1
|
Pokhrel GR, Wang K, Ying K, Wu Y, Wang Z, Zhu X, Qu C, Li H, Fu F, Yang G. Effect of inorganic arsenic in paddy soil on the migration and transformation of selenium species in rice plants. J Environ Sci (China) 2024; 143:35-46. [PMID: 38644022 DOI: 10.1016/j.jes.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 04/23/2024]
Abstract
Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan. The results showed that the antagonism between inorganic As and Se was closely related to the rice cultivar and Se oxidation state in soil. Relative to the standalone selenate treatment, arsenite significantly (p < 0.05) decreased the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, sheaths, leaves, brans and kernels of both cultivars by 21.4%-100.0%, 40.0%-100.0%, 41.0%-100%, 5.4%-96.3%, 11.3%-100.0% and 26.2%-39.7% respectively, except for selenocystine in the kernels of indica Minghui 63 and selenomethionine in the leaves of indica Minghui 63 and the stems of indica Luyoumingzhan. Arsenate also decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, brans and kernels of both cultivars by 34.9%-100.0%, 30.2%-100.0%, 11.3%-100.0% and 5.6%-39.6% respectively, except for selenate in the stems of indica Minghui 63. However, relative to the standalone selenite treatment, arsenite and arsenate decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenite only in the roots of indica Minghui 63 by 45.5%-100.0%. Our results suggested that arsenite and arsenate had better antagonism toward Se species in selenate-added soil than that in selenite-added soil; moreover, arsenite had a higher inhibiting effect on the accumulation of Se species than arsenate.
Collapse
Affiliation(s)
- Ganga Raj Pokhrel
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Chemistry, Birendra Multiple Campus, Tribhuvan University, Chitwan 00977-44200, Bharatpur, Nepal
| | - Kaiteng Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaiyang Ying
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongchen Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ze Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi Zhu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Can Qu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengfu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Guidi Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Schmitz C, Grambusch IM, Neutzling Lehn D, Hoehne L, Volken de Souza CF. A systematic review and meta-analysis of validated analytical techniques for the determination of total selenium in foods and beverages. Food Chem 2023; 429:136974. [PMID: 37499504 DOI: 10.1016/j.foodchem.2023.136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
The intricate balance between the beneficial and harmful effects of selenium (Se) intake means that its quantification in food needs to be done correctly. Therefore, in this review, we systematized 105 articles to identify the most studied methodologies, analytical techniques, and food matrices. Among the analytical techniques employed, inductively coupled plasma mass spectrometry (ICP-MS) (n = 29) emerged as the most commonly used method. The most prevalent hydrolysis methodology to digest Se in food matrices involved the use of nitric acid combined with ultrasound, which improved both the yield and digestion time. Optimal recovery values were achieved when total Se quantification accounted for the sum of Se(IV) and Se(VI) (94.4-99.4%) and for SeCys (88-96.5%). These findings are relevant for advancing methodological approaches, and their results emphasize the importance of developing alternative, faster, and lower-cost protocols for Se quantification in foods and beverages.
Collapse
Affiliation(s)
- Caroline Schmitz
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Isabel Marie Grambusch
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Daniel Neutzling Lehn
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Lucélia Hoehne
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory, University of Vale do Taquari - Univates, Lajeado, RS, Brazil; Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
3
|
Wang F, Li Y, Yang R, Zhang N, Li S, Zhu Z. Effects of sodium selenite on the growth, biochemical composition and selenium biotransformation of the filamentous microalga Tribonema minus. BIORESOURCE TECHNOLOGY 2023:129313. [PMID: 37302765 DOI: 10.1016/j.biortech.2023.129313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the physiological and biochemical responses of filamentous microalga Tribonema minus to different Na2SeO3 concentrations and its selenium absorption and metabolism to evaluate the potential in treating selenium-containing wastewater. The results showed that low Na2SeO3 concentrations promoted growth by increasing chlorophyll content and antioxidant capacity, whereas high concentrations caused oxidative damage. Although Na2SeO3 exposure reduced lipid accumulation compared with the control, it significantly increased carbohydrate, soluble sugar, and protein contents, with the highest carbohydrate productivity of 117.97 mg/L/d at 0.5 mg/L Na2SeO3. Furthermore, this alga effectively absorbed Na2SeO3 in the growth medium and converted most of it into volatile selenium and a small part into organic selenium (predominantly as selenocysteine), showing strong selenite removal efficacy. This is the first report on the potential of T. minus to produce valuable biomass while removing selenite, providing new insights into the economic feasibility of bioremediation of selenium-containing wastewater.
Collapse
Affiliation(s)
- Feifei Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Yuanhong Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Rundong Yang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Na Zhang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China.
| |
Collapse
|
4
|
Paniz FP, Pedron T, Procópio VA, Lange CN, Freire BM, Batista BL. Selenium Biofortification Enhanced Grain Yield and Alleviated the Risk of Arsenic and Cadmium Toxicity in Rice for Human Consumption. TOXICS 2023; 11:362. [PMID: 37112588 PMCID: PMC10143363 DOI: 10.3390/toxics11040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Arsenic (As) and Cadmium (Cd) are toxic to rice plants. However, selenium (Se) has the potential to regulate As and Cd toxicity. The present study aimed to evaluate the co-exposure to As5+ and Se6+ species in two rice cultivars, BRS Pampa and EPAGRI 108. The plants were divided into six groups and cultivated until complete maturation of the grains, under greenhouse conditions. Regarding total As and inorganic As (i-As) accumulation in grains, the highest concentrations were found for BRS Pampa. For Se, EPAGRI 108 presented the highest concentration of inorganic and organic Se (i-Se and o-Se). The exposure assessments showed that Se biofortification can mitigate the As accumulation in rice and, consequently, the risk of As and Cd toxicity in grains for human consumption. The combined effect of As and Se in rice plants could represent an alternative to biofortify this food in a safe way and with a higher percentage of bioavailable Se. Although Se is able to mitigate As toxicity in rice plants, in the present study we showed that co-exposure in different cultivars under the same growing conditions may present different responses to As and Se exposure.
Collapse
|
5
|
Interaction between Sulfate and Selenate in Tetraploid Wheat (Triticum turgidum L.) Genotypes. Int J Mol Sci 2023; 24:ijms24065443. [PMID: 36982516 PMCID: PMC10055959 DOI: 10.3390/ijms24065443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Selenium (Se) is an essential micronutrient of fundamental importance to human health and the main Se source is from plant-derived foods. Plants mainly take up Se as selenate (SeO42−), through the root sulfate transport system, because of their chemical similarity. The aims of this study were (1) to characterize the interaction between Se and S during the root uptake process, by measuring the expression of genes coding for high-affinity sulfate transporters and (2) to explore the possibility of increasing plant capability to take up Se by modulating S availability in the growth medium. We selected different tetraploid wheat genotypes as model plants, including a modern genotype, Svevo (Triticum turgidum ssp. durum), and three ancient Khorasan wheats, Kamut, Turanicum 21, and Etrusco (Triticum turgidum ssp. turanicum). The plants were cultivated hydroponically for 20 days in the presence of two sulfate levels, adequate (S = 1.2 mM) and limiting (L = 0.06 mM), and three selenate levels (0, 10, 50 μM). Our findings clearly showed the differential expression of genes encoding the two high-affinity transporters (TdSultr1.1 and TdSultr1.3), which are involved in the primary uptake of sulfate from the rhizosphere. Interestingly, Se accumulation in shoots was higher when S was limited in the nutrient solution.
Collapse
|
6
|
Speciation of Selenium in Selenium-Enriched Foods by High-Performance Liquid Chromatography-Inductively Coupled Plasma-Tandem Mass Spectrometry. SEPARATIONS 2022. [DOI: 10.3390/separations9090242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Herein, a method was established for the speciation of six selenium species by high performance liquid chromatography-inductively coupled plasma-tandem mass spectrometry (HPLC-ICP-MS/MS). The factors affecting separation were carefully investigated, including ionic strength, pH, and methanol content. Six species of selenium could be completely separated within 20 min, under the mobile phase of 25 mM citric acid in pH = 4.0 containing 2% methanol. The detection limits of selenite (Se(IV)), selenate (Se(VI)), selenomethionine (SeMet), selenocystine (SeCys2), methylselenocysteine (MeSeCys), and selenoethionine (SeEt) were 0.04, 0.02, 0.05, 0.02, 0.03, and 0.15 ng mL−1, respectively. To verify the practicality of this method, the analysis of selenium-enriched foods such as selenium-enriched spring water, selenium-enriched salts, and selenium-enriched tea were conducted, and recovery of 93.7–105% was achieved with RSD < 5%, revealing the high practical utility of the proposed method.
Collapse
|
7
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Ma Q, Zhang Q, Li X, Gao Y, Wei C, Li H, Jiao H. The compound-independent calibration of five selenium species in rice using ion-pairing reversed phase chromatography coupled to inductively coupled plasma tandem mass spectrometry. J Chromatogr A 2022; 1674:463134. [DOI: 10.1016/j.chroma.2022.463134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
|
9
|
Lyu C, Chen J, Li L, Zhao Z, Liu X. Characteristics of Se in water-soil-plant system and threshold of soil Se in seleniferous areas in Enshi, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154372. [PMID: 35259387 DOI: 10.1016/j.scitotenv.2022.154372] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Se-enrichment characteristics in water-soil-plant system and dietary Se status of local residents in seleniferous areas were investigated. Results showed that Se in well water might mainly derived from Se-enriched shales and coals, and Se mobility in seleniferous soils was relatively low with less than 6.7% bioavailable forms in high-Se areas. Soil Se with irrigation, precipitation and fertilization sources contributed more to soil Se than Se-enriched shales and coals in low-Se areas, resulting in slightly higher mobility of Se in low-Se soils. Se concentration in edible parts of main crops ranged from 0.005 mg kg-1 to 4.17 mg kg-1, and cereal plants had a higher Se-enrichment ability than tuber plants. The probable dietary Se intake (PDI) in high-Se areas was decreased to 959.3 μg d-1 in recent years, which might be attributed to tap water as drinking water in recent year rather than well water-dependent and changes in dietary structure, but still far above the permissible value of 400 μg d-1. Reducing cereal-derived dietary Se intake is an important strategy to better Se nutrition status in high-Se areas. After synthesis considerations on soil Se bioavailability and PDI of Se, the soil total Se of 4 mg kg-1 and the soil available Se content of 0.32 mg kg-1 were proposed to be the reference threshold values of soil Se excess in high-Se areas in Enshi, respectively.
Collapse
Affiliation(s)
- Chenhao Lyu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Jiawei Chen
- Agriculture and Rural Bureau of Jianshi County, Jianshi 445300, Hubei, China
| | - Lei Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Zhuqing Zhao
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Xinwei Liu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China.
| |
Collapse
|
10
|
Farooq MU, Ishaaq I, Barutcular C, Skalicky M, Maqbool R, Rastogi A, Hussain S, Allakhverdiev SI, Zhu J. Mitigation effects of selenium on accumulation of cadmium and morpho-physiological properties in rice varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:1-13. [PMID: 34839203 DOI: 10.1016/j.plaphy.2021.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) is a beneficial element, but only when present within its permissible range. Its hyper-accumulation in edible plant parts can cause Se toxicity. This study aimed to develop an agronomic plan for biofortification of rice with Se and reclamation of cadmium (Cd)-contaminated soil, utilizing sodium selenite (Na2SeO3) and cadmium chloride (CdCl2) as soil treatments. Biofortification was performed on two target rice varieties: genotypes 5097A/R2035 and GangYou725, in field trials by applying Cd at a concentration of 0-8 mg kg soil-1 and Se at 0-1 mg kg soil-1. Since these rice varieties have different metabolic specificity, the degree of elemental accumulation, deviations in chlorophyll concentration, activity of photosynthetic apparatus and grain yield were assessed. It was found that application of 1 mg kg-1 Se2O3 decrease Cd content and increased chlorophyll content and photosynthetic activity while grain yield was unaffected by application of the metallic trace-elements. Comparing effects at different stages, we found that the 50% heading stage was most sensitive to metal application. In sum, Se mitigates Cd toxicity, but hyperaccumulation of Se (4 mg kg-1) in polished rice was observed with Cd at 4 and 8 mg kg-1. The elevated level of Cd stress in pot experiments resulted in over-accumulation of Se in the germ and endosperm that poses serious health concerns.
Collapse
Affiliation(s)
- Muhammad Umer Farooq
- Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330, Adana, Turkey; Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Department of Plant Breeding & Genetics, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Iqra Ishaaq
- Department of Plant Breeding & Genetics, University of Agriculture Faisalabad, 38040, Pakistan
| | - Celaleddin Barutcular
- Department of Field Crops, Faculty of Agriculture, Çukurova University, 01330, Adana, Turkey
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Rizwana Maqbool
- Department of Plant Breeding & Genetics, University of Agriculture Faisalabad, 38040, Pakistan
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 611130, China
| | - Suleyman I Allakhverdiev
- К.А. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia.
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Raina M, Sharma A, Nazir M, Kumari P, Rustagi A, Hami A, Bhau BS, Zargar SM, Kumar D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. PHYSIOLOGIA PLANTARUM 2021; 171:882-895. [PMID: 33179766 DOI: 10.1111/ppl.13275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) is a vital mineral for both plants and animals. It is widely distributed on the earth's crust and is taken up by the plants as selenite or selenate. Plants substantially vary in their physiological response to Se. The amount of Se in edible plants is genetically controlled. Its availability can be determined by measuring its phytoavailability in soil. The low concentration of Se in plants can help them in combating stress, whereas higher concentrations can be detrimental to plant health and in most cases it is toxic. Thus, solving the double-edged sword problem of nutritional Se deficiency and its elevated concentrations in environment requires a better understanding of Se uptake and metabolism in plants. The studies on Se uptake and metabolism can help in genetic biofortification of Se in plants and also assist in phytoremediation. Moreover, Se uptake and transport, especially biochemical pathways of assimilation and incorporation into proteins, offers striking mechanisms of toxicity and tolerance. These developments have led to a revival of Se research in higher plants with significant break throughs being made in the previous years. This review explores the new dimensions of Se research with major emphasis on key research events related to Se undertaken in last few years. Further, we also discussed future possibilities in Se research for crop improvement.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Akanksha Sharma
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Muslima Nazir
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Punam Kumari
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Takahashi K, Suzuki N, Ogra Y. Effect of gut microflora on nutritional availability of selenium. Food Chem 2020; 319:126537. [PMID: 32193059 DOI: 10.1016/j.foodchem.2020.126537] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 11/27/2019] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Since selenium (Se) is an essential mineral, animals must be able to metabolize the various selenocompounds in meat, fish and vegetables. It is unclear how animals, including humans, utilize selenocompound efficiently, but we hypothesized that gut microflora might contribute to these processes. In this study, we revealed that Se-methylselenocysteine and selenocyanate were metabolized to selenomethionine (SeMet) by intestinal microflora, suggesting selenocompounds might be metabolized to SeMet, which can be used by the host organism. The major urinary selenosugar, 1β-methylseleno-N-acetyl-d-galactosamine, was utilized less in microflora-suppressed than healthy rats, suggesting that this sugar can be transformed to a nutritionally available form by gut microflora in animals with a healthy microbiota. We concluded that, in rats at least, gut microflora has a role in the metabolism of Se in the host animal, and this finding might be worth investigating in humans.
Collapse
Affiliation(s)
- Kazuaki Takahashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan.
| |
Collapse
|
13
|
Trozzi C, Raffaelli F, Vignini A, Nanetti L, Gesuita R, Mazzanti L. Evaluation of antioxidative and diabetes-preventive properties of an ancient grain, KAMUT ® khorasan wheat, in healthy volunteers. Eur J Nutr 2019; 58:151-161. [PMID: 29143934 PMCID: PMC6424920 DOI: 10.1007/s00394-017-1579-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE Recently, there was an increasing interest on the use of ancient grains because of their better health-related composition. The aim of this study was to evaluate in healthy human subjects the antioxidative and diabetes-preventive properties of ancient KAMUT® khorasan wheat compared to modern wheat. METHODS The study was a randomized, non-blind, parallel arm study where the biochemical parameters of volunteers with a diet based on organic whole grain KAMUT® khorasan products, as the only source of cereal products were compared to a similar replacement diet based on organic whole grain modern durum wheat products. A total of 30 healthy volunteers were recruited and the intervention period lasted 16 weeks. Blood analyses were performed before and after the diet intervention. The effect of KAMUT® khorasan products on biochemical parameters was analyzed by multiple quantile regression adjusted for age, sex, physical activity and BMI compared to data at baseline. RESULTS Subjects receiving KAMUT® khorasan products showed a significantly greater decrease of fat mass (b = 3.7%; CI 1.6-5.5; p = 0.042), insulin (b = 2.4 µU/ml; CI 0.2-4.2; p = 0.036) and a significant increase of DHA (b = - 0.52%; CI - 1.1 to - 0.12; p = 0.021). CONCLUSIONS Our study provides evidence that a substitution diet with KAMUT® khorasan wheat products can reduce some markers associated to the development of type-2 diabetes compared to a diet of modern wheat.
Collapse
Affiliation(s)
| | - Francesca Raffaelli
- Biomedfood srl, Spinoff Università Politecnica delle Marche, Via Ranieri n.65, 60128, Ancona, Italy.
| | - Arianna Vignini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Nanetti
- Biomedfood srl, Spinoff Università Politecnica delle Marche, Via Ranieri n.65, 60128, Ancona, Italy
| | - Rosaria Gesuita
- Centro Interdipartimentale di Epidemiologia, Biostatistica e Informatica medica, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Mazzanti
- Biomedfood srl, Spinoff Università Politecnica delle Marche, Via Ranieri n.65, 60128, Ancona, Italy
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
14
|
Kolbert Z, Molnár Á, Feigl G, Van Hoewyk D. Plant selenium toxicity: Proteome in the crosshairs. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:291-300. [PMID: 30544054 DOI: 10.1016/j.jplph.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 05/23/2023]
Abstract
The metalloid element, selenium (Se) is in many ways special and perhaps because of this its research in human and plant systems is of great interest. Despite its non-essentiality, higher plants take it up and metabolize it via sulfur pathways, but higher amounts of Se cause toxic symptoms in plants. However, the molecular mechanisms of selenium phytotoxicity have been only partly revealed; the data obtained so far point out that Se toxicity targets the plant proteome. Besides seleno- and oxyproteins, nitroproteins are also formed due to Se stress. In order to minimize proteomic damages induced by Se, certain plants are able to redirect selenocysteine away from protein synthesis thus preventing Se-protein formation. Additionally, the damaged or malformed selenoproteins, oxyproteins and nitroproteins may be removed by proteasomes. Based on the literature this review sets Se toxicity mechanisms into a new concept and it draws attention to the importance of Se-induced protein-level changes.
Collapse
Affiliation(s)
- Z Kolbert
- Department of Plant Biology, University of Szeged, 6726 Szeged Közép fasor 52, Hungary.
| | - Á Molnár
- Department of Plant Biology, University of Szeged, 6726 Szeged Közép fasor 52, Hungary.
| | - G Feigl
- Department of Plant Biology, University of Szeged, 6726 Szeged Közép fasor 52, Hungary.
| | - D Van Hoewyk
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA.
| |
Collapse
|
15
|
Huang G, Ding C, Yu X, Yang Z, Zhang T, Wang X. Characteristics of Time-Dependent Selenium Biofortification of Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12490-12497. [PMID: 30403867 DOI: 10.1021/acs.jafc.8b04502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The application of selenite to soil has increasingly been used to produce Se-enriched food. This study investigated the biofortification characteristics of Se in rice after application of selenite to soil at different growth stages. The results showed that the application of Se during booting stage resulted in the highest concentration of Se in brown rice due to the highest upward translocation of Se. More than 90% of Se in the brown rice was organic species, with selenomethionine predominated. The proportion of selenomethionine in the brown rice decreased with the delay in application time. The rice grown in the acidic soil had higher Se concentrations than in the neutral soil. With increasing soil Cd level, Se accumulation and the proportion of Se-methylselenocysteine in the brown rice were reduced. This study provides a theoretical basis for the production of Se-enriched rice in clean soil or slightly to moderately Cd-contaminated soil.
Collapse
Affiliation(s)
- Gaoxiang Huang
- CAS Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
| | - Xiangyang Yu
- Institute of Food Quality and Safety , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Zhen Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
- College of Life Sciences , Nanjing Normal University , Nanjing , Jiangsu 210046 , China
| | - Taolin Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
- Ecological Experimental Station of Red Soil , Chinese Academy of Sciences , Yingtan 335211 , China
| |
Collapse
|
16
|
He Y, Xiang Y, Zhou Y, Yang Y, Zhang J, Huang H, Shang C, Luo L, Gao J, Tang L. Selenium contamination, consequences and remediation techniques in water and soils: A review. ENVIRONMENTAL RESEARCH 2018; 164:288-301. [PMID: 29554620 DOI: 10.1016/j.envres.2018.02.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/04/2018] [Accepted: 02/26/2018] [Indexed: 05/21/2023]
Abstract
Selenium (Se) contamination in surface and ground water in numerous river basins has become a critical problem worldwide in recent years. The exposure to Se, either direct consumption of Se or indirectly may be fatal to the human health because of its toxicity. The review begins with an introduction of Se chemistry, distribution and health threats, which are essential to the remediation techniques. Then, the review provides the recent and common removal techniques for Se, including reduction techniques, phytoremediation, bioremediation, coagulation-flocculation, electrocoagulation (EC), electrochemical methods, adsorption, coprecipitation, electrokinetics, membrance technology, and chemical precipitation. Removal techniques concentrate on the advantages, drawbacks and the recent achievements of each technique. The review also takes an overall consideration of experimental conditions, comparison criteria and economic aspects.
Collapse
Affiliation(s)
- Yangzhuo He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yujia Xiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jun Gao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
17
|
Gupta M, Gupta S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. FRONTIERS IN PLANT SCIENCE 2017; 7:2074. [PMID: 28123395 PMCID: PMC5225104 DOI: 10.3389/fpls.2016.02074] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/29/2016] [Indexed: 05/18/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and animals, but lead to toxicity when taken in excessive amounts. Plants are the main source of dietary Se, but essentiality of Se for plants is still controversial. However, Se at low doses protects the plants from variety of abiotic stresses such as cold, drought, desiccation, and metal stress. In animals, Se acts as an antioxidant and helps in reproduction, immune responses, thyroid hormone metabolism. Selenium is chemically similar to sulfur, hence taken up inside the plants via sulfur transporters present inside root plasma membrane, metabolized via sulfur assimilatory pathway, and volatilized into atmosphere. Selenium induced oxidative stress, distorted protein structure and function, are the main causes of Se toxicity in plants at high doses. Plants can play vital role in overcoming Se deficiency and Se toxicity in different regions of the world, hence, detailed mechanism of Se metabolism inside the plants is necessary for designing effective Se phytoremediation and biofortification strategies.
Collapse
Affiliation(s)
- Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia IslamiaNew Delhi, India
| | | |
Collapse
|
18
|
Selenium-enriched durum wheat improves the nutritional profile of pasta without altering its organoleptic properties. Food Chem 2017; 214:374-382. [DOI: 10.1016/j.foodchem.2016.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/25/2016] [Accepted: 07/04/2016] [Indexed: 11/20/2022]
|
19
|
Sharma S, Kaur N, Kaur S, Nayyar H. Selenium as a nutrient in biostimulation and biofortification of cereals. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40502-016-0249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Valli V, Danesi F, Gianotti A, Di Nunzio M, Taneyo Saa DL, Bordoni A. Antioxidative and anti-inflammatory effect of in vitro digested cookies baked using different types of flours and fermentation methods. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Dhanjal NI, Sharma S, Prakash NT. Quantification and In Vitro Bioaccessibility of Selenium from Osborne Fractions of Selenium-Rich Cereal Grains. Cereal Chem 2016. [DOI: 10.1094/cchem-10-15-0199-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | - N. Tejo Prakash
- School of Energy and Environment, Thapar University, Patiala, India
| |
Collapse
|
22
|
Lyubenova L, Sabodash X, Schröder P, Michalke B. Selenium species in the roots and shoots of chickpea plants treated with different concentrations of sodium selenite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16978-16986. [PMID: 26122563 DOI: 10.1007/s11356-015-4755-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
The trace element selenium has an essential role for human health. It is involved in redox center functions, and it is related to the immune system response. Legumes are among the main suppliers of selenium into the human food chain. Not only Se concentration as such but also more the chemical species of Se is of higher importance for successful Se supply to the human diet and its bioavailability. The current study was focused on the investigation of the Se species present in chickpea plants exposed to 0, 10, 25, 50, and 100 μM selenite in short- and long-term treatment studies. The linear increase of total Se concentration could be linked to the increased concentrations of Se exposure. The selenium species (SeMet, SeCys, selenite, selenate, GPx) detected in varying concentrations in shoots and roots depend on the exposure's concentration and duration. The investigation showed that chickpea can accumulate Se in favorable concentrations and its transformation to bioavailable Se species may have positive impacts on human health and aid to implement Se into the diet.
Collapse
Affiliation(s)
- Lyudmila Lyubenova
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Xenia Sabodash
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Peter Schröder
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
23
|
Jaiswal S, Prakash R, Nagaraja T. Selenium in storage proteins of wheat cultivated on selenium impacted soils of Punjab, India. ACTA ALIMENTARIA 2015. [DOI: 10.1556/aalim.2014.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Wu Z, Bañuelos GS, Lin ZQ, Liu Y, Yuan L, Yin X, Li M. Biofortification and phytoremediation of selenium in China. FRONTIERS IN PLANT SCIENCE 2015; 6:136. [PMID: 25852703 PMCID: PMC4367174 DOI: 10.3389/fpls.2015.00136] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/20/2015] [Indexed: 05/07/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals but at high concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins. Selenium biofortification is an agricultural process that increases the accumulation of Se in crops, through plant breeding, genetic engineering, or use of Se fertilizers. Selenium phytoremediation is a green biotechnology to clean up Se-contaminated environments, primarily through phytoextraction and phytovolatilization. By integrating Se phytoremediation and biofortification technologies, Se-enriched plant materials harvested from Se phytoremediation can be used as Se-enriched green manures or other supplementary sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily aimed at enhancing efficacy of phytoremediation and biofortification of Se based on natural variation in progenitor or identification of unique plant species. In this review, we discuss promising approaches to improve biofortification and phytoremediation of Se using knowledge acquired from model crops. We also explored the feasibility of applying biotechnologies such as inoculation of microbial strains for improving the efficiency of biofortification and phytoremediation of Se. The key research and practical challenges that remain in improving biofortification and phytoremediation of Se have been highlighted, and the future development and uses of Se-biofortified agricultural products in China has also been discussed.
Collapse
Affiliation(s)
- Zhilin Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment–School of Plant Protection, Anhui Agriculture University, Hefei, China
- Advanced Lab for Selenium and Human Health-Jiangsu, Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Gary S. Bañuelos
- United States Department of Agriculture—Agricultural Research Service, Parlier, CA, USA
| | - Zhi-Qing Lin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
- Environmental Sciences Program, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Ying Liu
- Advanced Lab for Selenium and Human Health-Jiangsu, Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Linxi Yuan
- Advanced Lab for Selenium and Human Health-Jiangsu, Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Xuebin Yin
- Advanced Lab for Selenium and Human Health-Jiangsu, Bio-Engineering Research Centre of Selenium, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Miao Li
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment–School of Plant Protection, Anhui Agriculture University, Hefei, China
| |
Collapse
|
25
|
El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SEDA, Shams MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon-Smits EA, Domokos-Szabolcsy É. Selenium and its Role in Higher Plants. POLLUTANTS IN BUILDINGS, WATER AND LIVING ORGANISMS 2015. [DOI: 10.1007/978-3-319-19276-5_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Ma YL, Lindemann MD, Pierce JL, Unrine JM, Cromwell GL. Effect of inorganic or organic selenium supplementation on reproductive performance and tissue trace mineral concentrations in gravid first-parity gilts, fetuses, and nursing piglets. J Anim Sci 2014; 92:5540-50. [PMID: 25403188 DOI: 10.2527/jas.2014-7590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this experiment was to evaluate 2 supplemental forms of Se on reproductive performance and tissue trace mineral concentration in fetus and first-parity gilts during pregnancy and their progeny. Crossbred gilts (n=100) were selected at 183±2.7 d and 137±10 kg BW and fed a common diet. After 1 mo, 8 gilts were sacrificed to establish baseline liver Se concentration and the remaining 92 gilts allotted to receive Se (0.3 mg/kg diet) as inorganic Se (Na2SeO3) or a Se supplement that contains organoselenium compounds (Sel-Plex; Alltech Inc., Nicholasville, KY). At 267±5.7 d (171±11 kg), gilts were estrus-synchronized and bred. Gilts were then slaughtered at defined time points throughout gestation (d 0, 43, 58, 73, 91, 101, or 108 of gestation; n=6 to 12 gilts/time point). A week before the expected farrowing day, 10 pregnant gilts (5 from each treatment) were moved to farrowing crates and monitored. Two pigs from each litter were randomly selected and euthanized at d 0 (within 2 h after birth; nursing deprived), 7, 14, and 21 from each litter. During the gestation phase, maternal liver, and fetal body and liver were collected for determination of trace mineral concentration by inductively coupled plasma mass spectrometry. Total number of fetus, crown-rump length, and corpora lutea of gilts were recorded as well. During the lactation phase, pigs (without liver and gastrointestinal tract) and associated liver were analyzed for Se concentration. The results demonstrated that the source of Se generally did not affect the maternal reproductive traits and fetal characteristics. Also, the source of Se supplemented to the maternal diet did not, in general, affect Cu, Fe, Mn, or Zn concentrations in the tissues evaluated other than the observation of a greater maternal liver Mn content (P<0.01) in gilts fed Sel-Plex and a greater amount of Fe accumulated in the entire litter (P<0.01) in gilts fed Sel-Plex. However, with regard to Se concentrations, Se in fetal body, fetal liver, and maternal liver were greater (P<0.01) when Sel-Plex was fed. Postnatal pigs from gilts fed Sel-Plex had greater (P<0.05) Se retention in body and liver with similar growth performance during the 21-d period. The results demonstrate Se form differences wherein Sel-Plex is associated with greater Se accumulation in both maternal and fetal tissues.
Collapse
Affiliation(s)
- Y L Ma
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
| | - M D Lindemann
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
| | - J L Pierce
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
| | - J M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington 40546
| | - G L Cromwell
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
| |
Collapse
|
27
|
Zhao J, Li Y, Li Y, Gao Y, Li B, Hu Y, Zhao Y, Chai Z. Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics 2014; 6:1951-7. [DOI: 10.1039/c4mt00170b] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Piekarska A, Kołodziejski D, Pilipczuk T, Bodnar M, Konieczka P, Kusznierewicz B, Hanschen FS, Schreiner M, Cyprys J, Groszewska M, Namieśnik J, Bartoszek A. The influence of selenium addition during germination ofBrassicaseeds on health-promoting potential of sprouts. Int J Food Sci Nutr 2014; 65:692-702. [DOI: 10.3109/09637486.2014.917148] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Poblaciones MJ, Rodrigo S, Santamaria O, Chen Y, McGrath SP. Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1101-6. [PMID: 23983062 DOI: 10.1002/jsfa.6372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Millions of people have Se-deficient diets and Se-biofortified crops could prevent such deficiency. The aim of the present study was to evaluate the potential of chickpea for use in Se fertilization programs in order to increase available Se. Two foliar Se fertilizers (sodium selenate and sodium selenite) at four rates (0, 10, 20, 40 g ha(-1)) were tested in the 2010/2011 and 2011/2012 growing seasons in a field experiment conducted under semiarid Mediterranean conditions. RESULTS Sodium selenate was much more effectively taken by plants than sodium selenite, and there was a strong and linear relationship between total Se content and Se rate for both. For each gram of Se fertilizer, applied either as sodium selenate or sodium selenite, the increases of total Se concentration in grain were 126 and 87, and 25 and 19 µg Se kg(-1) dry weight, in 2010/2011 and 2011/2012, respectively. Se was found to be incorporated into chickpea grains mainly (>70%) as selenomethionine. CONCLUSION Se-enriched chickpeas would be a good candidate for inclusion in biofortification programs under semiarid Mediterranean conditions and for promotion as a 'functional food'.
Collapse
Affiliation(s)
- Maria J Poblaciones
- Department of Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, University of Extremadura, 06007, Badajoz, Spain
| | | | | | | | | |
Collapse
|
30
|
Rebane R, Oldekop ML, Herodes K. Matrix influence on derivatization and ionization processes during selenoamino acid liquid chromatography electrospray ionization mass spectrometric analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 955-956:34-41. [DOI: 10.1016/j.jchromb.2014.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/11/2014] [Accepted: 02/08/2014] [Indexed: 11/29/2022]
|
31
|
Van Hoewyk D. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. ANNALS OF BOTANY 2013; 112:965-72. [PMID: 23904445 PMCID: PMC3783228 DOI: 10.1093/aob/mct163] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/28/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Despite selenium's toxicity in plants at higher levels, crops supply most of the essential dietary selenium in humans. In plants, inorganic selenium can be assimilated into selenocysteine, which can replace cysteine in proteins. Selenium toxicity in plants has been attributed to the formation of non-specific selenoproteins. However, this paradigm can be challenged now that there is increasingly abundant evidence suggesting that selenium-induced oxidative stress also contributes to toxicity in plants. SCOPE This Botanical Briefing summarizes the evidence indicating that selenium toxicity in plants is attributable to both the accumulation of non-specific selenoproteins and selenium-induced oxidative stress. Evidence is also presented to substantiate the claim that inadvertent selenocysteine replacement probably impairs or misfolds proteins, which supports the malformed selenoprotein hypothesis. The possible physiological ramifications of selenoproteins and selenium-induced oxidative stress are discussed. CONCLUSIONS Malformed selenoproteins and oxidative stress are two distinct types of stress that drive selenium toxicity in plants and could impact cellular processes in plants that have yet to be thoroughly explored. Although challenging, deciphering whether the extent of selenium toxicity in plants is imparted by selenoproteins or oxidative stress could be helpful in the development of crops with fortified levels of selenium.
Collapse
Affiliation(s)
- Doug Van Hoewyk
- Coastal Carolina University, Biology Department, Conway, SC 29526, USA
| |
Collapse
|
32
|
|
33
|
Yuan L, Zhu Y, Lin ZQ, Banuelos G, Li W, Yin X. A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS One 2013; 8:e65615. [PMID: 23750270 PMCID: PMC3672165 DOI: 10.1371/journal.pone.0065615] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/24/2013] [Indexed: 11/21/2022] Open
Abstract
Plant samples of Cardamine hupingshanesis (Brassicaceae), Ligulariafischeri (Ledeb.) turcz (Steraceae) and their underlying top sediments were collected from selenium (Se) mine drainage areas in Enshi, China. Concentrations of total Se were measured using Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS) and Se speciation were determined using liquid chromatography/UV irradiation-hydride generation-atomic fluorescence spectrometry (LC-UV-HG-AFS). The results showed that C. hupingshanesis could accumulate Se to 239±201 mg/kg DW in roots, 316±184 mg/kg DW in stems, and 380±323 mg/kg DW in leaves, which identifies it as Se secondary accumulator. Particularly, it could accumulate Se up to 1965±271 mg/kg DW in leaves, 1787±167 mg/kg DW in stem and 4414±3446 mg/kg DW in roots, living near Se mine tailing. Moreover, over 70% of the total Se accumulated in C. hupingshanesis were in the form of selenocystine (SeCys2), increasing with increased total Se concentration in plant, in contrast to selenomethionine (SeMet) in non-accumulators (eg. Arabidopsis) and secondary accumulators (eg. Brassica juncea), and selenomethylcysteine (SeMeCys) in hyperaccumulators (eg. Stanleya pinnata). There is no convincing explanation on SeCys2 accumulation in C. hupingshanesis based on current Se metabolism theory in higher plants, and further study will be needed.
Collapse
Affiliation(s)
- Linxi Yuan
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, Jiangsu, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Advanced Lab for Selenium and Human Health, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Yuanyuan Zhu
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, Jiangsu, China
| | - Zhi-Qing Lin
- Environmental Sciences Program and Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois, United States of America
| | - Gary Banuelos
- United States Department of Agriculture-ARS, Parlier, California, United States of America
| | - Wei Li
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, Jiangsu, China
| | - Xuebin Yin
- Jiangsu Bio-Engineering Research Centre of Selenium, Suzhou, Jiangsu, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Advanced Lab for Selenium and Human Health, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu, China
| |
Collapse
|
34
|
Mehdi Y, Hornick JL, Istasse L, Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules 2013; 18:3292-311. [PMID: 23486107 PMCID: PMC6270138 DOI: 10.3390/molecules18033292] [Citation(s) in RCA: 368] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se³⁴₇₉) is a metalloid which is close to sulfur (S) in terms of properties. The Se concentration in soil varies with type, texture and organic matter content of the soil and with rainfall. Its assimilation by plants is influenced by the physico-chemical properties of the soil (redox status, pH and microbial activity). The presence of Se in the atmosphere is linked to natural and anthropogenic activities. Selenoproteins, in which selenium is present as selenocysteine, present an important role in many body functions, such as antioxidant defense and the formation of thyroid hormones. Some selenoprotein metabolites play a role in cancer prevention. In the immune system, selenium stimulates antibody formation and activity of helper T cells, cytotoxic T cells and Natural Killer (NK) cells. The mechanisms of intestinal absorption of selenium differ depending on the chemical form of the element. Selenium is mainly absorbed in the duodenum and caecum by active transport through a sodium pump. The recommended daily intake of selenium varies from 60 μg/day for women, to 70 μg/day for men. In growing ruminants the requirements are estimated at 100 μg/kg dry matter and 200 μg/Kg for pregnant or lactating females. A deficiency can cause reproductive disorders in humans and animals.
Collapse
Affiliation(s)
- Youcef Mehdi
- ULg-FMV, Nutrition Unit, Department of Animal Production, Boulevard de Colonster 20, Bât. B43 4000, Liège, Belgium.
| | | | | | | |
Collapse
|
35
|
Aureli F, Ouerdane L, Bierla K, Szpunar J, Prakash NT, Cubadda F. Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops. Metallomics 2013; 4:968-78. [PMID: 22802147 DOI: 10.1039/c2mt20085f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several novel selenium containing compounds were characterized in staple crops (wheat, rice and maize) grown on soils naturally rich in selenium. A dedicated method based on the coupling of liquid chromatography with multiplexed detection (ICP-MS, ESI-Orbitrap MS(/MS)) was developed for the speciation of low-molecular weight (<5 kDa) selenium metabolites. Nine species present in different proportions as a function of the crop type were identified by cation-exchange HPLC-ESI-Orbitrap MS on the basis of the accurate molecular mass and MS/MS spectra. The natural origin of these species was then validated by varying extraction conditions and by using hydrophilic interaction LC (HILIC)-ESI-Orbitrap MS(/MS). Among the identified compounds, Se-containing monosaccharides (hexose moiety, m/z 317 and m/z 358) or Se-containing disaccharides (hexose-pentose moiety, m/z 407 and m/z 408) were the first selenosugars reported in edible plants. It is also the first report of the presence of 2,3-dihydroxypropionyl-selenolanthionine (m/z 345) in rice. Because these crops can be an important source of selenium in animal and human nutrition, the understanding of the origin and the fate of these species during metabolic processes will be of great interest.
Collapse
Affiliation(s)
- Federica Aureli
- Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Premarathna L, McLaughlin MJ, Kirby JK, Hettiarachchi GM, Stacey S, Chittleborough DJ. Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6037-44. [PMID: 22630040 DOI: 10.1021/jf3005788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study examined the effects of applied selenium (Se) species, time of application, method of application, and soil water management regimen on the accumulation of Se in rice plants. Plants were grown to maturity in a temperature- and humidity-controlled growth chamber using three water management methods: field capacity (FC), submerged until harvest, and submerged and drained 2 weeks before harvest. Two Se species, selenate (SeO4(2-)) and selenite (SeO3(2-)), were applied at a rate equivalent to 30 g ha(-1). Four application methods were employed as follows: (i) Se applied at soil preparation, (ii) Se-enriched urea granules applied to floodwater at heading; (iii) foliar Se applied at heading; and (iv) fluid fertilizer Se applied to soil or floodwater at heading. Total Se concentrations in rice grains, husks, leaves, culms, and roots were measured, as well as Se speciation in grains from the Se-enriched urea granule treatment. Highest Se concentrations in the grain occurred with SeO4(2-) and with fertilizer applied at heading stage; SeO4(2-)-enriched urea granules applied at heading increased grain Se concentrations 5-6-fold (by 450-600 μg kg(-1)) compared to the control (no fertilizer Se applied) in all water treatments. Under paddy conditions other Se fertilization strategies were much less effective. Drainage before harvesting caused Se to accumulate in/on rice roots, possibly through adsorption onto iron plaque on roots. Rice grains contained Se mainly in the organic form as selenomethionine (SeM), which comprised >90% of the total grain Se in treatments fertilized with SeO4(2-)-enriched urea granules. The results of this study clearly show that of the fertilizer strategies tested biofortification of Se in rice grains can best be achieved in lowland rice by broadcast application of SeO4(2-)-enriched urea granules to floodwater at heading stage.
Collapse
Affiliation(s)
- Lakmalie Premarathna
- Soil Science, School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide , Urrbrae, SA 5064, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Zhang L, Li Q, Yang X, Xia Z. Effects of sodium selenite and germination on the sprouting of chickpeas (Cicer arietinum L.) and its content of selenium, formononetin and biochanin A in the sprouts. Biol Trace Elem Res 2012; 146:376-80. [PMID: 22101473 DOI: 10.1007/s12011-011-9261-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
To improve the nutritional value of chickpea food, selenium (Se)-rich chickpea sprouts were produced by germination of chickpea seeds for 6 days at 28 centigrade in the presence of various concentrations of Na(2)SeO(3) in germination solution. High concentrations of selenite were found to inhibit the growth of chickpea sprout and the biosynthesis of isoflavones formononetin and biochanin A. However, chickpea sprouts could tolerate up to ~50 mg/L of Na(2)SeO(3), under which condition the product chickpea sprouts contained a high Se content (2.14 μg/g dry weight) and a moderate high content of isoflavones (601.56 μg biochanin A/g dry weight and 578.11 μg formononetin/g dry weight). Se was incorporated in chickpea sprout in the form of selenomethionine. Thus, Se-enriched chickpea sprouts may serve as a convenient dietary source of Se and of isoflavones, including formononetin and biochanin A.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biological Sciences, Taishan Medical University, Tai'an 271000, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Thiry C, Ruttens A, De Temmerman L, Schneider YJ, Pussemier L. Current knowledge in species-related bioavailability of selenium in food. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.102] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Selenium in Plants and Soils, and Selenosis in Enshi, China: Implications for Selenium Biofortification. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2012. [DOI: 10.1007/978-94-007-1439-7_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Li HF, Lombi E, Stroud JL, McGrath SP, Zhao FJ. Selenium speciation in soil and rice: influence of water management and Se fertilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11837-43. [PMID: 20964343 DOI: 10.1021/jf1026185] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice (Oryza sativa) is the staple food for half of the world's population, but the selenium (Se) concentrations in rice grain are low in many rice-growing regions. This study investigated the effects of water management on the Se speciation dynamics in the soil solution and Se uptake and speciation in rice in a pot experiment. A control containing no Se or 0.5 mg kg(-1) of soil of selenite or selenate was added to the soil, and plants were grown under aerobic or flooded conditions. Flooding soil increased soluble Se concentration when no Se or selenite was added to the soil, but decreased it markedly when selenate was added. Selenate was the main species in the +selenate treatment, whereas selenite and selenomethionine selenium oxide were detected in the flooded soil solutions of the control and +selenite treatments. Grain Se concentration was 49% higher in the flooded than in the aerobic treatments without Se addition. In contrast, when selenate or selenite was added, the aerobically grown rice contained 25- and 2-fold, respectively, more Se in grain than the anaerobically grown rice. Analysis of Se in rice grain using enzymatic hydrolysis followed by HPLC-ICP-MS and in situ X-ray absorption near-edge structure (XANES) showed selenomethionine to be the predominant Se species. The study showed that selenate addition to aerobic soil was the most effective way to increase Se concentration in rice grain.
Collapse
Affiliation(s)
- Hua-Fen Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
41
|
Ultrasonic assisted enzymatic digestion (USAED) coupled with high performance liquid chromatography and electrothermal atomic absorption spectrometry as a powerful tool for total selenium and selenium species control in Se-enriched food supplements. Food Chem 2010. [DOI: 10.1016/j.foodchem.2009.11.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Vogrincic M, Cuderman P, Kreft I, Stibilj V. Selenium and its species distribution in above-ground plant parts of selenium enriched buckwheat (Fagopyrum esculentum Moench). ANAL SCI 2010; 25:1357-63. [PMID: 19907095 DOI: 10.2116/analsci.25.1357] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Common buckwheat (Fagopyrum esculentum Moench) was foliarly sprayed with a water solution containing 10 mg Se(VI) L(-1) at the beginning of flowering. The total Se content in plant parts in the untreated group was low, whereas in the Se-sprayed group it was approximately 50- to 500-fold higher, depending on the plant part (708-4231 ng Se g(-1) DM(-1) (DM: dry matter)). We observed a similar distribution of Se in plant parts in both control and treated groups, with the highest difference in Se content being in ripe seeds. Water-soluble Se compounds were extracted by enzymatic hydrolysis with protease XIV, resulting in above 63% of soluble Se from seeds, approximately 14% from stems, leaves and inflorescences and less than 1% from husks. Se-species were determined in enzymatic extracts using HPLC-UV-HG-AFS (HPLC-hydride generation-atomic fluorescence spectrometry with UV treatment). The main Se species found in seeds was SeMet ( approximately 60% according to total Se content), while in stems, leaves and inflorescences the only form of soluble Se present was Se(VI) (up to 10% of total Se). In husks no Se-species were detected. We observed an instability of Se(IV) in seed extracts as a possible consequence of binding to the matrix components. Therefore, special care concerning sample extraction and the storage time of the extracts should be taken.
Collapse
Affiliation(s)
- Maja Vogrincic
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
43
|
Cubadda F, Aureli F, Ciardullo S, D'Amato M, Raggi A, Acharya R, Reddy RAV, Prakash NT. Changes in selenium speciation associated with increasing tissue concentrations of selenium in wheat grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2295-301. [PMID: 20102199 DOI: 10.1021/jf903004a] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wheat (Triticum aestivum) collected in the Nawanshahr-Hoshiarpur Region (Punjab, India) showed the highest selenium concentrations ever recorded in cereal grains (29-185 microg g(-1)). There was a strong positive relationship between the selenium content in shoots and that in kernels, showing that grain selenium concentration can be predicted from that in the vegetative tissues of the plant. The identity and content of the selenocompounds in the grain samples and in wheat-based reference materials were investigated by HPLC-ICP-dynamic reaction cell-MS. Reversed-phase, cation exchange, and anion exchange HPLC were used to separate the selenium species after ultrasound-assisted enzymatic extraction with an ultrasonic probe. Selenomethionine and selenate accounted for 72-85% and 2-6% of the sum of the selenium species, respectively. The proportion of organic Se species varied with increasing Se content; namely, SeMet showed a relative reduction whereas the other organoselenium compounds increased up to 18-22% of the total chromatographed selenium. Se-methyl-selenocysteine was detected as a minor compound (0.2-0.5%) in high-Se wheat by both reversed-phase and cation exchange HPLC using retention time matching with the standard substance spiked to the sample extracts. Regular consumption of locally produced wheat-based food items may lead the population of the study area to an excessive intake of selenium. On the other hand, the large predominance of selenomethionine shows that local wheat can be a promising raw material for naturally enriched products to be used to supplement human and animal diets in low selenium areas.
Collapse
Affiliation(s)
- Francesco Cubadda
- Food and Veterinary Toxicology Unit, Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanita, Viale Regina Elena 299, Rome 00161, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. TRENDS IN PLANT SCIENCE 2009; 14:436-42. [PMID: 19665422 DOI: 10.1016/j.tplants.2009.06.006] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 05/18/2023]
Abstract
Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | |
Collapse
|
45
|
Weiss W, St-Pierre N. A method to quantify changes in supply of metabolizable methionine to dairy cows using concentrations of selenium in milk. J Dairy Sci 2009; 92:2835-42. [DOI: 10.3168/jds.2008-1882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Mar JLG, Reyes LH, Rahman GMM, Kingston HMS. Simultaneous extraction of arsenic and selenium species from rice products by microwave-assisted enzymatic extraction and analysis by ion chromatography-inductively coupled plasma-mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3005-3013. [PMID: 19301814 DOI: 10.1021/jf803598k] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A microwave-assisted enzymatic extraction (MAEE) method was developed for the simultaneous extraction of arsenic (As) and selenium (Se) species in rice products. The total arsenic and selenium content in the enzymatic extracts were determined by inductively coupled plasma mass spectrometry (ICP-MS), while the speciation analysis was performed by ion chromatography coupled to inductively coupled plasma-mass spectrometry (IC-ICP-MS). The main factors affecting the enzymatic extraction process were evaluated in NIST SRM-1568a rice flour. The optimum extraction conditions were 500 mg of sample, 50 mg of protease XIV, and 25 mg of alpha-amylase in aqueous medium during 40 min at 37 degrees C. The extraction recoveries of total As and Se reached 100 +/- 3 and 80 +/- 4%, respectively. The species stability study during the MAEE process did not show transformation of the target species in rice products. The results of As speciation obtained for SRM-1568a were in agreement with previous studies of As speciation performed on the same reference material. The proposed method was applied to the determination of As and Se species in rice and rice-based cereals. Arsenite [As(III)], arsenate [As(V)], dimethylarsinic acid (DMA), and selenomethionine (SeMet) were the predominant species identified in rice products.
Collapse
Affiliation(s)
- Jorge L Guzmán Mar
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | | | |
Collapse
|
47
|
Cuderman P, Kreft I, Germ M, Kovacevic M, Stibilj V. Selenium species in selenium-enriched and drought-exposed potatoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9114-20. [PMID: 18795781 DOI: 10.1021/jf8014969] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The aim of this work was to study selenium (Se) speciation in the potato ( Solanum tuberosum L.) cultivar Desiree, enriched in Se by foliar spraying with a water solution containing 10 mg of Se/L in the form of sodium selenate. Four combinations of treatments were used: well-watered plants with and without Se foliar spraying and drought-exposed plants with and without Se foliar spraying. Water-soluble Se compounds were extracted from potato tubers by water or enzymatic hydrolysis with the enzyme protease XIV, amylase, or a combination of protease XIV and amylase. Extraction was performed using incubation at a constant temperature and stirring (37 degrees C at 200 rpm) or by ultrasound-assisted extraction (300 W), using different extraction times. Separation of soluble Se species (SeCys2, SeMet, SeMeSeCys, selenite, and selenate) was achieved by ion-exchange chromatography, and detection was performed by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that the concentration of selenate extracted was independent of the enzymatic extraction technique (approximately 98 ng/g for drought-exposed and 308 ng/g for well-watered potato tubers), whereas the extraction yield of SeMet changed with the protocol used (10-36%). Selenate and SeMet were the main soluble Se species (representing 51-68% of total Se) in potato tubers, regardless of the growth conditions.
Collapse
Affiliation(s)
- Petra Cuderman
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
48
|
Kirby JK, Lyons GH, Karkkainen MP. Selenium speciation and bioavailability in biofortified products using species-unspecific isotope dilution and reverse phase ion pairing-inductively coupled plasma-mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:1772-1779. [PMID: 18254593 DOI: 10.1021/jf073030v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In some regions of the world, where the bioavailability of selenium (Se) in soil is low and/or declining (e.g., due to use of high-sulfur fertilizers), there is increased risk of adverse affects on animals and human health. In recent years, increased research attention has focused on understanding the relationships between Se contents in foods and supplements and their nutritional benefits for animal and humans. The objective of this study was to use a species-unspecific isotope dilution and reverse phase ion pairing-inductively coupled plasma-mass spectrometry techniques for the identification and quantification of Se species in biofortified grains (i.e., wheat and triticale), flour, and wheat biscuits. The information on Se species was used to gain an understanding of the bioavailability of Se in biofortified and process-fortified wheat biscuits used in a clinical trail. The major Se species identified in biofortified and process-fortified samples were selenomethionine (76-85%) and selenomethionine selenoxide (51-60%), respectively. Total plasma Se concentrations in the biofortified Se exposure group were found to increase throughout the 6 month trial period (mean=122 microg L(-1) at 0 months to 194 microg L(-1) at 6 months). In contrast, the trial group exposed to process-fortified Se biscuits showed little increase in mean total Se plasma concentrations until 4 months of exposure (mean=122 microg L(-1) at 0 months to 140 microg L(-1) at 4 months) that remained constant until the end of the trial period (mean=140 microg L(-1) at 4 months to 138 microg L(-1) at 6 months). The difference in total Se plasma concentrations may be due to the presence and bioavailability of different Se species in biofortified and process-fortified biscuits. An understanding of Se speciation in foods enables better understanding of pathways and their potential benefits for animals and humans.
Collapse
Affiliation(s)
- J K Kirby
- Centre for Environmental Contaminant Research, CSIRO, Waite Road, Urrbrae, South Australia 5064, Australia
| | | | | |
Collapse
|
49
|
Mazej D, Osvald J, Stibilj V. Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.07.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
|