1
|
Wen S, Wang L. Cadmium neurotoxicity and therapeutic strategies. J Biochem Mol Toxicol 2024; 38:e23670. [PMID: 38432689 DOI: 10.1002/jbt.23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a multitarget, carcinogenic, nonessential environmental pollutant. Due to its toxic effects at very low concentrations, lengthy biological half-life, and low excretion rate, exposure to Cd carries a concern. Prolonged exposure to Cd causes severe injury to the nervous system of both humans and animals. Nevertheless, the precise mechanisms responsible for the neurotoxic effects of Cd have yet to be fully elucidated. The accurate chemical mechanism potentially entails the destruction of metal-ion homeostasis, inducing oxidative stress, apoptosis, and autophagy. Here we review the evidence of the neurotoxic effects of Cd and corresponding strategies to protect against Cd-induced central nervous system injury.
Collapse
Affiliation(s)
- Shuangquan Wen
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
- Veterinarian Clinical Diagnosis Study Group, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Liang Wang
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
| |
Collapse
|
2
|
Olopade JO, Mustapha OA, Fatola OI, Ighorodje E, Folarin OR, Olopade FE, Omile IC, Obasa AA, Oyagbemi AA, Olude MA, Thackray AM, Bujdoso R. Neuropathological profile of the African Giant Rat brain (Cricetomys gambianus) after natural exposure to heavy metal environmental pollution in the Nigerian Niger Delta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120496-120514. [PMID: 37945948 DOI: 10.1007/s11356-023-30619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Pollution by heavy metals is a threat to public health because of the adverse effects on multiple organ systems including the brain. Here, we used the African giant rat (AGR) as a novel sentinel host to assess the effect of heavy metal accumulation and consequential neuropathology upon the brain. For this study, AGR were collected from distinct geographical regions of Nigeria: the rain forest region of south-west Nigeria (Ibadan), the central north of Nigeria (Abuja), and in oil-polluted areas of south Nigeria (Port-Harcourt). We found that zinc, copper, and iron were the major heavy metals that accumulated in the brain and serum of sentinel AGR, with the level of iron highest in animals from Port-Harcourt and least in animals from Abuja. Brain pathology, determined by immunohistochemistry markers of inflammation and oxidative stress, was most severe in animals from Port Harcourt followed by those from Abuja and those from Ibadan were the least affected. The brain pathologies were characterized by elevated brain advanced oxidation protein product (AOPP) levels, neuronal depletion in the prefrontal cortex, severe reactive astrogliosis in the hippocampus and cerebellar white matter, demyelination in the subcortical white matter and cerebellar white matter, and tauopathies. Selective vulnerabilities of different brain regions to heavy metal pollution in the AGR collected from the different regions of the country were evident. In conclusion, we propose that neuropathologies associated with redox dyshomeostasis because of environmental pollution may be localized and contextual, even in a heavily polluted environment. This novel study also highlights African giant rats as suitable epidemiological sentinels for use in ecotoxicological studies.
Collapse
Affiliation(s)
- James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Oluwaseun Ahmed Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Olanrewaju Ifeoluwa Fatola
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ejiro Ighorodje
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Irene Chizubelu Omile
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adedunsola Ajike Obasa
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Matthew Ayokunle Olude
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
| | - Alana Maureen Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|
3
|
do Nascimento PKDSB, Oliveira Silva DF, de Morais TLSA, de Rezende AA. Zinc Status and Autism Spectrum Disorder in Children and Adolescents: A Systematic Review. Nutrients 2023; 15:3663. [PMID: 37630853 PMCID: PMC10459732 DOI: 10.3390/nu15163663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 08/27/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder, the prevalence of which has increased in children and adolescents over the years. Studies point to deficiency of trace elements as one of the factors involved in the etiology of the disorder, with zinc being one of the main trace elements investigated in individuals with ASD. The aim of this review is to summarize scientific evidence about the relationship between zinc status and ASD in children and adolescents. This review has been registered in the International Prospective Register of Systematic Reviews (registration number CRD42020157907). The methodological guidelines adopted were in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Studies were selected from an active investigation of the PubMed, Scopus, LILACS, and Google databases to search for observational studies. Fifty-two studies from twenty-two countries were included. The sample sizes ranged from 20 to 2635, and the participants ranged from 2 to 18 years old. Nine types of biological matrices were used, with hair, serum, and plasma being the most frequently used in the evaluation of zinc concentrations. Significant differences in zinc concentrations between the ASD and control groups were observed in 23 studies, of which 19 (36%) showed lower zinc concentrations in the ASD group. The classification of studies according to methodological quality resulted in high, moderate, and low quality in 10, 21, and 21 studies, respectively. In general, we did not observe a significant difference between zinc concentrations of children and adolescents with ASD compared to controls; however, studies point to an occurrence of lower concentrations of Zn in individuals with ASD. This review reveals that more prospective studies with greater methodological rigor should be conducted in order to further characterize this relation.
Collapse
Affiliation(s)
| | | | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses; Federal University of Rio Grande do Norte—UFRN, Natal 59012-570, Brazil
| |
Collapse
|
4
|
Apostolopoulou EP, Raikos N, Vlemmas I, Michaelidis E, Brellou GD. Metallothionein I/II Expression and Metal Ion Levels in Correlation with Amyloid Beta Deposits in the Aged Feline Brain. Brain Sci 2023; 13:1115. [PMID: 37509045 PMCID: PMC10377600 DOI: 10.3390/brainsci13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Brain aging has been correlated with high metallothionein I-II (MT-I/II) expression, iron and zinc dyshomeostasis, and Aβ deposition in humans and experimental animals. In the present study, iron and zinc accumulation, the expression of MT-I/II and Aβ42, and their potential association with aging in the feline brain were assessed. Tissue sections from the temporal and frontal grey (GM) and white (WM) matter, hippocampus, thalamus, striatum, cerebellum, and dentate nucleus were examined histochemically for the presence of age-related histopathological lesions and iron deposits and distribution. We found, using a modified Perl's/DAB method, two types of iron plaques that showed age-dependent accumulation in the temporal GM and WM and the thalamus, along with the age-dependent increment in cerebellar-myelin-associated iron. We also demonstrated an age-dependent increase in MT-I/II immunoreactivity in the feline brain. In cats over 7 years old, Aβ immunoreactivity was detected in vessel walls and neuronal somata; extracellular Aβ deposits were also evident. Interestingly, Aβ-positive astrocytes were also observed in certain cases. ICP-MS analysis of brain content regarding iron and zinc concentrations showed no statistically significant association with age, but a mild increase in iron with age was noticed, while zinc levels were found to be higher in the Mature and Senior groups. Our findings reinforce the suggestion that cats could serve as a dependable natural animal model for brain aging and neurodegeneration; thus, they should be further investigated on the basis of metal ion concentration changes and their effects on aging.
Collapse
Affiliation(s)
- Emmanouela P Apostolopoulou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Nikolaos Raikos
- Department of Forensic Medicine & Toxicology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Vlemmas
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Efstratios Michaelidis
- Laboratories of the 3rd Army Veterinary Hospital, Chemical Department, 57001 Thessaloniki, Greece
| | - Georgia D Brellou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| |
Collapse
|
5
|
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci 2023; 13:911. [PMID: 37371389 DOI: 10.3390/brainsci13060911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Recent data on the distribution and influence of copper, zinc and cadmium in glial cells are summarized. This review also examines the relationship between those metals and their role in neurodegenerative diseases like Alzheimer disease, multiple sclerosis, Parkinson disease and Amyotrophic lateral sclerosis, which have become a great challenge for today's physicians. The studies suggest that among glial cells, iron has the highest concentration in oligodendrocytes, copper in astrocytes and zinc in the glia of hippocampus and cortex. Previous studies have shown neurotoxic effects of copper, iron and manganese, while zinc can have a bidirectional effect, i.e., neurotoxic but also neuroprotective effects depending on the dose and disease state. Recent data point to the association of metals with neurodegeneration through their role in the modulation of protein aggregation. Metals can accumulate in the brain with aging and may be associated with age-related diseases.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | | | - Renata Markiewicz
- Department of Psychiatric Nursing, Medical University of Lublin, 18 Szkolna St., 20-124 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Student Scientific Group at the Department of Family Medicine, 6a (SPSK1) Langiewicza St., 20-032 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
| |
Collapse
|
6
|
Tabata K, Miyashita M, Yamasaki S, Toriumi K, Ando S, Suzuki K, Endo K, Morimoto Y, Tomita Y, Yamaguchi S, Usami S, Itokawa M, Hiraiwa-Hasegawa M, Takahashi H, Kasai K, Nishida A, Arai M. Hair zinc levels and psychosis risk among adolescents. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:107. [PMID: 36433958 PMCID: PMC9700858 DOI: 10.1038/s41537-022-00307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Recent meta-analyses have shown lower zinc and higher copper levels in the serum of people with schizophrenia than in healthy controls. However, the relationship between trace elements (TEs) and the pathophysiology of psychosis, including schizophrenia, remains unclear due to the antipsychotic effects on mineral levels. In this study, we aimed to determine the relationship between zinc and copper levels in hair and psychosis risk among drug-naïve adolescents. This study was conducted as a part of a population-based biomarker subsample study of the Tokyo Teen Cohort Study, including 252 community-dwelling 14-year-old drug-naïve adolescents. Zinc and copper levels in hair were measured using inductively coupled plasma mass spectrometry. The thought problems (TP) scale from the Child Behavior Checklist was used to evaluate psychosis risk. Regression analysis showed that hair zinc levels were negatively correlated with the TP scale (T-score) (β = -0.176, P = 0.005). This result remained significant after adjusting for age and sex (β = -0.175, P = 0.005). In contrast, hair copper levels were not associated with the TP scale (T-score) (β = 0.026, P = 0.687). These findings suggest that lower zinc levels could be involved in the pathophysiology of psychosis, independent of antipsychotics. Further longitudinal studies are required to investigate whether hair zinc level is a useful new biomarker for assessing psychosis risk.
Collapse
Grants
- JP19dm0207069 Japan Agency for Medical Research and Development (AMED)
- JP18dm0307001 Japan Agency for Medical Research and Development (AMED)
- JP18dm0307004 Japan Agency for Medical Research and Development (AMED)
- JSPS KAKENHI (grant numbers JP17H05930 and JP20H03608)
- JSPS KAKENHI (grant number JP20H01777) and JST-Mirai Program (grant number JPMJMI21J3)
- JSPS KAKENHI (grant number JP22K07609)
- JSPS KAKENHI (grant numbers JP16K15566, JP17H05931, JP19H04877, and JP19K17055)
- JSPS KAKENHI (grant numbers JP16H06395, JP16H06399, JP16K21720, JP20H03596, JP21H05171, and JP21H05174), Moonshot R&D (grant number JPMJMS2021), UTokyo Center for Integrative Science of Human Behavior (CiSHuB), and the International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS)
- JSPS KAKENHI (grant numbers JP16H06398, JP19H00972, JP20H03951, JP21H05173 and JP21K10487)
Collapse
Affiliation(s)
- Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Syudo Yamasaki
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kaori Endo
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Morimoto
- Department of Psychology, Ube Frontier University, Ube, Japan
| | - Yasufumi Tomita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoshi Yamaguchi
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Usami
- Center for Research and Development on Transition from Secondary to Higher Education, The University of Tokyo, Tokyo, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Atsushi Nishida
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
7
|
Islam F, Shohag S, Akhter S, Islam MR, Sultana S, Mitra S, Chandran D, Khandaker MU, Ashraf GM, Idris AM, Emran TB, Cavalu S. Exposure of metal toxicity in Alzheimer’s disease: An extensive review. Front Pharmacol 2022; 13:903099. [PMID: 36105221 PMCID: PMC9465172 DOI: 10.3389/fphar.2022.903099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Metals serve important roles in the human body, including the maintenance of cell structure and the regulation of gene expression, the antioxidant response, and neurotransmission. High metal uptake in the nervous system is harmful because it can cause oxidative stress, disrupt mitochondrial function, and impair the activity of various enzymes. Metal accumulation can cause lifelong deterioration, including severe neurological problems. There is a strong association between accidental metal exposure and various neurodegenerative disorders, including Alzheimer’s disease (AD), the most common form of dementia that causes degeneration in the aged. Chronic exposure to various metals is a well-known environmental risk factor that has become more widespread due to the rapid pace at which human activities are releasing large amounts of metals into the environment. Consequently, humans are exposed to both biometals and heavy metals, affecting metal homeostasis at molecular and biological levels. This review highlights how these metals affect brain physiology and immunity and their roles in creating harmful proteins such as β-amyloid and tau in AD. In addition, we address findings that confirm the disruption of immune-related pathways as a significant toxicity mechanism through which metals may contribute to AD.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Shomaya Akhter
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Malaysia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| |
Collapse
|
8
|
Dales JP, Desplat-Jégo S. Metal Imbalance in Neurodegenerative Diseases with a Specific Concern to the Brain of Multiple Sclerosis Patients. Int J Mol Sci 2020; 21:E9105. [PMID: 33266021 PMCID: PMC7730295 DOI: 10.3390/ijms21239105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that deregulation of metals contributes to a vast range of neurodegenerative diseases including multiple sclerosis (MS). MS is a chronic inflammatory disease of the central nervous system (CNS) manifesting disability and neurological symptoms. The precise origin of MS is unknown, but the disease is characterized by focal inflammatory lesions in the CNS associated with an autoimmune reaction against myelin. The treatment of this disease has mainly been based on the prescription of immunosuppressive and immune-modulating agents. However, the rate of progressive disability and early mortality is still worrisome. Metals may represent new diagnostic and predictive markers of severity and disability as well as innovative candidate drug targets for future therapies. In this review, we describe the recent advances in our understanding on the role of metals in brain disorders of neurodegenerative diseases and MS patients.
Collapse
Affiliation(s)
- Jean-Philippe Dales
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Pavillon Etoile, Pôle de Biologie, Service d’anatomie-pathologie, CEDEX 20, 13915 Marseille, France
| | - Sophie Desplat-Jégo
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Pôle de Biologie, Service d’Immunologie, 13005 Marseille, France
| |
Collapse
|
9
|
Chen L, Yu X, Ding H, Zhao Y, Hu C, Feng J. Comparing the Influence of High Doses of Different Zinc Salts on Oxidative Stress and Energy Depletion in IPEC-J2 Cells. Biol Trace Elem Res 2020; 196:481-493. [PMID: 31732928 DOI: 10.1007/s12011-019-01948-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
The current study aimed to investigate the influence of four supplemental zinc salts (chelated: Zn glycine; non-chelated: Zn sulfate, Zn citrate, Zn gluconate) among different zinc concentrations (30-300 μM) on cell proliferation, oxidative stress, and energy depletion in intestinal porcine jejunum epithelial cells (IPEC-J2). Different zinc salts affected cell viability in a time- and dose-dependent manner, which was mainly dependent on the uptake of intracellular Zn2+. Intracellular Zn2+ of Zn sulfate has taken up almost twice as high as Zn glycine when cells were loaded with 100-200 μM zinc. After loading cells with 300 μM zinc, Zn glycine and Zn sulfate had a similar trend in accumulation of Zn2+. When the intracellular Zn2+ overloads, cells will gradually be damaged and subsequently die bearing biochemical features of necrosis or late apoptosis. Meanwhile, obviously, increased levels of intracellular ROS, mitochondrial ROS, MDA, and NO and decreased levels of GSH were observed. Excessive intracellular Zn2+ significantly decreased mitochondria membrane potential accompanied by an obvious loss of ATP and NAD+ levels. Overall, exposure to high doses of zinc salts caused cell damage, which was mainly dependent on the uptake of Zn2+. Zinc overload induced oxidative stress and energy depletion in IPEC-J2 cells, and the cell damage with non-chelated zinc addition was more serious than Zn glycine.
Collapse
Affiliation(s)
- Lingjun Chen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaonan Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Haoxuan Ding
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zhao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caihong Hu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol 2019; 431:1843-1868. [PMID: 30664867 DOI: 10.1016/j.jmb.2019.01.018] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., β-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.
Collapse
Affiliation(s)
- Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia; Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
11
|
Baltaci AK, Yuce K, Mogulkoc R. Zinc Metabolism and Metallothioneins. Biol Trace Elem Res 2018; 183:22-31. [PMID: 28812260 DOI: 10.1007/s12011-017-1119-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Among the trace elements, zinc is one of the most used elements in biological systems. Zinc is found in the structure of more than 2700 enzymes, including hydrolases, transferases, oxyreductases, ligases, isomerases, and lyases. Not surprisingly, it is present in almost all body cells. Preserving the stability and integrity of biological membranes and ion channels, zinc is also an intracellular regulator and provides structural support to proteins during molecular interactions. It acts as a structural element in nucleic acids or other gene-regulating proteins. Metallothioneins, the low molecular weight protein family rich in cysteine groups, are involved significantly in numerous physiological and pathological processes including particularly oxidative stress. A critical role of metallothioneins (MT) is to bind zinc with high affinity and to serve as an intracellular zinc reservoir. By releasing free intracellular zinc when needed, MTs mediate the unique physiological roles of zinc. MT expression is induced by zinc elevation, and thus, zinc homeostasis is maintained. That MT mediates the effects of zinc, besides having strong radical scavenging effects, points to the critical part it plays in oxidative stress. The present review aims to give information on metallothioneins, which have critical importance in the metabolism and molecular pathways of zinc.
Collapse
Affiliation(s)
| | - Kemal Yuce
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
12
|
Zinc Signal in Brain Diseases. Int J Mol Sci 2017; 18:ijms18122506. [PMID: 29168792 PMCID: PMC5751109 DOI: 10.3390/ijms18122506] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.
Collapse
|
13
|
Hancock SM, Finkelstein DI, Adlard PA. Glia and zinc in ageing and Alzheimer's disease: a mechanism for cognitive decline? Front Aging Neurosci 2014; 6:137. [PMID: 25009495 PMCID: PMC4069481 DOI: 10.3389/fnagi.2014.00137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Normal ageing is characterized by cognitive decline across a range of neurological functions, which are further impaired in Alzheimer’s disease (AD). Recently, alterations in zinc (Zn) concentrations, particularly at the synapse, have emerged as a potential mechanism underlying the cognitive changes that occur in both ageing and AD. Zn is now accepted as a potent neuromodulator, affecting a variety of signaling pathways at the synapse that are critical to normal cognition. While the focus has principally been on the neuron: Zn interaction, there is a growing literature suggesting that glia may also play a modulatory role in maintaining both Zn ion homeostasis and the normal function of the synapse. Indeed, zinc transporters (ZnT’s) have been demonstrated in glial cells where Zn has also been shown to have a role in signaling. Furthermore, there is increasing evidence that the pathogenesis of AD critically involves glial cells (such as astrocytes), which have been reported to contribute to amyloid-beta (Aβ) neurotoxicity. This review discusses the current evidence supporting a complex interplay of glia, Zn dyshomeostasis and synaptic function in ageing and AD.
Collapse
Affiliation(s)
- Sara M Hancock
- Synaptic Neurobiology Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - David I Finkelstein
- Parkinson's Disease Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| |
Collapse
|
14
|
Significance of metallothioneins in aging brain. Neurochem Int 2014; 65:40-8. [DOI: 10.1016/j.neuint.2013.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/01/2013] [Accepted: 12/26/2013] [Indexed: 12/14/2022]
|
15
|
Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol 2011; 86:521-34. [PMID: 22071549 DOI: 10.1007/s00204-011-0775-1] [Citation(s) in RCA: 543] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/26/2011] [Indexed: 02/07/2023]
Abstract
The importance of micronutrients in health and nutrition is undisputable, and among them, zinc is an essential element whose significance to health is increasingly appreciated and whose deficiency may play an important role in the appearance of diseases. Zinc is one of the most important trace elements in the organism, with three major biological roles, as catalyst, structural, and regulatory ion. Zinc-binding motifs are found in many proteins encoded by the human genome physiologically, and free zinc is mainly regulated at the single-cell level. Zinc has critical effect in homeostasis, in immune function, in oxidative stress, in apoptosis, and in aging, and significant disorders of great public health interest are associated with zinc deficiency. In many chronic diseases, including atherosclerosis, several malignancies, neurological disorders, autoimmune diseases, aging, age-related degenerative diseases, and Wilson's disease, the concurrent zinc deficiency may complicate the clinical features, affect adversely immunological status, increase oxidative stress, and lead to the generation of inflammatory cytokines. In these diseases, oxidative stress and chronic inflammation may play important causative roles. It is therefore important that status of zinc is assessed in any case and zinc deficiency is corrected, since the unique properties of zinc may have significant therapeutic benefits in these diseases. In the present paper, we review the zinc as a multipurpose trace element, its biological role in homeostasis, proliferation and apoptosis and its role in immunity and in chronic diseases, such as cancer, diabetes, depression, Wilson's disease, Alzheimer's disease, and other age-related diseases.
Collapse
Affiliation(s)
- Christos T Chasapis
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|
16
|
Ma C, Li LF, Chen X. Expression of metallothionein-I and II in skin ageing and its association with skin proliferation. Br J Dermatol 2011; 164:479-82. [DOI: 10.1111/j.1365-2133.2010.10117.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Abstract
Zinc is a life-sustaining trace element, serving structural, catalytic, and regulatory roles in cellular biology. It is required for normal mammalian brain development and physiology, such that deficiency or excess of zinc has been shown to contribute to alterations in behavior, abnormal central nervous system development, and neurological disease. In this light, it is not surprising that zinc ions have now been shown to play a role in the neuromodulation of synaptic transmission as well as in cortical plasticity. Zinc is stored in specific synaptic vesicles by a class of glutamatergic or "gluzinergic" neurons and is released in an activity-dependent manner. Because gluzinergic neurons are found almost exclusively in the cerebral cortex and limbic structures, zinc may be critical for normal cognitive and emotional functioning. Conversely, direct evidence shows that zinc might be a relatively potent neurotoxin. Neuronal injury secondary to in vivo zinc mobilization and release occurs in several neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis, in addition to epilepsy and ischemia. Thus, zinc homeostasis is integral to normal central nervous system functioning, and in fact its role may be underappreciated. This article provides an overview of zinc neurobiology and reviews the experimental evidence that implicates zinc signals in the pathophysiology of neuropsychiatric diseases. A greater understanding of zinc's role in the central nervous system may therefore allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
18
|
Moxnes JF, Albert christophersen O. The Spanish flu as a worst case scenario? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600701699067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Alzheimer's disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci 2009; 30:346-55. [DOI: 10.1016/j.tips.2009.05.002] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 05/06/2009] [Indexed: 12/20/2022]
|
20
|
Sensi SL, Rapposelli IG, Frazzini V, Mascetra N. Altered oxidant-mediated intraneuronal zinc mobilization in a triple transgenic mouse model of Alzheimer's disease. Exp Gerontol 2007; 43:488-92. [PMID: 18068923 DOI: 10.1016/j.exger.2007.10.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) is responsible for the most common form of dementia among elderly people. Signature features of the AD brain are intra/extracellular deposits of beta-amyloid (Abeta) and neurofibrillary tangles composed of hyperphosphorylated tau. Recent evidence indicates that in AD altered Zn(2+) homeostasis can play an important role in the development of the disease as the cation promotes Abeta oligomerization and plaque formation. In this study, we investigated whether intraneuronal Zn(2+) homeostasis is affected by known "pro-AD factors" such as mutant forms of the amyloid precursor (APP), presenilin-1 (PS1), and tau proteins. Oxidative stress is a potent trigger for mobilization of intracellular free Zn(2+) ([Zn(2+)](i)) and we therefore evaluated ROS-driven [Zn(2+)](i) rises in neurons obtained from triple transgenic AD mice (3xTg-AD) that express mutant APP, PS1 and tau. In this study, [Zn(2+)](i) rises triggered by prolonged exposure to the membrane-permeant oxidizing agent 2,2'-dithiodipyridine were found to be significantly higher in 3xTg-AD neurons when compared to control cultures, suggesting that neuronal expression of pro-AD factors can facilitate altered Zn(2+) homeostasis.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Basic and Applied Medical Science, CeSI-Center for Excellence on Aging, University G. d'Annunzio, Chieti, 66013, Italy.
| | | | | | | |
Collapse
|
21
|
Mocchegiani E, Costarelli L, Giacconi R, Cipriano C, Muti E, Malavolta M. Zinc-binding proteins (metallothionein and alpha-2 macroglobulin) and immunosenescence. Exp Gerontol 2006; 41:1094-107. [PMID: 17030107 DOI: 10.1016/j.exger.2006.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 11/28/2022]
Abstract
Zinc is a relevant trace element for the efficiency of the entire immune system. The binding of zinc with some proteins, such as metallothioneins (MT) and alpha-2 macroglobulin (alpha-2M) is crucial for the immune efficiency during ageing and in age-related diseases, because these proteins may be involved in antagonistic pleiotropic effects. Indeed, the presence of chronic inflammation during ageing, generally, induces overexpression of these proteins that, due to their original biological function in fighting stressor agents, continuously sequester intracellular zinc. As a consequence, a low zinc ion availability may appear in aged organisms leading to impairments of the immune response at thymic and extrathymic levels with the risk of the appearance of age-related diseases. Therefore, MT and alpha-2M turn from protective in "young-adult age" to harmful agents in "ageing" following the basic assumption of an evolutionary theory of ageing, named the "antagonistic pleiotropy", which suggests that a trade off between early beneficial effects and late negative outcomes can occur at a genetic and molecular level. On the other hand, some polymorphisms of MT (MT2A) and alpha-2M have been associated with atherosclerosis or Alzheimer disease, respectively. Physiological zinc supplementation in elderly restores the thymic endocrine activity and innate immune response (NK cell cytotoxicity) and increases the survival rate in old mice. Therefore, zinc supplementation is useful to achieve health longevity because these zinc-binding proteins may regain their original protective task against oxidative damage with, thus, a beneficial impact on immune response.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Center, Section: Nutrition, Immunity and Ageing, Research Department I.N.R.C.A., via Birarelli 8, 60121 Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Beltramini M, Zambenedetti P, Raso M, IbnlKayat MI, Zatta P. The effect of Zn(II) and streptozotocin administration in the mouse brain. Brain Res 2006; 1109:207-18. [PMID: 16904082 DOI: 10.1016/j.brainres.2006.06.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 11/24/2022]
Abstract
Streptozotocin is a natural antibiotic produced by Streptomyces achromogenes able to induce diabetes in experimental animals. Among various toxic properties, streptozotocin is a potent source for reactive oxygen species. In this paper, we report the biological response of brain, upon treatment with streptozotocin in terms of metal ions dismetabolism and metallothionein expression. In addition, important information on the preventive effect of zinc in eliciting the pharmacological effect of the drug are reported, in relation to the effective role of the metal ions in inducing metallothionein synthesis. In the brain, streptozotocin treatment affects mostly the hippocampus and cerebellum as shown by a high GAFP and MT-I-II immunopositivity of glial cells. The Zn pre-treatment reduces significantly, as a general effect, the occurrence of hyperglycaemic status. At the brain level, the observed astrocytosis is strongly reduced. The high inducibility of MT represents a rapid and convenient response able to prevent the deleterious effects consequent to the oxidative stress. All together these results support the efficacy of the Zn treatment in order to prevent streptozotocin effects, including brain tissues.
Collapse
Affiliation(s)
- Mariano Beltramini
- Department of Biology, University of Padova, and Pathology Division and the Brain Bank, General Hospital, Dolo-Venezia, Italy
| | | | | | | | | |
Collapse
|
23
|
Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Arch Toxicol 2005; 80:1-9. [PMID: 16187101 DOI: 10.1007/s00204-005-0009-5] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/14/2005] [Indexed: 12/14/2022]
Abstract
Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning.
Collapse
Affiliation(s)
- M Stefanidou
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75, Mikras Asias street, Goudi, Athens 11527, Greece.
| | | | | | | |
Collapse
|
24
|
Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M. Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 2005; 75:367-90. [PMID: 15927345 DOI: 10.1016/j.pneurobio.2005.04.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 04/20/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
Actual fields of research in neurobiology are not only aimed at understanding the different aspects of brain aging but also at developing strategies useful to preserve brain compensatory capacity and to prevent the onset of neurodegenerative diseases. Consistent with this trend much attention has been addressed to zinc metabolism. In fact, zinc acts as a neuromodulator at excitatory synapses and has a considerable role in the stress response and in the functionality of zinc-dependent enzymes contributing to maintaining brain compensatory capacity. In particular, the mechanisms that modulate the free zinc pool are pivotal for safeguarding brain health and performance. Alterations in zinc homeostasis have been reported in Parkinson's and Alzheimer's disease as well as in transient forebrain ischemia, seizures and traumatic brain injury, but little is known regarding aged brain. There is much evidence that that age-related changes, frequently associated to a decline in brain functions and impaired cognitive performances, could be related to dysfunctions affecting the intracellular zinc ion availability. A general agreement emerges from studies of humans' and rodents' old brains about an increased expression of metallothionein (MT) isoforms I and II, but dyshomogenous results are reported for MT-III, and it is still uncertain whether these proteins maintain in aging the protective role, as it occurs in adult/young age. At the same time, there is considerable evidence that amyloid-beta deposition in Alzheimer's disease is induced by zinc, but the pathological significance and the causes of this phenomenon are still an open question. The scientific debate on the role of zinc and of some zinc-binding proteins in aging and neurodegenerative disorders, as well as on the beneficial effect of zinc supplementation in aged brain and neurodegeneration, is extensively discussed in this review.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Ctr. Section Nutrition, Immunity and Aging, Res. Department INRCA, Ancona 60100, Via Birarelli 8, 60121, Italy.
| | | | | | | |
Collapse
|
25
|
Dittmann J, Fung SJ, Vickers JC, Chuah MI, Chung RS, West AK. Metallothionein biology in the ageing and neurodegenerative brain. Neurotox Res 2005; 7:87-93. [PMID: 15639801 DOI: 10.1007/bf03033779] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In recent years metallothionein (MT) biology has moved from investigation of its ability to protect against environmental heavy metals to a wider appreciation of its role in responding to cellular stress, whether as a consequence of normal function, or following injury and disease. This is exemplified by recent investigation of MT in the mammalian brain where plausible roles for MT action have been described, including zinc metabolism, free radical scavenging, and protection and regeneration following neurological injury. Along with other laboratories we have used several models of central nervous system (CNS) injury to investigate possible parallels between injury-dependent changes in MT expression and those observed in the ageing and/or degenerating brain. Therefore, this brief review aims to summarise existing information on MT expression during CNS ageing, and to examine the possible involvement of this protein in the course of human neurodegenerative disease, as exemplified by Alzheimer's disease.
Collapse
Affiliation(s)
- J Dittmann
- NeuroRepair Group, School of Medicine, University of Tasmania, Tasmania 7001 Australia
| | | | | | | | | | | |
Collapse
|
26
|
Katsel PL, Davis KL, Haroutunian V. Large-Scale Microarray Studies of Gene Expression in Multiple Regions of the Brain in Schizophrenia and Alzheimer's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:41-82. [PMID: 15797465 DOI: 10.1016/s0074-7742(05)63003-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pavel L Katsel
- Department of Psychiatry, The Mount Sinai School of Medicine New York, New York 10029 USA
| | | | | |
Collapse
|
27
|
|
28
|
Pavlidis P, Qin J, Arango V, Mann JJ, Sibille E. Using the gene ontology for microarray data mining: a comparison of methods and application to age effects in human prefrontal cortex. Neurochem Res 2004; 29:1213-22. [PMID: 15176478 DOI: 10.1023/b:nere.0000023608.29741.45] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the challenges in the analysis of gene expression data is placing the results in the context of other data available about genes and their relationships to each other. Here, we approach this problem in the study of gene expression changes associated with age in two areas of the human prefrontal cortex, comparing two computational methods. The first method, "overrepresentation analysis" (ORA), is based on statistically evaluating the fraction of genes in a particular gene ontology class found among the set of genes showing age-related changes in expression. The second method, "functional class scoring" (FCS), examines the statistical distribution of individual gene scores among all genes in the gene ontology class and does not involve an initial gene selection step. We find that FCS yields more consistent results than ORA, and the results of ORA depended strongly on the gene selection threshold. Our findings highlight the utility of functional class scoring for the analysis of complex expression data sets and emphasize the advantage of considering all available genomic information rather than sets of genes that pass a predetermined "threshold of significance."
Collapse
Affiliation(s)
- Paul Pavlidis
- Department of Biomedical Informatics and Columbia Genome Center, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
29
|
Beltramini M, Zambenedetti P, Wittkowski W, Zatta P. Effects of steroid hormones on the Zn, Cu and MTI/II levels in the mouse brain. Brain Res 2004; 1013:134-41. [PMID: 15196976 DOI: 10.1016/j.brainres.2004.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2004] [Indexed: 10/26/2022]
Abstract
The effects of some steroid hormones (corticosterone, hydrocortisone, testosterone and estrone) on the Zn, Cu metabolism and metallothioneins levels in the mouse brain were studied. To administrate the hormones, aqueous suspensions and olive oil solutions injected subcutaneously were used alternatively. The quantification of metals and metallothioneins concentrations in brain homogenates revealed significant alterations of both metal ions and protein expression levels, yet the subcutaneous oil injection increased per se the tissue metallothionein expression and metal content. We have also defined by immunohistochemistry the area-specific distribution of metallothioneins isoforms-I/II and of glial fibrillar acid protein. Upon treatment, corpus callosum, mesencephalon, pons, hippocampus and cerebellum were found to be the areas that increase the protein expression levels, whereas all other brain areas were marginally affected or were unaffected in terms of immunopositive metallothionein reaction. The metallothionein-I/II expression was compared with the immunopositivity of glial fibrillar acid protein and the results are discussed within the framework of the physiological role of corticosteroids and the potential therapeutical importance of sexual hormones.
Collapse
Affiliation(s)
- Mariano Beltramini
- Department of Biology, University of Padova, Viale G. Colombo, 3 - 35121, Padova, Italy
| | | | | | | |
Collapse
|
30
|
Wanpen S, Govitrapong P, Shavali S, Sangchot P, Ebadi M. Salsolinol, a dopamine-derived tetrahydroisoquinoline, induces cell death by causing oxidative stress in dopaminergic SH-SY5Y cells, and the said effect is attenuated by metallothionein. Brain Res 2004; 1005:67-76. [PMID: 15044066 DOI: 10.1016/j.brainres.2004.01.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 10/26/2022]
Abstract
The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential neurotoxin in the etiology of Parkinson's disease (PD). Salsolinol and N-methyl(R)-salsolinol were identified in the brains and cerebrospinal fluid (CSF) of PD patients. Oxidative stress is known to be one of the major contributing factors in the cascade that may finally leads to the cell death in PD. The present study was undertaken to understand the role of salsolinol in oxidative-mediated neuronal toxicity in dopaminergic SH-SY5Y cells, and the neuroprotective effects of metallothionein (MT) against salsolinol toxicity in MT overexpressing (MT(trans)) fetal mesencephalic cells. Salsolinol increased the production of reactive oxygen species (ROS) and significantly decreased glutathione (GSH) levels and cell viability in SH-SY5Y cells. Salsolinol also decreased intracellular ATP levels and induced nuclear condensation in these cells. Salsolinol-induced depletion in cell viability was completely prevented by N-acetylcysteine in SH-SY5Y cells, and also prevented by MT in MT(trans) fetal mesencephalic cells compared to control(wt) cells. The extent of nuclear condensation and caspase activation was also less in MT(trans) cells than control(wt) cells. These results suggest that salsolinol causes oxidative stress by decreasing the levels of GSH and by increasing ROS production, and these events may lead to the death of dopaminergic cell. Furthermore, MT overexpression may protect dopaminergic neurons against salsolinol-induced neurotoxicity, most probably by the inhibition of oxidative stress and apoptotic pathways including caspase-3 activation.
Collapse
Affiliation(s)
- Sawitri Wanpen
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | | | | | | | | |
Collapse
|
31
|
Mocchegiani E, Giacconi R, Fattoretti P, Casoli T, Cipriano C, Muti E, Malavolta M, DiStefano G, Bertoni-Freddari C. Metallothionein isoforms (I+II and III) and interleukin-6 in the hippocampus of old rats: may their concomitant increments lead to neurodegeneration? Brain Res Bull 2004; 63:133-42. [PMID: 15130702 DOI: 10.1016/j.brainresbull.2004.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 12/19/2003] [Accepted: 02/02/2004] [Indexed: 11/23/2022]
Abstract
Metallothionein (MT)-III isoform is a brain metal-binding protein that, like the MT-I + II isoform, binds zinc with high affinity. In the young-adult age, MT-III isoform increases during transient stress while MT-I + II isoform decreases, suggesting compensatory phenomena between the two isoforms and a protective role of MT-III against oxidative damage. This role may be questioned during ageing, because the stress-like condition is chronic in ageing due to high persistent levels of interleukin-6. In the present study, high expression of MT-III and MT-I + II genes (examined by RT-PCR and in situ hybridisation) was found in the hippocampus of old rats. These results indicate that a large amount of free zinc ions can be sequestered by MT isoforms, leading to impaired zinc-dependent functions in the ageing brain. In addition, zinc (tested with the Timm's method) was found to be low in mossy fibres from the old hippocampus. As this method tests bound and unbound zinc, we also investigated free zinc ion bioavailability based on the ratio active thymulin/total thymulin. We found that zinc ion bioavailability was low in old rats, together with increased interleukin-6 mRNA, high expression of both MT isoforms and reduced number of synapses whose function is zinc-dependent, in the old hippocampus. The results indicate that concomitant increments of both MT isoforms may provoke detrimental synergistic effects leading to reduced free zinc ion bioavailability for synapses. As a consequence, compensatory phenomena between MT isoforms may not occur in the old hippocampus due to chronic stress-like condition elicited by high persistent levels of interleukin-6.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Centre (Section Nutrition, Immunity and Ageing), Res. Dept. INRCA, Via Birarelli 8, 60121 Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Beltramini M, Di Pisa C, Zambenedetti P, Wittkowski W, Mocchegiani E, Musicco M, Zatta P. Zn and Cu alteration in connection with astrocyte metallothionein I/II overexpression in the mouse brain upon physical stress. Glia 2004; 47:30-4. [PMID: 15139010 DOI: 10.1002/glia.20020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of metallothioneins I/II in the mouse brain and their specific area distribution upon physical stress were studied. To induce physical stress, groups of mice were subjected to total darkness for different periods (2 weeks, 1 month, and 2 months). The concentration of metallothioneins, evaluated by immunohistochemistry, as well as area-specific protein expression, were found in the following quantitative order: corpus striatum, cerebellum, mesencephalon, hippocampus with fornix, parts of thalamus, and pons. All other brain areas were marginally affected, or even unaffected, in terms of immunopositive metallothionein reaction. Metallothionein I/II expression was compared with the immunopositivity of glial fibrillary acidic protein (GFAP). It is noteworthy that metallothioneins and GFAP are expressed in different types of astrocytes.
Collapse
|
33
|
Possible New Anti-Ageing Strategies Related to Neuroendocrine-Immune Interactions. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1567-7443(04)80027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Zinc-Binding Proteins (Metallothionein and α-2 Macroglobulin) as Potential Biological Markers of Immunosenescence. THE NEUROENDOCRINE IMMUNE NETWORK IN AGEING 2004. [DOI: 10.1016/s1567-7443(04)80004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Giacconi R, Cipriano C, Muzzioli M, Gasparini N, Orlando F, Mocchegiani E. Interrelationships among brain, endocrine and immune response in ageing and successful ageing: role of metallothionein III isoform. Mech Ageing Dev 2003; 124:371-8. [PMID: 12714242 DOI: 10.1016/s0047-6374(03)00011-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metallothionein-III (MT-III) a brain-specific member of metallothionein family contributes to zinc neuronal homeostasis, and zinc is an important regulator of many brain functions, including the activity of hormone realising factors by hippocampus. Among them, somatostatin is pivotal because affecting thyroid hormones turnover and consequently thymic and peripheral immune efficiency (Natural Killer, NK) cell activity. Somatostatin is in turn affected by somatomedin-C, which is also zinc-dependent. Therefore, somatomedin-C may be a marker of somatostatin status in the hippocampus. MTs sequester and release zinc in transient stress, as it may occur in young age, to protect cells by reactive oxygen species. In order to accomplish this task, MTs are induced by IL-6 for a prompt immune and anti-inflammatory response. During ageing, MTs are high with a role of sequester of zinc, but with very limited role in zinc release because stress-like condition and inflammation is persistent. Therefore, high MTs may become to protective in young age to harmful during ageing leading to low zinc ion bioavailability for many body homeostatic mechanisms, including brain function. As a consequence, an altered physiological cascade from the brain (upstream) to endocrine and immune system (downstream) may occur. The aim of this work is to study the role of MT-III in the interrelationships among brain-endocrine-immune response in ageing and successful ageing. The main results are: (1) MT-III and IL-6 gene expressions increase in the hippocampus from old mice, in comparison with young and very old mice. (2) Somatomedin-C plasma levels decrease in old mice in comparison with young and very old mice. (3) Low zinc ion bioavailability (tested by the ratio total thymulin/active thymulin) is coupled with altered thyroid hormone turnover and depressed IL-2 in old mice in comparison with young and very old mice. (4) 'In vitro' experiments display more increments on NK cells activity by adding zinc-bound active thymulin than T3 alone. In conclusion, low MT-III in the hippocampus from young and very old mice leads to good zinc ion bioavailability that it is upstream coupled with normal hippocampal function affecting downstream normal thyroid hormones turnover and satisfactory NK cell activity, via complete saturation of zinc-bound active thymulin molecules. Therefore, a correct MTs homeostasis is pivotal for brain-endocrine-immune response in order to reach successful ageing.
Collapse
Affiliation(s)
- Robertina Giacconi
- Immunology Center, (Section Nutrition, Immunity and Ageing), Research Department Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Mocchegiani E, Muzzioli M, Giacconi R, Cipriano C, Gasparini N, Franceschi C, Gaetti R, Cavalieri E, Suzuki H. Metallothioneins/PARP-1/IL-6 interplay on natural killer cell activity in elderly: parallelism with nonagenarians and old infected humans. Effect of zinc supply. Mech Ageing Dev 2003; 124:459-68. [PMID: 12714254 DOI: 10.1016/s0047-6374(03)00023-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metallothioneins (MTs) play pivotal role in zinc-related cell homeostasis because of their high affinity for this trace element which is in turn relevant against oxidative stress and for the efficiency of the entire immune system, including natural killer (NK) cell activity. In order to accomplish this role, MTs sequester and/or dispense zinc during stress and inflammation to protect cells against reactive oxygen species. MTs gene expression is affected by IL-6 for a prompt immune response. Concomitantly, MTs release zinc for the activity of antioxidant zinc-dependent enzymes, including poly(ADP-ribose)polymerase-1(PARP-1), which is involved in base excision DNA-repair. This role of MTs is peculiar in young adult-age during transient stress and inflammation, but not in ageing because stress-like condition and inflammation are persistent. This may lead MTs to turn-off from role of protection in young age to deleterious one in ageing with subsequent appearance of age-related diseases (severe infections). The aim is to study the role played by MTs/IL-6/PARP-1 interplay on NK cell activity in elderly, in old infected patients (acute and remission phases by bronchopneumonia infection) and in health nonagenarian/centenarian subjects. MTmRNA is high in lymphocytes from elderly people coupled with high IL-6, low zinc ion bioavailability, decreased NK cell activity and impaired capacity of PARP-1 in base excision DNA-repair. The same trend in this altered physiological cascade during ageing also occurs in old infected patients (both acute and remission phases) with more marked immune damage, inflammatory condition and very impaired PARP-1 in base excision DNA-repair. By contrast, centenarian subjects display low MTmRNA, good zinc ion bioavailability, satisfactory NK cell activity and higher capacity of PARP-1 in base excision DNA-repair. These findings clearly demonstrate that the sequester of zinc by MTs in ageing is deleterious because leading to low zinc ion bioavailability with subsequent impairment of PARP-1 and NK cell activity and appearance of severe infections. Physiological zinc supply (12 mg Zn(++)/day) for 1 month in elderly and in old infected patients (remission phase) restores NK cells activity with values observed in health centenarians. Therefore, the zinc ion bioavailability by zinc-bound MTs homeostasis is pivotal to reach health longevity and successful ageing.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Center (Section Nutrition, Immunity and Ageing), Research Department Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Santon A, Sturniolo GC, Albergoni V, Irato P. Metallothionein-1 and metallothionein-2 gene expression and localisation of apoptotic cells in Zn-treated LEC rat liver. Histochem Cell Biol 2003; 119:301-8. [PMID: 12684815 DOI: 10.1007/s00418-003-0515-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2003] [Indexed: 10/25/2022]
Abstract
The aims of the present work were to determine the effect of long-term treatment with zinc (Zn) on metallothionein (MT) concentrations and to study the levels of both MT-1 and MT-2 mRNAs in Long-Evans Cinnamon (LEC) rat liver. We also identified apoptotic cells comparing two cytochemical techniques. Thirteen rats received 50 mg zinc acetate daily by gavage, 13 rats received no treatment, and both groups were killed after 60 days. Finally four rats were killed 35 days after birth (T(0)). The results demonstrate that the Zn-treated group had higher levels of MT than both the untreated and basal ones. Quantification of mRNA indicates that the level of the Zn-treated group was significantly higher than the untreated group. Confocal fluorescent staining with monoclonal antibody (Mab) against single-strand DNA localised the hepatic cells that had chromatin condensation and nuclear fragmentation typical of apoptosis, especially in the untreated group sections. The intensity and quantity of fluorescence decreased in both the treated and basal groups. The higher sensitivity of Mab staining compared to TUNEL, which revealed both apoptotic and necrotic cells, reflects the different action mechanism of the two techniques. These findings confirm, in LEC rats, the important role of Zn in cellular protection in relation to MT expression and apoptotic processes as cellular responses to DNA damage by free radicals.
Collapse
Affiliation(s)
- Alessandro Santon
- Department of Biology, University of Padova, via U. Bassi, 58/B, 35131 Padova, Italy
| | | | | | | |
Collapse
|
38
|
Santon A, Irato P, Medici V, D'Incà R, Albergoni V, Sturniolo GC. Effect and possible role of Zn treatment in LEC rats, an animal model of Wilson's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:91-7. [PMID: 12527412 DOI: 10.1016/s0925-4439(02)00218-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of oral zinc (Zn) treatment was studied in the liver, kidneys and intestine of Long-Evans Cinnamon (LEC) rats in relation to metals interaction and concentration of metallothionein (MT) and glutathione (GSH). We also investigated the change in the activity of antioxidant enzymes and determined the biochemical profile in the blood and metal levels in urine. We showed that the Zn-treated group had higher levels of MT in the hepatic and intestinal cells compared to both untreated and basal groups. Tissue Zn concentrations were significantly higher in the Zn-treated group compared to those untreated and basal, whereas Cu and Fe concentrations decreased. The antioxidant enzyme activities in the Zn-treated group did not change significantly with respect to those in the basal group, except for hepatic glutathione peroxidase activity. Moreover, the biochemical data in the blood of Zn-treated group clearly ascertain no liver damage. These observations suggest an important role for Zn in relation not only to its ability to compete with other metals at the level of absorption in the gastrointestinal tract producing a decrease in the hepatic and renal Cu and Fe deposits, but also to MT induction as free radical scavenger.
Collapse
Affiliation(s)
- Alessandro Santon
- Department of Biology, University of Padova, via U. Bassi, 58/B, 35131, Padua, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Mocchegiani E, Giacconi R, Cipriano C, Gasparini N, Orlando F, Stecconi R, Muzzioli M, Isani G, Carpenè E. Metallothioneins (I+II) and thyroid-thymus axis efficiency in old mice: role of corticosterone and zinc supply. Mech Ageing Dev 2002; 123:675-94. [PMID: 11850030 PMCID: PMC7127331 DOI: 10.1016/s0047-6374(01)00414-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thymic atrophy or thymus absence causes depressed thyroid-thymus axis (TTA) efficiency in old, young propyl-thiouracil (PTU) (experimental hypothyroidism) and in young-adult thymectomised (Tx) mice, respectively. Altered zinc turnover may be also involved in depressed TTA efficiency. Zinc turnover is under the control of zinc-bound metallothioneins (Zn-MTs) synthesis. Thyroid hormones, corticosterone and nutritional zinc affect Zn-MT induction. Zn-MT releases zinc in young-adult age during transient oxidative stress for prompt immune response. In constant oxidative stress (ageing and liver regeneration after partial hepatectomy), high liver Zn-MTs, low zinc ion bioavailability and depressed TTA efficiency appear. This last finding suggested that MT might not release zinc during constant oxidative stress leading to impaired TTA efficiency. The aim of this work/study is to clarify the role of Zn-MTs (I+II) in TTA efficiency during development and ageing. The main results are (1) Old and PTU mice display high corticosterone, enhanced liver MTmRNA, low zinc and depressed TTA efficiency restored by zinc supply. Increased survival and no significant increments in basal liver Zn-MTs proteins occur in old and PTU mice after zinc supply. (2) Lot of zinc ions bound with MT in the liver from old mice than young (HPLC). (3) Young-adult Tx mice, evaluated at 15 days from thymectomy, display high MTmRNA and nutritional-endocrine-immune damage restored by zinc supply or by thymus grafts from old zinc-treated mice. (4) Young-adult Tx mice, but evaluated at 40 days from thymectomy, display natural normalisation in MTmRNA and nutritional-endocrine-immune profile with survival similar to normal mice. (5) Stressed (constant dark for 10 days) mice overexpressing MT display low zinc, depressed immunity, reduced thymic cortex, high corticosterone, altered thyroid hormones turnover showing a likeness with old mice. These findings, taken altogether, show that corticosterone is pivotal in MTs induction under stress. MTs bind preferentially zinc ions in constant oxidative stress, but with no release of zinc from MT leading to impaired TTA efficiency. Zinc supply restores the defect because zinc has no interference in affecting pre-existing Zn-MTs protein concentrations in old and PTU mice. Therefore, free zinc ions are available for TTA efficiency after zinc supply. Thymus from old zinc-treated mice induces the same restoring effect when transplanted in Tx recipients. However, Tx mice display natural normalisation in MTmRNA and in nutritional-endocrine-immune profile in the long run. Therefore, Zn-MTs (I+II) are crucial in zinc homeostasis for endocrine-immune efficiency during the entire life assuming a role of potential and novel 'biological clock of ageing'.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Section: Nutrition, Immunity and Ageing, Immunology Centre, Research Department of Gerontology and Geriatrics Nino Masera, Italian National Research Centre on Ageing, Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mocchegiani E, Giacconi R, Cipriano C, Muzzioli M, Gasparini N, Moresi R, Stecconi R, Suzuki H, Cavalieri E, Mariani E. MtmRNA gene expression, via IL-6 and glucocorticoids, as potential genetic marker of immunosenescence: lessons from very old mice and humans. Exp Gerontol 2002; 37:349-57. [PMID: 11772522 DOI: 10.1016/s0531-5565(01)00202-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Metallothioneins (MTs) are involved in metal-related cell homeostasis because of their high affinity for metals forming clusters. The main functional role of MTs is to sequester and/or dispense zinc participating in zinc homeostasis, which is relevant in normal immune response. Consistent with this role, MTs gene expression (MTmRNA) is transcriptionally induced by a variety of stressing agents to protect cells from reactive oxygen species. In order to accomplish this task, MTs gene expression is affected by glucocorticoids and IL-6 for a prompt immune response. This protection is peculiar in young-adult age during transient stress and inflammatory condition, but not in ageing because stress-like condition and inflammation are constant for the whole circadian cycle. This may lead MTs to turn-off from role of protection in young age to deleterious one in ageing. The aim is to suggest MTmRNA as potential genetic marker of immunosenescence. Liver MTmRNA, IL-6 and glucocorticoids levels are high, whereas the bioavailability of zinc ions is low and natural killer cells activity is depressed in old and very old mice during the light period as compared to young in the same period. An inversion of nutritional-endocrine-immune profile exclusively occurs in young mice during the night showing the existence of immune plasticity. No inversion occurs in old mice during the night. As a consequence, no immune plasticity in old mice ensues. By contrast, very old mice remodel the altered MTmRNA and immune-endocrine profile during the night up to values of young ones observed during the light period. Therefore, the remodelling of MTmRNA may be involved in the maintenance of immune plasticity with subsequent successful ageing. Thus, MTmRNA, via IL-6 and glucocorticoids, may be potential genetic marker of immunosenescence. This assumption is reinforced by low MTmRNA in lymphocytes of nonagenarians and young-adult people in comparison with elderly and Down's syndrome subjects.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Research Department, Section of Nutrition, Immunity and Ageing, Immunology Center, INRCA, Via Birarelli 8, 60121 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|