1
|
Knigge T. Antidepressants - The new endocrine disruptors? The case of crustaceans. Mol Cell Endocrinol 2024; 583:112155. [PMID: 38185462 DOI: 10.1016/j.mce.2024.112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
Antidepressants are high-volume pharmaceuticals that accumulate to concentrations in the μg·L-1 range in surface waters. The release of peptide hormones via neurosecretory cells appears as a natural target for antidepressants. Here I review research that suggests that antidepressants indeed disrupt endocrine signalling in crustaceans, by acting on the synthesis and release of neurohormones, such as crustacean hyperglycaemic hormone, moult inhibiting hormone and pigment dispersing hormone in decapods, as well as methyl farnesoate in Daphnids. Hence, antidepressants can affect hormonal regulation of physiological functions: increase in energy metabolism and activity, lowered ecdysteroid levels, potentially disrupting moult and somatic growth, reducing colour change capacity and compromising camouflage, as well as induction of male sex determination. Several studies further suggest effects of antidepressants on crustacean reproduction, but the hormonal regulation of these effects remains elusive. All things considered, a body of evidence strongly suggests that antidepressants are endocrine disrupting compounds in crustaceans.
Collapse
Affiliation(s)
- Thomas Knigge
- Normandie Univ, Unilehavre, FR CNRS 3730 Sciences Appliquées à L'Environnement, UMR-I02, Environmental Stress and Biomonitoring of Aquatic Environments, University of Le Havre Normandy, France.
| |
Collapse
|
2
|
Hafez T, Villate F, Ortiz-Zarragoitia M. Reduced Survival and Disruption of Female Reproductive Output in Two Copepod Species ( Acartia clausi and A. tonsa) Exposed to the Model Endocrine Disruptor 17α-Ethinylestradiol. TOXICS 2023; 11:toxics11050405. [PMID: 37235221 DOI: 10.3390/toxics11050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023]
Abstract
Estuaries are heavily impacted by pollutants from different sources such as urban sewage, industrial waste and agricultural runoff. Endocrine-disrupting chemicals (EDCs) are very concerning pollutants to estuarine wildlife, but little is known about their impact on microscopic biota such as zooplankton. The aim of this work was to investigate the effects of a model EDC, the 17α-ethinylestradiol (EE2), on two copepod species inhabiting the Basque coast (Southeastern Bay of Biscay) estuaries: Acartia clausi (autochthonous neritic species) and Acartia tonsa (non-indigenous brackish species). Female copepods were collected at population maximum time (spring for A. clausi and summer for A. tonsa) and exposed individually to 5 ng/L (low), 5 µg/L (medium) and 500 µg/L EE2 (high) doses, from environmental concentrations found in sewage effluents to toxicological concentrations. After 24 h exposure, the survival rate of experimental individuals was checked and the lethal concentration LC50 was calculated. The number of egg-producing females and the amount of egg laying and egg hatching were recorded. The integrated biomarker index (IBR) was calculated to integrate the overall effects of EE2 exposure. Both species had reduced survival rates at 500 µg/L, and the LC50 was lower in A. tonsa (158 µg/L) compared to A. clausi (398 µg/L). The number of eggs laid was significantly reduced in A. clausi at EE2 medium and high doses, while a reduction in the number of eggs in A. tonsa was observed only at the high dose. However, no significant differences were detected in the egg hatching success of exposed A. clausi and A. tonsa. IBR index showed that EE2 had the most detrimental effects on A. tonsa and A. clausi females at the 500 µg/L dose. In conclusion, after 24 h of exposure, EE2 reduced female copepod survival and disrupted reproductive output, but only at high non-environmentally relevant concentrations.
Collapse
Affiliation(s)
- Tamer Hafez
- CBET+ Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Plentzia, Basque Country, Spain
| | - Fernando Villate
- MarEsPlank Research Group, Department of Plant Biology and Ecology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Plentzia, Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET+ Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Plentzia, Basque Country, Spain
| |
Collapse
|
3
|
de Souza TTC, Castro GB, Bernegossi AC, Felipe MC, Pinheiro FR, Colombo-Corbi V, Girolli DA, Gorni GR, Corbi JJ. Pristina longiseta reproduction test: chronic exposure to environmental contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23578-23588. [PMID: 36327072 DOI: 10.1007/s11356-022-23861-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Aquatic worms are considered a suitable group to evaluate the effects of contaminants on the environment, although one of the main challenges is to use the species of local occurrence. Recently, Pristina longiseta was suggested to be used in acute bioassays. In this context, this study aimed to establish a chronic exposure for ecotoxicological bioassays using the cosmopolitan species of occurrence in Brazilian freshwater P. longiseta. Firstly, we tested three exposure times (4, 7, and 10 days) under the presence or absence of aeration for reproduction outputs. After determining the best configuration (7 days without aeration), we assessed the effects of the chronic exposures using the standardized reference substance potassium chloride (KCl), the antibiotic sulfamethoxazole (SMX), the flame retardant tetrabromobisphenol A (TBBPA), and the sugarcane vinasse. Our results showed suitability for applying the chronic exposure using P. longiseta and indicated the sensitivity of the offspring to KCl (EC50-7d = 0.51 g/L). Sulfamethoxazole and TBBPA caused a significant decrease in the offspring of P. longiseta (EC50-7d = 59.9 µg/L and < 62.5 µg/L, respectively). Sugarcane vinasse showed high toxicity for the species, and 4.26% of vinasse was calculated as EC50-7d. Therefore, the described protocol was successfully applied as an ecotoxicological bioassay to evaluate the effects of environmental contaminants on the reproduction rate of the freshwater worm P. longiseta.
Collapse
Affiliation(s)
- Tallyson Tavares Cunha de Souza
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil.
| | - Gleyson Borges Castro
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Aline Christine Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Mayara Caroline Felipe
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Fernanda Rodrigues Pinheiro
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | | | | | - Juliano José Corbi
- Aquatic Ecology Laboratory, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
4
|
Cho H, Ryu CS, Lee SA, Adeli Z, Meupea BT, Kim Y, Kim YJ. Endocrine-disrupting potential and toxicological effect of para-phenylphenol on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113965. [PMID: 35994907 DOI: 10.1016/j.ecoenv.2022.113965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Several phenol derivatives are suspected endocrine disruptors and have received attention in risk assessment studies for several decades owing to the structural similarity between estrogens and phenolic compounds. We assessed the endocrine disrupting effect of the phenolic compound para-phenylphenol (PPP) through acute tests and evaluating chronic endpoints in an invertebrate model, Daphnia magna. Exposure of D. magna to PPP induced substantial adverse effects, namely, reduced fecundity, slowed growth rate, delayed first brood, and a reduction in neonate size. Furthermore, we investigated the mRNA expression of relevant genes to elucidate the mechanism of endocrine disruption by PPP. Exposure of D. magna to PPP induced the substantial downregulation of genes and markers related to reproduction and development, such as EcR-A, EcR-B, Jhe, and Vtg. Consequently, we demonstrated that PPP has an endocrine disrupting effect on reproduction and development in D. magna.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Zahra Adeli
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Brenda Tenou Meupea
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea
| |
Collapse
|
5
|
Svigruha R, Fodor I, Padisak J, Pirger Z. Progestogen-induced alterations and their ecological relevance in different embryonic and adult behaviours of an invertebrate model species, the great pond snail (Lymnaea stagnalis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59391-59402. [PMID: 33349911 PMCID: PMC8542004 DOI: 10.1007/s11356-020-12094-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
The presence of oral contraceptives (basically applying estrogens and/or progestogens) poses a challenge to animals living in aquatic ecosystems and reflects a rapidly growing concern worldwide. However, there is still a lack in knowledge about the behavioural effects induced by progestogens on the non-target species including molluscs. In the present study, environmental progestogen concentrations were summarised. Knowing this data, we exposed a well-established invertebrate model species, the great pond snail (Lymnaea stagnalis) to relevant equi-concentrations (1, 10, 100, and 500 ng L-1) of mixtures of four progestogens (progesterone, drospirenone, gestodene, levonorgestrel) for 21 days. Significant alterations were observed in the embryonic development time, heart rate, feeding, and gliding activities of the embryos as well as in the feeding and locomotion activity of the adult specimens. All of the mixtures accelerated the embryonic development time and the gliding activity. Furthermore, the 10, 100, and 500 ng L-1 mixtures increased the heart rate and feeding activity of the embryos. The 10, 100, and 500 ng L-1 mixtures affected the feeding activity as well as the 1, 10, and 100 ng L-1 mixtures influenced the locomotion of the adult specimens. The differences of these adult behaviours showed a biphasic response to the progestogen exposure; however, they changed approximately in the opposite way. In case of feeding activity, this dose-response phenomenon can be identified as a hormesis response. Based on the authors' best knowledge, this is the first study to investigate the non-reproductive effects of progestogens occurring also in the environment on molluscan species. Our findings contribute to the global understanding of the effects of human progestogens, as these potential disruptors can influence the behavioural activities of non-target aquatic species. Future research should aim to understand the potential mechanisms (e.g., receptors, signal pathways) of progestogens induced behavioural alterations.
Collapse
Affiliation(s)
- Reka Svigruha
- Department of Limnology, University of Pannonia, Veszprém, 8200, Hungary
- NAP Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, 8237, Hungary
| | - Istvan Fodor
- NAP Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, 8237, Hungary
| | - Judit Padisak
- Department of Limnology, University of Pannonia, Veszprém, 8200, Hungary
| | - Zsolt Pirger
- NAP Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, 8237, Hungary.
| |
Collapse
|
6
|
Wang Y, Wang HS. Bisphenol A affects the pulse rate of Lumbriculus variegatus via an estrogenic mechanism. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109105. [PMID: 34119654 PMCID: PMC8373826 DOI: 10.1016/j.cbpc.2021.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/20/2021] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Invertebrates are recognized as important species in endocrine disrupting chemical (EDC) testing. However, it is poorly understood whether the effects of EDCs in invertebrates are mediated by hormonal mechanisms. Previously, we showed that bisphenol A (BPA) affected the physiology of the freshwater oligochaete Lumbriculus variegatus. In the present study, we examined the mechanism of the impact of BPA on L. variegatus, using pulse rate of the dorsal blood vessel (DBV) as an endpoint. Both long term and acute exposures to BPA increased the pulsing rate of DBV. The former had a distinct inverted-U dose response relationship with a most efficacious dose of 10-9 M, which increased the pulse rate from 8.97 to 10.9 beats/min. The effects of BPA were mimicked by the synthetic estrogen ethinylestradiol with a most efficacious dose of 10-12 M. Interestingly E2 had no effect on pulsing rate, either acute or long term. The sensitivity of L. variegatus to estrogens were exquisite, with detectable effects at 10-14 to 10-10 M range. Both the long term and acute effects of BPA were partially or fully blocked by various vertebrate estrogen receptor (ER) antagonists, including ICI 182,780, MPP and G15. Our results suggest that the impact of BPA on pulsing rate of L. variegatus is likely mediated by an estrogenic mechanism instead of general toxicity. The exceptionally high sensitivity of L. variegatus to some estrogens makes it a possible tool for estrogenic EDC screening.
Collapse
Affiliation(s)
- Yuyang Wang
- Hefei No. 8 High School, Hefei, Anhui, China
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol Cell Endocrinol 2020; 504:110712. [PMID: 31962147 DOI: 10.1016/j.mce.2020.110712] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Collapse
Affiliation(s)
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS, Faculté des Sciences, Parc de Grandmont, Université de Tours, Tours, France
| |
Collapse
|
8
|
Guo H, Chen LL, Li GL, Deng SP, Zhu CH. Accumulation and Depuration of Nonylphenol and Its Effect on the Expressions of Vitellogenin and Vitellogenin Receptor in Freshwater Prawn Macrobrachium rosenbergii. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:729-733. [PMID: 31531704 DOI: 10.1007/s00128-019-02714-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Accumulation of nonylphenol (NP) in hepatopancreas, gonad, eyestalk, and muscle of freshwater prawn Macrobrachium rosenbergii following 72 h exposure to 100 µg/L NP, and depuration of NP in these tissues at 0.5-192 h post exposure were examined. We also examined the expressions of vitellogenin (Vg) and vitellogenin receptor (VgR) of prawn following 0-20 days exposure to 0, 1, 10, and 100 µg/L NP. NP accumulation in hepatopancreas and gonad with high concentration, and low concentration in muscle, but depurated faster in eyestalk and muscle. The expressions of vitellogenin (Vg) and vitellogenin receptor (VgR) increased directly with dose and time. In conclusion, NP accumulated significantly in gonad together with high Vg and VgR expressions, and depurated slow in hepatopancreas and gonad when prawns were removed back to control water. The induction of Vg and VgR under NP exposure might be a stress response in M. rosenbergii.
Collapse
Affiliation(s)
- Hui Guo
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Luan-Luan Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Guang-Li Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Si-Ping Deng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Chun-Hua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, College of Fisheries, Guangdong Ocean University, Mazhang District, Haida Road No. 1, Zhanjiang, 524025, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Jo M, Lee S, Yoon S, Kim WK. Developmental and reproductive effects of tamoxifen on Daphnia magna. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:677. [PMID: 30368600 DOI: 10.1007/s10661-018-7002-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Although medicines are less toxic than other toxicants, increased production and usage of pharmaceuticals have led to many concerns regarding their toxic effects on human and non-target organisms. Additionally, reproductive toxicity after long-term exposure is difficult to anticipate. Tamoxifen (TAM), a selective estrogen receptor modulator, has been widely used as an anticancer drug for mammalian breast and endometrial cancers. With increased TAM usage, it has frequently been reported that TAM is a potential endocrine disruptor capable of interfering with reproduction in non-target organisms. However, the mode of action of TAM in the endocrine system is unknown. In this study, we performed a 21-day chronic toxicity test using the crustacean Daphnia magna and investigated the transcriptional modulation of major genes related to the endocrine system, molting, development, and reproduction (i.e., Dm-vtg2, vmo1, cyp314, usp, and ecrb) after TAM exposure for 3, 6, 12, and 24 h. Our results showed a concentration-dependent decrease in the total number of offspring per individual, except for the concentration 25 μg/L; additionally, the expression of oogenesis-related genes was induced early but was later inhibited by TAM exposure. Additionally, molting-related genes were also downregulated in a time-dependent manner. Our findings suggested that TAM regulates reproduction by interfering with the molecular mechanisms involved in oogenesis and molting. This study supports the hypothesis that D. magna are a useful model to rapidly evaluate the reproductive effects of pharmaceuticals.
Collapse
Affiliation(s)
- Mina Jo
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon, South Korea.
- University of Science & Technology, Daejeon, South Korea.
| | - Sangwoo Lee
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon, South Korea
| | - Seokjoo Yoon
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon, South Korea
- University of Science & Technology, Daejeon, South Korea
| | - Woo-Keun Kim
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon, South Korea
- University of Science & Technology, Daejeon, South Korea
| |
Collapse
|
10
|
Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci 2018; 19:E1647. [PMID: 29865233 PMCID: PMC6032228 DOI: 10.3390/ijms19061647] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Sergio Bernasconi
- Former Department of Medicine, University of Parma, Via A. Catalani 10, 43123 Parma, Italy.
| | - Ernesto Burgio
- ECERI European Cancer and Environment Research Institute, Square de Meeus, 38-40, 1000 Bruxelles, Belgium.
| | - Alessandra Cassio
- Pediatric Endocrinology Programme, Pediatrics Unit, Department of Woman, Child Health and Urologic Diseases, AOU S. Orsola-Malpighi, Via Massarenti, 11, 40138 Bologna, Italy.
| | - Cecilia Catellani
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Francesca Cirillo
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Annalisa Deodati
- Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Tor Vergata University, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrica Fabbrizi
- Department of Pediatrics and Neonatology, Augusto Murri Hospital, Via Augusto Murri, 17, 63900 Fermo, Itlay.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, via Ospedale, 54, 09124 Cagliari, Italy.
| | - Giancarlo Gargano
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Enzo Grossi
- Villa Santa Maria Institute, Neuropsychiatric Rehabilitation Center, Via IV Novembre 15, 22038 Tavernerio (Como), Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Pietro Lazzeroni
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Alberto Mantovani
- Department of Veterinary Public Health and Food Safety, Food and Veterinary Toxicology Unit ISS⁻National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Migliore
- Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56123 Pisa, Italy.
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy.
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126 Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole, 10, 10043 Orbassano (Turin), Italy.
| | - Anna Maria Papini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology-Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA)-University of Parma⁻11/a, 43124 Parma, Italy.
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Chiara Sartori
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Gabriele Tridenti
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sergio Amarri
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
11
|
Kairo G, Biron DG, Ben Abdelkader F, Bonnet M, Tchamitchian S, Cousin M, Dussaubat C, Benoit B, Kretzschmar A, Belzunces LP, Brunet JL. Nosema ceranae, Fipronil and their combination compromise honey bee reproduction via changes in male physiology. Sci Rep 2017; 7:8556. [PMID: 28819220 PMCID: PMC5561069 DOI: 10.1038/s41598-017-08380-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/07/2017] [Indexed: 12/16/2022] Open
Abstract
The honey bee is threatened by biological agents and pesticides that can act in combination to induce synergistic effects on its physiology and lifespan. The synergistic effects of a parasite/pesticide combination have been demonstrated on workers and queens, but no studies have been performed on drones despite their essential contribution to colony sustainability by providing semen diversity and quality. The effects of the Nosema ceranae/fipronil combination on the life traits and physiology of mature drones were examined following exposure under semi-field conditions. The results showed that the microsporidia alone induced moderate and localized effects in the midgut, whereas fipronil alone induced moderate and generalized effects. The parasite/insecticide combination drastically affected both physiology and survival, exhibiting an important and significant generalized action that could jeopardize mating success. In terms of fertility, semen was strongly impacted regardless of stressor, suggesting that drone reproductive functions are very sensitive to stress factors. These findings suggest that drone health and fertility impairment might contribute to poorly mated queens, leading to the storage of poor quality semen and poor spermathecae diversity. Thus, the queens failures observed in recent years might result from the continuous exposure of drones to multiple environmental stressors.
Collapse
Affiliation(s)
- Guillaume Kairo
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - David G Biron
- CNRS, UMR CNRS 6023 Laboratoire Microorganismes: Génome et Environnement, 63177, Aubière Cedex, France
| | - Faten Ben Abdelkader
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France.,INAT, Laboratoire de Zoologie et d'Apiculture, 1082, Tunis, Tunisia
| | - Marc Bonnet
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Sylvie Tchamitchian
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Marianne Cousin
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Claudia Dussaubat
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Boris Benoit
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - André Kretzschmar
- INRA, UR 546 Biostatistiques & Processus Spatiaux, CS 40509, 84914, Avignon Cedex 9, France
| | - Luc P Belzunces
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France
| | - Jean-Luc Brunet
- INRA, UR 406 Abeilles & Environnement, Toxicologie Environnementale, CS 40509, 84914, Avignon Cedex 9, France.
| |
Collapse
|
12
|
Quesada-Calderón S, Bacigalupe LD, Toro-Vélez AF, Madera-Parra CA, Peña-Varón MR, Cárdenas-Henao H. The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster. Ecol Evol 2017; 7:6519-6526. [PMID: 28861253 PMCID: PMC5574807 DOI: 10.1002/ece3.3172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.
Collapse
Affiliation(s)
- Suany Quesada-Calderón
- Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias Universidad Austral de Chile Valdivia Chile.,Doctorado en ciencias, mención Ecología y Evolución Universidad Austral de Chile Valdivia Chile
| | - Leonardo Daniel Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | | | | | | | | |
Collapse
|
13
|
Hart CE, Lauth MJ, Hunter CS, Krasny BR, Hardy KM. Effect of 4-nonylphenol on the immune response of the Pacific oyster Crassostrea gigas following bacterial infection with Vibrio campbellii. FISH & SHELLFISH IMMUNOLOGY 2016; 58:449-461. [PMID: 27693202 DOI: 10.1016/j.fsi.2016.09.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
The xenoestrogen 4-nonylphenol (NP) is a ubiquitous aquatic pollutant and has been shown to impair reproduction, development, growth and, more recently, immune function in marine invertebrates. We investigated the effects of short-term (7 d) exposure to low (2 μg l-1) and high (100 μg l-1) levels of NP on cellular and humoral elements of the innate immune response of Crassostrea gigas to a bacterial challenge. To this end, we measured 1) total hemocyte counts (THC), 2) relative transcript abundance of ten immune-related genes (defh1, defh2, bigdef1, bigdef2, bpi, lysozyme-1, galectin, C-type lectin 2, timp, and transglutaminase) in the hemocytes, gill and mantle, and 3) hemolymph plasma lysozyme activity, following experimental Vibrio campbellii infection. Both low and high levels of NP were found to repress a bacteria-induced increase in THC observed in the control oysters. While several genes were differentially expressed following bacterial introduction (bigdef2, bpi, lysozyme-1, timp, transglutaminase), only two genes (bpi in the hemocytes, transglutaminase in the mantle) exhibited a different bacteria-induced expression profile following NP exposure, relative to the control oysters. Independently of infection-status, exposure to NP also altered mRNA transcript abundance of several genes (bpi, galectin, C-type lectin 2) in naïve, saline-injected oysters. Finally, plasma lysozyme activity levels were significantly higher in low dose NP-treated oysters (both naïve and bacteria challenged) relative to control oysters. Combined, these results suggest that exposure to ecologically-relevant (low) and extreme (high) levels of NP can alter both cellular and humoral elements of the innate immune response in C. gigas, an aquaculture species of global economic importance.
Collapse
Affiliation(s)
- Courtney E Hart
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States
| | - Michael J Lauth
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States
| | - Cassidy S Hunter
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States
| | - Brennan R Krasny
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States.
| |
Collapse
|
14
|
Mac Loughlin C, Canosa IS, Silveyra GR, López Greco LS, Rodríguez EM. Effects of atrazine on growth and sex differentiation, in juveniles of the freshwater crayfish Cherax quadricarinatus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 131:96-103. [PMID: 27213565 DOI: 10.1016/j.ecoenv.2016.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
The effect of the herbicide atrazine was assayed in early juveniles of the redclaw crayfish Cherax quadricarinatus. Four cohorts of juveniles (a total of 280 animals) were exposed for 4 wk to each one of three atrazine concentrations (0.1, 0.5 and 2.5mg/L) or a control (0mg/L), from a commercial formulation having 90% of active principle. At the end of the exposure, no significant (p>0.05) differences in either mortality or molting were noted. However, the weight gain and the protein content of abdominal muscle decreased significantly (p<0.05) in the highest atrazine concentration as compared to control, indicating that atrazine acted as a relevant stressor, although at a concentration higher than those reported in the environment. Besides, the proportion of females increased progressively as the atrazine concentration increases, being significantly (p<0.05) higher than that of controls at the highest concentration assayed. Both macroscopic and histological analysis revealed a normal architecture of gonopores and gonads in both control and exposed animals. The obtained results strongly suggest that atrazine could be causing an endocrine disruption on the hormonal system responsible for the sexual differentiation of the studied species, increasing the proportion of female proportion without disturbing the gonad structure.
Collapse
Affiliation(s)
- Camila Mac Loughlin
- Lab. of Crustacean Physiology, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Ivana S Canosa
- Lab. of Crustacean Physiology, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Gabriela R Silveyra
- Lab. of Crustacean Physiology, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Laura S López Greco
- Lab. of Biology of Reproduction and Growth of Crustaceans, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Enrique M Rodríguez
- Lab. of Crustacean Physiology, Dept. of Biodiversity and Experimental Biology, FCEN, University of Buenos Aires, IBBEA, CONICET-UBA, Ciudad Universitaria, Pab. II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Bal N, Kumar A, Du J, Nugegoda D. Prednisolone impairs embryonic and posthatching development and shell formation of the freshwater snail, Physa acuta. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2339-2348. [PMID: 26887568 DOI: 10.1002/etc.3401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/04/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
The aim of the present study was to investigate the lethal and sublethal effects of prednisolone exposure on the embryonic and posthatching stage of the freshwater snail, Physa acuta. The egg masses were exposed for 14 d to prednisolone concentrations ranging from 15.6 μg/L to 1000 μg/L. Treatment with prednisolone at 125 μg/L to 1000 μg/L resulted in significant decline in growth, survival, and heart rate, as well as notable abnormalities in embryonic development. Premature embryonic hatching was observed at lower concentrations of 31.25 μg/L and 62.5 μg/L, whereas delayed hatching was seen at concentrations from 125 μg/L to 1000 μg/L. To assess impacts of prednisolone exposure on the hatched juveniles, the drug exposure was extended for another 28 d. Impairment of shell development was noted in juveniles exposed to concentrations from 62.5 μg/L to 1000 μg/L at the end of 42 d, which resulted in thin and fragile shells. The thickness of shells in snails exposed to 1000 μg/L was significantly lower in comparison to those in the 15.6-μg/L and control treatments. In addition, lower calcium concentration in shells of the exposed juvenile snails at treatments of 62.5 μg/L to 1000 μg/L consequently reduced their growth. The present study confirms that continuous exposure to prednisolone can result in deleterious effects on calcium deposition, resulting in shell thinning in the freshwater snail P. acuta. Environ Toxicol Chem 2016;35:2339-2348. © 2016 SETAC.
Collapse
Affiliation(s)
- Navdeep Bal
- RMIT University, Melbourne, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Glen Osmond, South Australia, Australia
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Glen Osmond, South Australia, Australia
| | - Jun Du
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Glen Osmond, South Australia, Australia
| | | |
Collapse
|
16
|
Trombini C, Hampel M, Blasco J. Evaluation of acute effects of four pharmaceuticals and their mixtures on the copepod Tisbe battagliai. CHEMOSPHERE 2016; 155:319-328. [PMID: 27135693 DOI: 10.1016/j.chemosphere.2016.04.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/18/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
The individual and combined toxicities of acetaminophen, carbamazepine, diclofenac and ibuprofen have been examined in neonate nauplii (<24 h-old) of the harpacticoid copepod Tisbe battagliai. Based on acute toxicity data (LC50) obtained, diclofenac was the most toxic compound with an LC50 value of 9.5 mg·L(-1); this is between 5 and 7 times lower than the LC50 value for acetaminophen, carbamazepine and ibuprofen (67.8 mg·L(-1), 59 mg·L(-1) and 49.7 mg·L(-1) respectively). The environmental risk posed by the selected pharmaceuticals was assessed by calculating risk quotients (RQs) based on MEC (the highest exposure concentration of the compound in the medium)/PNEC (predicted no effect concentration) ratios. Results suggest that, at environmental concentrations, none of the compounds is harmful for the aquatic environment (low or no risk). Toxicity data obtained for mixtures were compared with predictions derived from three different models: Concentration Addition (CA), Independent Action (IA) and Combination Index (CI). The classical modeling approaches CA and IA failed to predict the observed mixture toxicity, thus indicating that single compound toxicity data are not sufficient to predict toxicity of drug mixtures on Tisbe species. However, the use of the CI seems to provide better predictions of pharmaceutical toxicity.
Collapse
Affiliation(s)
- Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Miriam Hampel
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain; Centro Andaluz de Ciencias y Tecnologías Marinas (CACYTMAR), Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain.
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
17
|
Antczak P, Jo HJ, Woo S, Scanlan L, Poynton H, Loguinov A, Chan S, Falciani F, Vulpe C. Molecular toxicity identification evaluation (mTIE) approach predicts chemical exposure in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11747-11756. [PMID: 23875995 DOI: 10.1021/es402819c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Daphnia magna is a bioindicator organism accepted by several international water quality regulatory agencies. Current approaches for assessment of water quality rely on acute and chronic toxicity that provide no insight into the cause of toxicity. Recently, molecular approaches, such as genome wide gene expression responses, are enabling an alternative mechanism based approach to toxicity assessment. While these genomic methods are providing important mechanistic insight into toxicity, statistically robust prediction systems that allow the identification of chemical contaminants from the molecular response to exposure are needed. Here we apply advanced machine learning approaches to develop predictive models of contaminant exposure using a D. magna gene expression data set for 36 chemical exposures. We demonstrate here that we can discriminate between chemicals belonging to different chemical classes including endocrine disruptors and inorganic and organic chemicals based on gene expression. We also show that predictive models based on indices of whole pathway transcriptional activity can achieve comparable results while facilitating biological interpretability.
Collapse
Affiliation(s)
- Philipp Antczak
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool , L69 7ZB Liverpool, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Souza MS, Hallgren P, Balseiro E, Hansson LA. Low concentrations, potential ecological consequences: synthetic estrogens alter life-history and demographic structures of aquatic invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:237-243. [PMID: 23584603 DOI: 10.1016/j.envpol.2013.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/12/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
Contraceptive drugs are nowadays found in aquatic environments around the globe. Particularly, 17α-ethinylestradiol (EE2) may act even at low concentrations, such as those recorded in natural ecosystems. We evaluated the physiological effects of EE2 on cyclopoids and calanoids, common copepods in both marine and freshwater communities. We used three EE2 concentrations and assessed its impact on activity of different physiological endpoints: Acetylcholinesterase (neurotransmission), Glutathione S-transferase (detoxifying system), and Caspase-3 (apoptosis). While EE2 exerts, distinctive effect on detoxifying and apoptotic systems, no effect on AChE was observed at environmental doses. Our results show that EE2 exposure affects differently copepod physiology endpoints, altering moulting process, adult recruitment in calanoids and calanoid to cyclopoid ratio. The ecological consequences of this underlying physiological process may affect since life history to population and community structures, and this represent a new aspects of this xenobiotic in natural systems.
Collapse
Affiliation(s)
- María Sol Souza
- Laboratorio de Limnología, INIBIOMA (CONICET-UNComahue), Quintral 1250, Bariloche, Río Negro R8400, Argentina.
| | | | | | | |
Collapse
|
19
|
Seeland A, Albrand J, Oehlmann J, Müller R. Life stage-specific effects of the fungicide pyrimethanil and temperature on the snail Physella acuta (Draparnaud, 1805) disclose the pitfalls for the aquatic risk assessment under global climate change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 174:1-9. [PMID: 23246620 DOI: 10.1016/j.envpol.2012.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
It can be suggested that the combined stress of pesticide pollution and suboptimal temperature influences the sensitivity of life stages of aquatic invertebrates differently. The embryo, juvenile, half- and full-life-cycle toxicity tests performed with the snail Physella acuta at different concentrations (0.06-0.5 or 1.0 mg L(-1)) of the model fungicide pyrimethanil at 15, 20 and 25 °C revealed, that pyrimethanil caused concentration-dependent effects at all test temperatures. Interestingly, the ecotoxicity of pyrimethanil was higher at lower (suboptimal) temperature for embryo hatching and F(1) reproduction, but its ecotoxicity for juvenile growth and F(0) reproduction increased with increasing temperature. The life-stage specific temperature-dependent ecotoxicity of pyrimethanil and the high fungicide susceptibility of the invasive snail clearly demonstrate the complexity of pesticide-temperature interactions and the challenge to draw conclusions for the risk of pesticides under the impact of global climate change.
Collapse
Affiliation(s)
- Anne Seeland
- Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Max-von-Laue-Strasse 13, D-60438 Frankfurt, Germany.
| | | | | | | |
Collapse
|
20
|
Flint S, Markle T, Thompson S, Wallace E. Bisphenol A exposure, effects, and policy: a wildlife perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 104:19-34. [PMID: 22481365 DOI: 10.1016/j.jenvman.2012.03.021] [Citation(s) in RCA: 457] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 02/24/2012] [Accepted: 03/10/2012] [Indexed: 05/22/2023]
Abstract
Thousands of anthropogenic chemicals are present in the environment, and mounting evidence indicates that some have endocrine-disrupting effects in a variety of organisms. Of particular concern are chemicals that act as agonists or antagonists on vertebrate estrogen or androgen receptors. One such compound is bisphenol A (BPA), which appears to be both an estrogen receptor agonist and an androgen receptor antagonist. Used in the manufacture of plastic resins, BPA is found at low levels in surface-water, sediments, soils, and biota. Although it degrades quickly, it is pseudo-persistent in the environment because of continual inputs. Due to its environmental ubiquity, organisms may be exposed to BPA chronically or during sensitive life stages. While the impacts of BPA-related endocrine disruption in humans have been extensively studied, the endocrinal and systemic effects in wildlife are less well known. This article reviews the current state of knowledge of BPA inputs to the environment, routes of exposure, and effects on wildlife. We then critically examine the regulatory structure governing the environmental endpoints of BPA in the United States, European Union, and Canada, and discuss major challenges to the effective regulation of BPA. We conclude with a survey of treatment and mitigation options.
Collapse
Affiliation(s)
- Shelby Flint
- University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
21
|
Brausch JM, Connors KA, Brooks BW, Rand GM. Human pharmaceuticals in the aquatic environment: a review of recent toxicological studies and considerations for toxicity testing. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 218:1-99. [PMID: 22488604 DOI: 10.1007/978-1-4614-3137-4_1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although an increasingly large amount of data exists on the acute and chronic aquatic toxicity of pharmaceuticals, numerous questions still remain. There remains a dearth of information pertaining to the chronic toxicity of bivalves, benthic invertebrates, fish, and endangered species, as well as study designs that examine mechanism-of-action (MOA)-based toxicity, in vitro and computational toxicity, and pharmaceutical mixtures. Studies examining acute toxicity are prolific in the published literature; therefore, we address many of the shortcomings in the literature by proposing "intelligent" well-designed aquatic toxicology studies that consider comparative pharmacokinetics and pharmacodynamics. For example, few studies on the chronic responses of aquatic species to residues of pharmaceuticals have been performed, and very few on variables that are plausibly linked to any therapeutic MOA. Unfortunately, even less is understood about the metabolism of pharmaceuticals in aquatic organisms. Therefore, it is clear that toxicity testing at each tier of an ecological risk assessment scheme would be strengthened for some pharmaceuticals by selecting model organisms and endpoints to address ecologically problematic MOAs. We specifically recommend that future studies employ AOP approaches (Ankley et al. 2010) that leverage mammalian pharmacology information, including data on side effects and contraindications. Use of conceptual AOP models for pharmaceuticals can enhance future studies in ways that assist in the development of more definitive ecological risk assessments, identify chemical classes of concern, and help protect ecosystems that are affected by WWTP effluent discharge.
Collapse
Affiliation(s)
- John M Brausch
- Ecotoxicology and Risk Assessment Laboratory, Department of Earth and Environment, Southeastern Environmental Research Center, Florida International University, 3000 NE 151st St, North Miami, FL 33181, USA
| | | | | | | |
Collapse
|
22
|
Park MA, Hwang KA, Choi KC. Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Lab Anim Res 2011; 27:265-73. [PMID: 22232634 PMCID: PMC3251756 DOI: 10.5625/lar.2011.27.4.265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 11/26/2011] [Accepted: 12/02/2011] [Indexed: 01/01/2023] Open
Abstract
Acting as hormone mimics or antagonists in the interaction with hormone receptors, endocrine disrupting chemicals (EDCs) have the potentials of disturbing the endocrine system in sex steroid hormone-controlled organs and tissues. These effects may lead to the disruption of major regulatory mechanisms, the onset of developmental disorders, and carcinogenesis. Especially, among diverse EDCs, xenoestrogens such as bisphenol A, dioxins, and di(2-ethylhexyl)phthalate, have been shown to activate estrogen receptors (ERs) and to modulate cellular functions induced by ERs. Furthermore, they appear to be closely related with carcinogenicity in estrogen-dependant cancers, including breast, ovary, and prostate cancers. In in vivo animal models, prenatal exposure to xenoestrogens changed the development of the mouse reproductive organs and increased the susceptibility to further carcinogenic exposure and tumor occurence in adults. Unlike EDCs, which are chemically synthesized, several phytoestrogens such as genistein and resveratrol showed chemopreventive effects on specific cancers by contending with ER binding and regulating normal ER action in target tissues of mice. These results support the notion that a diet containing high levels of phytoestrogens can have protective effects on estrogen-related diseases. In spite of the diverse evidences of EDCs and phytoestrogens on causation and prevention of estrogen-dependant cancers provided in this article, there are still disputable questions about the dose-response effect of EDCs or chemopreventive potentials of phytoestrogens. As a wide range of EDCs including phytoestrogens have been remarkably increasing in the environment with the rapid growth in our industrial society and more closely affecting human and wildlife, the potential risks of EDCs in endocrine disruption and carcinogenesis are important issues and needed to be verified in detail.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
23
|
Yokota H, Eguchi S, Nakai M. Development of an in vitro binding assay for ecdysone receptor of mysid shrimp (Americamysis bahia). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:708-716. [PMID: 21996257 DOI: 10.1016/j.aquatox.2011.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Abstract
A global effort has been made to establish screening and testing methods that can identify the effects of endocrine-disrupting chemicals (EDCs) on invertebrates. The purpose of our study was to develop an in vitro receptor binding assay for ecdysone receptor (EcR) in mysid shrimp (Americamysis bahia). We cloned mysid shrimp EcR cDNA (2888 nucleotides) and ultraspiracle (USP) cDNA (2116 nucleotides), and determined that they encode predicted proteins of length 570 and 410 amino acids, respectively. The deduced amino acid sequences of these proteins shared 36-71% homology for EcR and 44-65% for USP with those of other arthropods. Phylogenetic analysis revealed that mysid shrimp EcR was classified into an independent cluster together with the EcRs of another mysid species, Neomysis integer and the cluster diverged early from those of the other taxonomic orders of crustaceans. We then expressed the ligand-binding domains (DEF regions) of mysid shrimp EcR (abEcRdef) and USP (abUSPdef) as glutathione S-transferase (GST)-fusion peptides in Escherichia coli. After purifying the fusion peptides by affinity chromatography and removing the GST labels, we subjected the peptides to a ligand-receptor binding assay. [(3)H]-ponasterone A did not bind to abEcRdef or abUSPdef peptides alone but bound strongly to the abEcRdef/abUSPdef mixture with dissociation constant (K(d))=2.14 nM. Competitive binding assays showed that the IC(50) values for ponasterone A, muristerone A, 20-hydroxyecdysone, and α-ecdysone were 1.2, 1.9, 35, and 1200 nM, respectively. In contrast, the IC(50) values for two dibenzoylhydrazine ligands (tebufenozide and chromafenozide) were >1.0 × 10(5)nM. The intra- and inter-assay coefficient of variation values for the IC(50) values of 20-hydroxyecdysone were 14.7% (n=5) and 16.1% (n=8), respectively. Our results indicate that the binding assay with a mixture of abEcRdef and abUSPdef can be used to screen compounds with a broad range of binding affinities for crustacean EcRs.
Collapse
Affiliation(s)
- Hirofumi Yokota
- Department of Biosphere Sciences, School of Human Sciences, Kobe College 4-1, Okadayama, Nishinomiya-shi, Hyogo 662-8505, Japan.
| | | | | |
Collapse
|
24
|
Zhou J, Zhu XS, Cai ZH. The impacts of bisphenol A (BPA) on abalone (Haliotis diversicolor supertexta) embryonic development. CHEMOSPHERE 2011; 82:443-450. [PMID: 20970156 DOI: 10.1016/j.chemosphere.2010.09.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/09/2010] [Accepted: 09/16/2010] [Indexed: 05/30/2023]
Abstract
The effects of bisphenol A (BPA) on abalone (Haliotis diversicolor supertexta) embryonic development were investigated by exposing the fertilized eggs to four different concentrations of BPA (0.05, 0.2, 2 and 10 μg mL(-1)). Toxicity endpoints including the embryo development parameters, the physiological features and the expression profile of several reference genes (prohormone convertase 1, PC1; cyclin B, CB; and cyclin-dependent kinase 1, CDK1) were assessed. The results showed that BPA could markedly reduce embryo hatchability, increase developmental malformation, and suppress the metamorphosis behavior of larvae. The possible toxicological mechanisms hidden behind of these effects (i.e. disturbing the embryogenesis) might result from three aspects: (1) BPA disturbance the cellular ionic homeostasis and osmoregulation of abalone embryos by changing the Na+-K+-ATPase and Ca2+-Mg2+-ATPase levels; (2) BPA induced oxidative damage of embryos by significantly altering the peroxidase (POD) activities and the malondialdehyde (MDA) production; and (3) the RT-PCR analysis further demonstrated that BPA perturbed the cellular endocrine regulation and cell cycle progression by down-regulating the PC1 gene, as well as over-expressing the CB and CDK1 genes. This is the first comprehensive study on the developmental toxicity of BPA to the marine abalone at morphological, physiological and molecular levels. The results in this study also indicated that the embryo tests can contribute to the ecological risk assessment of the endocrine disruptors in marine environment.
Collapse
Affiliation(s)
- Jin Zhou
- Life Sciences Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | | | | |
Collapse
|
25
|
Celander MC, Goldstone JV, Denslow ND, Iguchi T, Kille P, Meyerhoff RD, Smith BA, Hutchinson TH, Wheeler JR. Species extrapolation for the 21st century. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:52-63. [PMID: 20963850 DOI: 10.1002/etc.382] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Safety factors are used in ecological risk assessments to extrapolate from the toxic responses of laboratory test species to all species representing that group in the environment. More accurate extrapolation of species responses is important. Advances in understanding the mechanistic basis for toxicological responses and identifying molecular response pathways can provide a basis for extrapolation across species and, in part, an explanation for the variability in whole organism responses to toxicants. We highlight potential short- and medium-term development goals to meet our long-term aspiration of truly predictive in silico extrapolation across wildlife species' response to toxicants. A conceptual approach for considering cross-species extrapolation is presented. Critical information is required to establish evidence-based species extrapolation, including identification of critical molecular pathways and regulatory networks that are linked to the biological mode of action and species' homologies. A case study is presented that examines steroidogenesis inhibition in fish after exposure to fadrozole or prochloraz. Similar effects for each compound among fathead minnow, medaka, and zebrafish were attributed to similar inhibitor pharmacokinetic/pharmacodynamic distributions and sequences of cytochrome P45019A1/2 (CYP19A1/2). Rapid advances in homology modeling allow the prediction of interactions of chemicals with enzymes, for example, CYP19 aromatase, which would eventually allow a prediction of potential aromatase toxicity of new compounds across a range of species. Eventually, predictive models will be developed to extrapolate across species, although substantial research is still required. Knowledge gaps requiring research include defining differences in life histories (e.g., reproductive strategies), understanding tissue-specific gene expression, and defining the role of metabolism on toxic responses and how these collectively affect the power of interspecies extrapolation methods.
Collapse
Affiliation(s)
- Malin C Celander
- University of Gothenburg, Department of Zoology, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Khangarot BS, Das S. Effects of copper on the egg development and hatching of a freshwater pulmonate snail Lymnaea luteola L. JOURNAL OF HAZARDOUS MATERIALS 2010; 179:665-75. [PMID: 20381957 DOI: 10.1016/j.jhazmat.2010.03.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 03/10/2010] [Accepted: 03/13/2010] [Indexed: 05/14/2023]
Abstract
A freshwater invertebrate egg development and hatching toxicity test with an Indian freshwater pulmonate snail, Lymnaea luteola, comprising the following developmental endpoints was described: mortality, development, formation of eyes and foot structure, heart rate, duration of different larval stages, and hatching time. Developmental stages were morula, and at third, fifth, and eighth days; the trochophore, veliger, and hippo larvae, respectively. At the age of about 9th to 11th days after egg laying; more than 95% young snail hatched in control laboratory conditions. To evaluate effects on embryonic development, the pulmonate snail eggs of 24-h old were exposed to a series of nominal copper concentrations. The percentage survival of embryos treated in 10-32 microg l(-1) of Cu after 240 h of exposure drops sharply at veliger and hippo stages. All embryos died at 100-320 microg l(-1) of Cu within 168 h of exposure at trochophore and early veliger stages. The detected abnormalities were malformation of foot, eyes, thinness and incomplete formation of shell, growth retardation, and slow rotation of embryo within the egg capsule as compared to control embryos. Lethal and sublethal effects in terms of mortality and significant delay in hatching could be found in the 3.2, 5.6 and 10 microg l(-1) of Cu concentrations. This species is widely distributed in the Indian subcontinent freshwater reservoirs and more sensitive to Cu than other tested aquatic test organisms; therefore, could be used as a test model of Cu and possibly other pollutants for rapid risk assessment of environmental pollutants. The snail egg embryo bioassay is simple, rapid, highly sensitive, cost-effective, and easy to test under standardized laboratory conditions.
Collapse
Affiliation(s)
- B S Khangarot
- Ecotoxicology Laboratory, Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226 001, India.
| | | |
Collapse
|
27
|
Cheng Y, Chen HM, Yu WL, Cui Y, Zhou LL, Zhou X. 3D-QSAR study of the endocrine disrupting effect of perfluorooctane sulfonates (PFOS) and perfluorooctanoic acid (PFOA) on human estrogen, androgen and thyroid receptors. ACTA ACUST UNITED AC 2010. [DOI: 10.1135/cccc2009547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have become emerging persistent organic pollutants (POPs), but their health effects on humans remain controversial because of contradictory experimental and epidemiological studies. In this study, we used three-dimensional quantitative structure–activity relationship (3D-QSAR) method by applying Surflex-dock to study and compare the binding modes between PFOS, PFOA and eight other endocrine disrupting chemicals, and human estrogen receptor (hERα), human androgen receptor (hAR) and human thyroid receptor (hTRβ). Molecular docking and hydrogen bond studies indicated that PFOS and PFOA had high affinity potency toward hERα, hAR and hTRβ due to low free binding energies, while the highest value was obtained toward hTRβ. This means that PFOS and PFOA might have more disrupting effects on thyroid than on estrogen and androgen receptors. Hydrogen bonding interactions revealed that Met313 in hTRβ might act as the critical amino acid residue in the binding of ligand–receptor complex, which would provide an explanation for the interaction mechanisms. Our results provide an important reference and direction for the interaction mode and mechanism study between PFOS/PFOA and human endocrine systems.
Collapse
|
28
|
Larsbo M, Lapen DR, Topp E, Metcalfe C, Abbaspour KC, Fenner K. Simulation of pharmaceutical and personal care product transport to tile drains after biosolids application. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:1274-1285. [PMID: 19398526 DOI: 10.2134/jeq2008.0301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) carried in biosolids may reach surface waters or ground water when these materials are applied as fertilizer to agricultural land. During preferential flow conditions created by land application of liquid municipal biosolids (LMB), the residence time of solutes in the macropores may be too short for sorption equilibration. The physically based dual-permeability model MACRO is used in environmental risk assessments for pesticides and may have potential as an environmental risk assessment tool for PPCPs. The objective of this study was to evaluate MACRO and an updated version of MACRO that included non-equilibrium sorption in macropores using data from experiments conducted in eastern Ontario, Canada on the transport of three PPCPs (atenolol, carbamazepine, and triclosan), the nicotine metabolite cotinine, and the strongly sorbing dye rhodamine WT applied in LMB. Results showed that the MACRO model could not reproduce the measured rhodamine WT concentrations (Nash-Sutcliffe coefficient [NS] for the best simulation = -0.057) in drain discharge. The updated version resulted in better fits to measured data for PPCP (average NS = 0.97) and rhodamine WT (NS = 0.84) concentrations. However, it was not possible to simulate all compounds using the same set of hydraulic parameters, which indicates that the model does not fully account for all relevant processes. The results presented herein show that non-equilibrium sorption in macropores has a large impact on simulated solute transport for reactive compounds contained in LMB. This process should be considered in solute transport models that are used for environmental risk assessments for such compounds.
Collapse
Affiliation(s)
- Mats Larsbo
- Dep. of Soil and Environment, Swedish Univ. of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
29
|
Viswanath G, Halder S, Divya G, Majumder CB, Roy P. Detection of potential (anti)progestagenic endocrine disruptors using a recombinant human progesterone receptor binding and transactivation assay. Mol Cell Endocrinol 2008; 295:1-9. [PMID: 18801410 DOI: 10.1016/j.mce.2008.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 07/26/2008] [Accepted: 08/20/2008] [Indexed: 11/21/2022]
Abstract
The present work describes the identification of (anti)progestin endocrine disrupting chemicals (EDC) using a two step screening system. In the first step a competitive binding assay was developed using recombinant human progesterone receptor (hPR). The tested chemicals were of various classes like insecticides, their metabolites, industrial chemicals and waste water treatment plant (WWTP) effluents. All the tested chemicals demonstrated a high affinity binding for hPR. The average IC50 values of the test chemicals were within the range of 1-25microM. In the second step of screening, a mammalian cell-based hPR transactivation assay was developed where HEK 293 cells were co-transfected with hPR and luciferase reporter gene under the control of progesterone-response element. Stimulation of the cells with progesterone resulted in about 25-fold up regulation of luciferase activity, with EC50 value of 4nM. Potent anti-progesterone, RU486, significantly inhibited progesterone-induced transactivation and non-progestagenic steroids failed to transactivate hPR till 1microM concentrations. The chemicals showing high binding affinities in competitive binding assays were then tested in transactivation assay and all of them were found to be anti-progestative except WWTP effluents. Transactivation assays using extracted water samples from five different WWTP effluents showed that it was rich in progestative compounds. The levels of induction caused by these effluents were in the range of 15-25% of induction by progesterone and they represented about 6ng/l equivalent progesterone activities. In conclusion, we demonstrated that this two step assay provides an efficient screening tool for the detection of (anti)progestative EDC in various samples.
Collapse
Affiliation(s)
- Gunda Viswanath
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | | | | | | | | |
Collapse
|
30
|
Heckmann LH, Sibly RM, Timmermans MJ, Callaghan A. Outlining eicosanoid biosynthesis in the crustacean Daphnia. Front Zool 2008; 5:11. [PMID: 18625039 PMCID: PMC2483973 DOI: 10.1186/1742-9994-5-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/14/2008] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Eicosanoids are biologically active, oxygenated metabolites of three C20 polyunsaturated fatty acids. They act as signalling molecules within the autocrine or paracrine system in both vertebrates and invertebrates mainly functioning as important mediators in reproduction, the immune system and ion transport. The biosynthesis of eicosanoids has been intensively studied in mammals and it is known that they are synthesised from the fatty acid, arachidonic acid, through either the cyclooxygenase (COX) pathway; the lipoxygenase (LOX) pathway; or the cytochrome P450 epoxygenase pathway. However, little is still known about the synthesis and structure of the pathway in invertebrates. RESULTS Here, we show transcriptomic evidence from Daphnia magna (Crustacea: Branchiopoda) together with a bioinformatic analysis of the D. pulex genome providing insight on the role of eicosanoids in these crustaceans as well as outlining a putative pathway of eicosanoid biosynthesis. Daphnia appear only to have one copy of the gene encoding the key enzyme COX, and phylogenetic analysis reveals that the predicted protein sequence of Daphnia COX clusters with other invertebrates. There is no current evidence of an epoxygenase pathway in Daphnia; however, LOX products are most certainly synthesised in daphnids. CONCLUSION We have outlined the structure of eicosanoid biosynthesis in Daphnia, a key genus in freshwater ecosystems. Improved knowledge of the function and synthesis of eicosanoids in Daphnia and other invertebrates could have important implications for several areas within ecology. This provisional overview of daphnid eicosanoid biosynthesis provides a guide on where to focus future research activities in this area.
Collapse
Affiliation(s)
- Lars-Henrik Heckmann
- University of Reading, School of Biological Sciences, Environmental Biology, PO Box 68, Reading, RG6 6BX, UK.
| | | | | | | |
Collapse
|
31
|
Lee KW, Raisuddin S, Hwang DS, Park HG, Dahms HU, Ahn IY, Lee JS. Two-generation toxicity study on the copepod model species Tigriopus japonicus. CHEMOSPHERE 2008; 72:1359-1365. [PMID: 18511101 DOI: 10.1016/j.chemosphere.2008.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/21/2008] [Accepted: 04/10/2008] [Indexed: 05/26/2023]
Abstract
Previous studies on the intertidal copepod Tigriopus japonicus have demonstrated that it is a suitable model species for the assessment of acute toxicities of marine pollutants. In order to standardize T. japonicus for use in environmental risk assessment involving whole life cycle exposure, we tested nine pollutants for their effects on growth and reproduction during a two-generation life cycle exposure test. Nauplii (F 0) were exposed to a range of concentrations of each chemical in a static renewal culture system. Broods of the second generation (F1) were subsequently exposed to the same concentrations for one full life cycle. Of the seven traits (nauplius phase, development time, survival, sex ratio, number of clutch, nauplii per clutch and fecundity), only the length of the nauplius phase and development time showed a greater sensitivity to chemical exposure. Between the two sensitive traits, the period of the nauplius phase was more sensitive than cohort generation time. Biocides significantly increased the maturation period of nauplii as well as copepodids in F 0 generation. In this study, it was demonstrated that T. japonicus could also be used in reproduction and life cycle tests and it provides an opportunity for testing the chronic and subchronic toxic effects of marine pollutants. Further validation and harmonization in a multi-centric study involving other laboratories of the region will strengthen its use as a supplement to existing model species.
Collapse
Affiliation(s)
- Kyun-Woo Lee
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Pounds N, Maclean S, Webley M, Pascoe D, Hutchinson T. Acute and chronic effects of ibuprofen in the mollusc Planorbis carinatus (Gastropoda: Planorbidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 70:47-52. [PMID: 18207238 DOI: 10.1016/j.ecoenv.2007.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/03/2007] [Accepted: 07/12/2007] [Indexed: 05/16/2023]
Abstract
Laboratory populations of freshwater Keeled rams horn snails (Planorbis carinatus Muller, 1774) were exposed as adults to measured concentrations of ibuprofen free base (CAS number 15687-27-1) for up to 21 d using methanol (0.1 mL/L) as a carrier solvent. Under flow-through conditions, the 48 and 72 h LC50 values were both 17.1mg/L (95% confidence intervals 5.9-72.3mg/L), while 21 d LOEC and NOEC values based on survival were >5.36 and 5.36 mg/L, respectively. Reproduction (in terms of hatching success) 21d LOEC and NOEC values were 5.36 and 2.43 mg/L, respectively. Growth (wet weight) was the most sensitive endpoint measured at 21 d, with LOEC and NOEC values of 2.43 and 1.02 mg/L, respectively. We found P. carinatus to be amenable to laboratory culture and this preliminary study suggests that this species may have further potential as a useful molluscan model in ecotoxicology.
Collapse
Affiliation(s)
- Nadine Pounds
- AstraZeneca Global Safety, Health and Environment, Brixham Environmental Laboratory, Devon TQ5 8BA, UK
| | | | | | | | | |
Collapse
|
33
|
Endocrine regulation of the reproduction in crustaceans: Identification of potential targets for toxicants and environmental contaminants. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0027-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Hense BA, Jaser W, Welzl G, Pfister G, Wöhler-Moorhoff GF, Schramm KW. Impact of 17alpha-ethinylestradiol on the plankton in freshwater microcosms--II: responses of phytoplankton and the interrelation within the ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 69:453-65. [PMID: 17391760 DOI: 10.1016/j.ecoenv.2007.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 01/23/2007] [Accepted: 01/26/2007] [Indexed: 05/14/2023]
Abstract
Effects of 17alpha-ethinylestradiol (EE) on phytoplankton were investigated in a lentic freshwater microcosm study. Treatment with EE caused a shift in the species composition as shown by a principle response curve. Whereas densities of Cyanophyceae, Dinophyceae, and Chrysophyceae increased, those of Conjugatophyceae and Cryptophyceae decreased. Furthermore, relative density of Chlorophyceae declined after EE treatment. The changes showed taxa-specific time dependencies. Some species, especially the cyanobacterium Cyanobium parvum, bloomed after the treatment. EE treatment promoted total abundance and biomass of phytoplankton. Although the number of species per microcosm increased, the diversity indices (Shannon-Wiener, Simpson) tended to lower values. The ecosystem only partly recovered during the investigated post-treatment period of 6 weeks. Probably at least the main effects were caused indirectly, i.e. via decrease of grazing zooplankton (crustaceans). The relation of EE to variation of phytoplankton composition was closer than those of other abiotic factors, indicating the relevance of its impact. EE also probably affected nutrients of the phytoplankton.
Collapse
Affiliation(s)
- Burkhard A Hense
- GSF-National Research Center for Environment and Health, Institute of Biomathematics and Biometry, Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Summary of Workshop on Environmental Assessment of Human Medicines: Development and Use of Aquatic Toxicity Data. ACTA ACUST UNITED AC 2007. [DOI: 10.1177/009286150704100213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Clubbs RL, Brooks BW. Daphnia magna responses to a vertebrate estrogen receptor agonist and an antagonist: a multigenerational study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 67:385-98. [PMID: 17368538 DOI: 10.1016/j.ecoenv.2007.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 01/15/2007] [Accepted: 01/20/2007] [Indexed: 05/14/2023]
Abstract
Whereas ecological risk assessments rely on standardized aquatic toxicity tests to assess ecological hazards, these techniques have limited utility for endocrine-active compounds, including select pharmaceuticals. Due to structural similarity between of vertebrate estrogens and ecdysone, previous studies suggest that endocrine-active pharmaceuticals may interfere with invertebrate endocrine systems, while other investigations do not support these suggestions. We assessed effects of the pharmaceuticals 17alpha-ethinylestradiol and faslodex, model therapeutics designed to interact with vertebrate estrogen receptors, on endocrine biomarkers and transgenerational life-history parameters of a model invertebrate, Daphnia magna. Identical studies were performed with 20-hydroxyecdysone and testosterone, which served as positive controls for ecdysteroid receptor agonism and antagonism, respectively. Results from this study at biochemical, individual and population levels suggest that a mammalian estrogen receptor agonist and antagonist did not act through the ecdysone receptor in D. magna. Acute-to-chronic ratios based on various chronic responses ranged from 2.59 to 5.18 for 17alpha-ethinylestradiol and 1.29-12.9 for faslodex. Toxicity exerted by these therapeutics on D. magna likely resulted from non-endocrine-mediated responses. Mechanism-specific biomarkers, multigenerational designs and population growth models may be useful to assess organismal and population level responses to low-level exposures, which may serve to reduce uncertainty in future hazard assessments of invertebrate responses to endocrine-active pharmaceuticals in the environment.
Collapse
Affiliation(s)
- Rebekah L Clubbs
- Department of Environmental Studies, One Bear Place #97266, Baylor University, Waco, TX 76798, USA
| | | |
Collapse
|
37
|
Campiche S, L'Ambert G, Tarradellas J, Becker-van Slooten K. Multigeneration effects of insect growth regulators on the springtail Folsomia candida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 67:180-9. [PMID: 17350685 DOI: 10.1016/j.ecoenv.2006.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 05/14/2023]
Abstract
Multigeneration tests are very useful for the assessment of long term toxicity of pollutants such as endocrine disruptor compounds. In this study, multigeneration reproduction tests adapted from the ISO standard 11267 were conducted with the Collembola Folsomia candida. Springtails were exposed to artificial soil contaminated with four insect growth regulators (methoprene, fenoxycarb, teflubenzuron, and precocene II) according to two different experimental set-ups. In the first set-up, the parental generation (F(0)) of Collembola was exposed to a pollutant for 28 days. Juveniles from the F(1) generation were transferred to uncontaminated soil for another 28-day period to generate the F(2) generation. In the second set-up, the F(0) generation was exposed to a pollutant for 10 days before being transferred to uncontaminated soil to reproduce. After 18-28 days, juveniles from the F(1) were transferred to clean soil to generate the F(2) generation. An effect on the number of hatched juveniles of the F(2) generation was observed for methoprene after exposure of the F(0) for 28 days and hatching of F(1) in contaminated soil. For methoprene and teflubenzuron, significant effects were even observed on the F(2) generation with the second experimental set-up, when only the F(0) generation was exposed for 10 days. This shows that the impact of these substances is transgenerational, which can have important consequences for the population of these or other organisms. No effect on the F(2) generation was observed with fenoxycarb and precocene II with the 10-day exposure experiment. Our results show that the developed experimental procedures are appropriate to assess the long term effects of endocrine disrupting compounds on the reproduction of the non-target species F. candida. Another important finding is that two substances with the same predicted mode of action (i.e., the two juvenile hormone analogues fenoxycarb and methoprene) do not necessarily affect the same endpoints in F. candida.
Collapse
Affiliation(s)
- Sophie Campiche
- Laboratory of Environmental Chemistry and Ecotoxicology (CECOTOX), Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC-ISTE, Station 2, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
38
|
Rodríguez EM, Medesani DA, Fingerman M. Endocrine disruption in crustaceans due to pollutants: A review. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:661-71. [PMID: 16753320 DOI: 10.1016/j.cbpa.2006.04.030] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 04/28/2006] [Accepted: 04/29/2006] [Indexed: 11/26/2022]
Abstract
The main endocrine-regulated processes of crustaceans have been reviewed in relation to the effects of endocrine-disrupting compounds (EDCs). Molting has been shown to be inhibited by several organic pollutants, such as xenoestrogens and related compounds, as well as by some pesticides. Most of these disrupters are thought to interfere with ecdysone at target tissues, although only for a few has this action been demonstrated in vitro. The heavy metal cadmium appears to inhibit some ecdysone secretion. Juvenoid compounds have also been shown to inhibit molting, likely by interfering with the stimulatory effect of methyl farnesoate. A molt-promoting effect of emamectin benzoate, a pesticide, has also been reported. As for reproduction, a variety of organic compounds, including xenoestrogens, juvenoids and ecdysteroids, has produced abnormal development of male and female secondary sexual characters, as well as alteration of the sex ratio. Cadmium and copper have been shown to interfere with hormones that stimulate reproduction, such as methyl farnesoate, as well as with secretion of the gonad inhibiting hormone, therefore affecting, for example, ovarian growth. Several heavy metals were able to produce hyperglycemia in crustaceans during short times of exposure; while a hypoglycemic response was noted after longer exposures, due to inhibition of secretion of the crustacean hyperglycemic hormone. The ecological relevance of EDCs on crustaceans is discussed, mainly in relation to the identification of useful biomarkers and sentinel species. New experimental approaches are also proposed.
Collapse
Affiliation(s)
- Enrique M Rodríguez
- Department of Biodiversity and Experimental Biology, FCEyN, University of Buenos Aires, Argentina.
| | | | | |
Collapse
|
39
|
Abstract
Steroid molecules are present in all invertebrates, and some of them have established hormonal roles: this is the case for ecdysteroids in arthropods and, to a lesser extent, for vertebrate-type steroids in molluscs. Steroids are not only hormones, they may also fulfill many other functions in chemical communication, chemical defense or even digestive physiology. The increasing occurrence of endocrine disruption problems caused by environmental pollutants, which interfere in particular with reproductive physiology of vertebrates but also of invertebrates has made necessary to better understand the endocrine physiology of the latter and the role of steroids in these processes. So many attempts are being made to better understand the endocrine roles of steroids in arthropods and molluscs, and to establish whether they also fulfill similar functions in other invertebrate phyla. At the moment, both the precise identification of these steroids, the determination of their origin (endogenous versus exogenous) and of their mechanism of action are under active investigation. This research takes profit of the development of genome sequencing programs on many invertebrate species, which allow the identification of receptors and/or biosynthetic enzymes, when related to their vertebrate counterparts, but the story is not so simple, as will be exemplified by estrogen receptors of molluscs.
Collapse
Affiliation(s)
- René Lafont
- Biochimie Structurale et Fonctionnelle des Protéines, CNRS FRE 2852, Université Pierre et Marie Curie, Case Courrier no. 29, 75252 Paris Cedex 05, France.
| | | |
Collapse
|
40
|
Gourmelon A, Ahtiainen J. Developing Test Guidelines on invertebrate development and reproduction for the assessment of chemicals, including potential endocrine active substances- the OECD perspective. ECOTOXICOLOGY (LONDON, ENGLAND) 2007; 16:161-7. [PMID: 17219091 DOI: 10.1007/s10646-006-0105-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) Test Guidelines Programme is involved in the international harmonization and validation of test methods to evaluate effects of chemicals, including potential endocrine active substances. To meet their existing and foreseen regulatory needs in this area, OECD member countries have encouraged the development of test methods and their emergence at the OECD level. Validation activities are underway in countries and industry to ascertain the relevance and reliability of these tests to enable future regulatory acceptance. This includes work on development and (sexual) reproduction of aquatic invertebrates. What is the importance of mechanistic information in regulating chemicals, and how to address the issue of possible endocrine disruption in invertebrates while integrating these tests in a regulatory scheme are the current questions faced by the OECD countries.
Collapse
Affiliation(s)
- Anne Gourmelon
- Organization for Economic Co-operation and Development (OECD), 2 rue André-Pascal, F-75775 Paris Cedex 16, France.
| | | |
Collapse
|
41
|
Hutchinson TH. Small is useful in endocrine disrupter assessment--four key recommendations for aquatic invertebrate research. ECOTOXICOLOGY (LONDON, ENGLAND) 2007; 16:231-8. [PMID: 17219089 DOI: 10.1007/s10646-006-0107-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
As we enter the 21st "biocentury", with issues such as biodiversity and biotechnology growing in public profile, it is important to reflect on the immense ecological, medical and economic importance of invertebrates. Efforts to understand the diverse biology of invertebrates come from many directions, including Nobel Prize winning developmental biology, research to control insects that threaten human health and food supplies, aquaculture opportunities and also within ecotoxicology. In the latter context, this special journal volume highlights the importance of addressing endocrine disruption in aquatic invertebrates, from molecular and cellular biomarkers to population-relevant adverse effects. The contributors to this special volume have provided an excellent assessment of both the fundamental endocrinology and applied ecotoxicology of many aquatic invertebrate groups. On the premise that reproductive success is ultimately the vital population parameter, this chapter gives a personal view of key gaps in knowledge in invertebrate reproductive and developmental endocrinology and ecotoxicology. Based on current knowledge, there are four key issues that need to be prioritised within aquatic ecotoxicology: (1) a wider assessment of the reproductive status of invertebrates in both freshwater and coastal ecosystems; (2) prioritisation of laboratory studies in OECD and other regulatory test organisms, including basic endocrinology and ADME (absorption, distribution, metabolism and excretion) research; (3) development and validation of mechanistic biomarkers that can be used as "signposts" to help prioritise species and chronic test endpoint selection, and help link data from laboratory and field studies; and (4) develop a comparative invertebrate toxicology database utilising the prioritised reference chemicals from the EDIETA workshop, encompassing the diverse modes-of-action pertinent to endocrine disrupter testing in both aquatic arthropod and non-arthropod invertebrates.
Collapse
Affiliation(s)
- Thomas H Hutchinson
- AstraZeneca Global Safety, Health and Environment, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, Devon TQ5 8BA, UK.
| |
Collapse
|
42
|
Ghekiere A, Fockedey N, Verslycke T, Vincx M, Janssen CR. Marsupial development in the mysid Neomysis integer (Crustacea: Mysidacea) to evaluate the effects of endocrine-disrupting chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 66:9-15. [PMID: 16624406 DOI: 10.1016/j.ecoenv.2006.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/15/2006] [Accepted: 02/18/2006] [Indexed: 05/08/2023]
Abstract
Embryonic development is a crucial time window within an organism's life history. Relatively few studies have focused on understanding the potential effects of endocrine disruptors on embryogenesis in invertebrates. Mysids (Crustacea: Mysidacea) have been used extensively in regulatory toxicity testing and they are the only invertebrate model currently included in the U.S. EPA's Endocrine Disruptor Screening and Testing Program. We developed a method for studying mysid embryonic development in multiwell plates until the release of free-swimming juveniles. This method was used to evaluate the potential effects of the insecticide methoprene, a juvenile hormone analog, on mysid embryogenesis. Embryos were exposed to nominal concentrations 0.01, 1, and 100 microg methoprene/L. Average percentage survival, hatching success, total development time and duration of each developmental stage were analyzed. Embryos exposed to 1 and 100 microg methoprene/L had a significantly lower hatching success and lower survival rates. Our study indicates that in vitro embryogenesis can be used as a valuable tool to study the impact of endocrine disruptors in mysids.
Collapse
Affiliation(s)
- A Ghekiere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
43
|
Roepke TA, Chang ES, Cherr GN. Maternal exposure to estradiol and endocrine disrupting compounds alters the sensitivity of sea urchin embryos and the expression of an orphan steroid receptor. ACTA ACUST UNITED AC 2006; 305:830-41. [PMID: 16823834 DOI: 10.1002/jez.a.320] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endocrine disrupting compounds (EDCs) are known to affect reproduction and development in marine invertebrates. In previous work, we have shown that developing sea urchin embryos were sensitive to estradiol and estrogenic EDCs at environmentally relevant concentrations in a tamoxifen-sensitive manner (Roepke et al. 2005. Aquat Toxicol 71:155-173). In this study, we report the effects of maternal exposure to EDCs on embryo sensitivity and regulation of an orphan steroid receptor in sea urchin eggs. Maternal exposures were conducted by injecting female Strongylocentrotus purpuratus sea urchins initiating oogenesis with two concentrations of estradiol, octylphenol, tributyltin and o, p-DDD for 8 weeks with an induced spawning before and after the injection cycle. Developing embryos were less sensitive to estradiol following maternal exposure to estradiol, octylphenol and DDD. The steroidogenesis inhibitor, spironolactone, and the aromatase inhibitor, formestane, affected normal sea urchin development with EC50 values of 18 and 2 microM, respectively. Binding of estradiol was demonstrated in homogenates supernatants of sea urchin embryos by filtration centrifugation and column chromatography, but saturation was not reached until 4-6 hr and was highly variable. Analysis of eggs from pre- and post-injection spawns using real-time Q-PCR for the mRNA of an orphan steroid receptor, SpSHR2, shows that receptor mRNA increased in eggs with estradiol, octylphenol and tributyltin but decreased with DDD. RIA showed that estradiol may be present during gastrulation. In summary, maternal exposure to estradiol and EDCs alters embryo sensitivity and regulates the expression of an orphan steroid receptor in the egg.
Collapse
Affiliation(s)
- Troy A Roepke
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA
| | | | | |
Collapse
|
44
|
Schirling M, Bohlen A, Triebskorn R, Köhler HR. An invertebrate embryo test with the apple snail Marisa cornuarietis to assess effects of potential developmental and endocrine disruptors. CHEMOSPHERE 2006; 64:1730-8. [PMID: 16481024 DOI: 10.1016/j.chemosphere.2006.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 12/21/2005] [Accepted: 01/02/2006] [Indexed: 05/06/2023]
Abstract
A novel invertebrate embryo test with the apple snail, Marisa cornuarietis, comprising a test protocol for the following developmental endpoints is described: formation of eyes and tentacles, heart rate, hatching, weight after hatching. To evaluate effects on embryonic development, the snails were treated in a first step with 250 or 500 microg/l cadmium. Sublethal effects in terms of a significant delay in hatching could be found in the 250 microg/l treated animals, whereas 500 microg/l Cd were lethal for the snail embryos. To test endocrine disrupting chemicals with this protocol, experiments with bisphenol A (50 microg/l, 100 microg/l) and 17alpha-ethinylestradiol (10 microg/l) were performed. In both treatments an increase of weight after hatching was observed as well as a significant decline in the heart rate of the embryos. As shown here, the sensitivity of M. cornuarietis embryos test is equal or even higher than other test species like zebrafish embryos and, therefore, this test can be regarded as an alternative or supplement for ecotoxicological studies.
Collapse
Affiliation(s)
- M Schirling
- Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Strasse 20, D-72072 Tübingen, Germany.
| | | | | | | |
Collapse
|
45
|
Gordon DA, Toth GP, Graham DW, Lazorchak JM, Reddy TV, Knapp CW, deNoyelles F, Campbell S, Lattier DL. Effects of eutrophication on vitellogenin gene expression in male fathead minnows (Pimephales promelas) exposed to 17alpha-ethynylestradiol in field mesocosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 142:559-66. [PMID: 16413089 DOI: 10.1016/j.envpol.2005.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/30/2005] [Accepted: 10/13/2005] [Indexed: 05/06/2023]
Abstract
This study evaluated the effect of aquatic secondary nutrient supply levels (nitrogen and phosphorus) on the subcellular response of adult male fathead minnows (Pimephales promelas) exposed to a single nominal concentration of 17alpha-ethynylestradiol (EE2), a potent synthetic estrogen, under quasi-natural field conditions. Outdoor mesocosms were maintained under low, medium, and high nutrient supply conditions as categorized by total phosphorus (TP) level (nominal 0.012, 0.025, and 0.045 mg TP/L, respectively), and treated with EE2 with and without a carrier solvent. Using reverse transcription-polymerase chain reaction methods, vitellogenin gene (Vg) expression was determined in the fish collected at 0 h, 8 h, 24 h, 4 d, 7 d, and 14 d post-exposure. Induction of Vg was detected as early as 8h post-exposure, with and without the carrier solvent, and persisted through Day 14. Results showed Vg to be significantly greater at low nutrient levels (p<0.05), suggesting that EE2 bioavailability to the fish was likely greater under less-turbid water conditions.
Collapse
Affiliation(s)
- Denise A Gordon
- Molecular Indicators Research Branch, Ecological Exposure Research Division, National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lissemore L, Hao C, Yang P, Sibley PK, Mabury S, Solomon KR. An exposure assessment for selected pharmaceuticals within a watershed in Southern Ontario. CHEMOSPHERE 2006; 64:717-29. [PMID: 16403551 DOI: 10.1016/j.chemosphere.2005.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 09/22/2005] [Accepted: 11/04/2005] [Indexed: 05/06/2023]
Abstract
Recent studies from a number of countries have shown that measurable concentrations of both human and veterinary pharmaceuticals can be found in a variety of environmental matrices such as surface and ground water, soils, and sediments. Few data are available that characterize the sources, exposure and effects of pharmaceuticals in the environment and there is clearly a need to define these parameters within a Canadian context. We present in this paper the first report in southern Ontario, Canada on the geographic and temporal distribution of pharmaceuticals detected within seven tributaries receiving primarily agricultural inputs in a typical watershed. Of the 28 pharmaceuticals surveyed, 14 were detected in the streams sampled (n=125). Temporal trends in concentration for five frequently detected pharmaceuticals show pulses occurring between May and November of 2003 at similar but varying times over the seasons, depending on the pharmaceuticals, flow rate, and precipitation. Fluctuations in concentration of ions indicative of agricultural run off, such as nitrate and phosphate, were not found to be useful predictors of changes in pharmaceutical concentration (P>0.4), however a significant correlation between dissolved organic carbon and monensin and carbamazepine concentrations were observed (P<0.013). Exposure profiles illustrating concentration distributions for three of the more prevalent pharmaceuticals detected, including lincomycin, monensin and carbamazepine, showed a log normal distribution, useful for calculating centiles of environmental concentrations. While distributions of estimated total potency of pharmaceuticals detected in the surface waters suggested small risks of environmental effects of mixtures to daphnia, green algae, Lemna gibba, and fish, the significance of non-target effects and impacts due to chronic low level exposures to chemical mixtures remains unclear.
Collapse
Affiliation(s)
- Linda Lissemore
- Department of Environmental Biology, Bovey Building, Gordon Street, University of Guelph, Guelph, Ont., Canada N1G 2W1.
| | | | | | | | | | | |
Collapse
|
47
|
Huang DJ, Chen HC, Wu JP, Wang SY. Reproduction obstacles for the female green neon shrimp (Neocaridina denticulata) after exposure to chlordane and lindane. CHEMOSPHERE 2006; 64:11-6. [PMID: 16574190 DOI: 10.1016/j.chemosphere.2005.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 11/29/2005] [Accepted: 12/10/2005] [Indexed: 05/08/2023]
Abstract
The purpose of this study was to investigate the effects of chlordane and lindane on reproduction obstacles and endocrine disruption in female green neon shrimp (Neocaridina denticulata). Individuals of N. denticulata, a common inhabitant of freshwater systems in Taiwan, was exposed to different levels of chlordane (1 and 10 ngl(-1)) and lindane (0.1 and 1 microgl(-1)). The reproductive ability and reproductive hormone levels were observed after exposure. According to our findings, an increase in estrogen, induction of a vitellogenin-like protein, and changes in reproductive performance were observed in both chlordane- and lindane-treated shrimp. Thus, it was concluded that chlordane and lindane may cause some reproduction obstacles and disruption of endocrine functions in N. denticulata.
Collapse
Affiliation(s)
- Da-Ji Huang
- Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC.
| | | | | | | |
Collapse
|
48
|
Champeau O, Narbonne JF. Effects of tributyltin and 17β-estradiol on immune and lysosomal systems of the Asian clam Corbicula fluminea (M.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 21:323-330. [PMID: 21783675 DOI: 10.1016/j.etap.2005.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 10/19/2005] [Indexed: 05/31/2023]
Abstract
Freshwater clams Corbicula fluminea were experimentally exposed to a range of tributyltin (TBT) (50, 250 and 500ng Sn/L) and 17β-estradiol (20, 200, 2000ng/L) for 30 days. After 15 and 30 days, phagocytosis activity of haemocytes and lysosomal structural changes in the digestive cells were assayed. 17β-Estradiol exerted a higher inhibition on phagocytosis than tributyltin. This would suggest the existence of estrogen receptors, influencing the immune function. The stereological parameters measured for lysosomal structural changes in animals exposed to tributyltin varied as observed in other studies. Tributyltin is then depurated as other contaminants via digestive cell lysosomal compartment. This experiment emphasized a possible approach on the influence of endocrine disrupting compounds on a hermaphroditic species for environmental surveys.
Collapse
Affiliation(s)
- Olivier Champeau
- LPTC Toxicologie Biochimique, Université de Bordeaux 1, UMR CNRS 5472, avenue des facultés, 33405 Talence cedex, France
| | | |
Collapse
|
49
|
Ladewig V, Jungmann D, Köhler HR, Schirling M, Triebskorn R, Nagel R. Population structure and dynamics of Gammarus fossarum (Amphipoda) upstream and downstream from effluents of sewage treatment plants. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:370-83. [PMID: 16222458 DOI: 10.1007/s00244-005-7039-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Accepted: 05/14/2005] [Indexed: 05/04/2023]
Abstract
Two streams in Germany (Körsch and Lockwitzbach), each with two sampling sites above and below a sewage treatment plant (STP) discharging effluent, were investigated. Sampling sites were characterized, and exposure monitoring for chemicals with known or assumed endocrine disrupting potential was carried out. Both the population structure and the population dynamics of Gammarus fossarum were examined. The physicochemical parameters measured at the sampling sites of the Lockwitzbach and Körsch streams were found not to reach levels having an acute toxic impact on the development of gammarids. The calculated estrogenic potential in the stream water was 22- to 35-fold higher at the downstream site of the Körsch compared with the other sampling sites, mainly because of the concentrations of 17alpha-ethinylestradiol on two sampling dates. At both streams, an influence of the respective STP effluent on the sex ratio of G. fossarum was not observed. Moreover, intersexuality was not induced by these effluents. Differences in the structure and dynamics of G. fossarum populations were more pronounced at the Körsch than at the Lockwitzbach. At the downstream sampling site at the Körsch, gammarids reached their highest abundances. Particularly at the downstream sampling site of the Körsch, the proportion of breeding female gammarids and the proportion of juvenile gammarids in the smallest body length class were decreased compared with upstream. Adult gammarids were larger from the Lockwitzbach downstream site, but they were smaller from the Körsch downstream site compared with the respective upstream site. At the Körsch, the earlier onset of the autumnal reproductive resting period could be caused by the influence of the STP effluent.
Collapse
Affiliation(s)
- V Ladewig
- Institute of Hydrobiology, Dresden University of Technology, Mommsenstrasse 13, D-01062, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Breitholtz M, Rudén C, Hansson SO, Bengtsson BE. Ten challenges for improved ecotoxicological testing in environmental risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2006; 63:324-35. [PMID: 16406525 DOI: 10.1016/j.ecoenv.2005.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 05/06/2023]
Abstract
New regulations, in particular the new European chemicals legislation (REACH), will increase the demands on environmental risk assessment (ERA). The requirements on efficient ecotoxicological testing systems are summarized, and 10 major issues for the improvement of ERA practices are discussed, namely: (1) the choice of representative test species, (2) the development of test systems that are relevant for ecosystems in different parts of the world, (3) the inclusion of sensitive life stages in test systems, (4) the inclusion of endpoints on genetic variation in populations, (5) using mechanistic understanding of toxic effects to develop more informative and efficient test systems, (6) studying disruption in invertebrate endocrine mechanisms, that may differ radically from those we know from vertebrates, (7) developing standardized methodologies for testing of poorly water-soluble substances, (8) taking ethical considerations into account, in particular by reducing the use of vertebrates in ecotoxicological tests, (9) using a systematic (statistical) approach in combination with mechanistic knowledge to combine tests efficiently into testing systems, and (10) developing ERA so that it provides the information needed for precautionary decision-making.
Collapse
Affiliation(s)
- Magnus Breitholtz
- Department of Applied Environmental Science (ITMm), Stockholm University, Frescativägen 54, S-106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|