1
|
Rivera D, Onisko N, Cao JD, Koyfman A, Long B. High risk and low prevalence diseases: Metformin toxicities. Am J Emerg Med 2023; 72:107-112. [PMID: 37517113 DOI: 10.1016/j.ajem.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
INTRODUCTION Metformin toxicity is a rare but serious condition that carries with it a high rate of morbidity and mortality. OBJECTIVE This review highlights the pearls and pitfalls of metformin toxicity, including diagnosis, initial resuscitation, and management in the emergency department (ED) based on current evidence. DISCUSSION Metformin is a common medication used for treatment of diabetes mellitus. Metformin toxicity is a spectrum of conditions that may be differentiated into three subgroups: metformin-associated lactic acidosis (MALA), metformin-induced lactic acidosis (MILA), and metformin-unrelated lactic acidosis (MULA). MILA is a condition found predominantly in patients chronically taking metformin or those with large acute overdoses. Conversely, MULA occurs in patients on metformin but with a critical illness stemming from a separate cause. MALA is rare but the most severe form, with mortality rates that reach 50%. Differentiating these entities is difficult in the ED setting without obtaining metformin levels. Patients with metformin toxicity present with nonspecific gastrointestinal symptoms and vital sign abnormalities. Laboratory analysis will reveal a high lactate with anion gap metabolic acidosis. Patients presenting with elevated lactate levels in the setting of metformin use should be considered at risk for the most severe form, MALA. Patients with MALA require aggressive treatment with intravenous fluids, treatment of any concomitant condition, and early consideration of hemodialysis, along with specialist consultation such as nephrology and toxicology. CONCLUSIONS An understanding of metformin toxicity can assist emergency clinicians in diagnosing and managing this potentially deadly disease.
Collapse
Affiliation(s)
- Daniel Rivera
- Department of Emergency Medicine, UT Southwestern, Dallas, TX, USA
| | - Nancy Onisko
- Department of Emergency Medicine, UT Southwestern, Dallas, TX, USA
| | - James Dazhe Cao
- Department of Emergency Medicine, UT Southwestern, Dallas, TX, USA.
| | - Alex Koyfman
- Department of Emergency Medicine, UT Southwestern, Dallas, TX, USA
| | - Brit Long
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA.
| |
Collapse
|
2
|
Hsu BW, Chen BS. Genetic and Epigenetic Host-Virus Network to Investigate Pathogenesis and Identify Biomarkers for Drug Repurposing of Human Respiratory Syncytial Virus via Real-World Two-Side RNA-Seq Data: Systems Biology and Deep-Learning Approach. Biomedicines 2023; 11:1531. [PMID: 37371627 DOI: 10.3390/biomedicines11061531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) affects more than 33 million people each year, but there are currently no effective drugs or vaccines approved. In this study, we first constructed a candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN) via big-data mining. Then, we employed reversed dynamic methods via two-side host-pathogen RNA-seq time-profile data to prune false positives in candidate HPI-GWGEN to obtain the real HPI-GWGEN. With the aid of principal-network projection and the annotation of KEGG pathways, we can extract core signaling pathways during hRSV infection to investigate the pathogenic mechanism of hRSV infection and select the corresponding significant biomarkers as drug targets, i.e., TRAF6, STAT3, IRF3, TYK2, and MAVS. Finally, in order to discover potential molecular drugs, we trained a DNN-based DTI model by drug-target interaction databases to predict candidate molecular drugs for these drug targets. After screening these candidate molecular drugs by three drug design specifications simultaneously, i.e., regulation ability, sensitivity, and toxicity. We finally selected acitretin, RS-67333, and phenformin to combine as a potential multimolecule drug for the therapeutic treatment of hRSV infection.
Collapse
Affiliation(s)
- Bo-Wei Hsu
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
3
|
Mehrpour O, Saeedi F, Nakhaee S, Tavakkoli Khomeini F, Hadianfar A, Amirabadizadeh A, Hoyte C. Comparison of decision tree with common machine learning models for prediction of biguanide and sulfonylurea poisoning in the United States: an analysis of the National Poison Data System. BMC Med Inform Decis Mak 2023; 23:60. [PMID: 37024869 PMCID: PMC10080923 DOI: 10.1186/s12911-022-02095-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/26/2022] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Biguanides and sulfonylurea are two classes of anti-diabetic medications that have commonly been prescribed all around the world. Diagnosis of biguanide and sulfonylurea exposures is based on history taking and physical examination; thus, physicians might misdiagnose these two different clinical settings. We aimed to conduct a study to develop a model based on decision tree analysis to help physicians better diagnose these poisoning cases. METHODS The National Poison Data System was used for this six-year retrospective cohort study.The decision tree model, common machine learning models multi layers perceptron, stochastic gradient descent (SGD), Adaboosting classiefier, linear support vector machine and ensembling methods including bagging, voting and stacking methods were used. The confusion matrix, precision, recall, specificity, f1-score, and accuracy were reported to evaluate the model's performance. RESULTS Of 6183 participants, 3336 patients (54.0%) were identified as biguanides exposures, and the remaining were those with sulfonylureas exposures. The decision tree model showed that the most important clinical findings defining biguanide and sulfonylurea exposures were hypoglycemia, abdominal pain, acidosis, diaphoresis, tremor, vomiting, diarrhea, age, and reasons for exposure. The specificity, precision, recall, f1-score, and accuracy of all models were greater than 86%, 89%, 88%, and 88%, respectively. The lowest values belong to SGD model. The decision tree model has a sensitivity (recall) of 93.3%, specificity of 92.8%, precision of 93.4%, f1_score of 93.3%, and accuracy of 93.3%. CONCLUSION Our results indicated that machine learning methods including decision tree and ensembling methods provide a precise prediction model to diagnose biguanides and sulfonylureas exposure.
Collapse
Affiliation(s)
- Omid Mehrpour
- Data Science Institute, Southern Methodist University, Dallas, TX, USA.
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| | - Farhad Saeedi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | | | - Ali Hadianfar
- Department of Epidemiology and Biostatistics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Amirabadizadeh
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Metformin, a biological and synthetic overview. Bioorg Med Chem Lett 2023; 86:129241. [PMID: 36933671 DOI: 10.1016/j.bmcl.2023.129241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Metformin is the most widely known anti-hyperglycemic, officially acquired by the USA government in 1995 and in 2001 it became the most prescribed treatment for type II diabetes. But how did it become the must-use drug for this disease in such a short period of time? it all started with traditional medicine, by using a plant known as "goat's rue" for the reduction of blood glucose levels. Its use arose in 1918 and evolved to the metformin synthesis in laboratories a couple of years later, using very rudimentary methods which involved melting and strong heating. Thus, a first synthetic route that allowed the preparation of the initial metformin derivates was established. Some of these resulted toxics, and others outperformed the metformin, reducing the blood glucose levels in such efficient way. Nevertheless, the risk and documented cases of lactic acidosis increased with metformin derivatives like buformin and phenformin. Recently, metformin has been widely studied, and it has been associated and tested in the treatment of type II diabetes, cancer, polycystic ovarian syndrome, cell differentiation to oligodendrocytes, reduction of oxidative stress in cells, weight reduction, as anti-inflammatory and even in the recent COVID-19 disease. Herein we briefly review and analyze the history, synthesis, and biological applications of metformin and its derivates.
Collapse
|
5
|
Krstic J, Schindlmaier K, Prokesch A. Combination strategies to target metabolic flexibility in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:159-197. [PMID: 36283766 DOI: 10.1016/bs.ircmb.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapeutically interfering with metabolic pathways has great merit to curtail tumor growth because the demand for copious amounts of energy for growth-supporting biomass production is common to all cancer entities. A major impediment to a straight implementation of metabolic cancer therapy is the metabolic flexibility and plasticity of cancer cells (and their microenvironment) resulting in therapy resistance and evasion. Metabolic combination therapies, therefore, are promising as they are designed to target several energetic routes simultaneously and thereby diminish the availability of alternative substrates. Thus, dietary restrictions, specific nutrient limitations, and/or pharmacological interventions impinging on metabolic pathways can be combined to improve cancer treatment efficacy, to overcome therapy resistance, or even act as a preventive measure. Here, we review the most recent developments in metabolic combination therapies particularly highlighting in vivo reports of synergistic effects and available clinical data. We close with identifying the challenges of the field (metabolic tumor heterogeneity, immune cell interactions, inter-patient variabilities) and suggest a "metabo-typing" strategy to tailor evidence-based metabolic combination therapies to the energetic requirements of the tumors and the patient's nutritional habits and status.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Katharina Schindlmaier
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
6
|
Mehrpour O, Saeedi F, Hoyte C, Hadianfar A, Nakhaee S, Brent J. Distinguishing characteristics of exposure to biguanide and sulfonylurea anti-diabetic medications in the United States. Am J Emerg Med 2022; 56:171-177. [PMID: 35398707 DOI: 10.1016/j.ajem.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Biguanides and sulfonylureas are anti-hyperglycemic drugs commonly used in the United States. Poisoning with these drugs may lead to serious consequences. The diagnosis of biguanide and sulfonylurea poisoning is based on history, clinical manifestations, and laboratory studies. METHODS This study is a six-year retrospective cohort analysis based on the National Poison Data System. Clinical effects of 6183 biguanide and sulfonylurea exposures were identified using binary logistic regression. RESULTS The mean age of patients with biguanide and sulfonylurea exposure was 39.27 ± 28.91 and 28.91 ± 30.41 years, respectively. Sulfonylurea exposure is most commonly seen via unintentional exposure, while biguanide exposure frequently occurs as a result of intentional ingestion. Minor and moderate outcomes commonly developed following biguanide and sulfonylurea exposure, respectively. Sulfonylurea exposure was less likely to develop clinical effects abdominal pain, metabolic acidosis, diarrhea, nausea, vomiting, and elevated creatinine than patients ingesting biguanides. However, sulfonylurea exposure was more likely to cause dizziness or vertigo, tremor, drowsiness or lethargy, agitation, diaphoresis, and hypoglycemia. CONCLUSIONS Our study is the first to use a wide range of national data to describe the clinical characteristics that differentiate the toxicologic exposure to biguanides and sulfonylureas. Sulfonylurea exposure is commonly seen via unintentional exposure, while metformin exposure is frequently seen via intentional exposure. Sulfonylurea toxicity is more likely to cause agitation, dizziness or vertigo, tremor, diaphoresis, and hypoglycemia, while metformin exposure induces abdominal pain, acidosis, diarrhea, nausea, vomiting, and elevated creatinine.
Collapse
Affiliation(s)
- Omid Mehrpour
- Data Science Institute, Southern Methodist University, Dallas, TX, USA.
| | - Farhad Saeedi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran; Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Christopher Hoyte
- University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; University of Colorado Hospital, Aurora, CO, USA
| | - Ali Hadianfar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Jeffrey Brent
- School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
7
|
Alhourani A, Førde JL, Eichacker LA, Herfindal L, Hagland HR. Improved pH-Responsive Release of Phenformin from Low-Defect Graphene Compared to Graphene Oxide. ACS OMEGA 2021; 6:24619-24629. [PMID: 34604644 PMCID: PMC8482513 DOI: 10.1021/acsomega.1c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Graphene-based drug carriers provide a promising addition to current cancer drug delivery options. Increased accessibility of high-quality graphene made by plasma-enhanced chemical vapor deposition (PE-CVD) makes it an attractive material to revisit in comparison to the widely studied graphene oxide (GO) in drug delivery. Here, we show the potential of repurposing the metabolic drug phenformin for cancer treatment in terms of stability, binding, and pH-responsive release. Using covalent attachment of poly(ethylene glycol) (PEG) onto pristine (PE-CVD) graphene, we show that PEG stabilized graphene nanosheets (PGNS) are stable in aqueous solutions and exhibit higher binding affinity toward phenformin than GO. Moreover, we experimentally demonstrate an improved drug release from PGNS than GO at pH levels lower than physiological conditions, yet comparable to that found in tumor microenvironments.
Collapse
Affiliation(s)
- Abdelnour Alhourani
- Department
of Chemistry, Biosciences and Environmental Technology, University of Stavanger, 4021 Stavanger, Norway
| | - Jan-Lukas Førde
- Centre
for Pharmacy, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
- Department
of Internal Medicine, Haukeland University
Hospital, 5021 Bergen, Norway
| | - Lutz Andreas Eichacker
- Department
of Chemistry, Biosciences and Environmental Technology, University of Stavanger, 4021 Stavanger, Norway
| | - Lars Herfindal
- Centre
for Pharmacy, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
| | - Hanne Røland Hagland
- Department
of Chemistry, Biosciences and Environmental Technology, University of Stavanger, 4021 Stavanger, Norway
| |
Collapse
|
8
|
Mack N, Mazzio E, Badisa R, Soliman KFA. Metabolic Response to the Mitochondrial Toxin 1-Methyl-4-phenylpyridinium (MPP+) in LDH-A/B Double-knockout LS174T Colon Cancer Cells. Cancer Genomics Proteomics 2021; 18:385-405. [PMID: 33994363 DOI: 10.21873/cgp.20267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Rapid glycolytic substrate-level phosphorylation (SLP) and accumulation of lactic acid are characteristics of diverse cancers. Recent advances in drug discovery have included the use of glycolytic inhibitors with mitochondrial targeting drugs to attempt to invoke an energy crisis in aggressive metabolically active chemo-resistant cancers. In this work, we examine the consequences of inhibiting mitochondrial oxidative phosphorylation (OXPHOS) with 1-methyl-4-phenylpyridinium (MPP+) in LS14T colon cancer cells containing a genetic double knock out (DKO) of lactic acid dehydrogenase (LDHA and LDHB). MATERIALS AND METHODS Several metabolic parameters were evaluated concomitant to whole transcriptomic (WT) mRNA, microRNA, and long intergenic non-coding RNAs using Affymetrix 2.1 human ST arrays. RESULTS MPP+ effectively blocked OXPHOS where a compensatory shift toward anaerobic SLP was only observed in the control vector (CV), and not observed in the LDH-A/B DKOs (lacking the ability to produce lactic acid). Despite this, there was an unexpected resilience to MPP+ in the latter in terms of energy, which displayed significantly higher resting baseline respiratory OXPHOS capacity relative to controls. At the transcriptome level, MPP+ invoked 1738 differential expressed genes (DEGs) out of 48,226; LDH-A/B DKO resulted in 855 DEGs while 349 DEGs were found to be overlapping in both groups versus respective controls, including loss of mitochondrial complex I (subunits 3 and 6), cell cycle transcripts and fluctuations in epigenetic chromatin remodeling systems. In terms of energy, the effects of MPP+ in the CV transcripts reflect the funneling of carbon intermediates toward glycolysis. The LDH-A/B DKO transcripts reflect a flow of carbons away from glycolysis toward the production of acetyl-CoA. CONCLUSION The findings from this study suggest a metabolic resilience to MPP+ in cancer cells devoid of LDH-A/B, explainable in-part by higher baseline OXPHOS respiratory ATP production, necessitating more toxin to suppress the electron transport chain.
Collapse
Affiliation(s)
- Nzinga Mack
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Elizabeth Mazzio
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
9
|
Chuang CH, Dorsch M, Dujardin P, Silas S, Ueffing K, Hölken JM, Yang D, Winslow MM, Grüner BM. Altered Mitochondria Functionality Defines a Metastatic Cell State in Lung Cancer and Creates an Exploitable Vulnerability. Cancer Res 2021; 81:567-579. [PMID: 33239425 PMCID: PMC8137518 DOI: 10.1158/0008-5472.can-20-1865] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Lung cancer is a prevalent and lethal cancer type that leads to more deaths than the next four major cancer types combined. Metastatic cancer spread is responsible for most cancer-related deaths but the cellular changes that enable cancer cells to leave the primary tumor and establish inoperable and lethal metastases remain poorly understood. To uncover genes that are specifically required to sustain metastasis survival or growth, we performed a genome-scale pooled lentiviral-shRNA library screen in cells that represent nonmetastatic and metastatic states of lung adenocarcinoma. Mitochondrial ribosome and mitochondria-associated genes were identified as top gene sets associated with metastasis-specific lethality. Metastasis-derived cell lines in vitro and metastases analyzed ex vivo from an autochthonous lung cancer mouse model had lower mitochondrial membrane potential and reduced mitochondrial functionality than nonmetastatic primary tumors. Electron microscopy of metastases uncovered irregular mitochondria with bridging and loss of normal membrane structure. Consistent with these findings, compounds that inhibit mitochondrial translation or replication had a greater effect on the growth of metastasis-derived cells. Finally, mice with established tumors developed fewer metastases upon treatment with phenformin in vivo. These results suggest that the metastatic cell state in lung adenocarcinoma is associated with a specifically altered mitochondrial functionality that can be therapeutically exploited. SIGNIFICANCE: This study characterizes altered mitochondria functionality of the metastatic cell state in lung cancer and opens new avenues for metastasis-specific therapeutic targeting.
Collapse
Affiliation(s)
- Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Madeleine Dorsch
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University of Duisburg-Essen, Essen, Germany
| | - Philip Dujardin
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University of Duisburg-Essen, Essen, Germany
| | - Sukrit Silas
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California
| | - Kristina Ueffing
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University of Duisburg-Essen, Essen, Germany
| | - Johanna M Hölken
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University of Duisburg-Essen, Essen, Germany
| | - Dian Yang
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Barbara M Grüner
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University of Duisburg-Essen, Essen, Germany.
- German Cancer Consortium (DKTK) partner site Essen, Essen, Germany
| |
Collapse
|
10
|
Izreig S, Gariepy A, Kaymak I, Bridges HR, Donayo AO, Bridon G, DeCamp LM, Kitchen-Goosen SM, Avizonis D, Sheldon RD, Laister RC, Minden MD, Johnson NA, Duchaine TF, Rudoltz MS, Yoo S, Pollak MN, Williams KS, Jones RG. Repression of LKB1 by miR-17∼92 Sensitizes MYC-Dependent Lymphoma to Biguanide Treatment. Cell Rep Med 2020; 1:100014. [PMID: 32478334 PMCID: PMC7249503 DOI: 10.1016/j.xcrm.2020.100014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
Cancer cells display metabolic plasticity to survive stresses in the tumor microenvironment. Cellular adaptation to energetic stress is coordinated in part by signaling through the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Here, we demonstrate that miRNA-mediated silencing of LKB1 confers sensitivity of lymphoma cells to mitochondrial inhibition by biguanides. Using both classic (phenformin) and newly developed (IM156) biguanides, we demonstrate that elevated miR-17∼92 expression in Myc+ lymphoma cells promotes increased apoptosis to biguanide treatment in vitro and in vivo. This effect is driven by the miR-17-dependent silencing of LKB1, which reduces AMPK activation in response to complex I inhibition. Mechanistically, biguanide treatment induces metabolic stress in Myc+ lymphoma cells by inhibiting TCA cycle metabolism and mitochondrial respiration, exposing metabolic vulnerability. Finally, we demonstrate a direct correlation between miR-17∼92 expression and biguanide sensitivity in human cancer cells. Our results identify miR-17∼92 expression as a potential biomarker for biguanide sensitivity in malignancies.
Collapse
Affiliation(s)
- Said Izreig
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Alexandra Gariepy
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Irem Kaymak
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hannah R. Bridges
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ariel O. Donayo
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Gaëlle Bridon
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Metabolomics Core Facility, McGill University, Montreal, QC H3A 1A3, Canada
| | - Lisa M. DeCamp
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Susan M. Kitchen-Goosen
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Daina Avizonis
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Metabolomics Core Facility, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ryan D. Sheldon
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rob C. Laister
- Princess Margaret Cancer Centre, Department of Medical Oncology and Hematology, Toronto, ON M5G 2M9, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Nathalie A. Johnson
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Sanghee Yoo
- ImmunoMet Therapeutics, Houston, TX 77021, USA
| | - Michael N. Pollak
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Kelsey S. Williams
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Russell G. Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
11
|
The anti-cancer effects of phenformin in thyroid cancer cell lines and in normal thyrocytes. Oncotarget 2019; 10:6432-6443. [PMID: 31741708 PMCID: PMC6849649 DOI: 10.18632/oncotarget.27266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
Phenformin is a biguanide drug which, besides the original anti-diabetic effect, also exerts anti-cancer effects. The aim of this study was to further characterize these latter in terms of both cell-viability and modulation of the secretion of the pro-tumorigenic chemokine CXCL8. Normal human thyrocytes in primary cultures (NHT) and thyroid cancer cell lines, TPC-1 and 8505C (RET/PTC and BRAFV600E mutated, respectively) were treated with increasing concentrations of phenformin at different times. Cell-viability was assessed by WST-1 and further characterized by AnnexinV/PI staining and cell proliferation colony-assay. CXCL8 levels were measured in cell supernatants. Phenformin reduced cell-viability in TPC-1 and 8505C and their ability to form colonies. In NHT cells, phenformin affected cell-viability only at the maximal dose but interestingly it inhibited CXCL8 secretion at all the concentrations not affecting cell-viability. Phenformin had no effect on CXCL8 secretion in thyroid cancer cell lines. Thus, phenformin exerts anti-cancer effects on both cancer cells (cell death induction) and surrounding normal cells (inhibition of CXCL8 secretion). These results highlight that the anti-cancer effects of phenformin are multifaceted and effective on both solid and soluble components of the tumor-microenvironment.
Collapse
|
12
|
Richter J, Rabe D, Duysen K, Melchert UH, Oltmanns KM. Lactate infusion increases brain energy content during euglycemia but not hypoglycemia in healthy men. NMR IN BIOMEDICINE 2019; 32:e4167. [PMID: 31468650 DOI: 10.1002/nbm.4167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
A special characteristic of the brain is the usage of lactate as alternative fuel instead of glucose to preserve its energy homeostasis. This physiological function is valid for sufficient cerebral glucose supply, as well as presumably during hypoglycemia, given that exogenous lactate infusion suppresses hormonal counterregulation. However, it is not yet clarified whether this effect is mediated by the use of lactate as an alternative cerebral energy substrate or any other mechanism. We hypothesized that under conditions of limited access to glucose (ie, during experimental hypoglycemia) lactate infusion would prevent hypoglycemia-induced neuroenergetic deficits in a neuroprotective way. In a randomized, double-blind, crossover study, lactate vs placebo infusion was compared during hyperinsulinemic-hypoglycemic clamps in 16 healthy young men. We measured the cerebral high-energy phosphate content - ie, adenosine triphosphate (ATP), phosphocreatine (PCr) and inorganic phosphate (Pi) levels - by 31 P-magnetic resonance spectroscopy as well as the neuroendocrine stress response. During euglycemia, lactate infusion increased ATP/Pi as well as PCr/Pi ratios compared with baseline values and placebo infusion. During hypoglycemia, there were no differences between the lactate and the placebo condition in both ratios. Hormonal counterregulation was significantly diminished upon lactate infusion. Our data demonstrate an elevated cerebral high-energy phosphate content upon lactate infusion during euglycemia, whereas there was no such effect during experimental hypoglycemia. Nevertheless, lactate infusion suppressed hypoglycemic hormonal counterregulation. Lactate thus adds to cerebral energy provision during euglycemia and may contribute to an increase in ATP reserves, which in turn protects the brain against neuroglucopenia under recurrent hypopglycemic conditions, eg, in diabetic patients.
Collapse
Affiliation(s)
- Juliane Richter
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Doerte Rabe
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Kai Duysen
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Uwe H Melchert
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Kerstin M Oltmanns
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| |
Collapse
|
13
|
Kuan W, Beavers CJ, Guglin ME. Still sour about lactic acidosis years later: role of metformin in heart failure. Heart Fail Rev 2019; 23:347-353. [PMID: 28868582 DOI: 10.1007/s10741-017-9649-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metformin remains a widely-used, first-line pharmacotherapy agent for patients with type 2 diabetes mellitus because of its efficacy, mild side effects, and affordability.However, use of this medication has traditionally been shunned by clinicians in patient populations that are considered at risk of lactic acidosis, such as those with heart failure. The underutilization of metformin can largely be attributed to the historical stigma of its biguanide predecessor, phenformin, and its association with lactic acidosis. Despite various studies finding low rates of lactic acidosis and the United States Federal Drug Administration's subsequent removal of heart failure from metformin's contraindication labeling in 2006, this oral hypoglycemic remains underutilized in this patient population. In addition to reports of the safe use of metformin in the heart failure population, a multitude of studies have also additionally suggested a modest reduction in mortality and morbidity. Metformin's role should be strongly reconsidered in the armamentarium of diabetes management in heart failure patients.
Collapse
Affiliation(s)
- William Kuan
- Department of Pharmacy Services, University of Kentucky Albert B. Chandler Hospital, 800 Rose Street, Room H110, Lexington, KY, 40536, USA.
| | - Craig J Beavers
- Department of Pharmacy Services, University of Kentucky Albert B. Chandler Hospital, 800 Rose Street, Room H110, Lexington, KY, 40536, USA
| | - Maya E Guglin
- Division of Cardiovascular Medicine, Gill Heart & Vascular Institute, University of Kentucky Albert B. Chandler Hospital, 800 Rose Street, Lexington, KY, 40536, USA
| |
Collapse
|
14
|
Lazarus B, Wu A, Shin JI, Sang Y, Alexander GC, Secora A, Inker LA, Coresh J, Chang AR, Grams ME. Association of Metformin Use With Risk of Lactic Acidosis Across the Range of Kidney Function: A Community-Based Cohort Study. JAMA Intern Med 2018; 178:903-910. [PMID: 29868840 PMCID: PMC6145716 DOI: 10.1001/jamainternmed.2018.0292] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2018] [Indexed: 01/07/2023]
Abstract
Importance Approximately 1 million patients in the United States with type 2 diabetes mellitus and mild-to-moderate kidney disease do not receive guideline-directed therapy with metformin. This may reflect uncertainty regarding the risk of acidosis in patients with chronic kidney disease. Objective To quantify the association between metformin use and hospitalization with acidosis across the range of estimated glomerular filtration rate (eGFR), accounting for change in eGFR stage over time. Design, Setting, and Participants Community-based cohort of 75 413 patients with diabetes in Geisinger Health System, with time-dependent assessment of eGFR stage from January 2004 until January 2017. Results were replicated in 67 578 new metformin users and 14 439 new sulfonylurea users from 2010 to 2015, sourced from 350 private US health systems. Exposures Metformin use. Main Outcomes and Measures Hospitalization with acidosis (International Classification of Diseases, Ninth Revision, Clinical Modification code of 276.2). Results In the primary cohort (n = 75 413), mean (SD) patient age was 60.4 (15.5) years, and 51% (n = 38 480) of the participants were female. There were 2335 hospitalizations with acidosis over a median follow-up of 5.7 years (interquartile range, 2.5-9.9 years). Compared with alternative diabetes management, time-dependent metformin use was not associated with incident acidosis overall (adjusted hazard ratio [HR], 0.98; 95% CI, 0.89-1.08) or in patients with eGFR 45 to 59 mL/min/1.73 m2 (adjusted HR, 1.16; 95% CI, 0.95-1.41) and eGFR 30 to 44 mL/min/1.73 m2 (adjusted HR, 1.09; 95% CI, 0.83-1.44). On the other hand, metformin use was associated with an increased risk of acidosis at eGFR less than 30 mL/min/1.73 m2 (adjusted HR, 2.07; 95% CI, 1.33-3.22). Results were consistent when new metformin users were compared with new sulfonylurea users (adjusted HR for eGFR 30-44 mL/min/1.73 m2, 0.77; 95% CI, 0.29-2.05), in a propensity-matched cohort (adjusted HR for eGFR 30-44 mL/min/1.73 m2, 0.71; 95% CI, 0.45-1.12), when baseline insulin users were excluded (adjusted HR for eGFR 30-44 mL/min/1.73 m2, 1.16; 95% CI, 0.87-1.57), and in the replication cohort (adjusted HR for eGFR 30-44 mL/min/1.73 m2, 0.86; 95% CI, 0.37-2.01). Conclusions and Relevance In 2 real-world clinical settings, metformin use was associated with acidosis only at eGFR less than 30 mL/min/1.73 m2. Our results support cautious use of metformin in patients with type 2 diabetes and eGFR of at least 30 mL/min/1.73 m2.
Collapse
Affiliation(s)
- Benjamin Lazarus
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Division of Nephrology, Monash Medical Centre, Clayton, Australia
| | - Aozhou Wu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jung-Im Shin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Yingying Sang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - G. Caleb Alexander
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Alex Secora
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Lesley A. Inker
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Alex R. Chang
- Kidney Health Research Institute, Geisinger Health System, Danville, Pennsylvania
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
15
|
Jackson AL, Sun W, Kilgore J, Guo H, Fang Z, Yin Y, Jones HM, Gilliam TP, Zhou C, Bae-Jump VL. Phenformin has anti-tumorigenic effects in human ovarian cancer cells and in an orthotopic mouse model of serous ovarian cancer. Oncotarget 2017; 8:100113-100127. [PMID: 29245964 PMCID: PMC5725006 DOI: 10.18632/oncotarget.22012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/30/2017] [Indexed: 01/07/2023] Open
Abstract
Obesity and diabetes have been associated with increased risk and worse outcomes in ovarian cancer (OC). The biguanide metformin is used in the treatment of type 2 diabetes and is also believed to have anti-tumorigenic benefits. Metformin is highly hydrophilic and requires organic cation transporters (OCTs) for entry into human cells. Phenformin, another biguanide, was taken off the market due to an increased risk of lactic acidosis over metformin. However, phenformin is not reliant on transporters for cell entry; and thus, may have increased potency as both an anti-diabetic and anti-tumorigenic agent than metformin. Thus, our goal was to evaluate the effect of phenformin on established OC cell lines, primary cultures of human OC cells and in an orthotopic mouse model of high grade serous OC. In three OC cell lines, phenformin significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, caused cellular stress, inhibited adhesion and invasion, and activation of AMPK and inhibition of the mTOR pathway. Phenformin also exerted anti-proliferative effects in seven primary cell cultures of human OC. Lastly, phenformin inhibited tumor growth in an orthotopic mouse model of serous OC, coincident with decreased Ki-67 staining and phosphorylated-S6 expression and increased expression of caspase 3 and phosphorylated-AMPK. Our findings demonstrate that phenformin has anti-tumorigenic effects in OC as previously demonstrated by metformin but it is yet to be determined if it is superior to metformin for the potential treatment of this disease.
Collapse
Affiliation(s)
- Amanda L. Jackson
- Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua Kilgore
- Houston Methodist Gynecologic Oncology Associates, Houston, TX, USA
| | - Hui Guo
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Shandong Cancer Hospital & Institute, Jinan, P.R. China
| | - Ziwei Fang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah M. Jones
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P. Gilliam
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Geoghegan F, Chadderton N, Farrar GJ, Zisterer DM, Porter RK. Direct effects of phenformin on metabolism/bioenergetics and viability of SH-SY5Y neuroblastoma cells. Oncol Lett 2017; 14:6298-6306. [PMID: 29113281 DOI: 10.3892/ol.2017.6929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 02/13/2017] [Indexed: 02/02/2023] Open
Abstract
Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells.
Collapse
Affiliation(s)
- Fintan Geoghegan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590, Republic of Ireland
| | - Naomi Chadderton
- Ocular Genetics Unit, Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 R590, Republic of Ireland
| | - G Jane Farrar
- Ocular Genetics Unit, Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, D02 R590, Republic of Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590, Republic of Ireland
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590, Republic of Ireland
| |
Collapse
|
17
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1004] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
18
|
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Sikora A, Zielonka J, Dwinell M. Mitochondria-targeted metformins: anti-tumour and redox signalling mechanisms. Interface Focus 2017; 7:20160109. [PMID: 28382202 DOI: 10.1098/rsfs.2016.0109] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reports suggest that metformin exerts anti-cancer effects in diabetic individuals with pancreatic cancer. Thus, metformin is currently being repurposed as a potential drug in cancer treatment. Studies indicate that potent metformin analogues are required in cancer treatment because of the low bioavailability of metformin in humans at conventional antidiabetic doses. We proposed that improved mitochondrial targeting of metformin by attaching a positively charged lipophilic triphenylphosphonium group will result in a new class of mitochondria-targeted metformin analogues with significantly enhanced anti-tumour potential. Using this approach, we synthesized various mitochondria-targeted metformin analogues with different alkyl chain lengths. Results indicate that the antiproliferative effects increased with increasing alkyl chain lengths (100-fold to 1000-fold). The lead compound, mito-metformin10, potently inhibited mitochondrial respiration through inhibition of complex I, stimulation of superoxide and hydrogen peroxide formation and activation of AMPK. When used in combination with ionizing radiation, mito-metformin10 acted as a radiosensitizer of pancreatic cancer cells. Because of the 1000-fold-higher potency of mitochondria-targeted metformin10, therapeutically effective plasma concentrations likely can be achieved in cancer patients.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research , Medical College of Wisconsin , Milwaukee, WI , USA
| | - Gang Cheng
- Department of Biophysics and Free Radical Research , Medical College of Wisconsin , Milwaukee, WI , USA
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273 , 13013 Marseille , France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273 , 13013 Marseille , France
| | - Adam Sikora
- Institute of Applied Radiation Chemistry , Lodz University of Technology , Zeromskiego 116, 90-924 Lodz , Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research , Medical College of Wisconsin , Milwaukee, WI , USA
| | - Michael Dwinell
- Department of Microbiology and Molecular Genetics and Cancer Center , Medical College of Wisconsin , Milwaukee, WI , USA
| |
Collapse
|
19
|
Langmaier J, Pižl M, Samec Z, Záliš S. Extreme Basicity of Biguanide Drugs in Aqueous Solutions: Ion Transfer Voltammetry and DFT Calculations. J Phys Chem A 2016; 120:7344-50. [DOI: 10.1021/acs.jpca.6b04786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jan Langmaier
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Martin Pižl
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
- Department
of Inorganic Chemistry, University of Chemistry and Technology, Prague 6, Technická 5, 166 28, Czech Republic
| | - Zdeněk Samec
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Stanislav Záliš
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
20
|
Cheng G, Zielonka J, Ouari O, Lopez M, McAllister D, Boyle K, Barrios CS, Weber JJ, Johnson BD, Hardy M, Dwinell MB, Kalyanaraman B. Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells. Cancer Res 2016; 76:3904-15. [PMID: 27216187 DOI: 10.1158/0008-5472.can-15-2534] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Abstract
Metformin (Met) is an approved antidiabetic drug currently being explored for repurposing in cancer treatment based on recent evidence of its apparent chemopreventive properties. Met is weakly cationic and targets the mitochondria to induce cytotoxic effects in tumor cells, albeit not very effectively. We hypothesized that increasing its mitochondria-targeting potential by attaching a positively charged lipophilic substituent would enhance the antitumor activity of Met. In pursuit of this question, we synthesized a set of mitochondria-targeted Met analogues (Mito-Mets) with varying alkyl chain lengths containing a triphenylphosphonium cation (TPP(+)). In particular, the analogue Mito-Met10, synthesized by attaching TPP(+) to Met via a 10-carbon aliphatic side chain, was nearly 1,000 times more efficacious than Met at inhibiting cell proliferation in pancreatic ductal adenocarcinoma (PDAC). Notably, in PDAC cells, Mito-Met10 potently inhibited mitochondrial complex I, stimulating superoxide and AMPK activation, but had no effect in nontransformed control cells. Moreover, Mito-Met10 potently triggered G1 cell-cycle phase arrest in PDAC cells, enhanced their radiosensitivity, and more potently abrogated PDAC growth in preclinical mouse models, compared with Met. Collectively, our findings show how improving the mitochondrial targeting of Met enhances its anticancer activities, including aggressive cancers like PDAC in great need of more effective therapeutic options. Cancer Res; 76(13); 3904-15. ©2016 AACR.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Olivier Ouari
- Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, France
| | - Marcos Lopez
- Biomedical Translational Research Group, Biotechnology Laboratories, Fundación Cardiovascular de Colombia, Floridablanca, Santander, Colombia. Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Donna McAllister
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathleen Boyle
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christy S Barrios
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James J Weber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bryon D Johnson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, France
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
21
|
Choi MK, Song IS. Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level. Biomol Ther (Seoul) 2016; 24:199-205. [PMID: 26797108 PMCID: PMC4774502 DOI: 10.4062/biomolther.2015.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration (2–75 μM) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was 1.9 μL/min while passive diffusion clearance was 0.31 μL/min. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as Cmax and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
22
|
Zadra G, Batista JL, Loda M. Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies. Mol Cancer Res 2015; 13:1059-72. [PMID: 25956158 DOI: 10.1158/1541-7786.mcr-15-0068] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Abstract
The precise role of 5'AMP-activated kinase (AMPK) in cancer and its potential as a therapeutic target is controversial. Although it is well established that activation of this energy sensor inhibits the main anabolic processes that sustain cancer cell proliferation and growth, AMPK activation can confer on cancer cells the plasticity to survive under metabolic stress such as hypoxia and glucose deprivation, which are commonly observed in fast growing tumors. Thus, AMPK is referred to as both a "conditional" tumor suppressor and "contextual" oncogene. To add a further layer of complexity, AMPK activation in human cancer tissues and its correlation with tumor aggressiveness and progression appears to vary in different contexts. The current review discusses the different faces of this metabolic regulator, the therapeutic implications of its modulation, and provides an overview of the most relevant data available on AMPK activation and AMPK-activating drugs in human studies.
Collapse
Affiliation(s)
- Giorgia Zadra
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julie L Batista
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School Boston, Massachusetts
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts. The Broad Institute, Cambridge, Massachusetts. Division of Cancer Studies, King's College London, United Kingdom.
| |
Collapse
|
23
|
Yong Y, Shin SY, Jung Y, Jung H, Ahn S, Chong Y, Lim Y. Flavonoids activating adenosine monophosphate-activated protein kinase. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0003-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Piel S, Ehinger JK, Elmér E, Hansson MJ. Metformin induces lactate production in peripheral blood mononuclear cells and platelets through specific mitochondrial complex I inhibition. Acta Physiol (Oxf) 2015; 213:171-80. [PMID: 24801139 DOI: 10.1111/apha.12311] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/21/2013] [Accepted: 04/26/2014] [Indexed: 12/25/2022]
Abstract
AIM Metformin is a widely used antidiabetic drug associated with the rare side effect of lactic acidosis which has been proposed to be linked to drug-induced mitochondrial dysfunction. Using respirometry, the aim of this study was to evaluate mitochondrial toxicity of metformin to human blood cells in relation to that of phenformin, a biguanide analogue withdrawn in most countries due to a high incidence of lactic acidosis. METHODS Peripheral blood mononuclear cells and platelets were isolated from healthy volunteers, and integrated mitochondrial function was studied in permeabilized and intact cells using high-resolution respirometry. A wide concentration range of metformin (0.1-100 mm) and phenformin (25-500 μm) was investigated for dose- and time-dependent effects on respiratory capacities, lactate production and pH. RESULTS Metformin induced respiratory inhibition at complex I in peripheral blood mononuclear cells and platelets (IC50 0.45 mm and 1.2 mm respectively). Phenformin was about 20-fold more potent in complex I inhibition of platelets than metformin. Metformin further demonstrated a dose- and time-dependent respiratory inhibition and augmented lactate release at a concentration of 1 mm and higher. CONCLUSION Respirometry of human peripheral blood cells readily detected respiratory inhibition by metformin and phenformin specific to complex I, providing a suitable model for probing drug toxicity. Lactate production was increased at concentrations relevant for clinical metformin intoxication, indicating mitochondrial inhibition as a direct causative pathophysiological mechanism. Relative to clinical dosing, phenformin displayed a more potent respiratory inhibition than metformin, possibly explaining the higher incidence of lactic acidosis in phenformin-treated patients.
Collapse
Affiliation(s)
- S. Piel
- Mitochondrial Medicine; Department of Clinical Sciences; Lund University; Lund Sweden
- NeuroVive Pharmaceutical AB; Lund Sweden
| | - J. K. Ehinger
- Mitochondrial Medicine; Department of Clinical Sciences; Lund University; Lund Sweden
- NeuroVive Pharmaceutical AB; Lund Sweden
- Department of Otorhinolaryngology; Head and Neck Surgery; Skåne University Hospital; Lund Sweden
| | - E. Elmér
- Mitochondrial Medicine; Department of Clinical Sciences; Lund University; Lund Sweden
- NeuroVive Pharmaceutical AB; Lund Sweden
- Department of Clinical Neurophysiology; Skåne University Hospital & Lund University; Lund Sweden
| | - M. J. Hansson
- Mitochondrial Medicine; Department of Clinical Sciences; Lund University; Lund Sweden
- NeuroVive Pharmaceutical AB; Lund Sweden
- Department of Clinical Physiology; Skåne University Hospital & Lund University; Lund Sweden
| |
Collapse
|
25
|
Richy FF, Sabidó-Espin M, Guedes S, Corvino FA, Gottwald-Hostalek U. Incidence of lactic acidosis in patients with type 2 diabetes with and without renal impairment treated with metformin: a retrospective cohort study. Diabetes Care 2014; 37:2291-5. [PMID: 24879835 DOI: 10.2337/dc14-0464] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine whether the use of metformin in type 2 diabetic patients with various kidney functions is associated with an increased risk of lactic acidosis (LA). RESEARCH DESIGN AND METHODS This study was a retrospective analysis of U.K. patient records from the Clinical Practice Research Datalink database from 1 January 2007 to 31 December 2012. Inclusion criteria were 1) diagnosis of type 2 diabetes before 1 January 2007, 2) treatment with metformin, and 3) at least one assessment of renal function between 2007 and 2012. Renal function was assessed by glomerular filtration rate and categorized as normal (N), mildly reduced (Mi), moderately reduced (Mo), or severely reduced (Se) function. The outcome of the study was LA. RESULTS A total of 77,601 patients treated with metformin for type 2 diabetes were identified. There were 35 LA events (10.37 [95% CI 7.22-14.42] per 100,000 patient-years) of which none were fatal and 23 were linked to a comorbidity. No significant difference in the incidence of LA was observed across N, Mi, Mo and Se renal function groups (7.6 [0.9-27.5], 4.6 [2.00-9.15], 17 [10.89-25.79], and 39 [4.72-140.89] cases per 100,000 patient-years, respectively). CONCLUSIONS The overall LA incidence rate for patients on metformin in this study was within the range of rates reported in the literature for patients with type 2 diabetes, and no significant difference was observed among patients with N, Mi, Mo, and Se function.
Collapse
Affiliation(s)
- Florent F Richy
- Global Drug Safety Epidemiology, Merck KGaA, Darmstadt, Germany
| | | | - Sandra Guedes
- Global Drug Safety Epidemiology, Merck KGaA, Darmstadt, Germany
| | | | | |
Collapse
|
26
|
Naunton M, Kyle G, Owoka F, Naunton-Boom K. Pharmacist review prevents evolving metformin-associated lactic acidosis. J Clin Pharm Ther 2014; 39:567-70. [DOI: 10.1111/jcpt.12187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/02/2014] [Indexed: 01/05/2023]
Affiliation(s)
- M. Naunton
- Faculty of Health; Discipline of Pharmacy; University of Canberra; Bruce ACT Australia
| | - G. Kyle
- Faculty of Health; Discipline of Pharmacy; University of Canberra; Bruce ACT Australia
| | - F. Owoka
- Faculty of Health; Discipline of Pharmacy; University of Canberra; Bruce ACT Australia
| | - K. Naunton-Boom
- Faculty of Health; Discipline of Pharmacy; University of Canberra; Bruce ACT Australia
| |
Collapse
|
27
|
Cerezo M, Tomic T, Ballotti R, Rocchi S. Is it time to test biguanide metformin in the treatment of melanoma? Pigment Cell Melanoma Res 2014; 28:8-20. [PMID: 24862830 DOI: 10.1111/pcmr.12267] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/12/2014] [Indexed: 01/04/2023]
Abstract
Metformin is the most widely used antidiabetic drug that belongs to the biguanide class. It is very well tolerated and has the major clinical advantage of not inducing hypoglycemia. Metformin decreases hepatic glucose production via a mechanism requiring liver kinase B1, which controls the metabolic checkpoint, AMP-activated protein kinase-mammalian target of rapamycin and neoglucogenic genes. The effects of metformin on this pathway results in reduced protein synthesis and cell proliferation. These observations have given the impetus for many investigations on the role of metformin in the regulation of tumor cell proliferation, cell-cycle regulation, apoptosis, and autophagy. Encouraging results from these studies have shown that metformin could potentially be used as an efficient anticancer drug in various neoplasms such as prostate, breast, lung, pancreas cancers, and melanoma. These findings are strengthened by retrospective epidemiological studies that have found a decrease in cancer risk in diabetic patients treated with metformin. In this review, we have focused our discussion on recent molecular mechanisms of metformin that have been described in various solid tumors in general and in melanoma in particular.
Collapse
Affiliation(s)
- Michael Cerezo
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe Biologie et Pathologie des Cellules Mélanocytaire: de la Pigmentation Cutanée au Mélanome, Nice, France; Université de Nice Sophia Antipolis, UFR de Médecine, Nice, France
| | | | | | | |
Collapse
|
28
|
Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab 2013; 24:469-80. [PMID: 23773243 DOI: 10.1016/j.tem.2013.05.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/07/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Metformin is the most commonly prescribed drug for type 2 diabetes (T2DM). Retrospective studies show that metformin is associated with decreased cancer risk. This historical correlation has driven vigorous research campaigns to determine the anticancer mechanisms of metformin. Consolidating the preclinical data is a challenge because unanswered questions remain concerning relevant mechanisms, bioavailability, and genetic factors that confer metformin sensitivity. Perhaps the most important unanswered question is whether metformin has activity against cancer in non-diabetics. In this review we highlight the proposed mechanisms of metformin action in cancer and discuss ongoing clinical trials with metformin in cancer. Improved understanding of these issues will increase the chances for successful application of metformin as an inexpensive, well-tolerated, and effective anticancer agent.
Collapse
Affiliation(s)
- Brendan J Quinn
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
29
|
Ou Y, Lin L, Yang X, Pan Q, Cheng X. Antidiabetic potential of phycocyanin: effects on KKAy mice. PHARMACEUTICAL BIOLOGY 2013; 51:539-544. [PMID: 23368938 DOI: 10.3109/13880209.2012.747545] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Phycocyanin (PC) has been proven to have many therapeutic properties, but its effects on diabetes have not been investigated. OBJECTIVE Antidiabetic activity of PC isolated from Spirulina platensis was evaluated in this study. MATERIALS AND METHODS Oral administration of PC (100 mg/kg, once per day for 3 weeks) on KKAy mice were investigated by monitoring the changes in body weight, food intake, fasting plasma glucose level, 24 h random blood glucose levels, oral glucose tolerance tests (OGTTs), glycosylated serum protein (GSP), fasting serum insulin (FINS), glycogen, triglyceride (TG), total cholesterol (TC), total antioxidative capability (T-AOC) and malondialdehyde (MDA). Histopathological changes in the pancreas were also examined with hematoxylin-eosin staining. RESULTS Administration of PC significantly decreased the body weight, fasting plasma glucose, 24 h random blood glucose levels, FINS and GSP levels, TG and TC content in serum and livers, MDA content in livers (p < 0.05 or p < 0.01). On the other hand, glucose tolerance to glucose administration, T-AOC, and the content of glycogen in liver and muscle were enhanced following PC treatment (p < 0.05 or p < 0.01). Histopathological results showed that PC administration suppressed the abnormal enlargement of islets observed in the pancreas of KKAy mice. DISCUSSION AND CONCLUSION The antidiabetic effect of PC on KKAy mice is most likely due to its ability to enhance insulin sensitivity, amelioration of insulin resistance of peripheral target tissues and regulation of glucolipide metabolism. Therefore, PC may have a potential clinical utility in combating type-2 diabetes.
Collapse
Affiliation(s)
- Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | | | | | | | | |
Collapse
|
30
|
Beydoun H, Kancherla V, Stadtmauer L, Beydoun M. Patterns of use of insulin-sensitizing agents among diabetic, borderline diabetic and non-diabetic women in the National Health and Nutrition Examination Surveys. Gynecol Endocrinol 2013; 29:350-6. [PMID: 23323803 PMCID: PMC3772626 DOI: 10.3109/09513590.2012.752457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this cross-sectional study based on the 2001-2006 National Health and Nutrition Examination Survey is to examine demographic, socioeconomic, lifestyle and reproductive characteristics that may distinguish users and non-users of insulin sensitizing agents among the US diabetic, borderline diabetic and non-diabetic women. Use of insulin-sensitizing agents was evaluated among 19,579 (3882 diabetic, 387 borderline diabetic and 15,310 non-diabetic) women. Overall, 2% of women in the study sample were users of insulin-sensitizers, including metformin, rosiglitazone and pioglitazone. Multivariate logistic regression models were constructed for predictors of insulin-sensitizer use according to diabetic status. In the overall sample, being younger or diabetic were the only factors associated with an increased odds of using insulin-sensitizing agents, after adjustment of confounders. Among diabetics, use of insulin-sensitizing agents was inversely related to age, but not other factors in the multivariable model. Among borderline and non-diabetics, body mass index (BMI) was the only predictor that remained significantly associated with the use of insulin-sensitizing agents after controlling for confounders. In conclusion, the main predictors of insulin-sensitizer use are young age and diabetic status in all women, young age in diabetic women and high BMI in borderline and non-diabetic women.
Collapse
Affiliation(s)
- Hind Beydoun
- Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, VA 23501-1980, USA.
| | | | | | | |
Collapse
|
31
|
Kopec KT, Kowalski MJ. Metformin-associated lactic acidosis (MALA): case files of the Einstein Medical Center medical toxicology fellowship. J Med Toxicol 2013; 9:61-6. [PMID: 23233435 PMCID: PMC3576503 DOI: 10.1007/s13181-012-0278-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Kathryn T Kopec
- Department of Medical Toxicology, Einstein Medical Center, Philadelphia, PA 19141, USA.
| | | |
Collapse
|
32
|
Abstract
Does metformin-associated lactic acidosis really exist? Despite an old controversy, there is no doubt about it. But do we understand what is going on? Laboratory findings raised several hypotheses explaining the pathophysiology of this disease. The main cause could be an inhibition of either gluconeogenesis or mitochondrial respiratory chain complex I. From bench to bedside, one hypothesis is now confirmed in humans. Metformin poisoning involves, at least partially, a mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jean-Christophe Orban
- Service de Réanimation Médico-chirurgicale, Hôpital Saint-Roch, Centre Hospitalier Universitaire de Nice, 5 rue Pierre Dévoluy, 06006 Nice, France
- IRCAN, Faculté de Médecine, Université de Nice, Avenue de Valombrose, 06107 Nice, France
| | - Eric Fontaine
- INSERM, U1055, 2280 rue de la piscine, 38041 Grenoble, France
| | - Carole Ichai
- Service de Réanimation Médico-chirurgicale, Hôpital Saint-Roch, Centre Hospitalier Universitaire de Nice, 5 rue Pierre Dévoluy, 06006 Nice, France
- IRCAN, Faculté de Médecine, Université de Nice, Avenue de Valombrose, 06107 Nice, France
| |
Collapse
|
33
|
Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun 2011; 414:694-9. [PMID: 21986525 DOI: 10.1016/j.bbrc.2011.09.134] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 01/11/2023]
Abstract
Epidemiologic and laboratory data suggesting that metformin has antineoplastic activity have led to ongoing clinical trials. However, pharmacokinetic issues that may influence metformin activity have not been studied in detail. The organic cation transporter 1 (OCT1) is known to play an important role in cellular uptake of metformin in the liver. We show that siRNA knockdown of OCT1 reduced sensitivity of epithelial ovarian cancer cells to metformin, but interestingly not to another biguanide, phenformin, with respect to both activation of AMP kinase and inhibition of proliferation. We observed that there is heterogeneity between primary human tumors with respect to OCT1 expression. These results suggest that there may be settings where drug uptake limits direct action of metformin on neoplastic cells, raising the possibility that metformin may not be the optimal biguanide for clinical investigation.
Collapse
Affiliation(s)
- Eric D Segal
- Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Li YG, Ji DF, Zhong S, Lv ZQ, Lin TB, Chen S, Hu GY. Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:961-970. [PMID: 21333726 DOI: 10.1016/j.jep.2011.02.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/29/2010] [Accepted: 02/11/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 1-Deoxynojirimycin (DNJ) discovered from mulberry trees has been reported to be a potent inhibitor of intestinal α-glycosidases (sucrase, maltase, glucoamylase), and many polysaccharides were useful in protecting against alloxan-induced pancreatic islets damage through their scavenging ability. This study was aimed to evaluate the therapeutic effect and potential mechanism(s) of the hybrid of DNJ and polysaccharide (HDP) from mulberry leaves on alloxan-induced diabetic mice. MATERIALS AND METHODS Daily oral treatment with HDP (150 mg/kg body weight) to diabetic mice for 12 weeks, body weight and blood glucose were determined every week, oral glucose tolerance test was performed after 4 and 8 weeks, biochemical values were measured using assay kits and gene expressions were investigated by RT-PCR. RESULTS A significant decline in blood glucose, glycosylated hemoglobin, triglyceride, aspartate transaminase and alanine transaminase levels and an evident increase in body weight, plasma insulin level and high density lipoprotein were observed in HDP treated diabetic mice. The polysaccharide (P1) showed a significant scavenging hydroxyl radicals and superoxide anion radical effects in vitro, which indicated that P1 could protect alloxan-induced pancreatic islets from damage by scavenging the free radicals and repaired the destroyed pancreatic β-cells. Pharmacokinetics assay showed that DNJ could be absorbed from the gastrointestinal mucosa and diffused rapidly into the liver, resulted in postprandial blood glucose decrease and alleviated the toxicity caused by sustained supra-physiological glucose to pancreatic β-cells. RT-PCR results indicated that HDP could modulate the hepatic glucose metabolism and gluconeogenesis by up/down-regulating the expression of rate-limiting enzymes (glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) in liver and up-regulating the pancreatic and duodenal homeobox factor-1 (PDX-1), insulin-1 and insulin-2 expressions in pancreas. CONCLUSION These findings suggested that HDP has complimentary potency to develop an antihyperglycemic agent for treatment of diabetes mellitus.
Collapse
Affiliation(s)
- You-Gui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, No. 198 Shiqiao Road, Hangzhou 310021, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Baur JA. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 2010; 131:261-9. [PMID: 20219519 PMCID: PMC2862768 DOI: 10.1016/j.mad.2010.02.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 02/13/2010] [Accepted: 02/20/2010] [Indexed: 12/24/2022]
Abstract
Dietary restriction (DR) delays or prevents age-related diseases and extends lifespan in species ranging from yeast to primates. Although the applicability of this regimen to humans remains uncertain, a proportional response would add more healthy years to the average life than even a cure for cancer or heart disease. Because it is unlikely that many would be willing or able to maintain a DR lifestyle, there has been intense interest in mimicking its beneficial effects on health, and potentially longevity, with drugs. To date, such efforts have been hindered primarily by our lack of mechanistic understanding of how DR works. Sirtuins, NAD(+)-dependent deacetylases and ADP-ribosyltransferases that influence lifespan in lower organisms, have been proposed to be key mediators of DR, and based on this model, the sirtuin activator resveratrol has been proposed as a candidate DR mimetic. Indeed, resveratrol extends lifespan in yeast, worms, flies, and a short-lived species of fish. In rodents, resveratrol improves health, and prevents the early mortality associated with obesity, but its precise mechanism of action remains a subject of debate, and extension of normal lifespan has not been observed. This review summarizes recent work on resveratrol, sirtuins, and their potential to mimic beneficial effects of DR.
Collapse
Affiliation(s)
- Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism, Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Song IS, Shin HJ, Shin JG. Genetic variants of organic cation transporter 2 (OCT2) significantly reduce metformin uptake in oocytes. Xenobiotica 2008; 38:1252-62. [PMID: 18728938 DOI: 10.1080/00498250802130039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The authors sought to evaluate the contribution of organic cation transporters (OCTs) to the renal tubular transport of metformin using LLC-PK1 cells as an in vitro model for the renal proximal tubule, and to investigate the effects of three non-synonymous genetic variants of OCT2 on the transport activity of metformin in vitro using an oocyte over-expression system. 2. The basolateral-to-apical transport of metformin was significantly greater than the apical-to-basolateral transport and showed concentration dependency with the kinetic parameters: maximum transport rate (V(max)), 922 pmol min(-1) per 5 x 10(5) cells; Michaelis-Menten constant (K(m)), 393 microM; intrinsic clearance (CL(int)), 2.35 microl min(-1) per 5 x 10(5) cells; and diffusion constant (K(d)), 0.33 microl min(-1) per 5 x 10(5) cells. The basolateral-to-apical transport of metformin was inhibited by phenoxybenzamine, an inhibitor of OCTs, but not by cyclosporine A, MK571, or fumitremorgin C, which are inhibitors of P-glycoprotein, multidrug resistance proteins (MRPs), and breast cancer resistance protein (BCRP), respectively, suggesting that OCTs play a role in renal tubular secretion of metformin. 3. Metformin uptake was much greater in oocytes expressing OCT2-wild type (OCT2-WT) than OCT1-WT compared with uptake in water-injected oocytes. Uptake was significantly decreased in oocytes expressing OCT2-T199I, -T201M, and -A270S compared with that in OCT2-WT, suggesting that metformin is a better substrate for OCT2 than for OCT1 and that the amino acid-substituted variants of OCT2 cause a functional decrease in metformin uptake. 4. In conclusion, the genetic variants of OCT2 (OCT2-T199I, -T201M, and -A270S) decreased the transport activity of metformin and thus may contribute to the inter-individual variation in metformin disposition as OCT2 plays a pivotal role in renal excretion, the major disposition route of metformin.
Collapse
Affiliation(s)
- I S Song
- Department of Pharmacology and Pharmacogenomics, Research Center, Inje University College of Medicine, Busan, Korea.
| | | | | |
Collapse
|
37
|
Heishi M, Hayashi K, Ichihara J, Ishikawa H, Kawamura T, Kanaoka M, Taiji M, Kimura T. Comparison of gene expression changes induced by biguanides in db/db mice liver. J Toxicol Sci 2008; 33:339-47. [PMID: 18670165 DOI: 10.2131/jts.33.339] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Large-scale clinical studies have shown that the biguanide drug metformin, widely used for type 2 diabetes, to be very safe. By contrast, another biguanide, phenformin, has been withdrawn from major markets because of a high incidence of serious adverse effects. The difference in mode of action between the two biguanides remains unclear. To gain insight into the different modes of action of the two drugs, we performed global gene expression profiling using the livers of obese diabetic db/db mice after a single administration of phenformin or metformin at levels sufficient to cause a significant reduction in blood glucose level. Metformin induced modest expression changes, including G6pc in the liver as previously reported. By contrast, phenformin caused changes in expression level of many additional genes. We used a knowledge-based bioinformatic analysis to study the effects of phenformin. Differentially expressed genes identified in this study constitute a large gene network, which may be related to cell death, inflammation or wound response. Our results suggest that the two biguanides show a similar hypoglycemic effect in db/db mice, but phenformin induces a greater stress on the liver even a short time after a single administration. These findings provide a novel insight into the cause of the relatively high occurrence of serious adverse effect after phenformin treatment.
Collapse
Affiliation(s)
- Masayuki Heishi
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Osaka
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Choi MK, Jin QR, Jin HE, Shim CK, Cho DY, Shin JG, Song IS. Effects of tetraalkylammonium compounds with different affinities for organic cation transporters on the pharmacokinetics of metformin. Biopharm Drug Dispos 2008; 28:501-10. [PMID: 17876861 DOI: 10.1002/bdd.576] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The study sought to investigate the effects of tetraalkylammonium (TAA), inhibitors of the organic cation transporters (OCTs) with different affinities, on the pharmacokinetics of metformin. The inhibitory potentials of TAAs on the uptake of metformin were evaluated by determining IC(50) values in MDCK cells over-expressing OCTs and, to assess in vivo drug interactions, metformin and TAAs were coadministered to rats. Uptake of metformin was facilitated by over-expression of hOCT1 and hOCT2 and showed saturable processes, indicating that metformin is a substrate of hOCT1 and hOCT2. The IC(50) values of TAAs for hOCT2 were lower than hOCT1 and decreased with increasing alkyl chain length, indicating that the inhibitory potential of TAAs on metformin uptake was greater in hOCT2 than in hOCT1 and increased with increasing alkyl chain length. The plasma concentration of metformin was elevated by the coadministration of tetrapropylammonium (TPrA) and tetrapentylammonium (TPeA), but not by tetramethylammonium (TMA) or tetraethylammonium (TEA). However, the plasma concentrations of TMA, TEA and TPrA were not changed by the coadministration of metformin. In conclusion, in vivo drug interactions between metformin and TAAs were caused only when metformin was coadministered with TAAs showing higher affinities for OCTs.
Collapse
Affiliation(s)
- Min-Koo Choi
- Department of Pharmaceutics, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Lu C, Feng C. Determination of Clinically Very Basic Compounds by Nanoscale Liquid Chromatography with Tandem Mass Spectrometry. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070701665584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Chi‐Yu Lu
- a College of Medicine, Graduate Institute of Biochemistry, Kaohsiung Medical University , Kaohsiung, Taiwan
| | - Chia‐Hsien Feng
- b Department of Radiological Technology , Central Taiwan University of Science and Technology , Taichung, Taiwan
| |
Collapse
|
40
|
Louie JP, Peterson J. Not a basic case. Pediatr Emerg Care 2006; 22:461-3. [PMID: 16801854 DOI: 10.1097/01.pec.0000226027.55302.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jeffrey P Louie
- Children's Hospital and Clinics of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|
41
|
Cryer DR, Nicholas SP, Henry DH, Mills DJ, Stadel BV. Comparative outcomes study of metformin intervention versus conventional approach the COSMIC Approach Study. Diabetes Care 2005; 28:539-43. [PMID: 15735184 DOI: 10.2337/diacare.28.3.539] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Metformin was approved by the Food and Drug Administration in 1995 subject to the conduct of a randomized trial to evaluate the risk of lactic acidosis or other serious adverse events (SAEs) with this agent, under usual care conditions. RESEARCH DESIGN AND METHODS The Comparative Outcomes Study of Metformin Intervention versus Conventional (COSMIC) Approach Study was a randomized, open-label, active-comparator, parallel-group, 1-year trial in type 2 diabetic patients suboptimally controlled on diet or sulfonylurea. Patients received metformin (n = 7,227) or other usual care treatments (n = 1,505). The primary end point was the incidence of SAEs, death, and hospitalization. RESULTS SAEs occurred in 10.3% (95% CI 9.6-11.1%) of the metformin group and in 11.0% (9.5-12.7%) of the usual care group (P = 0.431). Lactic acidosis did not occur. All-cause mortality (1.1% [0.9-1.4%] vs. 1.3% [0.8-2.0%], P = 0.596) and hospitalization (9.4% [8.8-10.1%] vs. 10.4% [8.9-12.1%], P = 0.229) were similar between groups. CONCLUSIONS The incidence of SAEs was similar between groups. Lactic acidosis was not observed. Metformin may be safely prescribed for type 2 diabetes if contraindications and warnings are respected. This study demonstrates the utility of large, simple trials for risk evaluation of treatments for common diseases.
Collapse
Affiliation(s)
- Dennis R Cryer
- Bristol-Myers Squibb Company, 777 Scudders Mill Rd., Plainsboro, NJ 08536, USA.
| | | | | | | | | |
Collapse
|
42
|
Krishnamurthy M, Sahouria JJ, Desai R, Caguiat J. Buformin-induced lactic acidosis--a symptom of modern healthcare malady. J Am Geriatr Soc 2004; 52:1785. [PMID: 15450070 DOI: 10.1111/j.1532-5415.2004.52479_7.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Abstract
Over the last 15 years, a number of transporters that translocate organic cations were characterized functionally and also identified on the molecular level. Organic cations include endogenous compounds such as monoamine neurotransmitters, choline, and coenzymes, but also numerous drugs and xenobiotics. Some of the cloned organic cation transporters accept one main substrate or structurally similar compounds (oligospecific transporters), while others translocate a variety of structurally diverse organic cations (polyspecific transporters). This review provides a survey of cloned organic cation transporters and tentative models that illustrate how different types of organic cation transporters, expressed at specific subcellular sites in hepatocytes and renal proximal tubular cells, are assembled into an integrated functional framework. We briefly describe oligospecific Na(+)- and Cl(-)-dependent monoamine neurotransmitter transporters ( SLC6-family), high-affinity choline transporters ( SLC5-family), and high-affinity thiamine transporters ( SLC19-family), as well as polyspecific transporters that translocate some organic cations next to their preferred, noncationic substrates. The polyspecific cation transporters of the SLC22 family including the subtypes OCT1-3 and OCTN1-2 are presented in detail, covering the current knowledge about distribution, substrate specificity, and recent data on their electrical properties and regulation. Moreover, we discuss artificial and spontaneous mutations of transporters of the SLC22 family that provide novel insight as to the function of specific protein domains. Finally, we discuss the clinical potential of the increasing knowledge about polymorphisms and mutations in polyspecific organic cation transporters.
Collapse
Affiliation(s)
- H Koepsell
- Institut für Anatomie und Zellbiologie, Bayerischen Julius-Maximilians-Universität, Koellikerstr. 6, 97070 Würzburg, Germany.
| | | | | |
Collapse
|
44
|
Kumar A, Nugent K, Kalakunja A, Pirtle F. Severe acidosis in a patient with type 2 diabetes mellitus, hypertension, and renal failure. Chest 2003; 123:1726-9. [PMID: 12740293 DOI: 10.1378/chest.123.5.1726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Ashwani Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock 79430, USA
| | | | | | | |
Collapse
|
45
|
Orban JC, Giunti C, Levraut J, Grimaud D, Ichai C. [Metformin-associated lactic acidosis remains a serious complication of metformin therapy]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2003; 22:461-5. [PMID: 12831973 DOI: 10.1016/s0750-7658(03)00067-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report 4 cases of lactic acidosis in diabetic patients usually treated with metformin. For the first 3 patients, the clinical history was similar because lactic acidosis was precipitated by gastro-intestinal disorders whereas all of them were simultaneously treated with several nephrotoxic drugs. These 3 patients presented with acute renal failure on arrival at hospital. Their issue was fatal whereas any obvious cause of overproduction of lactate was found. The fourth case, which was due to a voluntary intoxication, was the only one presenting with a favourable evolution. The metformin plasma and red blood cell levels were performed for 2 of 4 patients and confirmed the overdose. These observations remind that metformin-associated lactic acidosis remains a serious complication, and that medical doctors must respect strictly contra-indications and guidelines for withdrawing metformin.
Collapse
Affiliation(s)
- J C Orban
- Service de réanimation, département d'anesthésie-réanimation Est, hôpital Saint-Roch, 5, rue Pierre-Dévoluy, CHU de Nice, 06006 cedex 1, Nice, France
| | | | | | | | | |
Collapse
|
46
|
Ichai C, Levraut J, Samat-Long C, Grimaud D. [Lactic acidosis and biguanides: coincidence or negligence of prescribing guidelines]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2003; 22:399-401. [PMID: 12831965 DOI: 10.1016/s0750-7658(03)00068-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 2003; 63:844-8. [PMID: 12644585 DOI: 10.1124/mol.63.4.844] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biguanides are a class of drugs widely used as oral antihyperglycemic agents for the treatment of type 2 diabetes mellitus, but they are associated with lactic acidosis, a lethal side effect. We reported previously that biguanides are good substrates of rat organic cation transporter 1 (Oct1; Slc22a1) and, using Oct1(-/-) mice, that mouse Oct1 is responsible for the hepatic uptake of a biguanide, metformin. In the present study, we investigated whether the liver is the key organ for the lactic acidosis. When mice were given metformin, the blood lactate concentration significantly increased in the wild-type mice, whereas only a slight increase was observed in Oct1(-/-) mice. The plasma concentration of metformin exhibited similar time profiles between the wild-type and Oct1(-/-) mice, suggesting that the liver is the key organ responsible for the lactic acidosis. Furthermore, the extent of the increase in blood lactate caused by three different biguanides (metformin, buformin, and phenformin) was compared with the abilities to reduce oxygen consumption in isolated rat hepatocytes. When rats were given each of these biguanides, the lactate concentration increased significantly. This effect was dose-dependent, and the EC(50) values of metformin, buformin, and phenformin were 734, 119, and 4.97 microM, respectively. All of these biguanides reduced the oxygen consumption by isolated rat hepatocytes in a concentration-dependent manner. When the concentration required to reduce the oxygen consumption to 75% of the control value (from 0.40 to 0.29 micromol/min/mg protein) was compared with the EC(50) value obtained in vivo, a clear correlation was observed among the three biguanides, suggesting that oxygen consumption in isolated rat hepatocytes can be used as an index of the incidence of lactic acidosis.
Collapse
Affiliation(s)
- De-Sheng Wang
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Type 2 diabetes is strongly associated with nonalcoholic fatty liver disease (NAFLD), a spectrum of liver damage that ranges from relatively benign hepatic steatosis to potentially fatal cirrhosis. The severities of insulin resistance and liver damage parallel each other, with the greatest prevalence of cirrhosis occurring in cirrhotics. However, it is unknown whether one of these conditions causes the other, or if both are consequences of another process. Experimental evidence suggests that both insulin resistance and NAFLD result from a chronic inflammatory state. The mechanisms driving this chronic inflammation are unknown but might include the egress of products from intestinal bacteria into the portal blood, liver, and systemic circulation to trigger a sustained inflammatory cytokine response in genetically susceptible individuals. More research is needed to evaluate this hypothesis and to determine the benefits of treatments that interrupt this pathogenic cascade.
Collapse
Affiliation(s)
- Jeanne M Clark
- Department of Medicine, Johns Hopkins University School of Medicine, 912 Ross Building, 720 Rutland Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
49
|
Harrigan RA, Nathan MS, Beattie P. Oral agents for the treatment of type 2 diabetes mellitus: pharmacology, toxicity, and treatment. Ann Emerg Med 2001; 38:68-78. [PMID: 11423816 DOI: 10.1067/mem.2001.114314] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently available oral agents for the treatment of type 2 diabetes mellitus include a variety of compounds from 5 different pharmacologic classes with differing mechanisms of action, adverse effect profiles, and toxicities. The oral antidiabetic drugs can be classified as either hypoglycemic agents (sulfonylureas and benzoic acid derivatives) or antihyperglycemic agents (biguanides, alpha-glucosidase inhibitors, and thiazolidinediones). In this review, a brief discussion of the pharmacology of these agents is followed by an examination of the adverse effects, drug-drug interactions, and toxicities. Finally, treatment of sulfonylurea-induced hypoglycemia is described, including general supportive care and the management of pediatric sulfonylurea ingestions. The adjunctive roles of glucagon, diazoxide, and octreotide for refractory hypoglycemia are also discussed.
Collapse
Affiliation(s)
- R A Harrigan
- Division of Emergency Medicine, Temple University Hospital, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|