radical scavengers NaN3, DMSO, or peptone. As a conclusion, NCT and hydrogen peroxide used concurrently interact additive against a range of microorganisms. However, the results of this study suggest that the additive effect of NCT combined with hydrogen peroxide is rather not based on the formation of free radicals.
Collapse
|
29
|
Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Kadirvelu K, Balagurunathan R. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives. NANOSCALE 2017; 9:16773-16790. [PMID: 29072767 DOI: 10.1039/c7nr04979j] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aims of nano oncology are to detect, target and treat cancer cells without any side effects. The present study describes the microbial synthesis of biocompatible nanoparticles of silver (AgNPs), gold (AuNPs) and their alloy (Ag/AuNPs) for hepatoprotective activity against diethylnitrosamine (DEN)-induced liver cancer in a Sprague Dawley (SD) rat model. The crystalline nature and physicochemical features of the nanoparticles were identified by Fourier transform infra-red (FT-IR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analysis. Based on the instrumental analysis, the synthesised nanomaterials were found to be spherical in shape and have an average size in the nano region. Nitrate reductase was characterized after partial purification of the culture filtrate via polyacrylamide gel electrophoresis and its molecular weight was determined as ∼45 kDa. Furthermore, the IC50 values of the AgNPs, AuNPs and Ag/AuNPs on HepG2 cells were determined as 38.42 μg ml-1, 43.25 μg ml-1 and 39.20 μg ml-1, respectively, and the antioxidant potential of the nanoparticles was also systematically analyzed. The No-Observed-Adverse-Effect-Level (NOAEL) for the AgNPs was determined to be 2000 mg per kg of body weight (bw) from an acute toxicity test. Similarly, the NOAEL of AuNPs and Ag/AuNPs were calculated as 1000 mg per kg bw. Based on the in vivo studies, a significant tumour reduction (∼45 to 65%) was observed in the nanoparticle-treated animals, which was further confirmed by hematological, biochemical, TEM and histopathological analysis. Immunohistochemistry analysis confirmed the presence of BAX antibodies, up to immunoreactive (3+) level in treated animals. These results strongly suggest the potential anticancer activities of AgNPs, AuNPs and Ag/AuNPs against DEN-induced liver cancer and they could be potential candidates for effective nano drug development.
Collapse
Affiliation(s)
- Thangavel Shanmugasundaram
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
30
|
Blázquez-Castro A. Direct 1O 2 optical excitation: A tool for redox biology. Redox Biol 2017; 13:39-59. [PMID: 28570948 PMCID: PMC5451181 DOI: 10.1016/j.redox.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/30/2017] [Accepted: 05/20/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen (1O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also 1O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of 1O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce 1O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Physics of Materials, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain; Formerly at Aarhus Institute of Advanced Studies (AIAS)/Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
31
|
André CB, Dos Santos A, Pfeifer CS, Giannini M, Girotto EM, Ferracane JL. Evaluation of three different decontamination techniques on biofilm formation, and on physical and chemical properties of resin composites. J Biomed Mater Res B Appl Biomater 2017; 106:945-953. [PMID: 28440891 DOI: 10.1002/jbm.b.33907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/27/2017] [Accepted: 04/13/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study evaluated three different sterilization/disinfection techniques for resin composites on bacterial growth and surface modification after decontamination. METHODS Two resin composites were sterilized/disinfected with three different techniques: UV light, 1% chloramine T, and 70% ethanol. Four different times were used for each technique to determine the shortest time that the solution or UV light was effective. The influence of sterilization/disinfection technique on bacterial growth was evaluated by analyzing the metabolic activity, using the AlamarBlue™ assay, bacterial viability, and SEM images from biofilms of Streptococcus mutans. The surface change, after the process, was analyzed with ATR/FTIR and SEM images. The solutions used for decontamination (1% chloramine-T and 70% ethanol) were analyzed with 1 H-NMR to identify any resin compounds leached during the process. RESULTS One minute of decontamination was efficient for all three methods tested. Chloramine-T increased the surface porosity on resin composites, no changes were observed for UV light and 70% ethanol, however, 1 H-NMR identified leached monomers only when 70% ethanol was used. No chemical change of the materials was found under ATR/FTIR analyses after the decontamination process. Chloramine-T, with no previous wash, increased the bacterial viability for both resin composites and increased the bacterial metabolism for the resin composite without fluoride. CONCLUSION UV light had no interference on the resin composites properties tested using 1 min of exposure compared to the other decontamination methods. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 945-953, 2018.
Collapse
Affiliation(s)
- Carolina Bosso André
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Campinas, Brazil
| | - Andressa Dos Santos
- Department of Chemistry, School of Chemistry, State University of Maringá, Maringá, Brazil
| | - Carmem Silvia Pfeifer
- Department of Dental Materials, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Marcelo Giannini
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Campinas, Brazil
| | | | - Jack Liborio Ferracane
- Department of Dental Materials, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
32
|
Muniyandi K, George E, Mudili V, Kalagatur NK, Anthuvan AJ, Krishna K, Thangaraj P, Natarajan G. Antioxidant and anticancer activities of Plectranthus stocksii Hook. f. leaf and stem extracts. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.anres.2016.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Maity P, Nandi AK, Manna DK, Pattanayak M, Sen IK, Bhanja SK, Samanta S, Panda BC, Paloi S, Acharya K, Islam SS. Structural characterization and antioxidant activity of a glucan from Meripilus giganteus. Carbohydr Polym 2017; 157:1237-1245. [DOI: 10.1016/j.carbpol.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
|
34
|
Kisselev PA, Panibrat OV, Sysa AR, Anisovich MV, Zhabinskii VN, Khripach VA. Flow-cytometric analysis of reactive oxygen species in cancer cells under treatment with brassinosteroids. Steroids 2017; 117:11-15. [PMID: 27343978 DOI: 10.1016/j.steroids.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
To explore the underlying mechanism of cancer cell growth inhibition by brassinosteroids (BS), reactive oxygen species (ROS) generation under treatment with 28-homocastasterone and its synthetic derivatives (22S,23S)-28-homocastasterone was measured in A549 human lung adenocarcinoma cells. BS induced ROS generation in A549 cells and their growth in a time and dose-dependent manner. The maximal effect was observed for (22S,23S)-28-homocastasterone which at 30μM concentration showed a 6-fold increase of ROS generation in comparison with the control.
Collapse
Affiliation(s)
- Pyotr A Kisselev
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| | - Olesya V Panibrat
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| | - Aliaksei R Sysa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| | - Marina V Anisovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| | - Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus.
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| |
Collapse
|
35
|
Visioli F, Artaria C. Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct 2017; 8:39-63. [DOI: 10.1039/c6fo01721e] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the main contributor to morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Functional Foods
- Madrid Institute for Advanced Studies (IMDEA) – 6 Food
- CEI UAM+CSIC
- Madrid
- Spain
| | | |
Collapse
|
36
|
Basu T, Panja S, Ghate NB, Chaudhuri D, Mandal N. Antioxidant and antiproliferative effects of different solvent fractions from Terminalia belerica Roxb. fruit on various cancer cells. Cytotechnology 2016; 69:201-216. [PMID: 28004224 DOI: 10.1007/s10616-016-0051-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/25/2016] [Indexed: 11/26/2022] Open
Abstract
Terminalia belerica Roxb. fruits have been previously reported against diabetes, ulcer, microbial problems and hepatotoxicity. The present study was aimed to investigate antioxidant and anticancer potential of sequentially fractionated hexane (TBHE), chloroform (TBCE), ethyl acetate (TBEE), butanol (TBBE) and water (TBWE) extracts from the 70% methanolic extract of T. belerica fruits. TBCE, TBEE, TBBE and TBWE showed excellent ROS (reactive oxygen species) and RNS (reactive nitrogen species) scavenging activities which was investigated using 11 different assays for various free radicals. Among 5 fractions, TBHE and TBCE remained nontoxic to any of the malignant cell lines including normal cells (WI-38). TBBE and TBWE inhibited the proliferation of breast (MCF-7), cervical (HeLa) and brain (U87) cancer cells by inducing G2/M arrest while TBEE caused apoptosis. However, these fractions did not inhibit the proliferation of lung (A549) and liver (HepG2) cancer cells. BrdU incorporation study also suggested the efficient anticancer potential of TBEE, TBBE and TBWE. Moreover, TBBE and TBWE treated MCF-7, HeLa and U87 cells showed upregulation of p53 and p21 proteins. Phytochemical analysis reflected the presence of adequate quantities of different phytochemicals. Moreover, HPLC analysis show peaks of purpurin, catechin, tannic acid, reserpine, ellagic acid, methyl gallate, aconitine and rutin in TBBE, TBWE and TBEE. Hence these polar extracts of T. belerica can be used to develop drug against different types of cancer.
Collapse
Affiliation(s)
- Tapasree Basu
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India
| | - Nikhil Baban Ghate
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India
| | - Dipankar Chaudhuri
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
37
|
Shanmugasundaram T, Balagurunathan R. Bio-medically active zinc oxide nanoparticles synthesized by using extremophilic actinobacterium, Streptomyces sp. (MA30) and its characterization. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1521-1529. [DOI: 10.1080/21691401.2016.1260577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Thangavel Shanmugasundaram
- Actinobacterial Research Laboratory, Department of Microbiology, School of Biosciences, Periyar University, Salem, India
| | - Ramasamy Balagurunathan
- Actinobacterial Research Laboratory, Department of Microbiology, School of Biosciences, Periyar University, Salem, India
| |
Collapse
|
38
|
Changes in the Expression of Biofilm-Associated Surface Proteins in Staphylococcus aureus Food-Environmental Isolates Subjected to Sublethal Concentrations of Disinfectants. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4034517. [PMID: 27868063 PMCID: PMC5102705 DOI: 10.1155/2016/4034517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022]
Abstract
Sublethal concentrations (sub-MICs) of certain disinfectants are no longer effective in removing biofilms from abiotic surfaces and can even promote the formation of biofilms. Bacterial cells can probably adapt to these low concentrations of disinfectants and defend themselves by way of biofilm formation. In this paper, we report on three Staphylococcus aureus biofilm formers (strong B+++, moderate B++, and weak B+) that were cultivated with sub-MICs of commonly used disinfectants, ethanol or chloramine T, and quantified using Syto9 green fluorogenic nucleic acid stain. We demonstrate that 1.25–2.5% ethanol and 2500 μg/mL chloramine T significantly enhanced S. aureus biofilm formation. To visualize differences in biofilm compactness between S. aureus biofilms in control medium, 1.25% ethanol, or 2500 μg/mL chloramine T, scanning electron microscopy was used. To describe changes in abundance of surface-exposed proteins in ethanol- or chloramine T-treated biofilms, surface proteins were prepared using a novel trypsin shaving approach and quantified after dimethyl labeling by LC-LTQ/Orbitrap MS. Our data show that some proteins with adhesive functions and others with cell maintenance functions and virulence factor EsxA were significantly upregulated by both treatments. In contrast, immunoglobulin-binding protein A was significantly downregulated for both disinfectants. Significant differences were observed in the effect of the two disinfectants on the expression of surface proteins including some adhesins, foldase protein PrsA, and two virulence factors.
Collapse
|
39
|
Balas M, Constanda S, Duma-Voiculet A, Prodana M, Hermenean A, Pop S, Demetrescu I, Dinischiotu A. Fabrication and toxicity characterization of a hybrid material based on oxidized and aminated MWCNT loaded with carboplatin. Toxicol In Vitro 2016; 37:189-200. [PMID: 27638054 DOI: 10.1016/j.tiv.2016.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/18/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
This study focused on the fabrication and toxicity characterization of a hybrid material-based on the multiple functionalizations of multiwalled carbon nanotubes (MWCNTs) with carboxyl or amino groups and the anti-tumor drug carboplatin (CP). The functionalization was evidenced by Fourier transformed infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC). The amount of platinum ions released in the simulated body fluid (SBF) was assessed by inductively coupled plasma mass spectrometry (ICP-MS). Cell viability, nanotubes cellular uptake, cell proliferation, superoxide anion production, SOD activity, intracellular glutathione and protein expression of several molecules involved in breast tumor cell survival and death were investigated after 24h exposure. Exposure to the aminated carbon nanotubes loaded with carboplatin resulted in a greater decrease of viability compared to oxidized carbon nanotubes loaded with the same drug, which was in an inversely proportional relationship with the production of superoxide anions in breast cancer cells. The inhibition of Hsp60, Hsp90, p53 and Mdm2 protein expression was induced as a consequence of the cytoprotection mechanism failure. Overexpression of Beclin1 and the reduction of Bcl2 expression were also observed, suggesting that functionalized MWCNT loaded with CP trigger cell death via autophagy in breast cancer cells.
Collapse
Affiliation(s)
- Mihaela Balas
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, Splaiul Independentei 91-95, 50095 Bucharest, Romania
| | - Sabrina Constanda
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, Splaiul Independentei 91-95, 50095 Bucharest, Romania
| | - Adriana Duma-Voiculet
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Mariana Prodana
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania; Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului, Arad 310396, Romania
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Bucharest, Splaiul Independenţei 99 - 101, 050096, Romania
| | - Ioana Demetrescu
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Anca Dinischiotu
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, Splaiul Independentei 91-95, 50095 Bucharest, Romania.
| |
Collapse
|
40
|
Al-Shmgani HSA, Mohammed WH, Sulaiman GM, Saadoon AH. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-7. [PMID: 27534756 DOI: 10.1080/21691401.2016.1220950] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biosynthesis of silver nanoparticles (AgNPs) from Catharanthus roseus leaf extract was carried out, and their characterization, as well as antioxidant, antimicrobial, and wound-healing activities were evaluated. Color change, UV-vis spectrum, XRD, FTIR, and AFM assessments supported the biosynthesis and characterization of AgNPs. The synthesized AgNPs showed strong in vitro antioxidant and antimicrobial activities against various pathogens. The in vivo assessment of wound healing in AgNPs-treated mice revealed their effectiveness in closuring and reducing size of wounds. Such potent bioactivity may justify their biomedical use as antioxidant and antimicrobial agents for controlling various health-related diseases, particularly in wound healing.
Collapse
Affiliation(s)
- Hanady S A Al-Shmgani
- a Biology Department, College of Education for Pure Science/Ibn al-Haitham , University of Baghdad , Baghdad , Iraq
| | - Wasnaa H Mohammed
- b Biotechnology Division, Applied Science Department , University of Technology , Baghdad , Iraq
| | - Ghassan M Sulaiman
- b Biotechnology Division, Applied Science Department , University of Technology , Baghdad , Iraq
| | - Ali H Saadoon
- b Biotechnology Division, Applied Science Department , University of Technology , Baghdad , Iraq
| |
Collapse
|
41
|
Chaudhuri D, Ghate NB, Panja S, Basu T, Shendge AK, Mandal N. Glycoside rich fraction from Spondias pinnata bark ameliorate iron overload induced oxidative stress and hepatic damage in Swiss albino mice. Altern Ther Health Med 2016; 16:262. [PMID: 27472924 DOI: 10.1186/s12906-016-1244-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/23/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Iron in the overloaded condition in liver promotes the overproduction of free radicals that lead to oxidative stress and ultimately hepatic damage. The present study was designed to evaluate the ameliorating potential from iron overloaded hepatotoxicity by the glycosidic fraction from Spondious pinnata bark (SPW1) along with its antioxidant property. METHODS The fraction was tested for its in vitro antioxidant, free radical scavenging property and iron chelation potential via standard biochemical assays. Iron overload condition was generated by the intraperitoneal administration of iron dextran in mice. The levels of serum enzymes, antioxidant enzymes in liver, markers of hepatic damage, liver iron, and ferritin content were measured in response to the oral treatment of SPW1. Histopathology of the liver sections was performed for visual confirmation of the amelioration potential of SPW1. RESULTS The fraction exhibited excellent in vitro antioxidant as well as free radical scavenging potential against both reactive oxygen species and reactive nitrogen species. Administration of SPW1 significantly normalized the disturbed levels of antioxidant enzymes, liver iron, lipid peroxidation, liver fibrosis, serum enzyme and ferritin better than standard desirox which were also supported by the morphological study of the liver sections. Phytochemical analysis as well as HPLC study, confirmed that the fraction mainly consisted of glycosidic phenolics and flavonoids that attributed to its biological activities. CONCLUSIONS The above results suggested that beneficial effects of SPW1 on iron overload induced hepatotoxicity that can be considered as a possible candidate against iron overload diseases.
Collapse
|
42
|
Stief TW. Singlet Oxygen Enhances Intrinsic Thrombolysis: The Intrinsic Oxidative Clot Lysis Assay (INOXCLA). Clin Appl Thromb Hemost 2016; 13:369-83. [PMID: 17911188 DOI: 10.1177/1076029607306594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Granulocytes are important cells of inflammation and cellular thrombolysis. They produce urokinase (u-PA) and chloramines. In this study, u-PA/chloramine—mediated fibrinolysis is imitated in a microtiter-plate. Seventy-five microliters plasma are incubated with 50 μL 50% Pathromtin SL, 6% BSA, and 38 mM CaCl2 for 30 minutes (37°C). Then, 50 μL 10 mM chloramine-T in PBS are added. After 30 minutes (37°C), 50 μL 0, 100, or 10 IU/mL u-PA in 6% BSA-PBS are added and the turbidity is determined at 405 nm after 0, 3, or 16 hours. Clot lysis was increased more than tenfold by 0.5 to 1 μmoles chloramine (ED50 after 3h = about 0.25 μmoles = 2mM final concentration). The normal range for the present intrinsic oxidative clot lysis assay (INOXCLA) is 100% ± 25% (MV ± SD; 100 relative % of norm; the normal lysis being 60 absolute %; CVs < 10%). Fifty percent lysis of adherent microclots occurred after 0.75 hours, 2 hours, 14 hours, 13 days, or 17 days when using 1000, 100, 10, 1, or 0 IU/mL u-PA reagent. If the u-PA activity is quenched by PAI-2, no clot lysis appears. Chloramines are important physiologic generators of nonradical excited singlet oxygen and enhance u-PA—mediated lysis of plasma clots. Based on the u-PA/chloramines coaction, a new global fibrinolysis assay has been derived.
Collapse
Affiliation(s)
- Thomas W Stief
- Department of Clinical Chemistry, University Hospital Giesson and Morburg, Germany.
| |
Collapse
|
43
|
Tufarelli V, Laudadio V. Antioxidant activity of vitamin e and its role in avian reproduction. ACTA ACUST UNITED AC 2016. [DOI: 10.18006/2016.4(3s).266.272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:333-338. [DOI: 10.1016/j.msec.2015.11.052] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/16/2015] [Accepted: 11/19/2015] [Indexed: 11/17/2022]
|
45
|
Maurya PK, Noto C, Rizzo LB, Rios AC, Nunes SOV, Barbosa DS, Sethi S, Zeni M, Mansur RB, Maes M, Brietzke E. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:134-44. [PMID: 26348786 DOI: 10.1016/j.pnpbp.2015.08.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/29/2015] [Accepted: 08/30/2015] [Indexed: 12/29/2022]
Abstract
Major depressive disorder (MDD) affects millions of individuals and is highly comorbid with many age associated diseases such as diabetes mellitus, immune-inflammatory dysregulation and cardiovascular diseases. Oxidative/nitrosative stress plays a fundamental role in aging, as well as in the pathogenesis of neurodegenerative/neuropsychiatric disorders including MDD. In this review, we critically review the evidence for an involvement of oxidative/nitrosative stress in acceleration of aging process in MDD. There are evidence of the association between MDD and changes in molecular mechanisms involved in aging. There is a significant association between telomere length, enzymatic antioxidant activities (SOD, CAT, GPx), glutathione (GSH), lipid peroxidation (MDA), nuclear factor κB, inflammatory cytokines with MDD. Major depression also is characterized by significantly lower concentration of antioxidants (zinc, coenzyme Q10, PON1). Since, aging and MDD share a common biological base in their pathophysiology, the potential therapeutic use of antioxidants and anti-aging molecules in MDD could be promising.
Collapse
Affiliation(s)
- Pawan Kumar Maurya
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Cristiano Noto
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas B Rizzo
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Psychiatry, Clinic for Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Adiel C Rios
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sandra O V Nunes
- Graduation Program in Health Sciences, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Décio Sabbatini Barbosa
- Graduation Program in Health Sciences, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Sumit Sethi
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maiara Zeni
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada
| | - Michael Maes
- Graduation Program in Health Sciences, Universidade Estadual de Londrina, Londrina, PR, Brazil; Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Elisa Brietzke
- Interdisciplinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
46
|
Wild Edible Fruit of Prunus nepalensis Ser. (Steud), a Potential Source of Antioxidants, Ameliorates Iron Overload-Induced Hepatotoxicity and Liver Fibrosis in Mice. PLoS One 2015; 10:e0144280. [PMID: 26633891 PMCID: PMC4669143 DOI: 10.1371/journal.pone.0144280] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022] Open
Abstract
The antioxidant and restoration potentials of hepatic injury by Prunus nepalensis Ser. (Steud), a wild fruit plant from the Northeastern region of India, were investigated. The fruit extract (PNME) exhibited excellent antioxidant and reducing properties and also scavenged the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (IC50 = 30.92 ± 0.40 μg/ml). PNME demonstrated promising scavenging potency, as assessed by the scavenging of different reactive oxygen and nitrogen species. Moreover, the extract revealed an exceptional iron chelation capacity with an IC50 of 25.64 ± 0.60 μg/ml. The extract induced significant improvement of hepatic injury and liver fibrosis against iron overload induced hepatotoxicity in mice in a dose-dependent manner, and this effect was supported by different histopathological studies. The phytochemical constitutions and their identification by HPLC confirmed the presence of purpurin, tannic acid, methyl gallate, reserpine, gallic acid, ascorbic acid, catechin and rutin. The identified compounds were investigated for their individual radical scavenging and iron chelation activity; some compounds exhibited excellent radical scavenging and iron chelation properties, but most were toxic towards normal cells (WI-38). On the other hand, crude PNME was found to be completely nontoxic to normal cells, suggesting its feasibility as a safe oral drug. The above study suggests that different phytochemicals in PNME contributed to its free radical scavenging and iron chelation activity; however, further studies are required to determine the pathway in which PNME acts to treat iron-overload diseases.
Collapse
|
47
|
Saifi MA, Alyousif MS, Ahmed M. Biochemical Investigations on the Protective Role of Curcumin in Liver Damage by Chloroquine. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.870.873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Flavonoids in Microheterogeneous Media, Relationship between Their Relative Location and Their Reactivity towards Singlet Oxygen. PLoS One 2015; 10:e0129749. [PMID: 26098745 PMCID: PMC4476713 DOI: 10.1371/journal.pone.0129749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
In this work, the relationship between the molecular structure of three flavonoids (kaempferol, quercetin and morin), their relative location in microheterogeneous media (liposomes and erythrocyte membranes) and their reactivity against singlet oxygen was studied. The changes observed in membrane fluidity induced by the presence of these flavonoids and the influence of their lipophilicity/hydrophilicity on the antioxidant activity in lipid membranes were evaluated by means of fluorescent probes such as Laurdan and diphenylhexatriene (DPH). The small differences observed for the value of generalized polarization of Laurdan (GP) curves in function of the concentration of flavonoids, indicate that these three compounds promote similar alterations in liposomes and erythrocyte membranes. In addition, these compounds do not produce changes in fluorescence anisotropy of DPH, discarding their location in deeper regions of the lipid bilayer. The determined chemical reactivity sequence is similar in all the studied media (kaempferol < quercetin < morin). Morin is approximately 10 times more reactive than quercetin and 20 to 30 times greater than kaempferol, depending on the medium.
Collapse
|
49
|
Maity P, Sen IK, Maji PK, Paloi S, Devi KSP, Acharya K, Maiti TK, Islam SS. Structural, immunological, and antioxidant studies of β-glucan from edible mushroom Entoloma lividoalbum. Carbohydr Polym 2015; 123:350-8. [DOI: 10.1016/j.carbpol.2015.01.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
50
|
Topal M, Gocer H, Topal F, Kalin P, Köse LP, Gülçin İ, Çakmak KC, Küçük M, Durmaz L, Gören AC, Alwasel SH. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L.). J Enzyme Inhib Med Chem 2015; 31:266-75. [DOI: 10.3109/14756366.2015.1018244] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Meryem Topal
- Department of Medical Services and Techniques, Gumushane University, Vocational School of Health Services, Gumushane, Turkey,
| | - Hulya Gocer
- Central Researching Laboratory, Agri Ibrahim Cecen University, Agri, Turkey,
| | - Fevzi Topal
- Department of Medical Services and Techniques, Gumushane University, Vocational School of Health Services, Gumushane, Turkey,
| | - Pınar Kalin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
| | - Leyla Polat Köse
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia, and
| | - Kader C. Çakmak
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
| | - Murat Küçük
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
| | - Lokman Durmaz
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey,
| | - Ahmet C. Gören
- TUBITAK UME, Chemistry Group Laboratories, Gebze-Kocaeli, Turkey
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia, and
| |
Collapse
|