1
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
2
|
Jacob N, So I, Sharma B, Marzolini S, Tartaglia MC, Oh P, Green R. Effects of High-Intensity Interval Training Protocols on Blood Lactate Levels and Cognition in Healthy Adults: Systematic Review and Meta-Regression. Sports Med 2023; 53:977-991. [PMID: 36917435 DOI: 10.1007/s40279-023-01815-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Some health benefits from high-intensity interval training (HIIT) are facilitated by peripheral blood lactate levels. However, the lactate response from HIIT is variable and dependent on protocol parameters. OBJECTIVES We aimed to determine the HIIT protocol parameters that elicited peak lactate levels, and how these levels are associated with post-HIIT cognitive performance. STUDY DESIGN We conducted a systematic review with meta-regression. METHODS MEDLINE, Embase, CENTRAL, SPORTDiscus, and CINAHL + were searched from database inception to 8 April, 2022. Peer-reviewed primary research in healthy adults that determined lactate (mmol/L) and cognitive performance after one HIIT session was included. Mixed-effects meta-regressions determined the protocol parameters that elicited peak lactate levels, and linear regressions modelled the relationship between lactate levels and cognitive performance. RESULTS Study entries (n = 226) involving 2560 participants (mean age 24.1 ± 4.7 years) were included in the meta-regression. A low total work-interval volume (~ 5 min), recovery intervals that are about five times longer than work intervals, and a medium session volume (~ 15 min), elicited peak lactate levels, even when controlling for intensity, fitness (peak oxygen consumption) and blood measurement methods. Lactate levels immediately post-HIIT explained 14-17% of variance in Stroop interference condition at 30 min post-HIIT. CONCLUSIONS A HIIT protocol that uses the above parameters (e.g., 8 × 30-s maximal intensity with 90-s recovery) can elicit peak lactate, a molecule that is known to benefit the central nervous system and be involved in exercise training adaptations. This review reports the state of the science in regard to the lactate response following HIIT, which is relevant to those in the sports medicine field designing HIIT training programs. TRIAL REGISTRY Clinical Trial Registration: PROSPERO (CRD42020204400).
Collapse
Affiliation(s)
- Nithin Jacob
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,University Health Network, Toronto, ON, Canada
| | - Isis So
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada
| | - Bhanu Sharma
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Susan Marzolini
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada.,University Health Network, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Kembril Research Institute, Toronto Western-University Health Network, Toronto, ON, Canada
| | - Paul Oh
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada.,University Health Network, Toronto, ON, Canada
| | - Robin Green
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada. .,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada. .,University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Huynh QS, Elangovan S, Holsinger RMD. Non-Pharmacological Therapeutic Options for the Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:11037. [PMID: 36232336 PMCID: PMC9570337 DOI: 10.3390/ijms231911037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is a growing global crisis in need of urgent diagnostic and therapeutic strategies. The current treatment strategy mostly involves immunotherapeutic medications that have had little success in halting disease progress. Hypotheses for pathogenesis and development of AD have been expanded to implicate both organ systems as well as cellular reactions. Non-pharmacologic interventions ranging from minimally to deeply invasive have attempted to address these diverse contributors to AD. In this review, we aim to delineate mechanisms underlying such interventions while attempting to provide explanatory links between the observed differences in disease states and postulated metabolic or structural mechanisms of change. The techniques discussed are not an exhaustive list of non-pharmacological interventions against AD but provide a foundation to facilitate a deeper understanding of the area of study.
Collapse
Affiliation(s)
- Quy-Susan Huynh
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shalini Elangovan
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Hassani Moghaddam M, Eskandarian Boroujeni M, Vakili K, Fathi M, Abdollahifar MA, Eskandari N, Esmaeilpour T, Aliaghaei A. Functional and structural alternations in the choroid plexus upon methamphetamine exposure. Neurosci Lett 2021; 764:136246. [PMID: 34530114 DOI: 10.1016/j.neulet.2021.136246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Choroid plexus (CP) is the principal source of cerebrospinal fluid. CP can produce and release a wide range of materials including growth factors, neurotrophic factors, etc. all of which play an important role in the maintenance and proper functioning of the brain. Methamphetamine (METH) is a CNS neurostimulant that causes brain dysfunction. Herein, we investigated the potential effects of METH exposure on CP structure and function. Stereological analysis revealed a significant alteration in CP volume, epithelial cells and capillary number upon METH treatment. Electron microscopy exhibited changes in ultrastructure. Moreover, the upregulation of neurotrophic factors such as BDNF and VEGF as well as autophagy and apoptosis gene following METH administration were observed. We also identified several signaling cascades related to autophagy. In conclusion, gene expression changes coupled with structural alterations of the CP in response to METH suggested METH-induced autophagy in CP.
Collapse
Affiliation(s)
- Meysam Hassani Moghaddam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Eskandari
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Aliaghaei
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21031170. [PMID: 32050617 PMCID: PMC7037114 DOI: 10.3390/ijms21031170] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. In animal models of Parkinson’s disease (PD), BDNF enhances the survival of dopaminergic neurons, improves dopaminergic neurotransmission and motor performance. Pharmacological therapies of PD are symptom-targeting, and their effectiveness decreases with the progression of the disease; therefore, new therapeutical approaches are needed. Since, in both PD patients and animal PD models, decreased level of BDNF was found in the nigrostriatal pathway, it has been hypothesized that BDNF may serve as a therapeutic agent. Direct delivery of exogenous BDNF into the patient’s brain did not relieve the symptoms of disease, nor did attempts to enhance BDNF expression with gene therapy. Physical training was neuroprotective in animal models of PD. This effect is mediated, at least partly, by BDNF. Animal studies revealed that physical activity increases BDNF and tropomyosin receptor kinase B (TrkB) expression, leading to inhibition of neurodegeneration through induction of transcription factors and expression of genes related to neuronal proliferation, survival, and inflammatory response. This review focuses on the evidence that increasing BDNF level due to gene modulation or physical exercise has a neuroprotective effect and could be considered as adjunctive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Chalimoniuk
- Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Warszawa, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-225892409
| |
Collapse
|
6
|
Paldino E, Balducci C, La Vitola P, Artioli L, D'Angelo V, Giampà C, Artuso V, Forloni G, Fusco FR. Neuroprotective Effects of Doxycycline in the R6/2 Mouse Model of Huntington's Disease. Mol Neurobiol 2019; 57:1889-1903. [PMID: 31879858 PMCID: PMC7118056 DOI: 10.1007/s12035-019-01847-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/25/2019] [Indexed: 12/04/2022]
Abstract
Mechanisms of tissue damage in Huntington’s disease involve excitotoxicity, mitochondrial damage, and inflammation, including microglia activation. Immunomodulatory and anti-protein aggregation properties of tetracyclines were demonstrated in several disease models. In the present study, the neuroprotective and anti-inflammatory effects of the tetracycline doxycycline were investigated in the mouse model of HD disease R6/2. Transgenic mice were daily treated with doxycycline 20 mg/kg, starting from 4 weeks of age. After sacrifice, histological and immunohistochemical studies were performed. We found that doxycycline-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the saline-treated ones. Primary outcome measures such as striatal atrophy, neuronal intranuclear inclusions, and the negative modulation of microglial reaction revealed a neuroprotective effect of the compound. Doxycycline provided a significantly increase of activated CREB and BDNF in the striatal neurons, along with a down modulation of neuroinflammation, which, combined, might explain the beneficial effects observed in this model. Our findings show that doxycycline treatment could be considered as a valid therapeutic approach for HD.
Collapse
Affiliation(s)
- Emanuela Paldino
- IRCCS Fondazione Santa Lucia, Laboratory of Neuroanatomy, Via del Fosso di Fiorano, 64, Rome, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Pietro La Vitola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luisa Artioli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Vincenza D'Angelo
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Giampà
- IRCCS Fondazione Santa Lucia, Laboratory of Neuroanatomy, Via del Fosso di Fiorano, 64, Rome, Italy
| | | | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca R Fusco
- IRCCS Fondazione Santa Lucia, Laboratory of Neuroanatomy, Via del Fosso di Fiorano, 64, Rome, Italy.
| |
Collapse
|
7
|
Koch ET, Raymond LA. Dysfunctional striatal dopamine signaling in Huntington's disease. J Neurosci Res 2019; 97:1636-1654. [PMID: 31304622 DOI: 10.1002/jnr.24495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/06/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
Abstract
Dopamine signaling in the striatum is critical for a variety of behaviors including movement, behavioral flexibility, response to reward and many forms of learning. Alterations to dopamine transmission contribute to pathological features of many neurological diseases, including Huntington's disease (HD). HD is an autosomal dominant genetic disorder caused by a CAG repeat expansion in the Huntingtin gene. The striatum is preferentially degenerated in HD, and this region receives dopaminergic input from the substantia nigra. Studies of HD patients and genetic rodent models have shown changes to levels of dopamine and its receptors in the striatum, and alterations in dopamine receptor signaling and modulation of other neurotransmitters, notably glutamate. Throughout his career, Dr. Michael Levine's research has furthered our understanding of dopamine signaling in the striatum of healthy rodents and HD mouse models. This review will focus on the work of his group and others in elucidating alterations to striatal dopamine signaling that contribute to pathophysiology in HD mouse models, and how these findings relate to human HD studies. We will also discuss current and potential therapeutic interventions for HD that target the dopamine system, and future research directions for this field.
Collapse
Affiliation(s)
- Ellen T Koch
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Lynn A Raymond
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Ahmadian N, Mahmoudi J, Talebi M, Molavi L, Sadigh-Eteghad S, Rostrup E, Ziaee M. Sleep deprivation disrupts striatal anti-apoptotic responses in 6-hydroxy dopamine-lesioned parkinsonian rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 21:1289-1296. [PMID: 30627374 PMCID: PMC6312672 DOI: 10.22038/ijbms.2018.28546.6919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective(s): The present study was conducted to examine the effect of sleep deprivation (SD) on the anti-apoptotic pathways in Parkinsonian rats. Materials and Methods: Male Wistar rats (n = 40) were assigned to four groups (10 animals each): sham surgery (Sham), 6-hydroxydopamine (6-OHDA)-lesioned (OH), 6-OHDA-lesioned plus grid control (OH+GC), 6-OHDA-lesioned plus SD (OH+SD). Parkinson’s disease (PD) model was induced by the unilateral intra-striatal infusion of 6-OHDA (10 µg/rat). SD (4 hr/day, for 14 days) was induced using a multiple platforms water tank. On the last day of interventions, animals were subjected to open field test for horizontal motor performance assessment. Also, brain-derived neurotrophic factor (BDNF), Bcl-2 and Bax were assessed in the striatum of study groups. Results: SD obscured the motor deficits of PD animals observed in open field test. BDNF level and Bcl2/Bax ratio significantly increased in the OH group, and SD reduced their levels in the PD animals. Conclusion: SD suppressed the anti-apoptotic compensatory responses in the striatum; therefore, it may accelerate continual neuronal cell death in PD.
Collapse
Affiliation(s)
- Nahid Ahmadian
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Biomedical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Molavi
- Pharmaceutical Biotechnology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Egill Rostrup
- Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Mojtaba Ziaee
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Abstract
BACKGROUND Post-stroke depression (PSD) is the most frequent psychiatric complication following ischemic stroke. It affects up to 60% of all patients and is associated with increased morbidity and mortality following ischemic stroke. The pathophysiology of PSD remains elusive and appears to be multifactorial, rather than "purely" biological or psychosocial in origin. Thus, valid animal models of PSD would contribute to the study of the etiology (and treatment) of this disorder. METHODS The present study depicts a rat model for PSD, using middle cerebral artery occlusion (MCAO). The two-way shuttle avoidance task, Porsolt forced-swim test, and sucrose preference test were employed to assess any depression-like behavior. Localized brain expressions of brain-derived neurotrophic factor (BDNF) protein levels were evaluated to examine the possible involvement of the brain neuronal plasticity in the observed behavioral syndrome. The raw data were subjected to unsupervised fuzzy clustering (UFC) algorithms to assess the sensitivity of bio-behavioral measures indicative of depressive symptoms post MCAO. RESULTS About 56% of the rats developed significant depressive-like behavioral disruptions as a result of MCAO compared with 4% in the sham-operated control rats. A pattern of a depressive-like behavioral response was common to all affected MCAO animals, characterized by significantly more escape failures and reduced number of total avoidance shuttles, a significant elevation in immobility duration, and reduced sucrose preference. Significant downregulations of BDNF protein levels in the hippocampal sub-regions, frontal cortex, and hypothalamus were observed in all affected MCAO animals. CONCLUSION The UFC analysis supports the behavioral analysis and thus, lends validity to our results.
Collapse
|
10
|
Lautenschläger J, Mosharov EV, Kanter E, Sulzer D, Kaminski Schierle GS. An Easy-to-Implement Protocol for Preparing Postnatal Ventral Mesencephalic Cultures. Front Cell Neurosci 2018; 12:44. [PMID: 29556177 PMCID: PMC5840158 DOI: 10.3389/fncel.2018.00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 02/03/2023] Open
Abstract
Postnatally derived cultures of ventral mesencephalic neurons offer several crucial advantages over embryonic ventral mesencephalic cultures, including a higher content of TH-positive cells and the ability to derive cells from the substantia nigra, which contains the neurons most vulnerable to Parkinson's disease. On the other hand, these cultures are more challenging to produce consistently. Here, we provide an easy-to-implement protocol for culturing postnatal ventral mesencephalic cells from the substantia nigra (SN) and the ventral tegmental area using commercially available media, dishes, and general lab equipment, avoiding extensive material and equipment purchases. The protocol can be completed in about 5 h and provides ventral midbrain neuron cultures on cortex glia feeder layers in three weeks' time. The protocol uses an optimized protease digestion, tissue storage in Hibernate A during dissection and purification of neurons on an OptiPrep density gradient.
Collapse
Affiliation(s)
- Janin Lautenschläger
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Eugene V. Mosharov
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Ellen Kanter
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - David Sulzer
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | | |
Collapse
|
11
|
Silva AC, Ferreira IL, Hayden MR, Ferreiro E, Rego AC. Characterization of subventricular zone-derived progenitor cells from mild and late symptomatic YAC128 mouse model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:34-44. [PMID: 28939435 DOI: 10.1016/j.bbadis.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/02/2017] [Accepted: 09/12/2017] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is caused by an expansion of CAG repeats in the HTT gene, leading to expression of mutant huntingtin (mHTT) and selective striatal neuronal loss, frequently associated with mitochondrial dysfunction and decreased support of brain-derived neurotrophic factor (BDNF). New neurons derived from the subventricular zone (SVZ) are apparently not able to rescue HD pathological features. Thus, we analyzed proliferation, migration and differentiation of adult SVZ-derived neural stem/progenitor cells (NSPC) from mild (6month-old (mo)) and late (10mo) symptomatic HD YAC128 mice expressing full-length (FL)-mHTT versus age-matched wild-type (WT) mice. SVZ cells derived from 6mo YAC128 mice exhibited higher migratory capacity and a higher number of MAP2+ and synaptophysin+cells, compared to WT cells; MAP2 labeling was enhanced after exposure to BDNF. However, BDNF-evoked neuronal differentiation was not observed in 10mo YAC128 SVZ-derived cells. Interestingly, 6mo YAC128 SVZ-derived cells showed increased intracellular Ca2+ levels in response to KCl, which was potentiated by BDNF, evidencing the presence of differentiated neurons. In contrast, KCl depolarization-induced intracellular Ca2+ increase in 10mo YAC128 SVZ-derived cells was shown to be increased only in BDNF-treated YAC128 SVZ-derived cells, suggestive of decreased differentiation capacity. In addition, BDNF-untreated NSPC from 10mo YAC128 mice exhibited lower mitochondrial membrane potential and increased mitochondrial Ca2+ accumulation, in relation with NSPC from 6mo YAC128 mice. Data evidence age-dependent reduced migration and decreased acquisition of a neuronal phenotype, accompanied by decreased mitochondrial membrane potential in SVZ-derived cells from YAC128 mice through HD symptomatic phases.
Collapse
Affiliation(s)
- Ana C Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ildete L Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
12
|
Lubansu A, Abeloos L, Bockstael O, Lehtonen E, Blum D, Brotchi J, Levivier M, Tenenbaum L. Recombinant AAV Viral Vectors Serotype 1, 2, and 5 Mediate Differential Gene Transfer Efficiency in Rat Striatal Fetal Grafts. Cell Transplant 2017; 16:1013-1020. [DOI: 10.3727/000000007783472372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intrastriatal grafts of fetal ganglionic eminences (GE) can reverse symptoms of striatal lesions in animal models of Huntington's disease. On the other hand, neurotrophic factors have been shown to protect host striatal neurons from ongoing degeneration. Neurotrophic gene transfer into GE prior to grafting could combine the benefits of striatal neuron replacement and in situ delivery of neurotrophic factors. Here we evaluate the potency of recombinant adeno-associated viruses (rAAV) as vectors for gene delivery into rat embryonic (E15) GE using the eGFP reporter gene under the control of the strong cytomegalovirus (CMV) promoter. We observed a very efficient expression of the eGFP reporter gene in organotypic cultures of GE infected with rAAV serotype 1 from 4 days until at least 4 weeks postinfection. In contrast, transduction was low and absent when using serotype 2 and serotype 5 rAAV, respectively. Two months after transplantation of rAAV2/1-infected embryonic GE in adult rat striatum, more than 20% of grafted cells expressed eGFP. The majority of transduced cells in the graft were neurons as indicated by colabeling of GFP-immunoreactive cells with the NeuN marker. Our study suggests that GE transduced by rAAV-serotype 1 vectors could be an interesting tool to mediate efficient expression of a gene coding a neurotrophic factor in Huntington's disease.
Collapse
Affiliation(s)
- Alphonse Lubansu
- Laboratory of Experimental Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Abeloos
- Laboratory of Experimental Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Bockstael
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Enni Lehtonen
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - David Blum
- Research Unit in Biotherapy and Oncology, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Brotchi
- Laboratory of Experimental Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Levivier
- Laboratory of Experimental Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Liliane Tenenbaum
- Laboratory of Experimental Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Research Unit in Biotherapy and Oncology, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
13
|
Chalimoniuk M, Chrapusta SJ, Lukačova N, Langfort J. Endurance training upregulates the nitric oxide/soluble guanylyl cyclase/cyclic guanosine 3',5'-monophosphate pathway in the striatum, midbrain and cerebellum of male rats. Brain Res 2015; 1618:29-40. [PMID: 26006108 DOI: 10.1016/j.brainres.2015.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Abstract
The nitric oxide/soluble guanylyl cyclase/cyclic guanosine monophosphate (NO/sGC/cGMP) brain pathway plays an important role in motor control. We studied the effects of 6-week endurance training (running) of moderate intensity on this pathway by comparing, between sedentary and endurance-trained young adult male Wistar rats, the expression of endothelial (eNOS) and neuronal (nNOS) NO synthases and of α1, α2 and β1 GC subunits, as well as cGMP levels, in the brain cortex, hippocampus, striatum, midbrain and cerebellum. Additionally, we compared the respective regional expressions of BDNF and the BDNF receptor TrkB. Twenty-four hours after the last training session, the endurance-trained rats showed 3-fold higher spontaneous locomotor activity than their sedentary counterparts in an open-field test. Forty-eight hours after the completion of the training, the trained rats showed significantly elevated BDNF and TrKB mRNAs in the hippocampus, midbrain and striatum, and significantly increased BDNF levels in the hippocampus and striatum. Simultaneously, significant increases were found in mRNA and protein levels and activities of nNOS and eNOS as well as in mRNA and protein levels of GCα2 and GCβ1, but not GCα1, in the striatum, midbrain and cerebellum; no change in these variables was found in the cortex and hippocampus except for marked elevations in cortical GCβ1 mRNA and protein. Changes in regional cGMP levels paralleled those in eNOS, nNOS and GCα2 expression and NOSs' activities. These results suggest that favorable extrapyramidal motor effects of physical training are related to the enhanced activity of the NO/sGC/cGMP pathway in certain motor control-related subcortical brain regions.
Collapse
Affiliation(s)
- Małgorzata Chalimoniuk
- Department of Cellular Signaling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Stanisław J Chrapusta
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Nadežda Lukačova
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Józef Langfort
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
14
|
Silva A, Naia L, Dominguez A, Ribeiro M, Rodrigues J, Vieira OV, Lessmann V, Rego AC. Overexpression of BDNF and Full-Length TrkB Receptor Ameliorate Striatal Neural Survival in Huntington's Disease. NEURODEGENER DIS 2015; 15:207-18. [PMID: 25896770 DOI: 10.1159/000375447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several cellular mechanisms have been proposed to explain the pathogenesis of Huntington's disease (HD), including the lack of striatal brain-derived neurotrophic factor (BDNF). Thus, by preferentially binding to tropomyosin receptor kinase B (TrkB) receptor, BDNF is an important neurotrophin implicated in striatal neuronal survival. OBJECTIVE To study the influence of BDNF and TrkB receptors in intracellular signaling pathways and caspase-3 activation in HD striatal cells. METHODS HD mutant knockin and wild-type striatal cells were transduced with preproBDNF or full-length TrkB receptors to analyze BDNF processing, AKT and extracellular signal-regulated kinase (ERK) activation and the activity of caspase-3 in the absence or presence of staurosporine (STS). RESULTS HD mutant cells transduced with preproBDNF-mCherry (mCh) expressed similar levels of pro- and mature BDNF compared to WT cells, but HD cells released lower levels of pro- and mature BDNF. Despite this, BDNF-mCh overexpression rescued decreased AKT phosphorylation and reduced the caspase-3 activation observed in HD cells. Activated ERK was also enhanced in HD BDNF-mCh/TrkB-eGFP receptor co-cultures. Of relevance, overexpression of TrkB-eGFP in HD cells decreased caspase-3 activation, and stimulation of TrkB-eGFP-transduced mutant cells with recombinant human BDNF reduced both basal and STS-induced caspase-3 activation. CONCLUSION The results highlight the importance of BDNF-induced TrkB receptor signaling in rescuing HD-mediated apoptotic features in striatal cells.
Collapse
Affiliation(s)
- Ana Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Fink KD, Deng P, Torrest A, Stewart H, Pollock K, Gruenloh W, Annett G, Tempkin T, Wheelock V, Nolta JA. Developing stem cell therapies for juvenile and adult-onset Huntington's disease. Regen Med 2015; 10:623-46. [PMID: 26237705 PMCID: PMC6785015 DOI: 10.2217/rme.15.25] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stem cell therapies have been explored as a new avenue for the treatment of neurologic disease and damage within the CNS in part due to their native ability to mimic repair mechanisms in the brain. Mesenchymal stem cells have been of particular clinical interest due to their ability to release beneficial neurotrophic factors and their ability to foster a neuroprotective microenviroment. While early stem cell transplantation therapies have been fraught with technical and political concerns as well as limited clinical benefits, mesenchymal stem cell therapies have been shown to be clinically beneficial and derivable from nonembryonic, adult sources. The focus of this review will be on emerging and extant stem cell therapies for juvenile and adult-onset Huntington's disease.
Collapse
Affiliation(s)
- Kyle D Fink
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Peter Deng
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
- GenomeCenter, Biochemistry & Molecular Medicine, University of California, 451 Health Sciences Dr. Davis, CA 95616, USA
| | - Audrey Torrest
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Heather Stewart
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Kari Pollock
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - William Gruenloh
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Geralyn Annett
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Teresa Tempkin
- Department of Neurology, University of California Davis Health Systems, 4860 Y Street Sacramento, CA 95817, USA
| | - Vicki Wheelock
- Department of Neurology, University of California Davis Health Systems, 4860 Y Street Sacramento, CA 95817, USA
| | - Jan A Nolta
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| |
Collapse
|
16
|
Jackson-Lewis V, Lester D, Kozina E, Przedborski S, Smeyne RJ. From Man to Mouse. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Yu JH, Kim MS, Lee MY, Lee JY, Seo JH, Cho SR. GABAergic neuronal differentiation induced by brain-derived neurotrophic factor in human mesenchymal stem cells. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2013.877076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Cepeda C, Murphy KPS, Parent M, Levine MS. The role of dopamine in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2014; 211:235-54. [PMID: 24968783 PMCID: PMC4409123 DOI: 10.1016/b978-0-444-63425-2.00010-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations in dopamine (DA) neurotransmission in Parkinson's disease are well known and widely studied. Much less is known about DA changes that accompany and underlie some of the symptoms of Huntington's disease (HD), a dominant inherited neurodegenerative disorder characterized by chorea, cognitive deficits, and psychiatric disturbances. The cause is an expansion in CAG (glutamine) repeats in the HTT gene. The principal histopathology of HD is the loss of medium-sized spiny neurons (MSNs) and, to a lesser degree, neuronal loss in cerebral cortex, thalamus, hippocampus, and hypothalamus. Neurochemical, electrophysiological, and behavioral studies in HD patients and genetic mouse models suggest biphasic changes in DA neurotransmission. In the early stages, DA neurotransmission is increased leading to hyperkinetic movements that can be alleviated by depleting DA stores. In contrast, in the late stages, DA deficits produce hypokinesia that can be treated by increasing DA function. Alterations in DA neurotransmission affect glutamate receptor modulation and could contribute to excitotoxicity. The mechanisms of DA dysfunction, in particular the increased DA tone in the early stages of the disease, are presently unknown but may include initial upregulation of DA neuron activity caused by the genetic mutation, reduced inhibition resulting from striatal MSN loss, increased excitation from cortical inputs, and DA autoreceptor dysfunction. Targeting both DA and glutamate receptor dysfunction could be the best strategy to treat HD symptoms.
Collapse
Affiliation(s)
- Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kerry P S Murphy
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Buckinghamshire, UK
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in Huntington's disease: a mechanism for the lack of behavioral flexibility. Front Neurosci 2013; 7:114. [PMID: 23847463 PMCID: PMC3701870 DOI: 10.3389/fnins.2013.00114] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023] Open
Abstract
Dopamine (DA) plays an essential role in the control of coordinated movements. Alterations in DA balance in the striatum lead to pathological conditions such as Parkinson's and Huntington's diseases (HD). HD is a progressive, invariably fatal neurodegenerative disease caused by a genetic mutation producing an expansion of glutamine repeats and is characterized by abnormal dance-like movements (chorea). The principal pathology is the loss of striatal and cortical projection neurons. Changes in brain DA content and receptor number contribute to abnormal movements and cognitive deficits in HD. In particular, during the early hyperkinetic stage of HD, DA levels are increased whereas expression of DA receptors is reduced. In contrast, in the late akinetic stage, DA levels are significantly decreased and resemble those of a Parkinsonian state. Time-dependent changes in DA transmission parallel biphasic changes in glutamate synaptic transmission and may enhance alterations in glutamate receptor-mediated synaptic activity. In this review, we focus on neuronal electrophysiological mechanisms that may lead to some of the motor and cognitive symptoms of HD and how they relate to dysfunction in DA neurotransmission. Based on clinical and experimental findings, we propose that some of the behavioral alterations in HD, including reduced behavioral flexibility, may be caused by altered DA modulatory function. Thus, restoring DA balance alone or in conjunction with glutamate receptor antagonists could be a viable therapeutic approach.
Collapse
Affiliation(s)
- Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|
20
|
Giampà C, Montagna E, Dato C, Melone MAB, Bernardi G, Fusco FR. Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington's disease. PLoS One 2013; 8:e64037. [PMID: 23700454 PMCID: PMC3659095 DOI: 10.1371/journal.pone.0064037] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/11/2013] [Indexed: 12/20/2022] Open
Abstract
Loss of huntingtin-mediated BDNF gene transcription has been shown to occur in HD and thus contribute to the degeneration of the striatum. Several studies have indicated that an increase in BDNF levels is associated with neuroprotection and amelioration of neurological signs in animal models of HD. In a recent study, an increase in BDNF mRNA and protein levels was recorded in mice administered recombinant BDNF peripherally. Chronic, indwelling osmotic mini-pumps containing either recombinant BDNF or saline were surgically placed in R6/2 or wild-type mice from 4 weeks of age until euthanasia. Neurological evaluation (paw clasping, rotarod performance, locomotor activity in an open field) was performed. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that BDNF- treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as brain volume, striatal atrophy, size and morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. BDNF was effective in increasing significantly the levels of activated CREB and of BDNF the striatal spiny neurons. Moreover, systemically administered BDNF increased the synthesis of BDNF as demonstrated by RT-PCR, and this might account for the beneficial effects observed in this model.
Collapse
Affiliation(s)
- Carmela Giampà
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
| | - Elena Montagna
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
| | - Clemente Dato
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
| | - Mariarosa A. B. Melone
- Division of Neurology, Department of Clinical and Experimental Medicine and Surgery, Second University of Naples, Naples, Italy
- Institute of Protein Biochemistry, CNR, Naples, Italy
| | - Giorgio Bernardi
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Romana Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS Hospital at the European Center for Brain Research, Rome, Italy
- * E-mail:
| |
Collapse
|
21
|
Gerecke KM, Kolobova A, Allen S, Fawer JL. Exercise protects against chronic restraint stress-induced oxidative stress in the cortex and hippocampus. Brain Res 2013; 1509:66-78. [DOI: 10.1016/j.brainres.2013.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 01/12/2013] [Accepted: 02/15/2013] [Indexed: 02/08/2023]
|
22
|
Leschik J, Eckenstaler R, Nieweg K, Lichtenecker P, Brigadski T, Gottmann K, Leßmann V, Lutz B. Stably BDNF-GFP expressing embryonic stem cells exhibit a BDNF release-dependent enhancement of neuronal differentiation. J Cell Sci 2013; 126:5062-73. [DOI: 10.1242/jcs.135384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is known to be a crucial regulator of neuronal survival and synaptic plasticity in the mammalian brain. Furthermore, BDNF positively influences differentiation of embryonic neural precursors as well as of neural stem cells from adult neurogenic niches. To study the impact of cell-released BDNF on neural differentiation of embryonic stem cells (ESCs), which represent an attractive source for cell transplantation studies, we have generated BDNF-GFP overexpressing mouse ESC clones by knock-in technology. After neural differentiation in vitro, we observed that BDNF-GFP overexpressing ESC clones gave rise to an increased number of neurons as compared to control ESCs. Neurons derived from BDNF-GFP expressing ESCs harbored a more complex dendritic morphology and differentiated to a higher extent into the GABAergic lineage than controls. Moreover, we show that ESC-derived neurons released BDNF-GFP in an activity-dependent manner and displayed similar electrophysiological properties as cortical neurons. Thus, our study describes the generation of stably BDNF-GFP overexpressing ESCs which are ideally suited to investigate the ameliorating effects of BDNF in cell transplantation studies for various neuropathological conditions.
Collapse
|
23
|
Coco M, Caggia S, Musumeci G, Perciavalle V, Graziano AC, Pannuzzo G, Cardile V. Sodium L-lactate differently affects brain-derived neurothrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH-SY5Y cultures. J Neurosci Res 2012; 91:313-20. [DOI: 10.1002/jnr.23154] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 12/12/2022]
|
24
|
Gerecke KM, Jiao Y, Pagala V, Smeyne RJ. Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice. PLoS One 2012; 7:e43250. [PMID: 22912838 PMCID: PMC3422268 DOI: 10.1371/journal.pone.0043250] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/-) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.
Collapse
Affiliation(s)
- Kim M Gerecke
- Department of Psychology and Neuroscience Program, Rhodes College, Memphis, Tennessee, United States of America.
| | | | | | | |
Collapse
|
25
|
Roze E, Cahill E, Martin E, Bonnet C, Vanhoutte P, Betuing S, Caboche J. Huntington's Disease and Striatal Signaling. Front Neuroanat 2011; 5:55. [PMID: 22007160 PMCID: PMC3188786 DOI: 10.3389/fnana.2011.00055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/04/2011] [Indexed: 12/05/2022] Open
Abstract
Huntington’s Disease (HD) is the most frequent neurodegenerative disease caused by an expansion of polyglutamines (CAG). The main clinical manifestations of HD are chorea, cognitive impairment, and psychiatric disorders. The transmission of HD is autosomal dominant with a complete penetrance. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest genetic testing of the disease is available. Striatal atrophy begins as early as 15 years before disease onset and continues throughout the period of manifest illness. Therefore, patients could theoretically benefit from therapy at early stages of the disease. One important characteristic of HD is the striatal vulnerability to neurodegeneration, despite similar expression of the protein in other brain areas. Aggregation of the mutated Huntingtin (HTT), impaired axonal transport, excitotoxicity, transcriptional dysregulation as well as mitochondrial dysfunction, and energy deficits, are all part of the cellular events that underlie neuronal dysfunction and striatal death. Among these non-exclusive mechanisms, an alteration of striatal signaling is thought to orchestrate the downstream events involved in the cascade of striatal dysfunction.
Collapse
Affiliation(s)
- Emmanuel Roze
- UMRS 952, INSERM, UMR 7224, CNRS Université Pierre et Marie Curie - Paris-6 Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Yang L, Zhang Z, Sun D, Xu Z, Yuan Y, Zhang X, Li L. Low serum BDNF may indicate the development of PSD in patients with acute ischemic stroke. Int J Geriatr Psychiatry 2011; 26:495-502. [PMID: 20845405 DOI: 10.1002/gps.2552] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 04/16/2010] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study was to test whether serum BDNF or tissue plasminogen activator (tPA) is correlated with the development of depression at the acute stage of stroke. METHODS Hundred ischemic stroke patients admitted to the hospital within the first 24 h of stroke onset were consecutively recruited and followed up for 14 days. The 17-item HDRS and MADRS were used to assess the severity of major depressive symptoms on day 3, day 7, and day 14 after admission. The diagnoses of depression were made in accordance with DSM-IV criteria for post-stroke depression (PSD). Serum BDNF and tPA of all the patients were determined by ELISA both on day 1 and day 7 after admission. Meanwhile, 50 healthy control subjects were also recruited and underwent measurement of serum BDNF and tPA once. RESULTS We found that 37 patients (37.0%) were diagnosed of major depression at the end of the follow-up. Serum BDNF on day 1 was significantly higher in non-PSD stroke patients than in normal controls, while PSD patients had significantly lower BDNF than non-PSD patients. There was a significant negative correlation between serum BDNF and tPA on day 1 only in PSD patients (r = -0.440, p = 0.006). Serum BDNF < 5.86 ng/ml on day 1 was independently associated with incident PSD at the acute stage of stroke (OR = 28.992; 95% CI, 8.014-104.891; p < 0.001 after adjustment). CONCLUSION There was a significant elevation of BDNF early after ischemic stroke. Serum BDNF on day 1 after admission may predict the risk of subsequent PSD. Moreover, tPA may be involved in the change of BDNF.
Collapse
Affiliation(s)
- Lingli Yang
- Medical College, Southeast University, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Xia Q, Feng X, Yuan L, Wang K, Yang X. Brain-derived neurotrophic factor protects neurons from GdCl3-induced impairment in neuron-astrocyte co-cultures. Sci China Chem 2010. [DOI: 10.1007/s11426-010-4105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Saylor AJ, McGinty JF. An intrastriatal brain-derived neurotrophic factor infusion restores striatal gene expression in Bdnf heterozygous mice. Brain Struct Funct 2010; 215:97-104. [PMID: 20938680 DOI: 10.1007/s00429-010-0282-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/24/2010] [Indexed: 11/24/2022]
Abstract
Reduction in the amount of brain-derived neurotrophic factor (BDNF) in corticostriatal afferents is thought to contribute to the vulnerability of medium spiny striatal neurons in Huntington's disease. In young Bdnf heterozygous ((+/-)) mice, striatal medium spiny neurons (MSNs) express less preprodynorphin (PPD), preproenkephalin (PPE), and D(3) receptor mRNA than wildtype mice. Further, in aged Bdnf (+/-) mice, opioid, trkB receptor, and glutamic acid decarboxylase gene expression, and the number of dendritic spines on MSNs are more affected than in wildtype or younger Bdnf (+/-) mice. In this study, the possibility that intrastriatal infusions of BDNF would elevate gene expression in the striatum of Bdnf (+/-) mice was investigated. Wildtype and Bdnf (+/-) mice received a single, bilateral microinjection of BDNF or PBS into the dorsal striatum. Mice were killed 24 h later and semi-quantitative in situ hybridization histochemical analysis confirmed that PPD, PPE, and D(3) receptor mRNA was less in the caudate-putamen (CPu) and nucleus accumbens (NAc) core of Bdnf (+/-) mice than in wildtype mice. A BDNF infusion increased PPD mRNA in the CPu and NAc core of wildtype mice and restored PPD mRNA levels in the NAc core of Bdnf (+/-) mice. BDNF also restored the gene expression of PPE in the CPu of Bdnf (+/-) mice to wildtype levels; however, PPE mRNA in the NAc did not differ among groups. Furthermore, BDNF increased D(3) receptor mRNA in the NAc core of wildtype and Bdnf (+/-) mice. These results demonstrate that exogenous BDNF restores striatal opioid and D(3)R gene expression in mice with genetically reduced levels of endogenous BDNF.
Collapse
Affiliation(s)
- Alicia J Saylor
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
29
|
Liu F, Zou X, Sadovova N, Zhang X, Shi L, Guo L, Qian F, Wen Z, Patterson TA, Hanig JP, Paule MG, Slikker W, Wang C. Changes in gene expression after phencyclidine administration in developing rats: a potential animal model for schizophrenia. Int J Dev Neurosci 2010; 29:351-8. [PMID: 20691775 DOI: 10.1016/j.ijdevneu.2010.07.234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/21/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022] Open
Abstract
Repeated administration of phencyclidine (PCP), an N-methyl-d-aspartate (NMDA) receptor antagonist, during development, may result in neuronal damage that leads to behavioral deficits in adulthood. The present study examined the potential neurotoxic effects of PCP exposure (10mg/kg) in rats on postnatal days (PNDs) 7, 9 and 11 and the possible underlying mechanism(s) for neurotoxicity. Brain tissue was harvested for RNA extraction and morphological assessments. RNA was collected from the frontal cortex for DNA microarray analysis and quantitative RT-PCR. Gene expression profiling was determined using Illumina Rat Ref-12 Expression BeadChips containing 22,226 probes. Based on criteria of a fold-change greater than 1.4 and a P-value less than 0.05, 19 genes including NMDAR1 (N-methyl-d-aspartate receptor) and four pro-apoptotic genes were up-regulated, and 25 genes including four anti-apoptotic genes were down-regulated, in the PCP-treated group. In addition, the schizophrenia-relevant genes, Bdnf (Brain-derived neurotrophic factor) and Bhlhb2 (basic helix-loop-helix domain containing, class B, 2), were significantly different between the PCP and the control groups. Quantitative RT-PCR confirmed the microarray results. Elevated neuronal cell death was further confirmed using Fluoro-Jade C staining. These findings support the hypothesis that neurodegeneration caused by PCP occurs, at least in part, through the up-regulation of NMDA receptors, which makes neurons possessing these receptors more vulnerable to endogenous glutamate. The changes in schizophrenia-relevant genes after repeated PCP exposure during development may provide important information concerning the validation of an animal model for this disorder.
Collapse
Affiliation(s)
- F Liu
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079-9502, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Silva A, Pereira J, Oliveira CR, Relvas JB, Rego AC. BDNF and extracellular matrix regulate differentiation of mice neurosphere-derived cells into a GABAergic neuronal phenotype. J Neurosci Res 2009; 87:1986-96. [PMID: 19267421 DOI: 10.1002/jnr.22041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Differentiation of neurosphere-derived cells is regulated by extracellular cues, namely, growth factors and proteins of the extracellular matrix (ECM). In this study we analyzed the influence of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), retinoic acid plus potassium chloride (RA-KCl), and the nonsynthetic ECMs laminin (LN) and fibronectin (FN) versus the synthetic adhesion substrate poly-L-lysine (PLL) in the in vitro differentiation of postnatal neurosphere cells. BDNF increased the number of differentiated neurons and decreased the number of neuronal precursors (nestin-positive cells) compared with NGF or RA-KCl. Moreover, cells treated with BDNF plus B27 supplement acquired a gamma-aminobutyric acid (GABA)-ergic phenotype and showed increased survival. No significant differences were found in the number of differentiated neurons in the presence of the ECMs alone. Nevertheless, FN or PLL in combination with BDNF promoted the acquisition of a GABAergic phenotype. The results obtained in this study highlight the importance of growth factors and ECM proteins for the potential of neurosphere cells to differentiate into neurons.
Collapse
Affiliation(s)
- Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
32
|
Ming M, Li X, Fan X, Yang D, Li L, Chen S, Gu Q, Le W. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease. J Transl Med 2009; 7:53. [PMID: 19558709 PMCID: PMC2709608 DOI: 10.1186/1479-5876-7-53] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 06/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND New strategies for the treatment of Parkinson's disease (PD) are shifted from dopamine (DA) replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE) cells as substitution for degenerated dopaminergic (DAergic) neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. METHODS We evaluated the protective effects of conditioned medium (CM) from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA)- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF) and brain derived neurotrophic factor (BDNF) released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR). RESULTS We report here: (1) CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2) cultured RPE cells express L-dopa decarboxylase (DDC) and synthesize DA; (3) RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4) GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. CONCLUSION These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.
Collapse
Affiliation(s)
- Ming Ming
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gardiner J, Barton D, Overall R, Marc J. Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist 2009; 15:47-61. [PMID: 19218230 DOI: 10.1177/1073858408325269] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxidative stress and loss of neurotrophic support play major roles in the development of various diseases of the central and peripheral nervous systems. In disorders of the central nervous system such as Alzheimer's, Parkinson's, and Huntington's diseases, oxidative stress appears inextricably linked to the loss of neurotrophic support. A similar situation is seen in the peripheral nervous system in diseases of olfaction, hearing, and vision. Neurotrophic factors act to up-regulate antioxidant enzymes and promote the expression of antioxidant proteins. On the other hand, oxidative stress can cause down-regulation of neurotrophic factors. We propose that normal functioning of the nervous systems involves a positive feedback loop between antioxidant processes and neurotrophic support. Breakdown of this feedback loop in disease states leads to increased oxidative stress and reduced neurotrophic support.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, University of Sydney, Camperdown, Australia.
| | | | | | | |
Collapse
|
34
|
Yokoyama H, Kuroiwa H, Yano R, Araki T. Targeting reactive oxygen species, reactive nitrogen species and inflammation in MPTP neurotoxicity and Parkinson’s disease. Neurol Sci 2008; 29:293-301. [DOI: 10.1007/s10072-008-0986-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
|
35
|
Antiapoptotic activity maintenance of Brain Derived Neurotrophic Factor and the C fragment of the tetanus toxin genetic fusion protein. Open Life Sci 2008. [DOI: 10.2478/s11535-008-0011-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNeurotrophic factors have been widely suggested as a treatment for multiple diseases including motorneuron pathologies, like Amyotrophic Lateral Sclerosis. However, clinical trials in which growth factors have been systematically administered to Amyotrophic Lateral Sclerosis patients have not been effective, owing in part to the short half-life of these factors and their low concentrations at target sites. A possible strategy is the use of the atoxic C fragment of the tetanus toxin as a neurotrophic factor carrier to the motorneurons. The activity of trophic factors should be tested because their genetic fusion to proteins could alter their folding and conformation, thus undermining their neuroprotective properties. For this purpose, in this paper we explored the Brain Derived Neurotrophic Factor (BDNF) activity maintenance after genetic fusion with the C fragment of the tetanus toxin. We demonstrated that BDNF fused with the C fragment of the tetanus toxin induces the neuronal survival Akt kinase pathway in mouse cortical culture neurons and maintains its antiapoptotic neuronal activity in Neuro2A cells.
Collapse
|
36
|
Zuchner T, Brundin P. Mutant huntingtin can paradoxically protect neurons from death. Cell Death Differ 2007; 15:435-42. [PMID: 17975550 DOI: 10.1038/sj.cdd.4402261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a mutation in the gene huntingtin and characterized by motor, cognitive and psychiatric symptoms. Huntingtin contains a CAG repeat in exon 1. An expansion of this CAG repeat above 35 results in misfolding of Huntingtin, giving rise to protein aggregates and neuronal cell death. There are several transgenic HD mouse models that reproduce most of the features of the human disorder, for example protein inclusions, some neurodegeneration as well as motor and cognitive symptoms. At the same time, a subgroup of the HD transgenic mouse models exhibit dramatically reduced susceptibility to excitotoxicity. The mechanism behind this is unknown. Here, we review the literature regarding this phenomenon, attempt to explain what protein domains are crucial for this phenomenon and point toward a putative mechanism. We suggest, that the C-terminal domain of exon 1 Huntingtin, namely the proline rich domain, is responsible for mediating a neuroprotective effect against excitotoxicity. Furthermore, we point out the possible importance of this mechanism for future therapies in neurological disorders that have been suggested to be associated with excitotoxicity, for example Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- T Zuchner
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, Lund 22184, Sweden.
| | | |
Collapse
|
37
|
Di Loreto S, Zimmitti V, Sebastiani P, Cervelli C, Falone S, Amicarelli F. Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons. Int J Biochem Cell Biol 2007; 40:245-57. [PMID: 17869161 DOI: 10.1016/j.biocel.2007.07.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 01/10/2023]
Abstract
The hippocampus is known to play a crucial role in learning and memory. Recent data from literature show that cognitive problems, common to aged or diabetic patients, may be related to accumulation of toxic alpha-oxoaldehydes such as methylglyoxal. Thus, it is possible that methylglyoxal could be, at least in part, responsible for the impairment of cognitive functions, and the knowledge of the mechanisms through which this compound elicits neuronal toxicity could be useful for the development of possible therapeutic strategies. We previously reported a high susceptibility of hippocampal neurons to methylglyoxal, through an oxidation-dependent mechanism. In the present study, we extend our investigation on the molecular mechanisms which underlie methylglyoxal toxicity, focusing on possible effects on expression and activity of glyoxalases, its main detoxifying enzymes, and glutathione peroxidase, as well as on the levels of reduced glutathione. We also investigate methylglyoxal-induced modulation of brain derived neurotrophic factor and proinflammatory cytokines. Our results show that methylglyoxal causes a dramatic depletion of reduced glutathione and a significant inhibition of both glyoxalase and glutathione peroxidase activities. Furthermore, methylglyoxal treatment seems to affect the expression of inflammatory cytokines and survival factors. In conclusion, our findings suggest that methylglyoxal-induced neurotoxicity occurs through the impairment of detoxification pathway and depletion of reduced glutathione. This, in turn, triggers widespread apoptotic cell death, occurring through the convergence of both mitochondrial and Fas-receptor pathways.
Collapse
Affiliation(s)
- Silvia Di Loreto
- Institute for Organ Transplantation and Immunocytology (ITOI), CNR, P. le Collemaggio, 67100 L'Aquila, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Marcol W, Kotulska K, Larysz-Brysz M, Kowalik JL. BDNF contributes to animal model neuropathic pain after peripheral nerve transection. Neurosurg Rev 2007; 30:235-43; discussion 243. [PMID: 17530308 DOI: 10.1007/s10143-007-0085-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 03/04/2007] [Indexed: 10/23/2022]
Abstract
The outcome of peripheral nerve injury is often impaired by neuropathic pain, which is resistant to most analgesics and presents a serious clinical problem. The mechanisms underlying post-traumatic neuropathic pain remain unclear, but they are likely associated with the regeneration processes. Brain-derived neurotrophic factor (BDNF) is known to enhance peripheral nerve regeneration and is also considered to be an endogenous modulator of nociceptive responses following spinal cord lesion. The aim of this work was to examine the local effect of BDNF in a neuropathic pain model. Sciatic nerves of adult male rats were transected and supplied with connective tissue chambers filled with (1) fibrin only, (2) fibrin with BDNF, or (3) fibrin with antibodies against BDNF. In control animals the nerve was transected and no chamber was applied. During follow-up, autotomy behavior was assessed. Seven weeks after the operation, the number of surviving and regenerating neurons in dorsal root ganglia was counted and the neuroma incidence was examined. We found that local inactivation of BDNF decreased the incidence as well as severity of autotomy and neuroma formation, but did not influence neuron regeneration into the chambers. These results indicate that BDNF plays a locally crucial role in neuropathic pain development after peripheral nerve injury.
Collapse
Affiliation(s)
- Wiesław Marcol
- Department of Physiology, Medical University of Silesia, 18 Medyków St., 40-752, Katowice, Poland.
| | | | | | | |
Collapse
|
39
|
Peng C, Fan S, Li X, Fan X, Ming M, Sun Z, Le W. Overexpression of pitx3 upregulates expression of BDNF and GDNF in SH-SY5Y cells and primary ventral mesencephalic cultures. FEBS Lett 2007; 581:1357-61. [PMID: 17350004 DOI: 10.1016/j.febslet.2007.02.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/26/2007] [Accepted: 02/13/2007] [Indexed: 11/18/2022]
Abstract
The transcription factor Pitx3 plays an important role in the development of midbrain to promote the growth and differentiation of dopamine neurons. The present study has demonstrated that overexpression of Pitx3 in SH-SY5Y cells and primary ventral mesencephalic (VM) cultures significantly increased the mRNA levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), and remarkably elevated the protein levels of these two neurotrophic factors. Our data provide the first evidence that pitx3-expressing cells are able to upregulate the expression of BDNF and GDNF. Therefore, Pitx3 might be a good target for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Changgeng Peng
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Ma L, Zhou J. Dopamine Promotes the Survival of Embryonic Striatal Cells: Involvement of Superoxide and Endogenous NADPH Oxidase. Neurochem Res 2006; 31:463-71. [PMID: 16758354 DOI: 10.1007/s11064-006-9038-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2005] [Indexed: 10/24/2022]
Abstract
The dopaminergic system appears early in mammalian brain development, and a neurodevelopmental role for dopamine (DA) has been suggested. In the present study, we found that DA markedly promoted the survival of embryonic striatal cells in cultures. The failure of DA receptor antagonists to block this survival-promoting effect and the capability of S-apomorphine, which is devoid of DA receptor agonist activity but possesses antioxidative activity as R-apomorphine and DA, to completely mimic this effect suggested that DA receptor activation was not required in the survival-promoting effect elicited by DA, and its antioxidative activity might be involved. Moreover, it was found that mRNA of NADPH oxidase was expressed in the embryonic striatum. Furthermore, DPI or apocynin, NADPH oxidase inhibitors, promoted the survival of embryonic striatal cells. Addition of either DA or DPI into striatal cell cultures decreased the superoxide level. These results indicate that the mechanisms underlying the neuroprotective effects of DA were likely associated with its antioxidative activity. NADPH oxidase might contribute, at least in part, to ROS generation.
Collapse
Affiliation(s)
- Liping Ma
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, China
| | | |
Collapse
|
41
|
Wang H, Yuan G, Prabhakar NR, Boswell M, Katz DM. Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J Neurochem 2005; 96:694-705. [PMID: 16390493 DOI: 10.1111/j.1471-4159.2005.03572.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Expression of brain-derived neurotrophic factor (BDNF) is sensitive to changes in oxygen availability, suggesting that BDNF may be involved in adaptive responses to oxidative stress. However, it is unknown whether or not oxidative stress actually increases availability of BDNF by stimulating BDNF secretion. To approach this issue we examined BDNF release from PC12 cells, a well-established model of neurosecretion, in response to hypoxic stimuli. BDNF secretion from neuronally differentiated PC12 cells was strongly stimulated by exposure to intermittent hypoxia (IH). This response was inhibited by N-acetyl-l-cysteine, a potent scavenger of reactive oxygen species (ROS) and mimicked by exogenous ROS. IH-induced BDNF release requires activation of tetrodotoxin sensitive Na+ channels and Ca2+ influx through N- and L-type channels, as well as mobilization of internal Ca2+ stores. These results demonstrate that oxidative stress can stimulate BDNF release and that underlying mechanisms are similar to those previously described for activity-dependent BDNF secretion from neurons. Surprisingly, we also found that IH-induced secretion of BDNF was blocked by dopamine D2 receptor antagonists or by inhibition of dopamine synthesis with alpha-methyl-p-tyrosine. These data indicate that oxidative stress can stimulate BDNF release through an autocrine or paracrine loop that requires dopamine receptor activation.
Collapse
Affiliation(s)
- Hong Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Free radical damage has been shown to play a significant role in the pathogenesis of a number of neurodegenerative diseases including Parkinson's disease. One model of experimental parkinsonism is the loss of substantia nigra cells following administration of MPTP. Previously, it has been shown that a number of inbred strains of mice have differential responses to this toxin, and this difference is dependent on glial cells. In this study, the number of glial cells in the substantia nigra pars compacta of C57Bl/6J (MPTP-sensitive) and Swiss Webster (MPTP-resistant) strains of mice was examined. The C57Bl/6J mice have an approximately 50% lower number of GFAP+ and S-100beta glial cells than the Swiss Webster mice. C57Bl/6J mice have a 25% increased number of resident nonactivated microglial cells. To determine whether this difference in cell number has functional significance, we used an in vitro SN culture system that allowed us to manipulate the number of glial cells. When C57Bl/6 neurons were grown on a glial mat plated with twice the number of cells, we were able to rescue the MPTP-sensitive neurons from toxin-induced cell death. This suggests that the number of glial cells in the SNpc may be an important factor in the survival of dopaminergic neurons following exposure to xenobiotics.
Collapse
Affiliation(s)
- Michelle Smeyne
- Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
43
|
Zenina TA, Gavrish IV, Melkumyan DS, Seredenina TS, Seredenin SB. Neuroprotective Properties of Afobazol in Vitro. Bull Exp Biol Med 2005; 140:194-6. [PMID: 16282999 DOI: 10.1007/s10517-005-0443-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effects of a novel selective anxiolytic afobazol on survival of HT-22 neurons were studied in the model of oxidative stress and glutamate toxicity. In both models, the neuroprotective effect of afobazol was established.
Collapse
Affiliation(s)
- T A Zenina
- Department of Pharmacological Genetics, V. V. Zakusov State Research Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | |
Collapse
|
44
|
Smeyne RJ, Jackson-Lewis V. The MPTP model of Parkinson's disease. ACTA ACUST UNITED AC 2005; 134:57-66. [PMID: 15790530 DOI: 10.1016/j.molbrainres.2004.09.017] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 09/13/2004] [Accepted: 09/21/2004] [Indexed: 12/21/2022]
Abstract
The biochemical and cellular changes that occur following administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) are remarkably similar to that seen in idiopathic Parkinson's disease (PD). In this review, we detail the molecular activities of this compound from peripheral intoxication through its various biotransformations. In addition, we detail the interplay that occurs between the different cellular compartments (neurons and glia) that eventually consort to kill substantia nigra pars compacta (SNpc) neurons.
Collapse
Affiliation(s)
- Richard Jay Smeyne
- Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, TN 39105, USA.
| | | |
Collapse
|
45
|
|
46
|
Haynes LE, Barber D, Mitchell IJ. Chronic antidepressant medication attenuates dexamethasone-induced neuronal death and sublethal neuronal damage in the hippocampus and striatum. Brain Res 2004; 1026:157-67. [PMID: 15488477 DOI: 10.1016/j.brainres.2004.05.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2004] [Indexed: 10/26/2022]
Abstract
Dexamethasone, a synthetic corticosteroid, which can induce a range of mood disorders including depression and affective psychosis, is toxic to specific hippocampal and striatal neuronal populations. Chronic administration of antidepressants can induce neuroprotective effects, potentially by raising cellular levels of brain-derived neurotrophic factor (BDNF). We accordingly tested the hypothesis that chronic pretreatment of rats (Sprague-Dawley, male) with antidepressants would attenuate dexamethasone-induced neuronal damage as revealed by reductions in the level of neuronal death and in sublethal neuronal damage shown by the increase in the number of MAP-2 immunoreactive neurons. In support of this hypothesis, we demonstrate that chronic treatment with a range of antidepressants prior to dexamethasone administration (0.7 mg/kg, i.p.) attenuated the levels of neuronal death and loss of MAP-2 immunoreactivity in both the hippocampus and striatum. The antidepressants used were: desipramine (8 mg/kg, i.p., tricyclic), fluoxetine (8 mg/kg, i.p., selective serotonin reuptake inhibitor) and tranylcypromine (10 mg/kg, i.p., monoamine oxidase inhibitor) with each drug being injected once per day for 10 days. In contrast, acute injection of none of the antidepressants exerted a protective effect from dexamethasone-associated neuronal damage. Similarly, injection of neither cocaine nor chlordiazepoxide (benzodiazepine) exerted protective effects when injected either chronically or acutely. The observed protection from dexamethasone-induced neuronal damage is in keeping with the potential of chronic antidepressant medication to increase BDNF levels. The potential for dexamethasone to induce disorders of mood by damaging specific neuronal populations in the hippocampus and dorsomedial striatum is discussed.
Collapse
Affiliation(s)
- Linda E Haynes
- Biomedical Science, Medical School, The University of Nottingham, Queens Medical Centre, E70, Nottingham NG7 2UH, United Kingdom.
| | | | | |
Collapse
|
47
|
Chen LW, Hu HJ, Liu HL, Yung KKL, Chan YS. Identification of brain-derived neurotrophic factor in nestin-expressing astroglial cells in the neostriatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Neuroscience 2004; 126:941-53. [PMID: 15207328 DOI: 10.1016/j.neuroscience.2004.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2004] [Indexed: 02/02/2023]
Abstract
Up-regulation of nestin expression was significantly induced in the caudate-putamen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice in our previous observation [Brain Res 925 (2002) 9]. We hypothesized that the nestin-expressing cells might play an important role in the pathogenesis of parkinsonian model, and characterization of these nestin-expressing cells was studied by RT-PCR, immunohistochemistry and semi-quantitative analysis for various markers of glial fibrillary acid protein (GFAP), S-100, neuronal nuclear specific protein (NeuN), beta-tubulin, Ki-67 and brain-derived neurotrophic factor (BDNF) expression in MPTP-treated C57/BL mice. Firstly, significant increasing in both nestin protein and mRNA was found in MPTP-treated mice. Up-regulation of nestin expression started at day 1, peaked at day 3, and gradually went down at days 7-21 in the neostriatum after MPTP treatment. Secondly, double immunofluorescence indicated that almost all of nestin-positive cells exhibited GFAP (98%) or S-100 (96%)-immunoreactivity, whereas NeuN or beta-tubulin was hardly detected in these nestin-positive cells. Thirdly, a minor population (7.0%) of nestin-positive cells showed Ki-67 (cell proliferation marker)-immunoreactivity, showing some of them went into cell mitotic state. Finally but more interestingly, a major population (86%) of nestin-expressing cells also exhibited immunoreactivity for BDNF, one neurotrophic factor. These results present time-dependent up-regulation of nestin expression in neostriatum, the proliferative and neurotrophic properties of nestin-expressing astroglial cells in MPTP-treated C57/BL mice. Taken together with previous observations, this study suggests that nestin-expressing activated astroglial cells, possibly partially through synthesizing and releasing neurotrophic factors such as BDNF in the basal ganglia, may play important roles in protection of nigrostriatal dopamine neurons and in the pathogenesis of Parkinson's disease in mammals.
Collapse
Affiliation(s)
- L-W Chen
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, PR People's Republic of China.
| | | | | | | | | |
Collapse
|
48
|
Thomas DM, Francescutti-Verbeem DM, Liu X, Kuhn DM. Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment - an oligonucleotide microarray approach. J Neurochem 2003; 88:380-93. [PMID: 14690526 DOI: 10.1046/j.1471-4159.2003.02182.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methamphetamine is an addictive drug of abuse that can produce neurotoxic effects in dopamine nerve endings of the striatum. The purpose of this study was to identify new genes that may play a role in the highly complex cascade of events associated with methamphetamine intoxication. Using Affymetrix oligonucleotide arrays, 12 488 genes were simultaneously interrogated and there were 152 whose expression levels were changed following methamphetamine treatment. The genes are grouped into broad functional categories with inflammatory/immune response elements, receptor/signal transduction components and ion channel/transport proteins among the most populated. Many genes within these categories can be linked to ion regulation and apoptosis, both of which have been implicated in methamphetamine toxicity, and numerous factors associated with microglial activation emerged with significant changes in expression. For example, brain-derived neurotrophic factor (BDNF), chemokine (C-C) receptor 6 (CCr6) and numerous chemokine transcripts were increased or decreased in expression more than 2.8-fold. These results point to activated microglia as a potential source of the reactive oxygen/nitrogen species and cytokines that have been previously associated with methamphetamine toxicity and other neurotoxic conditions.
Collapse
Affiliation(s)
- David M Thomas
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
49
|
Arvidsson A, Kirik D, Lundberg C, Mandel RJ, Andsberg G, Kokaia Z, Lindvall O. Elevated GDNF levels following viral vector-mediated gene transfer can increase neuronal death after stroke in rats. Neurobiol Dis 2003; 14:542-56. [PMID: 14678770 DOI: 10.1016/j.nbd.2003.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies have indicated that administration of glial cell line-derived neurotrophic factor (GDNF) counteracts neuronal death after stroke. However, in these studies damage was evaluated at most a few days after the insult. Here, we have explored the long-term consequences of two routes of GDNF delivery to the rat striatum prior to stroke induced by 30 min of middle cerebral artery occlusion (MCAO): striatal transduction with a recombinant lentiviral vector or transduction of the substantia nigra with a recombinant adeno-associated viral vector and subsequent anterograde transport of GDNF to striatum. Despite high GDNF levels, stereological quantification of striatal neuron numbers revealed no protection at 5 or 8 weeks after MCAO. In fact, anterograde GDNF delivery exacerbated neuronal loss. Moreover, supply of GDNF did not alleviate the striatum-related behavioral deficits. Thus, we demonstrate that the actions of GDNF after stroke are more complex than previously believed and that high levels of this factor, which are neuroprotective in models of Parkinson's disease, can increase ischemic damage. Our findings also underscore the need for quantitative assessment of long-term neuronal survival and behavioral changes to evaluate the therapeutic potential of factors such as GDNF.
Collapse
Affiliation(s)
- Andreas Arvidsson
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A11 SE-221 84, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
50
|
Hilton GD, Nuñez JL, McCarthy MM. Sex differences in response to kainic acid and estradiol in the hippocampus of newborn rats. Neuroscience 2003; 116:383-91. [PMID: 12559094 DOI: 10.1016/s0306-4522(02)00716-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Premature and full-term human infants are at considerable risk of excitotoxic-mediated brain damage due to hypoxia-ischemia, infection or other trauma. Glutamate receptor activation is a major source of excitoxicity in the adult and developing brain, and the hippocampus is particularly vulnerable to damage. The seven-day-old rat is a widely used model of pediatric brain damage, in large part due to the relative insensitivity of the brain to exogenous glutamate treatment prior to this age. We have reexamined the possible role of glutamate in pediatric brain damage in the newborn rat using kainic acid treatment and attending to the sex of the animal as well as the effects of pretreatment with the gonadal steroid estradiol. Consistent with previous studies, we found no evidence of damage 7 days posttreatment in the CA1 region of the hippocampus in males or females. There was also little to no damage in the CA2/3 or dentate gyrus of males. In females, however, kainic-acid treatment induced substantial damage in the dentate gyrus and moderate damage in CA2/3, as assessed by neuron number and regional volume. Pretreatment with estradiol was protective against kainic acid-induced damage in females but was permissive for damage in the dentate gyrus of males. Estradiol treatment in the absence of kainic acid treatment was also neuroprotective in females in that it increased neuron number and volume throughout the hippocampal formation, suggesting that the basis of the sex difference observed in hippocampal volume was hormonally mediated. There was no effect of exogenous estradiol given to males in the absence of kainic acid. We conclude that the newborn female rat brain, but not the male, is sensitive to glutamate-mediated toxicity and that gonadal steroids play a complex role in both naturally occurring sex differences in hippocampal volume and response to injury.
Collapse
Affiliation(s)
- G D Hilton
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|