1
|
Sotoudehbagha P, Flores AC, Hartmann T, Pattilachan T, Razavi M. Bone-targeted ultrasound-responsive nanobubbles for siRNA delivery to treat osteoporosis in mice. BIOMATERIALS ADVANCES 2025; 166:214078. [PMID: 39447239 DOI: 10.1016/j.bioadv.2024.214078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
This project aimed to study the efficacy of a bone-targeted ultrasound-responsive nanobubble (NB) platform to deliver gene-silencing cathepsin K (CTSK) siRNA into the bone for osteoporosis treatment using in vitro and in vivo studies. To this end, characterization of CTSK siRNA loaded NB functionalized with alendronate (NB-CTSK siRNA-AL) was performed using transmission electron microscopy (TEM) imaging, and a release profile was obtained through fluorescent spectroscopy. In vitro studies were conducted by culturing NB-CTSK siRNA-AL with osteoclasts to evaluate siRNA uptake, CTSK expression, and the expression of tartrate-resistant acid phosphatase (TRAP). A control group and an NB-CTSK siRNA-AL treated group of ovariectomized (OVX) mice (n = 4) were tested. The OVX group that received treatment underwent weekly sessions for 4 weeks, during which they were exposed to low-intensity pulsed ultrasound (LIPUS) stimulation following administration of NB-CTSK siRNA-AL, prior to being sacrificed. Both groups underwent a series of tests to evaluate the bone targeting, safety, and efficacy of the nanoplatform. These tests included biodistribution studies conducted at 4 h and 24 h post-injection, a 3-point bending test of the femurs, nano-computed tomography analysis, as well as Hematoxylin & Eosin histological staining, Masson's Trichrome staining, and CTSK staining. The biodistribution showed the accumulation of NB-CTSK siRNA-AL in the bone and liver. Results showed that the OVX mice treated with NB-CTSK siRNA-AL had increased distal cortical bone thickness (174.4 ± 5.28 μm vs. 144.3 ± 10.66 μm, p > 0.05)) and bone volume fraction (16.5 ± 3.96 % vs. 6.55 ± 0.13 % (p > 0.05)). A reduced collagen degradation and downregulated CTSK expression were evident in the staining procedures. No adverse effects were recorded within histological assessments on the liver, kidney, and heart post-treatment. Morphology was shown to be normal and healthy within muscle cells post-LIPUS stimulation of NB-CTSK siRNA-AL. From these results, it can be concluded that an ultrasound-mediated NB-CTSK siRNA-AL can serve as a reliable, safe CTSK siRNA carrier to bone-specific targets for in vivo osteoporosis treatment.
Collapse
Affiliation(s)
- Pedram Sotoudehbagha
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Abel Córdova Flores
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Thomas Hartmann
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Tara Pattilachan
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL 32816, USA; Biomedical Engineering Program, Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
2
|
Beena M, Ramesh P, Palaniappan A. Poly(amidoamine)-based dendrimers for biomedical applications. SYNTHETIC POLYMERS IN DRUG AND BIOTHERAPEUTICS DELIVERY 2025:105-132. [DOI: 10.1016/b978-0-323-95233-0.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Kim D, Kim S, Na DH. Dendrimer nanoplatforms for oral drug delivery applications. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2024. [DOI: 10.1007/s40005-024-00716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/13/2024] [Indexed: 01/06/2025]
|
4
|
Shreya AB, Pandey A, Kulkarni S, Bhaskar KV, Parekh HS, Mutalik S. Exploring peptide dendrimers for intestinal lymphatic targeting: formulation and evaluation of peptide dendrimer conjugated liposomes for enhancing the oral bioavailability of Asenapine maleate. Sci Rep 2024; 14:28225. [PMID: 39548220 PMCID: PMC11568265 DOI: 10.1038/s41598-024-79372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Asenapine maleate (ASPM) is a second-generation atypical antipsychotic that is approved for treating acute schizophrenia and bipolar disorder in adults by the US FDA. The major downside of ASPM therapy is rapid, extensive first-pass hepatic metabolism following its oral administration with a very low oral bioavailability of < 2%. In this work, we developed ASPM nanoformulations conjugated with ligands such as arginine-glycine-aspartic acid (RGD) and peptide dendrimers (PDs) with the intention of improving the oral bioavailability of the drug by targeting it to the intestinal lymphatic system (ILS). Peptide dendrimers (PDs), both lipidated and nonlipidated, were synthesized by Fmoc solid phase peptide synthesis (SPPS). Reverse phase high performance chromatography (RP-HPLC) was used to purify the synthesized PDs, and the PDs were characterized by differential scanning calorimetry (DSC) electrospray ionization mass spectroscopy (ESI+-MS), Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy. The thin film hydration method was used to prepare liposomes, and the process variables affecting the liposome parameters were optimized using the Box‒Behnken design (BBD).Liposomes were PEGylated using DSPE-PEG-COOH2000 and further conjugated with ligands (RGD, PD-1 and PD-2) using EDC-NHS chemistry. The formulation was characterized using different spectroscopic techniques. In vitro, cell line studies, such as cytotoxicity, cell uptake, uptake mechanism, and receptor saturation studies, were performed on both Caco2 and Raji-B cells. The pharmacokinetic parameters of the developed liposomal formulation were evaluated using pharmacokinetic studies on Sprague- Dawley (SD) rats. The psychostimulant-induced hyperactivity model was used to evaluate the pharmacodynamic performance of the developed formulations by measuring the reversal of hyperlocomotor activity induced by levodopa-carbidopa.
Collapse
Affiliation(s)
- Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abhijeet Pandey
- Global Drug Development/Technical Research and Development, Novartis Healthcare Pvt. Ltd., Genome Valley, Hyderabad, Telangana, 500101, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K Vijaya Bhaskar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Harendra S Parekh
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Díaz CF, Cifuentes DL, Oyarzún M, Guzmán JL, Jiménez VA. Enhancement of octreotide antiproliferative activity by PEGylated PAMAM dendrimers delivery. J Appl Polym Sci 2024; 141. [DOI: 10.1002/app.55896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/09/2024] [Indexed: 01/06/2025]
Abstract
AbstractPEGylated PAMAM dendrimers (PEG‐PAMAM) are well‐characterized biomaterials with still unexplored applications as carriers of drugs acting via membrane receptors, such as octreotide. This work confirmed the safety and negligible internalization capacity of fourth‐generation 50%‐PEG‐PAMAM in HEK‐293 cells, to then assessed their supramolecular binding to octreotide through tryptophan quenching experiments and Gaussian‐accelerated molecular dynamics (GaMD) simulations. Tryptophan quenching showed that PEG‐PAMAM binds octreotide with a Kbind of 6 × 106 M−1 and a complex stoichiometry of 1:1.4, unlike native PAMAM. GaMD simulations revealed that octreotide binds at the outer PEG shell of PEG‐PAMAM, potentially hindering the drug from proteolytic degradation and enabling its release at a membrane level. Viability experiments on HeLa, PC‐12, and HEK‐293 cells incubated with increasing concentrations of octreotide in free drug solutions and equimolar mixtures with PEG‐PAMAM confirmed that the PEGylated dendrimer acts as an efficient supramolecular carrier for octreotide and enhances the antiproliferative effects of the drug. Our findings highlight a novel facet for PEG‐PAMAM dendrimers as macromolecular vehicles for peptide or non‐peptide drugs acting via membrane receptor sites.
Collapse
Affiliation(s)
- Carola F. Díaz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas Universidad Andres Bello Talcahuano Chile
| | - Diego L. Cifuentes
- Laboratorio de Neurobiología Molecular, Departamento de Fisiología, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| | - Maximiliano Oyarzún
- Laboratorio de Neurobiología Molecular, Departamento de Fisiología, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| | - José L. Guzmán
- Laboratorio de Neurobiología Molecular, Departamento de Fisiología, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas Universidad Andres Bello Talcahuano Chile
| |
Collapse
|
6
|
Laha A, Nasra S, Bhatia D, Kumar A. Advancements in rheumatoid arthritis therapy: a journey from conventional therapy to precision medicine via nanoparticles targeting immune cells. NANOSCALE 2024; 16:14975-14993. [PMID: 39056352 DOI: 10.1039/d4nr02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that mainly affects the inner lining of the synovial joints and leads to chronic inflammation. While RA is not known as lethal, recent research indicates that it may be a silent killer because of its strong association with an increased risk of chronic lung and heart diseases. Patients develop these systemic consequences due to the regular uptake of heavy drugs such as disease-modifying antirheumatic medications (DMARDs), glucocorticoids (GCs), nonsteroidal anti-inflammatory medicines (NSAIDs), etc. Nevertheless, a number of these medications have off-target effects, which might cause adverse toxicity, and have started to become resistant in patients as well. Therefore, alternative and promising therapeutic techniques must be explored and adopted, such as post-translational modification inhibitors (like protein arginine deiminase inhibitors), RNA interference by siRNA, epigenetic drugs, peptide therapy, etc., specifically in macrophages, neutrophils, Treg cells and dendritic cells (DCs). As the target cells are specific, ensuring targeted delivery is also equally important, which can be achieved with the advent of nanotechnology. Furthermore, these nanocarriers have fewer off-site side effects, enable drug combinations, and allow for lower drug dosages. Among the nanoparticles that can be used for targeting, there are both inorganic and organic nanomaterials such as solid-lipid nanoparticles, liposomes, hydrogels, dendrimers, and biomimetics that have been discussed. This review highlights contemporary therapy options targeting macrophages, neutrophils, Treg cells, and DCs and explores the application of diverse nanotechnological techniques to enhance precision RA therapies.
Collapse
Affiliation(s)
- Anwesha Laha
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
7
|
Yew JS, Ong SK, Lim HX, Tan SH, Ong KC, Wong KT, Poh CL. Immunogenicity of trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against EV-A71 and CV-A16. Nanomedicine (Lond) 2024; 19:1779-1799. [PMID: 39140594 PMCID: PMC11418279 DOI: 10.1080/17435889.2024.2372243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
Aim: To develop a trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against hand foot and mouth disease (HFMD) and assess its immunogenicity in mice.Materials & methods: Trivalent plasmid carrying the VP1 and VP2 genes of EV-A71, VP1 gene of CV-A16 was encapsulated in Chitosan-TPP nanoparticles through ionic gelation. In vitro characterization and in vivo immunization studies of the CS-TPP-NPs (pIRES-VP121) were performed.Results: Mice administered with CS-TPP NPs (pIRES-VP121) intramuscularly were observed to have the highest IFN-γ response. Sera from mice immunized with the naked pDNA and CS-TPP-NPs (pIRES-VP121) demonstrated good viral clearance against wild-type EV-A71 and CV-A16 in RD cells.Conclusion: CS-TPP-NPs (pIRES-VP121) could serve as a prototype for future development of multivalent HFMD DNA vaccine candidates.
Collapse
Affiliation(s)
- Jia Sheng Yew
- Centre for Virus & Vaccine Research, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
| | - Seng-Kai Ong
- Department of Biological science, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
| | - Hui Xuan Lim
- Centre for Virus & Vaccine Research, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
- Sunway Microbiome Centre, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50603, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Federal Territory of Kuala Lumpur, Kuala Lumpur, 50603, Malaysia
| | - Chit Laa Poh
- Centre for Virus & Vaccine Research, School of Medical & Life Sciences, Sunway University, Petaling Jaya, 47500, Malaysia
- ALPS Global Holding Berhad, The ICON, No.1, Off Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
| |
Collapse
|
8
|
Zaręba M, Chmiel-Szukiewicz E, Uram Ł, Noga J, Rzepna M, Wołowiec S. A Novel PAMAM G3 Dendrimer-Based Foam with Polyether Polyol and Castor Oil Components as Drug Delivery System into Cancer and Normal Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3905. [PMID: 39203083 PMCID: PMC11355831 DOI: 10.3390/ma17163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
One of the intensively developed tools for cancer therapy is drug-releasing matrices. Polyamidoamine dendrimers (PAMAM) are commonly used as nanoparticles to increase the solubility, stability and retention of drugs in the human body. Most often, drugs are encapsulated in PAMAM cavities or covalently attached to their surface. However, there are no data on the use of PAMAM dendrimers as a component of porous matrices based on polyurethane foams for the controlled release of drugs and biologically active substances. Therefore, in this work, porous materials based on polyurethane foam with incorporated third-generation poly(amidoamine) dendrimers (PAMAM G3) were synthesized and characterized. Density, water uptake and morphology of foams were examined with SEM and XPS. The PAMAM was liquefied with polyether polyol (G441) and reacted with polymeric 4,4'-diphenylmethane diisocyanate (pMDI) in the presence of silicone, water and a catalyst to obtain foam (PF1). In selected compositions, the castor oil was added (PF2). Analogs without PAMAM G3 were also synthesized (F1 and F2, respectively). An SEM analysis of foams showed that they are composed of thin ribs/walls forming an interconnected network containing hollow bubbles/pores and showing some irregularities in the structure. Foam from a G3:G441:CO (PF2) composition is characterized by a more regular structure than the foam from the composition without castor oil. The encapsulation efficiency of drugs determined by the XPS method shows that it varies depending on the matrix and the drug and ranges from several to a dozen mass percent. In vitro biological studies with direct contact and extract assays indicated that the F2 matrix was highly biocompatible. Significant toxicity of dendrimeric matrices PF1 and PF2 containing 50% of PAMAM G3 was higher against human squamous carcinoma cells than human immortalized keratinocytes. The ability of the matrices to immobilize drugs was demonstrated in the example of perspective (Nimesulide, 8-Methoxypsolarene) or approved anticancer drugs (Doxorubicin-DOX, 5-Aminolevulinic acid). Release into the culture medium and penetration of DOX into the tested SCC-15 and HaCaT cells were also proved. The results show that further modification of the obtained matrices may lead to their use as drug delivery systems, e.g., for anticancer therapy.
Collapse
Affiliation(s)
- Magdalena Zaręba
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Elżbieta Chmiel-Szukiewicz
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Łukasz Uram
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Justyna Noga
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Magdalena Rzepna
- Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Stanisław Wołowiec
- Medical College, University of Rzeszow, 1a Warzywna Street, 35-310 Rzeszow, Poland
| |
Collapse
|
9
|
Summer M, Hussain T, Ali S, Khan RRM, Muhammad G, Liaqat I. Exploring the underlying modes of organic nanoparticles in diagnosis, prevention, and treatment of cancer: a review from drug delivery to toxicity. INT J POLYM MATER PO 2024:1-17. [DOI: 10.1080/00914037.2024.2375337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Lahore, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Lahore, Pakistan
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
10
|
Binder J, Winkeljann J, Steinegger K, Trnovec L, Orekhova D, Zähringer J, Hörner A, Fell V, Tinnefeld P, Winkeljann B, Frieß W, Merkel OM. Closing the Gap between Experiment and Simulation─A Holistic Study on the Complexation of Small Interfering RNAs with Polyethylenimine. Mol Pharm 2024; 21:2163-2175. [PMID: 38373164 PMCID: PMC7616749 DOI: 10.1021/acs.molpharmaceut.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Rational design is pivotal in the modern development of nucleic acid nanocarrier systems. With the rising prominence of polymeric materials as alternatives to lipid-based carriers, understanding their structure-function relationships becomes paramount. Here, we introduce a newly developed coarse-grained model of polyethylenimine (PEI) based on the Martini 3 force field. This model facilitates molecular dynamics simulations of true-sized PEI molecules, exemplified by molecules with molecular weights of 1.3, 5, 10, and 25 kDa, with degrees of branching between 50.0 and 61.5%. We employed this model to investigate the thermodynamics of small interfering RNA (siRNA) complexation with PEI. Our simulations underscore the pivotal role of electrostatic interactions in the complexation process. Thermodynamic analyses revealed a stronger binding affinity with increased protonation, notably in acidic (endosomal) pH, compared to neutral conditions. Furthermore, the molecular weight of PEI was found to be a critical determinant of binding dynamics: smaller PEI molecules closely enveloped the siRNA, whereas larger ones extended outward, facilitating the formation of complexes with multiple RNA molecules. Experimental validations, encompassing isothermal titration calorimetry and single-molecule fluorescence spectroscopy, aligned well with our computational predictions. Our findings not only validate the fidelity of our PEI model but also accentuate the importance of in silico data in the rational design of polymeric drug carriers. The synergy between computational predictions and experimental validations, as showcased here, signals a refined and precise approach to drug carrier design.
Collapse
Affiliation(s)
- Jonas Binder
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Joshua Winkeljann
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
- Chair of Experimental Physics I, University of Augsburg, Universitätsstraße 1, 86519 Augsburg, Germany
| | - Katharina Steinegger
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Lara Trnovec
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Daria Orekhova
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Jonas Zähringer
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Andreas Hörner
- Chair of Experimental Physics I, University of Augsburg, Universitätsstraße 1, 86519 Augsburg, Germany
| | - Valentin Fell
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Philip Tinnefeld
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Benjamin Winkeljann
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| | - Wolfgang Frieß
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
| | - Olivia M Merkel
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus B, 81377 München, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 München, Germany
| |
Collapse
|
11
|
Ma J, Wehrle J, Frank D, Lorenzen L, Popp C, Driever W, Grosse R, Jessen HJ. Intracellular delivery and deep tissue penetration of nucleoside triphosphates using photocleavable covalently bound dendritic polycations. Chem Sci 2024; 15:6478-6487. [PMID: 38699261 PMCID: PMC11062083 DOI: 10.1039/d3sc05669d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Nucleoside triphosphates (NTPs) are essential in various biological processes. Cellular or even organismal controlled delivery of NTPs would be highly desirable, yet in cellulo and in vivo applications are hampered owing to their negative charge leading to cell impermeability. NTP transporters or NTP prodrugs have been developed, but a spatial and temporal control of the release of the investigated molecules remains challenging with these strategies. Herein, we describe a general approach to enable intracellular delivery of NTPs using covalently bound dendritic polycations, which are derived from PAMAM dendrons and their guanidinium derivatives. By design, these modifications are fully removable through attachment on a photocage, ready to deliver the native NTP upon irradiation enabling spatiotemporal control over nucleotide release. We study the intracellular distribution of the compounds depending on the linker and dendron generation as well as side chain modifications. Importantly, as the polycation is bound covalently, these molecules can also penetrate deeply into the tissue of living organisms, such as zebrafish.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg Albertstr. 21 79104 Freiburg Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
| | - Johanna Wehrle
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Faculty of Biology, University of Freiburg Hauptstr. 1 79104 Freiburg Germany
| | - Dennis Frank
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Lina Lorenzen
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Christoph Popp
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Wolfgang Driever
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Faculty of Biology, University of Freiburg Hauptstr. 1 79104 Freiburg Germany
| | - Robert Grosse
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Freiburg Albertstr. 21 79104 Freiburg Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg 79104 Freiburg Germany
| |
Collapse
|
12
|
Tian Y, Wang Z, Xu X, Guo Y, Ma Y, Lu Y, Shen M, Geng Y, Tomás H, Rodrigues J, Sheng R. Natural alkaloids from Dicranostigma leptopodum (Maxim.) Fedde and their G5. NHAc-PBA dendrimer-alkaloid complexes for targeting chemotherapy in breast cancer MCF-7 cells. Nat Prod Res 2024:1-18. [PMID: 38586940 DOI: 10.1080/14786419.2024.2335669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Herein, we isolated five natural alkaloids, iso-corydine (iso-CORY), corydine (CORY), sanguinarine (SAN), chelerythrine (CHE) and magnoflorine (MAG), from traditional medicinal herb Dicranostigma leptopodum (Maxim.) Fedde (whole herb) and elucidated their structures. Then we synthesised G5. NHAc-PBA as targeting dendrimer platform to encapsulate the alkaloids into G5. NHAc-PBA-alkaloid complexes, which demonstrated alkaloid-dependent positive zeta potential and hydrodynamic particle size. G5. NHAc-PBA-alkaloid complexes demonstrated obvious breast cancer MCF-7 cell targeting effect. Among the G5. NHAc-PBA-alkaloid complexes, G5.NHAc-PBA-CHE (IC50=13.66 μM) demonstrated the highest MCF-7 cell inhibition capability and G5.NHAc-PBA-MAG (IC50=24.63 μM) had equivalent inhibitory effects on cell proliferation that comparable to the level of free MAG (IC50=23.74 μM), which made them the potential breast cancer targeting formulation for chemotherapeutic application. This work successfully demonstrated a pharmaceutical research model of 'natural bioactive product isolation-drug formulation preparation-breast cancer cell targeting inhibition'.
Collapse
Affiliation(s)
- Ye Tian
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xu Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yanni Ma
- Henan Natural Products Biotechnology Co., Ltd, Henan Academy of Sciences, Zhengzhou, Henan, China
| | - Yanqi Lu
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yang Geng
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
13
|
Bose S, Dahat Y, Kumar D, Haldar S, Das SK. A membrane targeted multifunctional cationic nanoparticle conjugated fusogenic nanoemulsion (CFusoN): induced membrane depolarization and lipid solubilization to accelerate the killing of Staphylococcus aureus. MATERIALS HORIZONS 2024; 11:661-679. [PMID: 37830433 DOI: 10.1039/d3mh01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bacterial infections caused by Staphylococcus aureus are one of the growing concerns for human health care management globally. Antibiotic-associated adverse effects and the emergence of bacterial resistant strains necessitate the development of an alternative yet effective approach. Nanoemulsion-based therapy has emerged as a potential therapeutic strategy to combat bacterial infestation. Herein, we designed a cationic metal nanoparticle-conjugated fusogenic nanoemulsion (CFusoN) as a lipid solubilizing nanovesicle for the effective treatment of S. aureus infection with a killing efficiency of 99.999%. The cationic nanoparticle-conjugated nanoemulsion (viz. NECNP) (24.4 ± 2.9 mV) electrostatically bound with the negatively charged bacterial cell membrane (-10.2 ± 3.7 mV) causing alteration of the bacterial surface charge. The fluorometric and flow cytometry studies confirmed the bacterial membrane depolarization and altered cell membrane permeability leading to cell death. The atomic force microscopic studies further demonstrated the damage of the cellular ultrastructure, while the transmission electron microscopic image and membrane lipid solubilization analysis depicted the solubilization of the bacterial membrane lipid bilayer along with the leakage of the intracellular contents. The cell membrane fatty acid analysis revealed that the methyl esters of palmitic acid, stearic acid and octadecadienoic acid isomers were solubilized after the treatment of S. aureus with CFusoN. The bactericidal killing efficiency of CFusoN is proposed to occur through the synergistic efficacy of the targeted attachment of CNP to the bacterial cells along with the lipid solubilization property of NE. Interestingly, NECNP didn't elicit any in vitro hemolytic activity or cytotoxicity against red blood cells (RBCs) and L929 fibroblast cells, respectively, at its bactericidal concentration. Furthermore, a porcine skin wound infection model exhibited the enhanced wound cleansing potency of CFusoN in comparison to the commercially available wound cleansers. The obtained antibacterial activity, biocompatibility and skin wound disinfection efficacy of the NECNP demonstrated the formulation of a cell targeted CFusoN as a promising translatable strategy to combat bacterial infection.
Collapse
Affiliation(s)
- Somashree Bose
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yogita Dahat
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division (ARDD), CSIR-North East Institute of Science and Technology (NEIST), NH37, Pulibor, Jorhat, Assam 785006, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
14
|
Xian S, Xiang Y, Liu D, Fan B, Mitrová K, Ollier RC, Su B, Alloosh MA, Jiráček J, Sturek M, Alloosh M, Webber MJ. Insulin-Dendrimer Nanocomplex for Multi-Day Glucose-Responsive Therapy in Mice and Swine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308965. [PMID: 37994248 DOI: 10.1002/adma.202308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Indexed: 11/24/2023]
Abstract
The management of diabetes in a manner offering autonomous insulin therapy responsive to glucose-directed need, and moreover with a dosing schedule amenable to facile administration, remains an ongoing goal to improve the standard of care. While basal insulins with reduced dosing frequency, even once-weekly administration, are on the horizon, there is still no approved therapy that offers glucose-responsive insulin function. Herein, a nanoscale complex combining both electrostatic- and dynamic-covalent interactions between a synthetic dendrimer carrier and an insulin analogue modified with a high-affinity glucose-binding motif yields an injectable insulin depot affording both glucose-directed and long-lasting insulin availability. Following a single injection, it is even possible to control blood glucose for at least one week in diabetic swine subjected to daily oral glucose challenges. Measurements of serum insulin concentration in response to challenge show increases in insulin corresponding to elevated blood glucose levels, an uncommon finding even in preclinical work on glucose-responsive insulin. Accordingly, the subcutaneous nanocomplex that results from combining electrostatic- and dynamic-covalent interactions between a modified insulin and a synthetic dendrimer carrier affords a glucose-responsive insulin depot for week-long control following a single routine injection.
Collapse
Affiliation(s)
- Sijie Xian
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Bowen Fan
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Katarína Mitrová
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, 16610, Czech Republic
| | - Rachel C Ollier
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Bo Su
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | | | - Jiří Jiráček
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, 16610, Czech Republic
| | | | | | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
15
|
Modirrousta Y, Akbari S. Amine-terminated dendrimers: A novel method for diagnose, control and treatment of cancer. CANCER EPIGENETICS AND NANOMEDICINE 2024:333-379. [DOI: 10.1016/b978-0-443-13209-4.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Moammeri A, Chegeni MM, Sahrayi H, Ghafelehbashi R, Memarzadeh F, Mansouri A, Akbarzadeh I, Abtahi MS, Hejabi F, Ren Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater Today Bio 2023; 23:100837. [PMID: 37953758 PMCID: PMC10632535 DOI: 10.1016/j.mtbio.2023.100837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of nanotechnology has led to an increased interest in nanocarriers as a drug delivery system that is efficient and safe. There have been many studies addressing nano-scale vesicular systems such as liposomes and niosome is a newer generation of vesicular nanocarriers. The niosomes provide a multilamellar carrier for lipophilic and hydrophilic bioactive substances in the self-assembled vesicle, which are composed of non-ionic surfactants in conjunction with cholesterol or other amphiphilic molecules. These non-ionic surfactant vesicles, simply known as niosomes, can be utilized in a wide variety of technological applications. As an alternative to liposomes, niosomes are considered more chemically and physically stable. The methods for preparing niosomes are more economic. Many reports have discussed niosomes in terms of their physicochemical properties and applications as drug delivery systems. As drug carriers, nano-sized niosomes expand the horizons of pharmacokinetics, decreasing toxicity, enhancing drug solvability and bioavailability. In this review, we review the components and fabrication methods of niosomes, as well as their functionalization, characterization, administration routes, and applications in cancer gene delivery, and natural product delivery. We also discuss the limitations and challenges in the development of niosomes, and provide the future perspective of niosomes.
Collapse
Affiliation(s)
- Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Hamidreza Sahrayi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Farkhondeh Memarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Afsoun Mansouri
- School of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Sadat Abtahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Faranak Hejabi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| |
Collapse
|
17
|
Díaz CF, Cifuentes DL, Oyarzún M, Jiménez VA, Guzmán L. Cell internalization kinetics and surface charge accessibility of surface-modified PAMAM dendrimers. Org Biomol Chem 2023; 21:7782-7790. [PMID: 37705355 DOI: 10.1039/d3ob01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Surface-modified PAMAM dendrimers have important applications in drug delivery, yet a gap remains about the role that surface functionalization plays on their cell internalization capacity. We examined the cell internalization kinetics of PAMAM dendrimers that were surface-modified with acetyl, folate and poly(ethylene glycol), as model functional groups differing in size, charge, and chemical functionality. Dendrimers with 25% functionalization were internalized by HEK cells, but with slower rates and lower maximum uptakes than the native dendrimer between 1-6 h of incubation. Dendrimers with 50% functionalization exhibited negligible internalization capacities at all incubation times. Molecular dynamics simulations revealed that the solvent accessibility of the cationic surface charges is a key factor affecting cell internalization, unlike the total charge, functionality or size of surface-modified PAMAM dendrimers. These findings provide valuable insights to assist the design of PAMAM-based systems for drug delivery applications.
Collapse
Affiliation(s)
- Carola F Díaz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| | - Diego L Cifuentes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile
| | - Maximiliano Oyarzún
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| | - Leonardo Guzmán
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile
| |
Collapse
|
18
|
Lee J, Kwon YE, Edwards SD, Guim H, Jae Jeong K. Improved biocompatibility of dendrimer-based gene delivery by histidine-modified nuclear localization signals. Int J Pharm 2023; 644:123299. [PMID: 37558147 DOI: 10.1016/j.ijpharm.2023.123299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Polyamidoamine (PAMAM) dendrimers have been explored as an alternative to polyethylenimine (PEI) as a gene delivery carrier because of their relatively low cytotoxicity and excellent biocompatibility. The transfection efficiency of PAMAM dendrimers can be improved by the addition of nuclear localization signal (NLS), a positively charged peptide sequence recognized by cargo proteins in the cytoplasm for nuclear transport. However, increased positive charges from NLS can cause damage to the cytoplasmic and mitochondrial membranes and lead to reactive oxygen species (ROS)-induced cytotoxicity. This negative effect of NLS can be negated without a significant reduction in transfection efficiency by adding histidine, an essential amino acid known as a natural antioxidant, to NLS. However, little is known about the exact mechanism by which histidine reduces cytotoxicity of NLS-modified dendrimers. In this study, we selected cystamine core PAMAM dendrimer generation 2 (cPG2) and conjugated it with NLS derived from Merkel cell polyomavirus large T antigen and histidine (n = 0-3) to improve transfection efficiency and reduce cytoxicity. NLS-modified cPG2 derivatives showed similar or higher transfection efficiency than PEI 25 kDa in NIH3T3 and human mesenchymal stem cells (hMSC). The cytotoxicity of NLS-modified cPG2 derivatives was substantially lower than PEI 25 kDa and was further reduced as the number of histidine in NLS increased. To understand the mechanism of cytoprotective effect of histidine-conjugated NLS, we examined ROS scavenging, hydroxyl radical generation and mitochondrial membrane potential as a function of the number of histidine in NLS. As the number of hisidine increased, cPG2 scavenged ROS more effectively as evidenced by the hydroxyl radical antioxidant capacity (HORAC) assay. This was consistent with the reduced intracellular hydroxyl radical concentration measured by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) assay in NIH3T3. Finally, fluorescence imaging with JC-1 confirmed that the mitochondrial membranes of NIH 3T3 were well-protected during the transfection when NLS contained histidine. These experimental results confirm the hypothesis that histidine residues scavenge ROS that is generated during the transfection process, preventing the excessive damage to mitochondrial membranes, leading to reduced cytotoxicity.
Collapse
Affiliation(s)
- Jeil Lee
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Yong-Eun Kwon
- Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Seth D Edwards
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Hwanuk Guim
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States.
| |
Collapse
|
19
|
González-Méndez I, Sorroza-Martínez K, González-Sánchez I, Gracia-Mora J, Bernad-Bernad MJ, Cerbón M, Rivera E, Yatsimirsky AK. Exploring the Influence of Spacers in EDTA-β-Cyclodextrin Dendrimers: Physicochemical Properties and In Vitro Biological Behavior. Int J Mol Sci 2023; 24:14422. [PMID: 37833869 PMCID: PMC10572662 DOI: 10.3390/ijms241914422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesis of a new family of ethylenediaminetetraacetic acid (EDTA) core dimers and G0 dendrimers end-capped with two and four β-cyclodextrin (βCD) moieties was performed by click-chemistry conjugation, varying the spacers attached to the core. The structure analyses were achieved in DMSO-d6 and the self-inclusion process was studied in D2O by 1H-NMR spectroscopy for all platforms. It was demonstrated that the interaction with adamantane carboxylic acid (AdCOOH) results in a guest-induced shift of the self-inclusion effect, demonstrating the full host ability of the βCD units in these new platforms without any influence of the spacer. The results of the quantitative size and water solubility measurements demonstrated the equivalence between the novel EDTA-βCD platforms and the classical PAMAM-βCD dendrimer. Finally, we determined the toxicity for all EDTA-βCD platforms in four different cell lines: two human breast cancer cells (MCF-7 and MDA-MB-231), human cervical adenocarcinoma cancer cells (HeLa), and human lung adenocarcinoma cells (SK-LU-1). The new EDTA-βCD carriers did not present any cytotoxicity in the tested cell lines, which showed that these new classes of platforms are promising candidates for drug delivery.
Collapse
Affiliation(s)
- Israel González-Méndez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-M.); (J.G.-M.)
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City C.P. 04510, Mexico;
| | - Ignacio González-Sánchez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-S.); (M.C.)
| | - Jesús Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-M.); (J.G.-M.)
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico;
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-S.); (M.C.)
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City C.P. 04510, Mexico;
| | - Anatoly K. Yatsimirsky
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-M.); (J.G.-M.)
| |
Collapse
|
20
|
Utembe W, Andraos C, Gulumian M. Immunotoxicity of engineered nanomaterials and their role in asthma. Crit Rev Toxicol 2023; 53:491-505. [PMID: 37933836 DOI: 10.1080/10408444.2023.2270519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
The toxicity of engineered nanomaterials (ENMs) in vivo and in vitro has formed the basis of most studies. However, the toxicity of ENMs, particularly on the immune system, i.e. immunotoxicity, and their role in manipulating it, are less known. This review addresses the initiation or exacerbation as well as the attenuation of allergic asthma by a variety of ENMs and how they may be used in drug delivery to enhance the treatment of asthma. This review also highlights a few research gaps in the study of the immunotoxicity of ENMs, for example, the potential drawbacks of assays used in immunotoxicity assays; the potential role of hormesis during dosing of ENMs; and the variables that result in discrepancies among different studies, such as the physicochemical properties of ENMs, differences in asthmatic animal models, and different routes of administration.
Collapse
Affiliation(s)
- Wells Utembe
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa
- Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlene Andraos
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
21
|
Yang W, Mixich L, Boonstra E, Cabral H. Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 2023; 12:e2202688. [PMID: 36785927 PMCID: PMC11469255 DOI: 10.1002/adhm.202202688] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.
Collapse
Affiliation(s)
- Wenqian Yang
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Lucas Mixich
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Eger Boonstra
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Horacio Cabral
- Department of BioengineeringGraduate School of EngineeringThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
22
|
Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, Sarkar AK, Khan J, Ashif Ikbal AM. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front Pharmacol 2023; 14:1159131. [PMID: 37006997 PMCID: PMC10060650 DOI: 10.3389/fphar.2023.1159131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
A brain tumor is an uncontrolled cell proliferation, a mass of tissue composed of cells that grow and divide abnormally and appear to be uncontrollable by the processes that normally control normal cells. Approximately 25,690 primary malignant brain tumors are discovered each year, 70% of which originate in glial cells. It has been observed that the blood-brain barrier (BBB) limits the distribution of drugs into the tumour environment, which complicates the oncological therapy of malignant brain tumours. Numerous studies have found that nanocarriers have demonstrated significant therapeutic efficacy in brain diseases. This review, based on a non-systematic search of the existing literature, provides an update on the existing knowledge of the types of dendrimers, synthesis methods, and mechanisms of action in relation to brain tumours. It also discusses the use of dendrimers in the diagnosis and treatment of brain tumours and the future possibilities of dendrimers. Dendrimers are of particular interest in the diagnosis and treatment of brain tumours because they can transport biochemical agents across the BBB to the tumour and into the brain after systemic administration. Dendrimers are being used to develop novel therapeutics such as prolonged release of drugs, immunotherapy, and antineoplastic effects. The use of PAMAM, PPI, PLL and surface engineered dendrimers has proven revolutionary in the effective diagnosis and treatment of brain tumours.
Collapse
Affiliation(s)
- Monika Kaurav
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Ghaziabad, India
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Dhani Ramachandran
- Department of Pathology, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
- *Correspondence: Ram Kumar Sahu,
| | | | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
| |
Collapse
|
23
|
Wong KH, Guo Z, Law MK, Chen M. Functionalized PAMAM constructed nanosystems for biomacromolecule delivery. Biomater Sci 2023; 11:1589-1606. [PMID: 36692071 DOI: 10.1039/d2bm01677j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyamidoamines (PAMAMs) are a class of dendrimer with monodispersity and controlled topology, which can deliver biologically active macromolecules (e.g., genes and proteins) to specific regions with high efficiency and minimum side effects. In detail, PAMAMs can be functionalized easily by core modification or surface amendment to encapsulate a wide range of biomacromolecules. Besides, self-assembled, cross-linked and hybrid PAMAMs with customized therapeutic purposes are developed as delivery vehicles, which makes PAMAMs promising for biomacromolecule therapy. In this review, we comprehensively summarize the application of PAMAMs in biomacromolecule delivery from the synthesis of functionalized PAMAM carriers to the development of PAMAM-based drug delivery systems. The underlying strategies for PAMAM functionalization and assembly are first systematically discussed, and then the current applications of PAMAMs for biomacromolecule delivery are reviewed. Finally, a brief perspective on the further applications of PAMAMs concludes, aiming to provide insights into developing PAMAM-based biomacromolecule delivery systems.
Collapse
Affiliation(s)
- Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Zhaopei Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
24
|
Intraocular siRNA Delivery Mediated by Penetratin Derivative to Silence Orthotopic Retinoblastoma Gene. Pharmaceutics 2023; 15:pharmaceutics15030745. [PMID: 36986605 PMCID: PMC10053059 DOI: 10.3390/pharmaceutics15030745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Gene therapy brings a ray of hope for inherited ocular diseases that may cause severe vision loss and even blindness. However, due to the dynamic and static absorption barriers, it is challenging to deliver genes to the posterior segment of the eye by topical instillation. To circumvent this limitation, we developed a penetratin derivative (89WP)-modified polyamidoamine polyplex to deliver small interference RNA (siRNA) via eye drops to achieve effective gene silencing in orthotopic retinoblastoma. The polyplex could be spontaneously assembled through electrostatic and hydrophobic interactions, as demonstrated by isothermal titration calorimetry, and enter cells intactly. In vitro cellular internalization revealed that the polyplex possessed higher permeability and safety than the lipoplex composed of commercial cationic liposomes. After the polyplex was instilled in the conjunctival sac of the mice, the distribution of siRNA in the fundus oculi was significantly increased, and the bioluminescence from orthotopic retinoblastoma was effectively inhibited. In this work, an evolved cell-penetrating peptide was employed to modify the siRNA vector in a simple and effective way, and the formed polyplex interfered with intraocular protein expression successfully via noninvasive administration, which showed a promising prospect for gene therapy for inherited ocular diseases.
Collapse
|
25
|
Kharwade R, Mahajan N, More S, Warokar A, Mendhi S, Dhobley A, Palve D. Effect of PEGylation on drug uptake, biodistribution, and tissue toxicity of efavirenz-ritonavir loaded PAMAM G4 dendrimers. Pharm Dev Technol 2023; 28:200-218. [PMID: 36695103 DOI: 10.1080/10837450.2023.2173230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present investigations aimed to compare the efficiency of PAMAM G4 (PG4) and PEGylated PAMAM G4 (PPG4) dendrimers as novel nanocarriers for the treatment of HIV-1. Synthesized PG4 and PPG4 dendrimers were confirmed by electrospray ionization and particle size with its morphology. The anti-human immunodeficiency virus (HIV) drug efavirenz (EFV) with a booster dose of ritonavir (RTV) was encapsulated into PG4 and PPG4 formerly noted as PG4ER and PPG4ER, respectively. Further, evaluated for dendrimers mediated solubilization, drug release, cytotoxicity, drug uptake, plasma, and tissue pharmacokinetics, and histopathology. PG4ER and PPG4ER both promoted a prolonged release of EFV in weakly acidic pH 4 up to 84 h and 132 h, respectively. The results of the cytotoxicity assay and drug uptake study showed that PPG4ER was safe and biocompatible up to 12.5 µg/ml. The plasma pharmacokinetic profile of EFV and RTV was significantly increased by PPG4ER with prolonged t1/2 up to three times as compared to free EFV-RTV and PG4ER. Histopathological analysis showed remarkably lower tissue toxicity in PPG4ER as compared to free EFV-RTV. Therefore, overall data suggested that PPG4 has a great potential for prolonged release of EFV and RTV with enhanced bioavailability and lower toxicity.
Collapse
Affiliation(s)
- Rohini Kharwade
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Nilesh Mahajan
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Sachin More
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Amol Warokar
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Sachin Mendhi
- Dadasaheb Balpande College of Pharmacy, Nagpur, India.,Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Akshay Dhobley
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Nagpur, India
| | - Devendra Palve
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Nagpur, India
| |
Collapse
|
26
|
Low generational cystamine core PAMAM derivatives modified with nuclear localization signal derived from lactoferrin as a gene carrier. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Le M, Huang W, Ma Z, Shi Z, Li Q, Lin C, Wang L, Jia YG. Facially Amphiphilic Skeleton-Derived Antibacterial Cationic Dendrimers. Biomacromolecules 2023; 24:269-282. [PMID: 36495302 DOI: 10.1021/acs.biomac.2c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is urgent to develop biocompatible and high-efficiency antimicrobial agents since microbial infections have always posed serious challenges to human health. Herein, through the marriage of facially amphiphilic skeletons and cationic dendrimers, high-density positively charged dendrimers D-CA6-N+ (G2) and D-CA2-N+ (G1) were designed and synthesized using the "branch" of facially amphiphilic bile acids, followed by their modification with quaternary ammonium charges. Both dendrimers could self-assemble into nanostructured micelles in aqueous solution. D-CA6-N+ displays potent antibacterial activity against Staphylococcus aureus and Escherichia coli, with minimum inhibitory concentrations (MICs) as low as 7.50 and 7.79 μM, respectively, and has an evidently stronger antibacterial activity than D-CA2-N+. Moreover, D-CA6-N+ can kill S. aureus faster than E. coli. The facial amphiphilicity of the bile acid skeleton facilitates the selective destruction of bacterial membranes and endows dendrimers with negligible hemolysis and cytotoxicity even under a high concentration of 16× MIC. In vivo studies show that D-CA6-N+ is much more effective and safer than penicillin G in treating S. aureus infection and promoting wound healing, which suggests facially amphiphilic skeleton-derived cationic dendrimers can be a promising approach to effectively enhance antibacterial activity and biocompatibility of antibacterial agent, simultaneously.
Collapse
Affiliation(s)
- Mengqi Le
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Wen Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zunwei Ma
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
28
|
Mehrizi TZ, Ardestani MS. The Introduction of Dendrimers as a New Approach to Improve the Performance and Quality of Various Blood Products (Platelets, Plasma and Erythrocytes): A 2010-2022 Review Study. CURRENT NANOSCIENCE 2023; 19:103-122. [DOI: 10.2174/1573413718666220728141511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/06/2025]
Abstract
Objectives:Platelet-, erythrocyte- and plasma-related products are vital for some patients. The main problems with these products are storage lesions, shelf life limitations, and function and quality maintenance. Dendrimers, a well-known group of polymeric nanoparticles, may help overcome these challenges due to their special properties.Methods:This review article, for the first time, comprehensively discusses studies from 2010 to 2022 on the compatibility of positive, negative, neutral, and modified charge dendrimers with each blood product. Moreover, it provides information regarding dendrimers' applications for improving the quality and function of blood products.Results:A total of one hundred and twenty-six studies showed that dendrimers affect blood components depending on their load, size, molecular weight, functional group, concentration, and exposure time. Generally, cationic dendrimers with higher concentrations and molecular weight and larger size showed little hemocompatibility, while anionic or neutral dendrimers with lower concentrations and molecular weight, and small size were more hemocompatible. Further, some modifications of cationic dendrimers were found to improve their compatibility. For erythrocytes, they included PEGylation and thiolation of dendrimers or functionalizing them with cyclic RGD, nmaleyl chitosan, zwitterionic chitosan, prednisolone, or carbohydrates. Additionally, dendrimers functionalized with arginine-birch, lysine-Cbz, polyethylene glycol, polyethylene glycol-cyclic RGD, thiol, TiO2, maltotriose, or streptokinase decreased the platelet toxicity of dendrimers. The dendrimers modified with polyethylene glycol, glucose, and gold nanoparticles showed increased compatibility in the case of albumin products. Moreover, the PAMAM-dendrimer-antibody conjugates had no adverse effect on antibodies. Dendrimers have a wide range of applications, including virus detection kits, synthetic O2 carriers, bacterial nanofilters, drug carriers, anticoagulants, and enhanced blood product storage.Conclusion:It can be concluded that due to the outstanding properties of different types of dendrimers, particularly their manipulability, nanomaterials can be promising to enhance the quality of blood products. Thus, further research in this area is required.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Evaluation of the Cytotoxicity of Cationic Polymers on Glioblastoma Cancer Stem Cells. J Funct Biomater 2022; 14:jfb14010017. [PMID: 36662064 PMCID: PMC9862959 DOI: 10.3390/jfb14010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Cationic polymers such as polyethylenimine (PEI) have found a pervasive place in laboratories across the world as gene delivery agents. However, their applications are not limited to this role, having found a place as delivery agents for drugs, in complexes known as polymer-drug conjugates (PDCs). Yet a potentially underexplored domain of research is in their inherent potential as anti-cancer therapeutic agents, which has been indicated by several studies. Even more interesting is the recent observation that certain polycations may present a significantly greater toxicity towards the clinically important cancer stem cell (CSC) niche than towards more differentiated bulk tumour cells. These cells, which possess the stem-like characteristics of self-renewal and differentiation, are highly implicated in cancer drug resistance, tumour recurrence and poor clinical prognosis. The search for compounds which may target and eliminate these cells is thus of great research interest. As such, the observation in our previous study on a PEI-based PDC which showed a considerably higher toxicity of PEI towards glioblastoma CSCs (GSCs) than on more differentiated glioma (U87) cells led us to investigate other cationic polymers for a similar effect. The evaluation of the toxicity of a range of different types of polycations, and an investigation into the potential source of GSC's sensitivity to such compounds is thus described.
Collapse
|
30
|
Recent Advances in Nanomaterials for Asthma Treatment. Int J Mol Sci 2022; 23:ijms232214427. [PMID: 36430906 PMCID: PMC9696023 DOI: 10.3390/ijms232214427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease with complex mechanisms, and these patients often encounter difficulties in their treatment course due to the heterogeneity of the disease. Currently, clinical treatments for asthma are mainly based on glucocorticoid-based combination drug therapy; however, glucocorticoid resistance and multiple side effects, as well as the occurrence of poor drug delivery, require the development of more promising treatments. Nanotechnology is an emerging technology that has been extensively researched in the medical field. Several studies have shown that drug delivery systems could significantly improve the targeting, reduce toxicity and improve the bioavailability of drugs. The use of multiple nanoparticle delivery strategies could improve the therapeutic efficacy of drugs compared to traditional delivery methods. Herein, the authors presented the mechanisms of asthma development and current therapeutic methods. Furthermore, the design and synthesis of different types of nanomaterials and micromaterials for asthma therapy are reviewed, including polymetric nanomaterials, solid lipid nanomaterials, cell membranes-based nanomaterials, and metal nanomaterials. Finally, the challenges and future perspectives of these nanomaterials are discussed to provide guidance for further research directions and hopefully promote the clinical application of nanotherapeutics in asthma treatment.
Collapse
|
31
|
Synthesis, dynamics and applications (cytotoxicity and biocompatibility) of dendrimers: a mini-review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
p-Coumaric acid in poly(amidoamine) G4 dendrimer: Characterization and toxicity evaluation on zebrafish model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Polyethylenimine, an Autophagy-Inducing Platinum-Carbene-Based Drug Carrier with Potent Toxicity towards Glioblastoma Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14205057. [PMID: 36291841 PMCID: PMC9599868 DOI: 10.3390/cancers14205057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The difficulty involved in the treatment of many tumours due to their recurrence and resistance to chemotherapy is tightly linked to the presence of cancer stem cells (CSCs). This CSC sub-population is distinct from the majority of cancer cells of the tumour bulk. Indeed, CSCs have increased mitochondrial mass that has been linked to increased sensitivity to mitochondrial targeting compounds. Thus, a platinum-based polyethylenimine (PEI) polymer-drug conjugate (PDC) was assessed as a potential anti-CSC therapeutic since it has previously displayed mitochondrial accumulation. Our results show that CSCs have increased specific sensitivity to the PEI carrier and to the PDC. The mechanism of cell death seems to be necrotic in nature, with an absence of apoptotic markers. Cell death is accompanied by the induction of a protective autophagy. The interference in the balance of this pathway, which is highly important for CSCs, may be responsible for a partial reversion of the stem-like phenotype observed with prolonged PEI and PDC treatment. Several markers also indicate the cell death mode to be capable of inducing an anti-cancer immune response. This study thus indicates the potential therapeutic perspectives of polycations against CSCs.
Collapse
|
34
|
Jangid AK, Patel K, Joshi U, Patel S, Singh A, Pooja D, Saharan VA, Kulhari H. PEGylated G4 dendrimers as a promising nanocarrier for piperlongumine delivery: Synthesis, characterization, and anticancer activity. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Kołodziejczyk AM, Grala MM, Zimon A, Białkowska K, Walkowiak B, Komorowski P. Investigation of HUVEC response to exposure to PAMAM dendrimers – changes in cell elasticity and vesicles release. Nanotoxicology 2022; 16:375-392. [DOI: 10.1080/17435390.2022.2097138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Agnieszka Maria Kołodziejczyk
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
| | | | - Aleksandra Zimon
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
| | - Kamila Białkowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bogdan Walkowiak
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Piotr Komorowski
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
36
|
Haider M, Zaki KZ, El Hamshary MR, Hussain Z, Orive G, Ibrahim HO. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. J Adv Res 2022; 39:237-255. [PMID: 35777911 PMCID: PMC9263757 DOI: 10.1016/j.jare.2021.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent type of cancer for incidence and second for mortality worldwide. Late diagnosis and inconvenient and expensive current diagnostic tools largely contribute to the progress of the disease. The use of chemotherapy in the management of CRC significantly reduces tumor growth, metastasis, and morbidity rates. However, poor solubility, low cellular uptake, nonspecific distribution, multiple drug resistance and unwanted adverse effects are still among the major drawbacks of chemotherapy that limit its clinical significance in the treatment of CRC. Owing to their remarkable advantages over conventional therapies, the use of nanotechnology-based delivery systems especially polymeric nanocarriers (PNCs) has revolutionized many fields including disease diagnosis and drug delivery. AIM OF REVIEW In this review, we shed the light on the current status of using PNCs in the diagnosis and treatment of CRC with a special focus on targeting strategies, surface modifications and safety concerns for different types of PNCs in colonic cancer delivery. KEY SCIENTIFIC CONCEPTS OF REVIEW The review explores the current progress on the use of PNCs in the diagnosis and treatment of CRC with a special focus on the role of PNCs in improvement of cellular uptake, drug targeting and co-delivery of chemotherapeutic agents. Possible toxicity and biocompatibility issues related to the use of PNCs and imitations and future recommendation for the use of those smart carriers in the diagnosis and treatment of CRC are also discussed.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 71526, Egypt.
| | - Khaled Zaki Zaki
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mariam Rafat El Hamshary
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Haidy Osama Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
37
|
Ybarra DE, Calienni MN, Ramirez LFB, Frias ETA, Lillo C, Alonso SDV, Montanari J, Alvira FC. Vismodegib in PAMAM-dendrimers for potential theragnosis in skin cancer. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022; 14:pharmaceutics14061292. [PMID: 35745863 PMCID: PMC9230513 DOI: 10.3390/pharmaceutics14061292] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dendrimers are used for a variety of applications in medicine but, due to their host–guest and entrapment characteristics, are particularly used for the delivery of genes and drugs. However, dendrimers are intrinsically toxic, thus creating a major limitation for their use in biological systems. To reduce such toxicity, biocompatible dendrimers have been designed and synthesized, and surface engineering has been used to create advantageous changes at the periphery of dendrimers. Although dendrimers have been reviewed previously in the literature, there has yet to be a systematic and comprehensive review of the harmful effects of dendrimers. In this review, we describe the routes of dendrimer exposure and their distribution in vivo. Then, we discuss the toxicity of dendrimers at the organ, cellular, and sub-cellular levels. In this review, we also describe how technology can be used to reduce dendrimer toxicity, by changing their size and surface functionalization, how dendrimers can be combined with other materials to generate a composite formulation, and how dendrimers can be used for the diagnosis of disease. Finally, we discuss future challenges, developments, and research directions in developing biocompatible and safe dendrimers for medical purposes.
Collapse
|
39
|
Wang Y, Wang C. Novel Eye Drop Delivery Systems: Advance on Formulation Design Strategies Targeting Anterior and Posterior Segments of the Eye. Pharmaceutics 2022; 14:pharmaceutics14061150. [PMID: 35745723 PMCID: PMC9229693 DOI: 10.3390/pharmaceutics14061150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Eye drops are the most common and convenient route of topical administration and the first choice of treatment for many ocular diseases. However, the ocular bioavailability of traditional eye drops (i.e., solutions, suspensions, and ointments) is very low because of ophthalmic physiology and barriers, which greatly limits their therapeutic effect. Over the past few decades, many novel eye drop delivery systems, such as prodrugs, cyclodextrins, in situ gels, and nanoparticles, have been developed to improve ophthalmic bioavailability. These novel eye drop delivery systems have good biocompatibility, adhesion, and propermeation properties and have shown superior performance and efficacy over traditional eye drops. Therefore, the purpose of this review was to systematically present the research progress on novel eye drop delivery systems and provide a reference for the development of dosage form, clinical application, and commercial transformation of eye drops.
Collapse
|
40
|
Tsai HY, Algar WR. A Dendrimer-Based Time-Gated Concentric FRET Configuration for Multiplexed Sensing. ACS NANO 2022; 16:8150-8160. [PMID: 35499916 DOI: 10.1021/acsnano.2c01473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Förster resonance energy transfer (FRET) is widely used for the development of biological probes and sensors. In this context, the norm for multiplexed detection is deployment of multiple probes, each a discrete donor-acceptor pair. Concentric FRET (cFRET) probes enable multiplexed sensing with a single vector but, to date, have only been developed around semiconductor quantum dots, which may limit the scope of biological applications for such probes. Here, we demonstrate that dendrimers labeled with a luminescent terbium complex (Tb) are a viable and advantageous alternative platform for cFRET probes. Polyamidoamine dendrimers were functionalized with Tb, biotin, NeutrAvidin, and three types of dye-labeled oligonucleotide probes to establish a network of competitive and sequential Tb-to-dye and dye-to-dye FRET pathways. These probes were characterized physically and photophysically, and a time-gated multiplexed assay for DNA targets was demonstrated. The time-gating offered by the Tb allowed the rejection of background autofluorescence from serum. More broadly, this dendrimer-based architecture shows that cFRET is a general concept and is an important step toward a new generation of probes for biological sensing.
Collapse
Affiliation(s)
- Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
41
|
Białkowska K, Komorowski P, Gomez-Ramirez R, de la Mata FJ, Bryszewska M, Miłowska K. Interaction of Cationic Carbosilane Dendrimers and Their siRNA Complexes with MCF-7 Cells Cultured in 3D Spheroids. Cells 2022; 11:cells11101697. [PMID: 35626734 PMCID: PMC9140188 DOI: 10.3390/cells11101697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Cationic dendrimers are effective carriers for the delivery of siRNA into cells; they can penetrate cell membranes and protect nucleic acids against RNase degradation. Two types of dendrimers (CBD-1 and CBD-2) and their complexes with pro-apoptotic siRNA (Mcl-1 and Bcl-2) were tested on MCF-7 cells cultured as spheroids. Cytotoxicity of dendrimers and dendriplexes was measured using the live–dead test and Annexin V-FITC Apoptosis Detection Kit (flow cytometry). Uptake of dendriplexes was examined using flow cytometry and confocal microscopy. The live–dead test showed that for cells in 3D, CBD-2 is more toxic than CBD-1, contrasting with the data for 2D cultures. Attaching siRNA to a dendrimer molecule did not lead to increased cytotoxic effect in cells, either after 24 or 48 h. Measurements of apoptosis did not show a high increase in the level of the apoptosis marker after 24 h exposure of spheroids to CBD-2 and its dendriplexes. Measurements of the internalization of dendriplexes and microscopy images confirmed that the dendriplexes were transported into cells of the spheroids. Flow cytometry analysis of internalization indicated that CBD-2 transported siRNAs more effectively than CBD-1. Cytotoxic effects were visible after incubation with 3 doses of complexes for CBD-1 and both siRNAs.
Collapse
Affiliation(s)
- Kamila Białkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.B.); (K.M.)
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland;
- Correspondence:
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, “Bionanopark” Ldt., 114/116 Dubois St., 93-465 Lodz, Poland;
- Department of Biophysics, Institute of Materials Science, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
| | - Rafael Gomez-Ramirez
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, IQAR, University of Alcalá, 28805 Madrid, Spain; (R.G.-R.); (F.J.d.l.M.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.B.); (K.M.)
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; (M.B.); (K.M.)
| |
Collapse
|
42
|
The cytotoxicity effect of a bis-MPA-based dendron, a bis-MPA-PEG dendrimer and a magnetite nanoparticle on stimulated and non-stimulated human blood lymphocytes. Toxicol In Vitro 2022; 82:105377. [PMID: 35550412 DOI: 10.1016/j.tiv.2022.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Dendrimers and dendrons offer a high surface area and nanoscale size and magnetic nanoparticles can be easily detected and manipulated due to their magnetic properties. The aim of the present study is to investigate the in vitro toxicity of Polyester-8-hydroxyl-1-carboxyl bis-MPA dendron, generation 3 (bis-MPA), Hyperbranched G4-PEG6k-OH (PEG) dendrimer and magnetite nanoparticle (Fe3O4), in human lymphocytes. Cell viability assays were performed on non-stimulated and lipopolysaccharide (LPS) stimulated lymphocytes, after exposure to various concentrations of the nanoparticles, using the Trypan blue assay, Flow Cytometry with 7-Amino Actinomycin D fluorescent dye (7-AAD), as well as the 3-[4,5-dimethylthiazol-2-yl] 2,5 diphenyl tetrazolium bromide (MTT) colorimetric method. The results collectively showed that after 24 h both the dendron and dendrimer at 50 μM concentration exhibited low cytotoxicity to non-stimulated and stimulated lymphocytes. Magnetite nanoparticle (Fe3O4) in concentrations 50-1000 μg/ml revealed negligible cytotoxicity to stimulated and non-stimulated lymphocytes. Moreover, the amount of intercellular Reactive Oxygen Species with or without treatment was assessed by means of the DCFH-DA to evaluate the presence of any oxidative stress. We propose herein simple cytotoxicity tests which indicate that these nanoparticles, after further studying, can serve as ideal drug carriers.
Collapse
|
43
|
Merkel OM. Can pulmonary RNA delivery improve our pandemic preparedness? J Control Release 2022; 345:549-556. [PMID: 35358609 PMCID: PMC8958776 DOI: 10.1016/j.jconrel.2022.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 12/17/2022]
Abstract
The coronavirus pandemic has changed our perception of RNA medicines, and RNA vaccines have revolutionized our pandemic preparedness. But are we indeed prepared for the next variant or the next emerging virus? How can we prepare? And what does the role of inhaled antiviral RNA play in this regard? When the pandemic started, I rerouted much of the ongoing inhaled RNA delivery research in my group towards the inhibition and treatment of respiratory viral infections. Two years later, I have taken the literature, past and ongoing clinical trials into consideration and have gained new insights based on our collaborative research which I will discuss in this oration.
Collapse
Affiliation(s)
- Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany.
| |
Collapse
|
44
|
Shabanloo R, Akbari S, Mirsalehi M. Hybrid electrospun scaffolds based on polylactic acid/ PAMAM dendrimer/gemini surfactant for enhancement of synergistic antibacterial ability for biomedical application. Biomed Mater 2022; 17. [PMID: 35487203 DOI: 10.1088/1748-605x/ac6bd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
Hybrid electrospun scaffolds based on poly (L-lactic acid) (PLLA) / poly (amidoamine) (PAMAM-G2) dendrimer / gemini surfactant were fabricated for the enhancement of synergistic antibacterial activities. The second generation of poly (amidoamine) (PAMAM-G2) and cationic gemini surfactant were utilized to functionalize the optimum electrospun scaffolds. The gelatination process was utilized to improve the wettability of PLLA scaffolds to extend cell attachment and cell proliferation. PLLA nanofibrous scaffolds were characterized by energy dispersion X-ray (EDX), Scanning electron microscopy (SEM) images, mechanical properties, water contact angle, Fourier transform infrared (FTIR) spectroscopy, zeta potential and antibacterial assessment. In vitro cell biocompatibility was evaluated by MTT assay and morphology of PC-12 cells cultured on hybrid nanofibrous scaffolds and gelatinized ones. The results indicated that the optimum scaffolds could successfully modify the characteristics of PLLA scaffolds leading to much more appropriate physical and chemical properties. In addition, gelatinized nanofibrous scaffolds reveal more wettability enhancing cell attachment and proliferation. Furthermore, using poly (amidoamine) (PAMAM-G2) and gemini surfactant reveals synergetic antibacterial activity due to the competition between both cationic groups of PAMAM and gemini surfactant. Finally, improved cell adhesion and cell viability on modified scaffolds were confirmed. These favorable properties give a chance for these scaffolds to be used in a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Rasool Shabanloo
- Textile engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311, Tehran, 1591634311, Iran (the Islamic Republic of)
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311, Tehran, Tehran, 1591634311, Iran (the Islamic Republic of)
| | - Marjan Mirsalehi
- Iran University of Medical Sciences, Iran University of Medical Sciences Shahid Hemmat Highway Tehran 14496-14535, IRAN, Tehran, Tehran, 1449614535, Iran (the Islamic Republic of)
| |
Collapse
|
45
|
Maharjan RS, Singh AV, Hanif J, Rosenkranz D, Haidar R, Shelar A, Singh SP, Dey A, Patil R, Zamboni P, Laux P, Luch A. Investigation of the Associations between a Nanomaterial's Microrheology and Toxicology. ACS OMEGA 2022; 7:13985-13997. [PMID: 35559161 PMCID: PMC9089358 DOI: 10.1021/acsomega.2c00472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 05/10/2023]
Abstract
With the advent of Nanotechnology, the use of nanomaterials in consumer products is increasing on a daily basis, due to which a deep understanding and proper investigation regarding their safety and risk assessment should be a major priority. To date, there is no investigation regarding the microrheological properties of nanomaterials (NMs) in biological media. In our study, we utilized in silico models to select the suitable NMs based on their physicochemical properties such as solubility and lipophilicity. Then, we established a new method based on dynamic light scattering (DLS) microrheology to get the mean square displacement (MSD) and viscoelastic property of two model NMs that are dendrimers and cerium dioxide nanoparticles in Dulbecco's Modified Eagle Medium (DMEM) complete media at three different concentrations for both NMs. Subsequently, we established the cytotoxicological profiling using water-soluble tetrazolium salt-1 (WST-1) and a reactive oxygen species (ROS) assay. To take one step forward, we further looked into the tight junction properties of the cells using immunostaining with Zonula occluden-1 (ZO-1) antibodies and found that the tight junction function or transepithelial resistance (TEER) was affected in response to the microrheology and cytotoxicity. The quantitative polymerase chain reaction (q-PCR) results in the gene expression of ZO-1 after the 24 h treatment with NPs further validates the findings of immunostaining results. This new method that we established will be a reference point for other NM studies which are used in our day-to-day consumer products.
Collapse
Affiliation(s)
- Romi Singh Maharjan
- German
Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Ajay Vikram Singh
- German
Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Javaria Hanif
- University
of Potsdam, Department of Food
Chemistry, 14476 Potsdam, Germany
| | - Daniel Rosenkranz
- Klinikum
Oldenburg, University Medical Center Oldenburg,
Institute for Clinic Chemistry and Laboratory Medicine, 26133 Oldenburg, Germany
| | - Rashad Haidar
- German
Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Amruta Shelar
- Department
of Technology, Savitribai Phule Pune University, Pune 411007, MH, India
| | | | - Aditya Dey
- Faculty
of Informatics, Otto von Guericke University, Magdeburg 39106, Germany
| | - Rajendra Patil
- Department
of Biotechnology, Savitribai Phule Pune
University, Pune 411007, MH, India
| | - Paolo Zamboni
- Department
of Translational Medicine for Romagna, University
of Ferrara, 44121 Ferrara, Italy
| | - Peter Laux
- German
Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German
Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
46
|
Sorokina SA, Shifrina ZB. Dendrimers as Antiamyloid Agents. Pharmaceutics 2022; 14:760. [PMID: 35456594 PMCID: PMC9031116 DOI: 10.3390/pharmaceutics14040760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Dendrimer-protein conjugates have significant prospects for biological applications. The complexation changes the biophysical behavior of both proteins and dendrimers. The dendrimers could influence the secondary structure of proteins, zeta-potential, distribution of charged regions on the surface, the protein-protein interactions, etc. These changes offer significant possibilities for the application of these features in nanotheranostics and biomedicine. Based on the dendrimer-protein interactions, several therapeutic applications of dendrimers have emerged. Thus, the formation of stable complexes retains the disordered proteins on the aggregation, which is especially important in neurodegenerative diseases. To clarify the origin of these properties and assess the efficiency of action, the mechanism of protein-dendrimer interaction and the nature and driving force of binding are considered in this review. The review outlines the antiamyloid activity of dendrimers and discusses the effect of dendrimer structures and external factors on their antiamyloid properties.
Collapse
Affiliation(s)
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia;
| |
Collapse
|
47
|
Chaudhary KR, Puri V, Singh A, Singh C. A review on recent advances in nanomedicines for the treatment of pulmonary tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Singh J, Steele TWJ, Lim S. Fibrillated bacterial cellulose liquid carbene bioadhesives for mimicking and bonding oral cavity surfaces. J Mater Chem B 2022; 10:2570-2583. [PMID: 34981107 DOI: 10.1039/d1tb02044g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Topical treatments for oral wounds and infections exhibit weak adhesion to wet surfaces which results in short retention duration (6-8 hours), frequent dosing requirement and patient incompatibility. To address these limitations, aqueous composites made of fibrillated bacterial cellulose and photoactive bioadhesives are designed for soft epithelial surfaces. The aqueous composites crosslink upon photocuring within a minute and exhibit a transition from viscous to elastic adhesive hydrogels. The light-cured composites have shear moduli mimicking oral mucosa and other soft tissues. The tunable adhesion strength ranges from 3 to 35 kPa on hydrated tissue-mimicking surfaces (collagen film). The results support the application of bacterial cellulose hydrogel systems for potential treatment of mucosal wounds.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), 639798, Singapore.
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| |
Collapse
|
49
|
Wang X, Shukla SK, Gupta V. Recent advances in dendrimer-based nanocarriers. MULTIFUNCTIONAL NANOCARRIERS 2022:27-51. [DOI: 10.1016/b978-0-323-85041-4.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Studies of the Formation and Stability of Ezetimibe-Cyclodextrin Inclusion Complexes. Int J Mol Sci 2021; 23:ijms23010455. [PMID: 35008881 PMCID: PMC8745117 DOI: 10.3390/ijms23010455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
In the presented studies, the interactions between ezetimibe (EZE) and selected cyclodextrins were investigated. α-Cyclodextrin (αCD), β-cyclodextrin (βCD) and its modified derivatives, hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobutylether-β-cyclodextrin (SBEβCD), were selected for the research. Measurements were carried out using calorimetric and spectroscopic methods. Additionally, the Hirshfeld surface and biochemical analysis were achieved. As a result of the study, the inclusion complexes with 1:1 stoichiometry were obtained. The most stable are the complexes of β-cyclodextrin and its derivatives. The comparison of βCD with its derivatives shows that the modifications have an affect on the formation of more durable and stable complexes.
Collapse
|