1
|
Larsen S. Acute antioxidant supplementation and performance - Should this be considered. Free Radic Biol Med 2024; 224:301-309. [PMID: 39147073 DOI: 10.1016/j.freeradbiomed.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
It is well known that a training intervention leads to mitochondrial adaptations with increased skeletal muscle mitochondrial biogenesis and function. Studies have recently indicated that skeletal muscle mitochondrial function is important for athletic performance. During exercise reactive oxygen species are released from skeletal muscle potentially leading to adaptations but maybe also to fatigue. Focus has been on how chronic antioxidant supplementation affects a training adaptation, where some studies are reporting an abolished adaptation. Whether acute antioxidant supplementation could have a positive effect on fatigue and performance is interesting and highly relevant in sports where athletes are competing over several consecutive days or on the same day, with preliminary competitions in the morning and finals in the afternoon, where it is important for the athletes to recover fast. This review provides an overview of the effects of acute antioxidant supplementation and whether it leads to improved performance and/or faster recovery in humans.
Collapse
Affiliation(s)
- Steen Larsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Poland; Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark.
| |
Collapse
|
2
|
Vo TTT, Peng TY, Nguyen TH, Bui TNH, Wang CS, Lee WJ, Chen YL, Wu YC, Lee IT. The crosstalk between copper-induced oxidative stress and cuproptosis: a novel potential anticancer paradigm. Cell Commun Signal 2024; 22:353. [PMID: 38970072 PMCID: PMC11225285 DOI: 10.1186/s12964-024-01726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Copper is a crucial trace element that plays a role in various pathophysiological processes in the human body. Copper also acts as a transition metal involved in redox reactions, contributing to the generation of reactive oxygen species (ROS). Under prolonged and increased ROS levels, oxidative stress occurs, which has been implicated in different types of regulated cell death. The recent discovery of cuproptosis, a copper-dependent regulated cell death pathway that is distinct from other known regulated cell death forms, has raised interest to researchers in the field of cancer therapy. Herein, the present work aims to outline the current understanding of cuproptosis, with an emphasis on its anticancer activities through the interplay with copper-induced oxidative stress, thereby providing new ideas for therapeutic approaches targeting modes of cell death in the future.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Thi Hong Nguyen
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Trang Ngoc Huyen Bui
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yang-Che Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
3
|
da Silva LA, Boeira D, Doeynart R, Longen WC, Marqueze LF, Silveira PC, Thirupathi A, Gu Y, Pinho RA. Effects of aerobic exercise during recovery from eccentric contraction on muscular performance, oxidative stress and inflammation. Curr Res Physiol 2024; 7:100129. [PMID: 39070775 PMCID: PMC11283083 DOI: 10.1016/j.crphys.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
This study investigated the effects of aerobic exercise during recovery from eccentric contraction (EC) on muscular performance, oxidative stress, and inflammation. Nineteen male subjects between 18 and 29 years were divided into unexercised (control, n = 9) and exercised (n = 10) groups. Initially, the subjects performed EC as 3 sets until exhaustion with elbow flexion and extension on the Scott bench at 80% in 1RM, followed by four aerobic exercise sessions. The results obtained indicated (p > 0.05) that aerobic physical exercise during the recovery period does not improve muscle performance (isometric strength and muscular fatigue), oxidative stress parameters (lipid peroxidation, protein oxidation and antioxidant enzyme activity), and inflammatory cytokines (IL-1β, TNF-α, IL-10). In conclusion, the aerobic exercise during the recovery period does not alter the parameters of performance, oxidative stress and inflammation induced by the EC.
Collapse
Affiliation(s)
- Luciano A. da Silva
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Laboratory of Exercise Biochemistry and Physiology, Graduate Programme in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Laboratory of Exercise Psychophysiology, Advanced Aquatic Exercise Research Group/Extremo Sul Catarinense, Criciúma, Brazil
| | - Daniel Boeira
- Laboratory of Exercise Psychophysiology, Advanced Aquatic Exercise Research Group/Extremo Sul Catarinense, Criciúma, Brazil
| | - Ramiro Doeynart
- Laboratory of Exercise Psychophysiology, Advanced Aquatic Exercise Research Group/Extremo Sul Catarinense, Criciúma, Brazil
| | - Willians C. Longen
- Laboratory of Exercise Biochemistry and Physiology, Graduate Programme in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Luis Felipe Marqueze
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paulo C.L. Silveira
- Laboratory of Exercise Biochemistry and Physiology, Graduate Programme in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Anand Thirupathi
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Ricardo A. Pinho
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Yu YQ, Zhu T. Concentration-dependent effects of reductive pulmonary inhalants on ultrafine particle-induced oxidative stress: Insights for health risk assessment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100339. [PMID: 38107555 PMCID: PMC10724529 DOI: 10.1016/j.ese.2023.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
The impact of reductive pulmonary inhalants on ultrafine particles (UFPs)-induced pulmonary oxidative stress remains a crucial consideration, yet the concentration-dependent effects of these inhalants have remained unexplored. Here we synthesized composite UFPs simulating atmospheric UFPs, primarily composed of metals and quinones. We subjected these UFPs to varying concentrations (0-7000 μM) of two reductive pulmonary inhalants, N-acetylcysteine and salbutamol, to assess their influence on oxidative potential, measured through the dithiothreitol assay (OPDTT). Simultaneously, we analysed the soluble metal content of UFPs to uncover potential relationships between oxidative potential and metal solubility. Our results unveil a dual role played by these inhalants in shaping the OPDTT of composite UFPs. Specifically, OPDTT generally increased as inhalant concentrations rose from 0 to 300 μM. However, an intriguing reversal occurred when concentrations exceeded 500 μM, resulting in a decline in OPDTT. Relative to untreated UFPs, these inhalants induced promotion and inhibition effects within concentration ranges of 100-500 and >1000 μM, respectively. While no significant correlation emerged between OPDTT and soluble metal content as inhalant concentrations ranged from 0 to 7000 μM, noteworthy positive correlations emerged at lower inhalant concentrations (e.g., N-acetylcysteine at 0-300 μM). These findings provide insights into the potential influence of reductive pulmonary inhalants on health risks associated with UFP exposure, further underscoring the need for continued research in this critical area.
Collapse
Affiliation(s)
- Ya-qi Yu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| |
Collapse
|
5
|
Yazicioglu O, Ucuncu MK, Guven K. Ingredients in Commercially Available Mouthwashes. Int Dent J 2024; 74:223-241. [PMID: 37709645 PMCID: PMC10988267 DOI: 10.1016/j.identj.2023.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVES Mouthwashes, a cornerstone of oral and dental hygiene, play a pivotal role in combating the formation of dental plaque, a leading cause of periodontal disease and dental caries. This study aimed to review the composition of mouthwashes found on retail shelves in Turkey and evaluate their prevalence and side effects, if any. METHODS The mouthwashes examined were sourced from the 5 largest chain stores in each district of Istanbul. A comprehensive list of the constituents was meticulously recorded. The research was supported by an extensive compilation of references from scholarly databases such as Google Scholar, PubMed, and ScienceDirect. Through rigorous analysis, the relative proportions of mouthwash ingredients and components were determined. RESULTS A total of 45 distinctive variations of mouthwashes, representing 17 prominent brands, were identified. Amongst the 116 ingredients discovered, 70 were evaluated for potential adverse effects and undesirable side effects. The aroma of the mouthwash (n = 45; 100%), as welll as their sodium fluoride (n = 28; 62.22%), sodium saccharin (n = 29; 64.44%), sorbitol (n = 21; 46.6%), and propylene glycol (n = 28; 62.22%) content were the main undesireable features. CONCLUSIONS The limited array of mouthwashes found on store shelves poses a concern for both oral and public health. Furthermore, the intricate composition of these products, consisting of numerous ingredients with the potential for adverse effects, warrants serious attention. Both clinicians and patients should acknowledge the importance and unwarranted side effects of the compnents of the mouthwashes.
Collapse
Affiliation(s)
- Oktay Yazicioglu
- Istanbul University, Faculty of Dentistry, Department of Restorative Dentistry, Istanbul, Turkey
| | - Musa Kazim Ucuncu
- Altinbas University, Faculty of Dentistry, Department of Restorative Dentistry, Istanbul, Turkey.
| | | |
Collapse
|
6
|
Kamel AA, Nassar AY, Meligy FY, Omar YA, Nassar GAY, Ezzat GM. Acetylated oligopeptide and N-acetylcysteine protect against iron overload-induced dentate gyrus hippocampal degeneration through upregulation of Nestin and Nrf2/HO-1 and downregulation of MMP-9/TIMP-1 and GFAP. Cell Biochem Funct 2024; 42:e3958. [PMID: 38396357 DOI: 10.1002/cbf.3958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.
Collapse
Affiliation(s)
- Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yomna A Omar
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Gamal A Y Nassar
- Metabolic and Genetic Disorders Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Ito H, Shoji Y, Matsumoto KI, Fukuhara K, Nakanishi I. Enhanced Inhibition of Cancer Cell Migration by a Planar Catechin Analog. ACS Med Chem Lett 2024; 15:310-313. [PMID: 38352823 PMCID: PMC10860178 DOI: 10.1021/acsmedchemlett.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Cancer cell migration is related to malignancy and patient prognosis. We previously reported that intracellular reactive oxygen species (ROS) promoted cancer cellular migration and invasion and that an antioxidant enzyme could help to attenuate the malignancy. Catechin is known as an antioxidant, and we have developed a catechin analog, planar catechin, which showed an antioxidant activity significantly stronger than that of the parent (+)-catechin. In this study, we examined the effects of the planar catechin on the migration of gastric normal and cancer cells. A scratched assay showed that the planar catechin suppressed the cellular migration rates in both normal and cancer cells, while the prevention levels in cancer cells were remarkable compared to the normal cells. These results suggest that the planar catechin with the enhanced antioxidant activity effectively scavenged the ROS overexpressed in the cancer cells and inhibited cancer cellular activities, including migration.
Collapse
Affiliation(s)
- Hiromu Ito
- Quantum
RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum
Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Yoshimi Shoji
- Quantum
RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum
Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
- Quantitative
RedOx Sensing Group, Department of Radiation Regulatory Science Research,
Institute for Radiological Sciences (NIRS), Quantum Life and Medical
Science Directorate (QLMS), National Institutes
for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Ken-ichiro Matsumoto
- Quantitative
RedOx Sensing Group, Department of Radiation Regulatory Science Research,
Institute for Radiological Sciences (NIRS), Quantum Life and Medical
Science Directorate (QLMS), National Institutes
for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Kiyoshi Fukuhara
- Division
of Medicinal Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo 142-8555, Japan
| | - Ikuo Nakanishi
- Quantum
RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum
Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| |
Collapse
|
8
|
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol 2024; 25:13-33. [PMID: 37714962 DOI: 10.1038/s41580-023-00645-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
Several different reactive oxygen species (ROS) are generated in vivo. They have roles in the development of certain human diseases whilst also performing physiological functions. ROS are counterbalanced by an antioxidant defence network, which functions to modulate ROS levels to allow their physiological roles whilst minimizing the oxidative damage they cause that can contribute to disease development. This Review describes the mechanisms of action of antioxidants synthesized in vivo, antioxidants derived from the human diet and synthetic antioxidants developed as therapeutic agents, with a focus on the gaps in our current knowledge and the approaches needed to close them. The Review also explores the reasons behind the successes and failures of antioxidants in treating or preventing human disease. Antioxidants may have special roles in the gastrointestinal tract, and many lifestyle features known to promote health (especially diet, exercise and the control of blood glucose and cholesterol levels) may be acting, at least in part, by antioxidant mechanisms. Certain reactive sulfur species may be important antioxidants but more accurate determinations of their concentrations in vivo are needed to help assess their contributions.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Neurobiology Research Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Reeder BJ. Insights into the function of cytoglobin. Biochem Soc Trans 2023; 51:1907-1919. [PMID: 37721133 PMCID: PMC10657185 DOI: 10.1042/bst20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Since its discovery in 2001, the function of cytoglobin has remained elusive. Through extensive in vitro and in vivo research, a range of potential physiological and pathological mechanisms has emerged for this multifunctional member of the hemoglobin family. Currently, over 200 research publications have examined different aspects of cytoglobin structure, redox chemistry and potential roles in cell signalling pathways. This research is wide ranging, but common themes have emerged throughout the research. This review examines the current structural, biochemical and in vivo knowledge of cytoglobin published over the past two decades. Radical scavenging, nitric oxide homeostasis, lipid binding and oxidation and the role of an intramolecular disulfide bond on the redox chemistry are examined, together with aspects and roles for Cygb in cancer progression and liver fibrosis.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, U.K
| |
Collapse
|
10
|
da Paz Martins AS, de Andrade KQ, de Araújo ORP, da Conceição GCM, da Silva Gomes A, Goulart MOF, Moura FA. Extraintestinal Manifestations in Induced Colitis: Controversial Effects of N-Acetylcysteine on Colon, Liver, and Kidney. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8811463. [PMID: 37577725 PMCID: PMC10423092 DOI: 10.1155/2023/8811463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) characterized by continuous inflammation in the colonic mucosa. Extraintestinal manifestations (EIM) occur due to the disruption of the intestinal barrier and increased permeability caused by redox imbalance, dysbiosis, and inflammation originating from the intestine and contribute to morbidity and mortality. The aim of this study is to investigate the effects of oral N-acetylcysteine (NAC) on colonic, hepatic, and renal tissues in mice with colitis induced by dextran sulfate sodium (DSS). Male Swiss mice received NAC (150 mg/kg/day) in the drinking water for 30 days before and during (DSS 5% v/v; for 7 days) colitis induction. On the 38th day, colon, liver, and kidney were collected and adequately prepared for the analysis of oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione reduced (GSH), glutathione oxidized (GSSG), malondialdehyde (MDA), and hydrogen peroxide (H2O2)) and inflammatory biomarkers (myeloperoxidase (MPO) -, tumor necrosis factor alpha - (TNF-α, and interleukin-10 (IL-10)). In colon, NAC protected the histological architecture. However, NAC did not level up SOD, in contrast, it increased MDA and pro-inflammatory effect (increased of TNF-α and decreased of IL-10). In liver, colitis caused both oxidative (MDA, SOD, and GSH) and inflammatory damage (IL-10). NAC was able only to increase GSH and GSH/GSSG ratio. Kidney was not affected by colitis; however, NAC despite increasing CAT, GSH, and GSH/GSSG ratio promoted lipid peroxidation (increased MDA) and pro-inflammatory action (decreased IL-10). Despite some beneficial antioxidant effects of NAC, the negative outcomes concerning irreversible oxidative and inflammatory damage in the colon, liver, and kidney confirm the nonsafety of the prophylactic use of this antioxidant in models of induced colitis, suggesting that additional studies are needed, and its use in humans not yet recommended for the therapeutic routine of this disease.
Collapse
Affiliation(s)
- Amylly Sanuelly da Paz Martins
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | | | | | | | - Amanda da Silva Gomes
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Fabiana Andréa Moura
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- College of Medicine, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| |
Collapse
|
11
|
Clayton DJ, Burbeary R, Hennis PJ, James RM, Saward C, Colledge A, Scott R, Gilpin S, McMahon R, Varley I. Turmeric supplementation improves markers of recovery in elite male footballers: a pilot study. Front Nutr 2023; 10:1175622. [PMID: 37293669 PMCID: PMC10244580 DOI: 10.3389/fnut.2023.1175622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Football match-play causes muscle damage and provokes an inflammatory response. Rapid recovery is paramount to optimising subsequent performance and reducing injury risk. Turmeric contains high concentrations of curcumin, a polyphenol that has been shown to reduce muscle damage and soreness post-exercise in recreational exercisers. However, it is unknown whether a curcumin-containing supplement can support elite footballers recovery between matches. This applied study explored whether a turmeric supplement could improve performance, subjective and physiological markers of recovery, in elite male footballers. Twenty-four elite male footballers divided into a turmeric group, who consumed 60 mL of a turmeric drink twice per day, or a control group who did not. After 96 h of rest, baseline measurements of subjective soreness (leg and whole-body), plasma creatine kinase ([CK]), plasma C-reactive protein ([CRP]), isometric mid-thigh pull (IMTP) and counter movement jump (CMJ), were collected. Following eight competitive matches, subjective leg and whole-body soreness and plasma concentrations of inflammation markers ([CK] and [CRP]) were assessed immediately (0 h), 40 and 64 h post-match. Performance markers (IMTP and CMJ) were also assessed at 40 and 64 h post-match. Percentage change from baseline showed a main effect of group (p = 0.035, p = 0.005) and time (p = 0.002, p = 0.002) for both leg and whole-body soreness, respectively. There was a group by time interaction effect (p = 0.049) for [CRP]. There were no effects of turmeric on [CK], CMJ or IMTP. This applied study is the first in elite footballers to show that a curcumin-containing supplementation may attenuate a biomarker of inflammation [CRP] and soreness post-match play.
Collapse
Affiliation(s)
- David J. Clayton
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ross Burbeary
- Derby County Football Club, Pride Park Stadium, Derby, United Kingdom
| | - Philip J. Hennis
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ruth M. James
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Christopher Saward
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Amy Colledge
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Reece Scott
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Steve Gilpin
- Rotherham United Football Club, AESSEAL New York Stadium, Rotherham, United Kingdom
| | - Ryan McMahon
- Rotherham United Football Club, AESSEAL New York Stadium, Rotherham, United Kingdom
| | - Ian Varley
- Musculoskeletal Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
12
|
Ghazzawi HA, Hussain MA, Raziq KM, Alsendi KK, Alaamer RO, Jaradat M, Alobaidi S, Al Aqili R, Trabelsi K, Jahrami H. Exploring the Relationship between Micronutrients and Athletic Performance: A Comprehensive Scientific Systematic Review of the Literature in Sports Medicine. Sports (Basel) 2023; 11:109. [PMID: 37368559 DOI: 10.3390/sports11060109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this systematic review is twofold: (i) to examine the effects of micronutrient intake on athletic performance and (ii) to determine the specific micronutrients, such as vitamins, minerals, and antioxidants, that offer the most significant enhancements in terms of athletic performance, with the goal of providing guidance to athletes and coaches in optimizing their nutritional strategies. The study conducted a systematic search of electronic databases (i.e., PubMed, Web of Science, Scopus) using keywords pertaining to micronutrients, athletic performance, and exercise. The search involved particular criteria of studies published in English between 1950 and 2023. The findings suggest that vitamins and minerals are crucial for an athlete's health and physical performance, and no single micronutrient is more important than others. Micronutrients are necessary for optimal metabolic body's functions such as energy production, muscle growth, and recovery, which are all important for sport performance. Meeting the daily intake requirement of micronutrients is essential for athletes, and while a balanced diet that includes healthy lean protein sources, whole grains, fruits, and vegetables is generally sufficient, athletes who are unable to meet their micronutrient needs due to malabsorption or specific deficiencies may benefit from taking multivitamin supplements. However, athletes should only take micronutrient supplements with the consultation of a specialized physician or nutritionist and avoid taking them without confirming a deficiency.
Collapse
Affiliation(s)
- Hadeel Ali Ghazzawi
- Department Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Mariam Ali Hussain
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
| | - Khadija Majdy Raziq
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
| | - Khawla Khaled Alsendi
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
| | - Reem Osama Alaamer
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
| | - Manar Jaradat
- Department Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Sondos Alobaidi
- Department Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Raghad Al Aqili
- Department Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
- Research Laboratory-Education, Motricity, Sport and Health, University of Sfax, Sfax 3000, Tunisia
| | - Haitham Jahrami
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain
- Government Hospitals, Ministry of Health, Manama 323, Bahrain
| |
Collapse
|
13
|
Sakai M, Yu Z, Taniguchi M, Picotin R, Oyama N, Stellwagen D, Ono C, Kikuchi Y, Matsui K, Nakanishi M, Yoshii H, Furuyashiki T, Abe T, Tomita H. N-Acetylcysteine Suppresses Microglial Inflammation and Induces Mortality Dose-Dependently via Tumor Necrosis Factor-α Signaling. Int J Mol Sci 2023; 24:ijms24043798. [PMID: 36835209 PMCID: PMC9968039 DOI: 10.3390/ijms24043798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
N-acetylcysteine (NAC) is an antioxidant that prevents tumor necrosis factor (TNF)-α-induced cell death, but it also acts as a pro-oxidant, promoting reactive oxygen species independent apoptosis. Although there is plausible preclinical evidence for the use of NAC in the treatment of psychiatric disorders, deleterious side effects are still of concern. Microglia, key innate immune cells in the brain, play an important role in inflammation in psychiatric disorders. This study aimed to investigate the beneficial and deleterious effects of NAC on microglia and stress-induced behavior abnormalities in mice, and its association with microglial TNF-α and nitric oxide (NO) production. The microglial cell line MG6 was stimulated by Escherichia coli lipopolysaccharide (LPS) using NAC at varying concentrations for 24 h. NAC inhibited LPS-induced TNF-α and NO synthesis, whereas high concentrations (≥30 mM) caused MG6 mortality. Intraperitoneal injections of NAC did not ameliorate stress-induced behavioral abnormalities in mice, but high-doses induced microglial mortality. Furthermore, NAC-induced mortality was alleviated in microglial TNF-α-deficient mice and human primary M2 microglia. Our findings provide ample evidence for the use of NAC as a modulating agent of inflammation in the brain. The risk of side effects from NAC on TNF-α remains unclear and merits further mechanistic investigations.
Collapse
Grants
- 20dm0107099h0005, JP19dm0107099, JP18ek0109183, JP22gm0910012, and JP22wm0425001 Ministry of Education, Culture, Sports, Science and Technology of Japan, the Strategic Research Program for Brain Sciences, and the Japan Agency for Medical Research and Development
- KAKENHI 21390329, 16K07210, 18H05429, 21H04812, and 19K16372 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan
- No. 24116007 Grant-in-Aid for Scientific Research on Innovative Areas
Collapse
Affiliation(s)
- Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Correspondence: ; Tel.: +81-22-717-7261
| | - Masayuki Taniguchi
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Rosanne Picotin
- Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nanami Oyama
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - David Stellwagen
- Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Center, Montreal, QC H3G 1A4, Canada
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Miharu Nakanishi
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Hatsumi Yoshii
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takaaki Abe
- Department of Biomedical Engineering Regenerative and Biomedical Engineering Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai 980-8573, Japan
| |
Collapse
|
14
|
Redox Status Is the Mainstay of SARS-CoV-2 and Host for Producing Therapeutic Opportunities. Antioxidants (Basel) 2022; 11:antiox11102061. [PMID: 36290783 PMCID: PMC9598460 DOI: 10.3390/antiox11102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/17/2022] Open
Abstract
Over hundreds of years, humans have faced multiple pandemics and have overcome many of them with scientific advancements. However, the recent coronavirus disease (COVID-19) has challenged the physical, mental, and socioeconomic aspects of human life, which has introduced a general sense of uncertainty among everyone. Although several risk profiles, such as the severity of the disease, infection rate, and treatment strategy, have been investigated, new variants from different parts of the world put humans at risk and require multiple strategies simultaneously to control the spread. Understanding the entire system with respect to the commonly involved or essential mechanisms may be an effective strategy for successful treatment, particularly for COVID-19. Any treatment for COVID-19 may alter the redox profile, which can be an effective complementary method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and further replication. Indeed, redox profiles are one of the main barriers that suddenly shift the immune response in favor of COVID-19. Fortunately, several redox components exhibit antiviral and anti-inflammatory activities. However, access to these components as support elements against COVID-19 is limited. Therefore, understanding redox-derived species and their nodes as a common interactome in the system will facilitate the treatment of COVID-19. This review discusses the redox-based perspectives of the entire system during COVID-19 infection, including how redox-based molecules impact the accessibility of SARS-CoV-2 to the host and further replication. Additionally, to demonstrate its feasibility as a viable approach, we discuss the current challenges in redox-based treatment options for COVID-19.
Collapse
|
15
|
Kanzaki K, Watanabe D, Shi J, Wada M. Mechanisms of eccentric contraction-induced muscle damage and nutritional supplementations for mitigating it. J Muscle Res Cell Motil 2022; 43:147-156. [PMID: 35854160 DOI: 10.1007/s10974-022-09625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Eccentric contraction (ECC) often results in large and long-lasting force deficits accompanied by muscle soreness, primarily due to muscle damage. In this sense, exercises that involve ECC are less desirable. Paradoxically, exercise training that includes a substantial eccentric phase leads to a more powerful activation of the genes responsible for skeletal muscle remodeling (e.g., hypertrophy) than other types of training that emphasize a concentric or isometric phase. Therefore, effective strategies that lessen ECC-induced muscle damage will be of interest and importance to many individuals. The purpose of this brief review is to highlight the published literature on the effects of ECC and/or nutritional supplementations on proteins, lipids, metabolic and ionic changes, and enzyme activities in skeletal muscles subjected to an acute bout of ECC. First, we discuss the potential mechanisms by which ECC causes muscle damage. Previous findings implicate a Ca2+ overload-oxidative modification pathway as one possible mechanism contributing to muscle damage. Thereafter, the efficacy of two nutritional supplementations, i.e., L-arginine and antioxidant, is discussed because L-arginine and antioxidant would be expected to ameliorate the adverse effects of Ca2+ overload and oxidative modification, respectively. Of these, L-arginine ingestion before ECC seems likely to be the effective strategy for mitigating ECC-related proteolysis. More studies are needed to establish the effectiveness of antioxidant ingestion. The application of effective strategies against muscle damage may contribute to improvements in health and fitness, muscle function, and sports performance.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-7-1 Kagamiyama, 739-8521, Higasihiroshima-shi, Hiroshima, Japan
| | - Jiayu Shi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-7-1 Kagamiyama, 739-8521, Higasihiroshima-shi, Hiroshima, Japan.
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
16
|
Ovchinnikov AN, Paoli A, Seleznev VV, Deryugina AV. Royal jelly plus coenzyme Q10 supplementation improves high-intensity interval exercise performance via changes in plasmatic and salivary biomarkers of oxidative stress and muscle damage in swimmers: a randomized, double-blind, placebo-controlled pilot trial. J Int Soc Sports Nutr 2022; 19:239-257. [PMID: 35813842 PMCID: PMC9261740 DOI: 10.1080/15502783.2022.2086015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Excessive production of free radicals caused by many types of exercise results in oxidative stress, which leads to muscle damage, fatigue, and impaired performance. Supplementation with royal jelly (RJ) or coenzyme Q10 (CoQ10) has been shown to attenuate exercise-induced oxidant stress in damaged muscle and improve various aspects of exercise performance in many but not all studies. Nevertheless, the effects of treatments based on RJ plus CoQ10 supplementation, which may be potentially beneficial for reducing oxidative stress and enhancing athletic performance, remain unexplored. This study aimed to examine whether oral RJ and CoQ10 co-supplementation could improve high-intensity interval exercise (HIIE) performance in swimmers, inhibiting exercise-induced oxidative stress and muscle damage. Methods Twenty high-level swimmers were randomly allocated to receive either 400 mg of RJ and 60 mg of CoQ10 (RJQ) or matching placebo (PLA) once daily for 10 days. Exercise performance was evaluated at baseline, and then reassessed at day 10 of intervention, using a HIIE protocol. Diene conjugates (DC), Schiff bases (SB), and creatine kinase (CK) were also measured in blood plasma and saliva before and immediately after HIIE in both groups. Results HIIE performance expressed as number of points according to a single assessment system developed and approved by the International Swimming Federation (FINA points) significantly improved in RJQ group (p = 0.013) compared to PLA group. Exercise-induced increase in DC, SB, and CK levels in plasma and saliva significantly diminished only in RJQ group (p < 0.05). Regression analysis showed that oral RJQ administration for 10 days was significantly associated with reductions in HIIE-induced increases in plasmatic and salivary DC, SB, and CK levels compared to PLA. Principal component analysis revealed that swimmers treated with RJQ are grouped by both plasmatic and salivary principal components (PC) into a separate cluster compared to PLA. Strong negative correlation between the number of FINA points and plasmatic and salivary PC1 values was observed in both intervention groups. Conclusion The improvements in swimmers’ HIIE performance were due in significant part to RJQ-induced reducing in lipid peroxidation and muscle damage in response to exercise. These findings suggest that RJQ supplementation for 10 days is potentially effective for enhancing HIIE performance and alleviating oxidant stress. Abbreviations RJ, royal jelly; CoQ10, coenzyme Q10; HIIE, high-intensity interval exercise; DC, diene conjugates; SB, Schiff bases; CK, creatine kinase; RJQ, royal jelly plus coenzyme Q10; PLA, placebo; FINA points, points according to a single assessment system developed and approved by the International Swimming Federation; ROS, reactive oxygen species; 10H2DA, 10-hydroxy-2-decenoic acid; AMPK, 5′-AMP-activated protein kinase; FoxO3, forkhead box O3; MnSOD, manganese-superoxide dismutase; CAT, catalase; E, optical densities; PCA, principal component analysis; PC, principal component; MCFAs, medium-chain fatty acids; CaMKKβ, Ca2+/calmodulin-dependent protein kinase β; TBARS, thiobarbituric acid reactive substances; MDA, malondialdehyde.
Collapse
Affiliation(s)
- Aleksandr N. Ovchinnikov
- Department of Sports Medicine and Psychology, Lobachevsky University, Nizhny Novgorod, Russia
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
| | - Antonio Paoli
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vladislav V. Seleznev
- Department of Theory and Methodology of Sport Training, Lobachevsky University, Nizhny Novgorod, Russia
| | - Anna V. Deryugina
- Laboratory of Integral Human Health, Lobachevsky University, Nizhny Novgorod, Russia
- Department of Physiology and Anatomy, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
17
|
Reaction of N-Acetylcysteine with Cu 2+: Appearance of Intermediates with High Free Radical Scavenging Activity: Implications for Anti-/Pro-Oxidant Properties of Thiols. Int J Mol Sci 2022; 23:ijms23116199. [PMID: 35682881 PMCID: PMC9181168 DOI: 10.3390/ijms23116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
We studied the kinetics of the reaction of N-acetyl-l-cysteine (NAC or RSH) with cupric ions at an equimolar ratio of the reactants in aqueous acid solution (pH 1.4−2) using UV/Vis absorption and circular dichroism (CD) spectroscopies. Cu2+ showed a strong catalytic effect on the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical (ABTSr) consumption and autoxidation of NAC. Difference spectra revealed the formation of intermediates with absorption maxima at 233 and 302 nm (ε302/Cu > 8 × 103 M−1 cm−1) and two positive Cotton effects centered at 284 and 302 nm. These intermediates accumulate during the first, O2-independent, phase of the NAC autoxidation. The autocatalytic production of another chiral intermediate, characterized by two positive Cotton effects at 280 and 333 nm and an intense negative one at 305 nm, was observed in the second reaction phase. The intermediates are rapidly oxidized by added ABTSr; otherwise, they are stable for hours in the reaction solution, undergoing a slow pH- and O2-dependent photosensitive decay. The kinetic and spectral data are consistent with proposed structures of the intermediates as disulfide-bridged dicopper(I) complexes of types cis-/trans-CuI2(RS)2(RSSR) and CuI2(RSSR)2. The electronic transitions observed in the UV/Vis and CD spectra are tentatively attributed to Cu(I) → disulfide charge transfer with an interaction of the transition dipole moments (exciton coupling). The catalytic activity of the intermediates as potential O2 activators via Cu(II) peroxo-complexes is discussed. A mechanism for autocatalytic oxidation of Cu(I)−thiolates promoted by a growing electronically coupled −[CuI2(RSSR)]n− polymer is suggested. The obtained results are in line with other reported observations regarding copper-catalyzed autoxidation of thiols and provide new insight into these complicated, not yet fully understood systems. The proposed hypotheses point to the importance of the Cu(I)−disulfide interaction, which may have a profound impact on biological systems.
Collapse
|
18
|
Broome S, Atiola RD, Braakhuis A, Mitchell C, Merry TL. Mitochondria-targeted antioxidant supplementation does not affect muscle soreness or recovery of maximal voluntary isometric contraction force following muscle-damaging exercise in untrained men: a randomised clinical trial. Appl Physiol Nutr Metab 2022; 47:762-774. [PMID: 35201920 DOI: 10.1139/apnm-2021-0767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unaccustomed exercise causes muscle damage resulting in loss of muscle function, which may be attributable to exercise-induced increases in skeletal muscle reactive oxygen species (ROS). This study examined the effect of mitochondria-targeted antioxidant supplementation on recovery of muscle function following exercise. Thirty-two untrained men received MitoQ (20 mg/day) or a placebo for 14 days before performing 300 maximal eccentric contractions of the knee extensor muscles of one leg. Muscle function was assessed using isokinetic dynamometry before, immediately after, and 24, 48, 72, and 168 hours after exercise. Muscle soreness was assessed using a visual analogue scale 24, 48, 72, and 168 hours after exercise. Blood samples were collected before, immediately after, and 2, 24, 48, 72, and 168 hours after exercise and urine samples were collected before and during the 48 hours after exercise. The reduction in maximal voluntary isometric contraction force and peak concentric torque following exercise was unaffected by MitoQ while recovery of peak eccentric torque was delayed in the MitoQ group. Exercise-induced increases in urine F2-isoprostanes were unaffected by MitoQ. MitoQ augmented exercise-induced increases in plasma CK levels while plasma IL-6 was similar between groups. Muscle soreness was not affected by MitoQ. These results indicate that MitoQ does not attenuate post-exercise muscle soreness and may delay recovery of muscle function following eccentric exercise. Novelty: • Post-exercise recovery of maximal voluntary isometric contraction force and peak concentric torque were unaffected by MitoQ. • MitoQ delayed post-exercise recovery of peak eccentric torque. • Post-exercise muscle soreness was unaffected by MitoQ.
Collapse
Affiliation(s)
- Sophie Broome
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| | - R D Atiola
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| | - A Braakhuis
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| | - Cam Mitchell
- The University of British Columbia Faculty of Education, 141631, Vancouver, British Columbia, Canada;
| | - Troy L Merry
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| |
Collapse
|
19
|
Witkop JJ, Vertigan T, Reynolds A, Duffy L, Barati B, Jerome S, Dunlap K. Sled dogs as a model for PM2.5 exposure from wildfires in Alaska. ENVIRONMENT INTERNATIONAL 2021; 156:106767. [PMID: 34425643 PMCID: PMC8385229 DOI: 10.1016/j.envint.2021.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter 2.5 (PM2.5) exposure induces oxidative stress associated with many negative health outcomes such as respiratory disorders, cardiovascular disease and neurodegenerative disease. Research shows that diet and exercise can improve antioxidant defense against oxidative stress. This study is the first to use an Arctic animal model to investigate the cumulative effects of two lifestyle interventions on the antioxidant response before, during, and after ambient PM 2.5 exposure from wildfire: antioxidant supplementation (Arthrospira platensis) and exercise. In a two-factorial, longitudinal design, this study divided sled dogs (n = 48) into four groups (exercise and supplemented, exercise, supplemented, and control) to (1) test the effects of a 30-day exercise and antioxidant supplementation protocol on antioxidant response; and (2) measure the antioxidant response of all groups during and after a natural wildfire event. Commercial assays for total antioxidant power (TAP) and the enzymatic antioxidant superoxide dismutase (SOD) were used as markers for antioxidant status and response. During the forest fire, SOD was increased 5- to 10-fold over pre/post-exposure levels in all groups suggesting an endogenous upregulation of defense systems in response to the acute environmental stress. TAP was lower in all groups at peak PM2.5 exposure compared to 48 h after peak exposure in all groups except the exercise alone group which may indicate that exercise offers improved endogenous defense.
Collapse
Affiliation(s)
- Jacob J Witkop
- University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States
| | - Theresa Vertigan
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States; University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States.
| | - Arleigh Reynolds
- University of Alaska Fairbanks Center for One Health, Arctic Health Research Building, Fairbanks, AK 99775, United States.
| | - Lawrence Duffy
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States; University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States.
| | - Bahareh Barati
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States.
| | - Scott Jerome
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States; University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States.
| | - Kriya Dunlap
- University of Alaska, Fairbanks Institute of Arctic Biology, 2140 Koyukuk Drive Fairbanks, AK 99775, United States; University of Alaska Fairbanks Department of Chemistry and Biochemistry, 900 Yukon Drive Fairbanks, AK 99775, United States.
| |
Collapse
|
20
|
Pan R, Chen Y. Management of Oxidative Stress: Crosstalk Between Brown/Beige Adipose Tissues and Skeletal Muscles. Front Physiol 2021; 12:712372. [PMID: 34603076 PMCID: PMC8481590 DOI: 10.3389/fphys.2021.712372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Exercise plays an important role in the physiology, often depending on its intensity, duration, and frequency. It increases the production of reactive oxygen species (ROS). Meanwhile, it also increases antioxidant enzymes involved in the oxidative damage defense. Prolonged, acute, or strenuous exercise often leads to an increased radical production and a subsequent oxidative stress in the skeletal muscles, while chronic regular or moderate exercise results in a decrease in oxidative stress. Notably, under pathological state, such as obesity, aging, etc., ROS levels could be elevated in humans, which could be attenuated by proper exercise. Significantly, exercise stimulates the development of beige adipose tissue and potentially influence the function of brown adipose tissue (BAT), which is known to be conducive to a metabolic balance through non-shivering thermogenesis (NST) and may protect from oxidative stress. Exercise-related balance of the ROS levels is associated with a healthy metabolism in humans. In this review, we summarize the integrated effects of exercise on oxidative metabolism, and especially focus on the role of brown and beige adipose tissues in this process, providing more evidence and knowledge for a better management of exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Ruping Pan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
21
|
|
22
|
Md S, Alhakamy NA, Aldawsari HM, Ahmad J, Alharbi WS, Asfour HZ. Resveratrol loaded self-nanoemulsifying drug delivery system (SNEDDS) for pancreatic cancer: Formulation design, optimization and in vitro evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Vitamin C and kidney transplantation: Nutritional status, potential efficacy, safety, and interactions. Clin Nutr ESPEN 2021; 41:1-9. [PMID: 33487249 DOI: 10.1016/j.clnesp.2020.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIM There are several observational and interventional studies regarding the advantages of sufficient serum levels of vitamin C and the evaluation of the effects of vitamin C supplementation post kidney transplantation. These studies have been put together to investigate the role of vitamin C post-kidney transplantation and make suggestions for designing future studies based on the use of vitamin C supplements or nutritional interventions among these patients. METHODS This narrative review was done by searching in the Embase, PubMed, and SCOPUS databases. RESULTS The results are presented in several sections as follows; nutritional status, potential protective effects, safety concerns, and medications/laboratory tests interactions of vitamin C. CONCLUSIONS Kidney transplant recipients are prone to vitamin C deficiency, which is related to higher mortality based on several long-term observational studies. Vitamin C supplementation improves endothelial function and creatinine clearance. Vitamin C is considered as a safe supplement, however, side effects such as kidney stones, pro-oxidant effect, hemolysis in patients with glucose-6-phosphate dehydrogenase deficiency, impact on lymphocytic activity, acid-base disturbance, and increased sodium load following its administration have been reported. Interaction of vitamin C and cyclosporine is the most important interaction with post-renal transplant medications. Vitamin C also interferes with creatinine assay using Jaffe and enzymatic methods.
Collapse
|
24
|
Devrim-Lanpir A, Hill L, Knechtle B. How N-Acetylcysteine Supplementation Affects Redox Regulation, Especially at Mitohormesis and Sarcohormesis Level: Current Perspective. Antioxidants (Basel) 2021; 10:antiox10020153. [PMID: 33494270 PMCID: PMC7909817 DOI: 10.3390/antiox10020153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
Exercise frequently alters the metabolic processes of oxidative metabolism in athletes, including exposure to extreme reactive oxygen species impairing exercise performance. Therefore, both researchers and athletes have been consistently investigating the possible strategies to improve metabolic adaptations to exercise-induced oxidative stress. N-acetylcysteine (NAC) has been applied as a therapeutic agent in treating many diseases in humans due to its precursory role in the production of hepatic glutathione, a natural antioxidant. Several studies have investigated NAC’s possible therapeutic role in oxidative metabolism and adaptive response to exercise in the athletic population. However, still conflicting questions regarding NAC supplementation need to be clarified. This narrative review aims to re-evaluate the metabolic effects of NAC on exercise-induced oxidative stress and adaptive response developed by athletes against the exercise, especially mitohormetic and sarcohormetic response.
Collapse
Affiliation(s)
- Aslı Devrim-Lanpir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, Istanbul 34862, Turkey;
| | - Lee Hill
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Beat Knechtle
- Medbase St. Gallen am Vadianplatz, 9001 St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-0-71-226-93-00
| |
Collapse
|
25
|
The Role of Vitamin C in Two Distinct Physiological States: Physical Activity and Sleep. Nutrients 2020; 12:nu12123908. [PMID: 33371359 PMCID: PMC7767325 DOI: 10.3390/nu12123908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
This paper is a literature overview of the complex relationship between vitamin C and two opposing physiological states, physical activity and sleep. The evidence suggests a clinically important bidirectional association between these two phenomena mediated by different physiological mechanisms. With this in mind, and knowing that both states share a connection with oxidative stress, we discuss the existing body of evidence to answer the question of whether vitamin C supplementation can be beneficial in the context of sleep health and key aspects of physical activity, such as performance, metabolic changes, and antioxidant function. We analyze the effect of ascorbic acid on the main sleep components, sleep duration and quality, focusing on the most common disorders: insomnia, obstructive sleep apnea, and restless legs syndrome. Deeper understanding of those interactions has implications for both public health and clinical practice.
Collapse
|
26
|
Brancaccio M, Mennitti C, Cesaro A, Fimiani F, Moscarella E, Caiazza M, Gragnano F, Ranieri A, D’Alicandro G, Tinto N, Mazzaccara C, Lombardo B, Pero R, Limongelli G, Frisso G, Calabrò P, Scudiero O. Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9424. [PMID: 33339141 PMCID: PMC7765667 DOI: 10.3390/ijerph17249424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Moderate exercise combined with proper nutrition are considered protective factors against cardiovascular disease and musculoskeletal disorders. However, physical activity is known not only to have positive effects. In fact, the achievement of a good performance requires a very high oxygen consumption, which leads to the formation of oxygen free radicals, responsible for premature cell aging and diseases such as heart failure and muscle injury. In this scenario, a primary role is played by antioxidants, in particular by natural antioxidants that can be taken through the diet. Natural antioxidants are molecules capable of counteracting oxygen free radicals without causing cellular cytotoxicity. In recent years, therefore, research has conducted numerous studies on the identification of natural micronutrients, in order to prevent or mitigate oxidative stress induced by physical activity by helping to support conventional drug therapies against heart failure and muscle damage. The aim of this review is to have an overview of how controlled physical activity and a diet rich in antioxidants can represent a "natural cure" to prevent imbalances caused by free oxygen radicals in diseases such as heart failure and muscle damage. In particular, we will focus on sulfur-containing compounds that have the ability to protect the body from oxidative stress. We will mainly focus on six natural antioxidants: glutathione, taurine, lipoic acid, sulforaphane, garlic and methylsulfonylmethane.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Fabio Fimiani
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | | | - Giovanni D’Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, 80122 Naples, Italy;
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
27
|
Effect of Three Half-Squat Protocols on the Tensiomyographic Twitch Response and Tissue Damage of the Rectus Femoris and the Biceps Femoris. J Hum Kinet 2020; 75:15-27. [PMID: 33312292 PMCID: PMC7706669 DOI: 10.2478/hukin-2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to analyse the acute effects of a concentric exercise and two different eccentric overload exercises (EOEs) on blood markers of muscle damage (i.e. creatine kinase [CK], lactate dehydrogenase [LDH], myoglobin [Myo], and malondialdehyde [MDA]) and muscle contractile properties. Ten healthy, young (27 ± 1.5 years, 179 ± 6 cm, 78.7 ± 10.8 kg), physically active men (3.5 ± 1.9 h·w-1) randomly performed three training sessions using the following protocols: a half-squat (HS) as a concentric exercise, and exercises using Versapulley (VP) or YoYo isoinertial technology (YIT) as EOEs (4 x 7 repetitions with a 2 min rest interval between sets). Blood samples and tensiomyography measurements were obtained after each training session. Repeated measures analysis of variance (ANOVA) followed by the Tukey test was used to detect differences between the four time points of each variable. The standardized difference or effect size (ES, 90% confidence limit) in the selected variables was calculated using the basal SD. After all exercises, a greater activity of CK, LDH, and concentration of Myo, and MDA were found compared to baseline values (p < 0.05). A substantially greater activity of CK, LDH, and Myo concentration, but not MDA, were found after EOEs when compared to the HS protocol. Substantially lower tensiomyography results in the rectus femoris (RF) were reported, irrespective of the exercise mode performed. Also, no substantial differences were obtained in the biceps femoris (BF) between EOEs and the HS protocol. Time of contraction (Tc) in the RF was possibly to very likely lower in the HS in comparison to EOEs. Additionally, muscular displacement (Dm) in the RF was substantially lower in the HS compared to EOEs. VP produced higher concentrations of damage markers than YIT and concentric exercise did. Furthermore, tensiomyography variables showed similar activation in both exercises, although higher specific fatigue (in the RF) was registered in the traditional HS.
Collapse
|
28
|
De la Fuente M, Sánchez C, Vallejo C, Díaz-Del Cerro E, Arnalich F, Hernanz Á. Vitamin C and vitamin C plus E improve the immune function in the elderly. Exp Gerontol 2020; 142:111118. [PMID: 33091525 DOI: 10.1016/j.exger.2020.111118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/13/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
With aging the immune response is impaired. This immunosenescence, in which an alteration of the redox state of the immune cells appears, is involved in the rate of aging. Since leukocyte function is a good marker of health and predictor of longevity, the effects of daily oral administration of the antioxidant vitamin C (500 mg), or both vitamin C (500 mg) and vitamin E (200 mg) on several blood neutrophil (adherence, chemotaxis, phagocytosis, and superoxide anion levels) and lymphocyte (adherence, chemotaxis, proliferation, interleukin-2 secretion and natural killer activity) functions were studied in healthy elderly men and women. These parameters were analysed before supplementation, after 3 months of supplementation, and 6 months after the end of supplementation. The results showed that vitamin C, in elderly participants, improved the immune functions studied which achieved values close to those of young adults. These effects were maintained in several functions after 6 months without supplementation. Similar effects were found in the elderly supplemented with both vitamin C and E. Thus, a short period of vitamin C or vitamin C and E ingestion, with the doses used, improves the immune function in elderly men and women and could contribute to a healthy longevity.
Collapse
Affiliation(s)
- Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, Spain.
| | - Carmen Sánchez
- Department of Genetics, Physiology and Microbiology (Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Carmen Vallejo
- Department of Genetics, Physiology and Microbiology (Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, Spain.
| | | | - Ángel Hernanz
- Biochemistry Department, Hospital La Paz, Madrid, Spain
| |
Collapse
|
29
|
Taherkhani S, Suzuki K, Castell L. A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation. Antioxidants (Basel) 2020; 9:E886. [PMID: 32962110 PMCID: PMC7555806 DOI: 10.3390/antiox9090886] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Excessive release of inflammatory cytokines and oxidative stress (OS) are triggering factors in the onset of chronic diseases. One of the factors that can ensure health in humans is regular physical activity. This type of activity can enhance immune function and dramatically prevent the spread of the cytokine response and OS. However, if physical activity is done intensely at irregular intervals, it is not only unhealthy but can also lead to muscle damage, OS, and inflammation. In this review, the response of cytokines and OS to exercise is described. In addition, it is focused predominantly on the role of reactive oxygen and nitrogen species (RONS) generated from muscle metabolism and damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, the influence of factors such as age, sex, and type of exercise protocol (volume, duration, and intensity of training) is analyzed. The effect of antioxidant supplements on improving OS and inflammatory cytokines is somewhat ambiguous. More research is needed to understand this issue, considering in greater detail factors such as level of training, health status, age, sex, disease, and type of exercise protocol.
Collapse
Affiliation(s)
- Shima Taherkhani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Lindy Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK
| |
Collapse
|
30
|
Boccanegra B, Verhaart IEC, Cappellari O, Vroom E, De Luca A. Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: considerations for Standard of Care and emerging virus outbreaks. Pharmacol Res 2020; 158:104917. [PMID: 32485610 PMCID: PMC7261230 DOI: 10.1016/j.phrs.2020.104917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
At the moment, little treatment options are available for Duchenne muscular dystrophy (DMD). The absence of the dystrophin protein leads to a complex cascade of pathogenic events in myofibres, including chronic inflammation and oxidative stress as well as altered metabolism. The attention towards dietary supplements in DMD is rapidly increasing, with the aim to counteract pathology-related alteration in nutrient intake, the consequences of catabolic distress or to enhance the immunological response of patients as nowadays for the COVID-19 pandemic emergency. By definition, supplements do not exert therapeutic actions, although a great confusion may arise in daily life by the improper distinction between supplements and therapeutic compounds. For most supplements, little research has been done and little evidence is available concerning their effects in DMD as well as their preventing actions against infections. Often these are not prescribed by clinicians and patients/caregivers do not discuss the use with their clinical team. Then, little is known about the real extent of supplement use in DMD patients. It is mistakenly assumed that, since compounds are of natural origin, if a supplement is not effective, it will also do no harm. However, supplements can have serious side effects and also have harmful interactions, in terms of reducing efficacy or leading to toxicity, with other therapies. It is therefore pivotal to shed light on this unclear scenario for the sake of patients. This review discusses the supplements mostly used by DMD patients, focusing on their potential toxicity, due to a variety of mechanisms including pharmacodynamic or pharmacokinetic interactions and contaminations, as well as on reports of adverse events. This overview underlines the need for caution in uncontrolled use of dietary supplements in fragile populations such as DMD patients. A culture of appropriate use has to be implemented between clinicians and patients' groups.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Duchenne Parent Project, the Netherlands
| | - Ornella Cappellari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elizabeth Vroom
- Duchenne Parent Project, the Netherlands; World Duchenne Organisation (UPPMD), the Netherlands
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
31
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
32
|
Intake of antioxidant vitamins in women with different physical activity levels. BIOMEDICAL HUMAN KINETICS 2020. [DOI: 10.2478/bhk-2020-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Summary
Study aim: The purpose of this study was to compare intake of antioxidant vitamins (A, C, E) in young women with various levels of physical activity.
Material and methods: The study included 3 groups of females: 40 women with no extra physical activity (Sedentary), 40 women involved in regular, moderate sports activities (Recreationally Active) and 40 female athletes competing at an international level (Athletes). Participants’ diet was assessed on the basis of 3-day diet records which were analysed using the computer program ‘Dieta 5.0’. Body composition was evaluated by the bioelectrical impedance analysis (BIA) method.
Results: Athletes were characterized by the lowest body fat and highest lean body mass in comparison with the other groups. They also showed the highest intake of energy, proteins and carbohydrates compared to Active and Sedentary women. The consumption of vitamin A amounted to 180.0% of RDA in Athletes, 98.8% in Recreationally Active and 97.8% in Sedentary women. Vitamin C intake in Athletes equalled 275.0% of RDA, whereas the deficiency of this vitamin was observed in Recreationally Active and Sedentary women (62.3% and 46.1% of RDA, respectively). The study groups showed consumption of vitamin E at the level of 146.7% of AI in Athletes, 115.0% in Recreationally Active and 111.3% in Sedentary women.
Conclusion: Athletes consumed excessive amounts of antioxidant vitamins. Recreationally Active and Sedentary women met the demand for vitamin A and E, but the intake of vitamin C was not sufficient, which could lead to health problems. The current findings also indicate that energy intake was at a low level regardless of the study group.
Collapse
|
33
|
Bongiovanni T, Genovesi F, Nemmer M, Carling C, Alberti G, Howatson G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives. Eur J Appl Physiol 2020; 120:1965-1996. [PMID: 32661771 DOI: 10.1007/s00421-020-04432-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This review provides an overview of the current knowledge of the nutritional strategies to treat the signs and symptoms related to EIMD. These strategies have been organized into the following sections based upon the quality and quantity of the scientific support available: (1) interventions with a good level of evidence; (2) interventions with some evidence and require more research; and (3) potential nutritional interventions with little to-no-evidence to support efficacy. METHOD Pubmed, EMBASE, Scopus and Web of Science were used. The search terms 'EIMD' and 'exercise-induced muscle damage' were individually concatenated with 'supplementation', 'athletes', 'recovery', 'adaptation', 'nutritional strategies', hormesis'. RESULT Supplementation with tart cherries, beetroot, pomegranate, creatine monohydrate and vitamin D appear to provide a prophylactic effect in reducing EIMD. β-hydroxy β-methylbutyrate, and the ingestion of protein, BCAA and milk could represent promising strategies to manage EIMD. Other nutritional interventions were identified but offered limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of interventions might account for the lack of consensus regarding their efficacy. CONCLUSION There are clearly varying levels of evidence and practitioners should be mindful to refer to this evidence-base when prescribing to clients and athletes. One concern is the potential for these interventions to interfere with the exercise-recovery-adaptation continuum. Whilst there is no evidence that these interventions will blunt adaptation, it seems pragmatic to use a periodised approach to administering these strategies until data are in place to provide and evidence base on any interference effect on adaptation.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Department of Health, Performance and Recovery, Parma Calcio 1913, Parma, Italy.
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy.
| | | | - Monika Nemmer
- Nutrition Department Liverpool Football Club, Liverpool, UK
| | - Christopher Carling
- Centre for Elite Performance, French Football Federation, 75015, Paris, France
| | - Giampietro Alberti
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
34
|
Ammar A, Trabelsi K, Boukhris O, Glenn JM, Bott N, Masmoudi L, Hakim A, Chtourou H, Driss T, Hoekelmann A, El Abed K. Effects of Aerobic-, Anaerobic- and Combined-Based Exercises on Plasma Oxidative Stress Biomarkers in Healthy Untrained Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072601. [PMID: 32290148 PMCID: PMC7178085 DOI: 10.3390/ijerph17072601] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Currently, it is well accepted that physical exercise-induced oxidative stress may damage biological structures and impair cellular functions. However, it is still unclear which type of exercise results in the greatest oxidative stress responses among a healthy untrained population. The aim of the present study was to compare the acute oxidative stress response (i.e., 0 to 20 min) following different types of exercise (anaerobic, aerobic, and combined). Ten healthy, untrained males (19.5 ± 1.7 years) performed three randomized exercise bouts: anaerobic (30 s Wingate test), aerobic (30 min at 60% maximal aerobic power (MAP)) or combined (anaerobic and aerobic). Venous blood samples were collected before, as well as at 0 (P0), 5 (P5), 10 (P10), and 20 (P20) min after each session. Rates of malondialdehyde (MDA) and antioxidant activities (i.e., glutathione peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR), α-tocopherol, and total antioxidant status (TAS)) were assessed. Independent of exercise type, plasma MDA, GPX, SOD, and GR contents increased above baseline, whereas plasma α-tocopherol decreased under baseline after the test sessions (p < 0.05). Aerobic and anaerobic exercises generated faster responses (at P0) when compared to the combined exercise (P5 to P10) for the majority of the tested parameters. Plasma TAS content only increased following the aerobic exercise at P10 (p = 0.03). Five to twenty-minutes post exercise, the highest MDA response was registered in the aerobic condition, and the highest GPX and SOD responses were recorded in the anaerobic (at P5) and aerobic (at P20) conditions (p < 0.05). In conclusion, aerobic, anaerobic, or combined exercises have the potential to acutely increase oxidative stress and antioxidant activities, but with different responses magnitude. These findings confirm that oxidative stress response seems to be dependent on the intensity and the duration of the physical exercise and may help in understanding how varying exercise bouts influence the degree of oxidative stress among healthy untrained young adults.
Collapse
Affiliation(s)
- Achraf Ammar
- Institute of Sport Science, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
- Correspondence: (A.A.); (H.C.)
| | - Khaled Trabelsi
- Institut Supérieur du Sport et de l’Education Physique de Sfax, Université de Sfax, Sfax 3000, Tunisia; (K.T.); (O.B.); (L.M.); (K.E.A.)
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Omar Boukhris
- Institut Supérieur du Sport et de l’Education Physique de Sfax, Université de Sfax, Sfax 3000, Tunisia; (K.T.); (O.B.); (L.M.); (K.E.A.)
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis 1004, Tunisia
| | - Jordan M Glenn
- Neurotrack Technologies, Redwood City, CA 94063, USA; (J.M.G.); (N.B.)
- Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nick Bott
- Neurotrack Technologies, Redwood City, CA 94063, USA; (J.M.G.); (N.B.)
- Clinical Excellence Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liwa Masmoudi
- Institut Supérieur du Sport et de l’Education Physique de Sfax, Université de Sfax, Sfax 3000, Tunisia; (K.T.); (O.B.); (L.M.); (K.E.A.)
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis 1004, Tunisia
| | - Ahmed Hakim
- Laboratory of Pharmacology, Faculty of Medicine, Sfax University, Sfax 3029, Tunisia;
| | - Hamdi Chtourou
- Institut Supérieur du Sport et de l’Education Physique de Sfax, Université de Sfax, Sfax 3000, Tunisia; (K.T.); (O.B.); (L.M.); (K.E.A.)
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis 1004, Tunisia
- Correspondence: (A.A.); (H.C.)
| | - Tarak Driss
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2-2APS), UFR STAPS, UPL, Paris Nanterre University, 92000 Nanterre, France;
| | - Anita Hoekelmann
- Institute of Sport Science, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
| | - Kais El Abed
- Institut Supérieur du Sport et de l’Education Physique de Sfax, Université de Sfax, Sfax 3000, Tunisia; (K.T.); (O.B.); (L.M.); (K.E.A.)
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| |
Collapse
|
35
|
Fouladvand F, Falahi E, Asbaghi O, Abbasnezhad A. Effect of Vitamins C and E Co-Supplementation on Serum C-Reactive Protein Level: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Prev Nutr Food Sci 2020; 25:1-8. [PMID: 32292750 PMCID: PMC7143019 DOI: 10.3746/pnf.2020.25.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Studies assessing the effect of vitamin C and E co-supplementation on levels of circulating C-reactive protein (CRP) show contradictory results. We carried out a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the effect of vitamin C and E co-supplementation on CRP. A systematic search was carried out using PubMed, Scopus, Ovid, Cochrane, Embase, and the Web of Science without any language or time restriction (until 31 March 2019) to retrieve RCTs that examined the effect of vitamin C and E co-supplementation on CRP. A meta-analysis was carried out using a random effects model, and I2 indexes were used to evaluate the heterogeneity. The search yielded 5,134 publications, including 8 eligible RCTs. The results indicate that vitamin C and E co-supplementation does not significantly impact levels of serum CRP [weighted mean difference and 95% confidence interval with random effects model analysis: −0.22 mg/L (−0.85, 0.41), P=0.5]. Subgroup analysis demonstrated that vitamin C and E co-supplementation significantly reduced serum CRP in participants ≥30 years of age, but significantly increased serum CRP in participants <30 years of age. The results of this meta-analysis indicate beneficial effects of vitamins C and E co-supplementation on CRP in participants ≥30 years of age, and not in younger participants. To confirm these results, further well-designed RCTs are needed.
Collapse
Affiliation(s)
- Faezeh Fouladvand
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran
| | - Ebrahim Falahi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran
| | - Omid Asbaghi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran
| | - Amir Abbasnezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Although vitamin C is essentially a nontoxic vitamin; however, it is important to be aware regarding the safety of high doses before the wide clinical use. RECENT FINDINGS Minor side effects of vitamin C have been reported, many being reported in earlier studies. High doses of vitamin C (up to 1.5 g/kg three times a week as intravenously) were safe in cancer patients with normal renal function and perfect glucose-6-phosphate dehydrogenase activity. As the dose and duration of administration of vitamin C in sepsis are lower and shorter than those used in cancer patients, it seems that it is relatively safe for this population. In ongoing trials, safety of high doses of vitamin C is considered. SUMMARY Data regarding the safety of high doses of vitamin C are scant. Until more data become available, caution should be applied in the use of high doses of vitamin C in patients with hemochromatosis, glucose-6-phosphate dehydrogenase deficiency, renal dysfunction, kidney stone, oxaluria, and pediatrics.
Collapse
|
37
|
Sotler R, Poljšak B, Dahmane R, Jukić T, Pavan Jukić D, Rotim C, Trebše P, Starc A. PROOXIDANT ACTIVITIES OF ANTIOXIDANTS AND THEIR IMPACT ON HEALTH. Acta Clin Croat 2019; 58:726-736. [PMID: 32595258 PMCID: PMC7314298 DOI: 10.20471/acc.2019.58.04.20] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review article is focused on the impact of antioxidants and prooxidants on health with emphasis on the type of antioxidants that should be taken. Medical researchers suggest that diet may be the solution for the control of chronic diseases such as cardiovascular complications, hypertension, diabetes mellitus, and different cancers. In this survey, we found scientific evidence that the use of antioxidants should be limited only to the cases where oxidative stress has been identified. This is often the case of specific population groups such as postmenopausal women, the elderly, infants, workers exposed to environmental pollutants, and the obese. Before starting any supplementation, it is necessary to measure oxidative stress and to identify and eliminate the possible sources of free radicals and thus increased oxidative stress.
Collapse
Affiliation(s)
| | - Borut Poljšak
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Raja Dahmane
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Tomislav Jukić
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Doroteja Pavan Jukić
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Cecilija Rotim
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Polonca Trebše
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| | - Andrej Starc
- 1Faculty of Health Sciences, University of Ljubljana, Department of Nursing, Ljubljana, Slovenia; 2Faculty of Health Sciences, University of Ljubljana, Department of Health Ecology and Control, Ljubljana, Slovenia; 3Faculty of Health Sciences, University of Ljubljana, Department of Biomedicine in Health Care, Ljubljana, Slovenia; 4Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia; 5Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Department of Gynecology and Obstetrics, Osijek, Croatia; 6Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 7Faculty of Health Sciences, University of Ljubljana, Department of Public Health, Ljubljana, Slovenia
| |
Collapse
|
38
|
Çakir-Atabek H, Dokumaci B, Aygün C. Strength Loss After Eccentric Exercise Is Related to Oxidative Stress but Not Muscle Damage Biomarkers. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2019; 90:385-394. [PMID: 31135277 DOI: 10.1080/02701367.2019.1603990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Purpose: The purpose of this study was to investigate (a) time-dependent changes in muscle damage (MD) biomarkers, oxidative stress (OS) indices, and maximum strength performance; (b) the relationship between changes in maximum strength performance and changes in MD and OS indices; and (c) whether eccentric exercise-induced MD is related to OS. Method: Twenty-nine male volunteers (age: 22.13 ± 3.1 years) participated in the study. Participants performed 60 maximal eccentric actions of the elbow flexors at a constant velocity of 60°·s-1. Maximum isokinetic strength (MIS), visual analog scale soreness scores, serum creatine kinase (CK) activity, total antioxidant status, total oxidant status (TOS), protein carbonyl (PCO), and 8-hydroxydeoxyguanosine level were analyzed. Blood samples were obtained before, immediately after, and 24 h, 48 h, and 96 h after the eccentric exercise. Change in total work (%ΔTWk), peak torque (%ΔPT), and OS index were calculated. Results: CK, PCO, and TOS significantly increased over time (p < .05). However, no significant main effect was observed for MIS or any other investigated biomarkers (p > .05). MIS was not related to MD or OS indices. However, %ΔTWk demonstrated a moderate inverse correlation with OS indices. No significant relationship was observed between %ΔPT and any of the selected biomarkers. Conclusions: Our findings confirm the hypothesis that acute eccentric exercise increases MD biomarkers and OS indices. However, indices of OS damage were significantly related, particularly, to the strength loss of flexors. This finding suggests that the decline in strength performance is not the primary determinant of the magnitude of MD following voluntary eccentric contraction.
Collapse
Affiliation(s)
| | | | - Cihan Aygün
- a Eskisehir Technical University
- b Anadolu University
| |
Collapse
|
39
|
de Oliveira DC, Rosa FT, Simões-Ambrósio L, Jordao AA, Deminice R. Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. Nutrition 2019; 63-64:29-35. [DOI: 10.1016/j.nut.2019.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 11/26/2022]
|
40
|
Choi Y, Tanabe Y, Akazawa N, Zempo-Miyaki A, Maeda S. Curcumin supplementation attenuates the decrease in endothelial function following eccentric exercise. J Exerc Nutrition Biochem 2019; 23:7-12. [PMID: 31337199 PMCID: PMC6651681 DOI: 10.20463/jenb.2019.0010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 01/22/2023] Open
Abstract
[Purpose] Eccentric exercise induces a decrease in vascular endothelial function. Curcumin, a major component of turmeric, has potent antioxidant and anti-inflammatory properties that are associated with vascular protective effects. The present study examined the effect of acute supplementation of curcumin on eccentric exercise-induced endothelial dysfunction in healthy young men. [Methods] Fourteen healthy sedentary young men (range, 21–29 years) were assigned to either the curcumin (n = 6) or placebo (n = 8) group. All subjects consumed either curcumin or placebo before exercise, and eccentric exercise of the elbow flexors was performed with their nondominant arm. Before and 60 min after exercise, brachial artery flow-mediated dilation (FMD), as an indicator of endothelial function, was measured in the non-exercised arm. [Results] Brachial artery FMD significantly decreased following eccentric exercise (p < 0.05) in the placebo group, but acute supplementation with curcumin before exercise nullified this change. The change in FMD before and after eccentric exercise between the placebo and curcumin groups was significantly different (p < 0.05). [Conclusion] The present study found that acute curcumin supplementation could attenuate the decrease in endothelial function, as measured by FMD, following eccentric exercise in healthy young men.
Collapse
|
41
|
Massaro M, Scoditti E, Carluccio MA, Kaltsatou A, Cicchella A. Effect of Cocoa Products and Its Polyphenolic Constituents on Exercise Performance and Exercise-Induced Muscle Damage and Inflammation: A Review of Clinical Trials. Nutrients 2019; 11:E1471. [PMID: 31261645 PMCID: PMC6683266 DOI: 10.3390/nu11071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years, the consumption of chocolate and, in particular, dark chocolate has been "rehabilitated" due to its high content of cocoa antioxidant polyphenols. Although it is recognized that regular exercise improves energy metabolism and muscle performance, excessive or unaccustomed exercise may induce cell damage and impair muscle function by triggering oxidative stress and tissue inflammation. The aim of this review was to revise the available data from literature on the effects of cocoa polyphenols on exercise-associated tissue damage and impairment of exercise performance. To this aim, PubMed and Web of Science databases were searched with the following keywords: "intervention studies", "cocoa polyphenols", "exercise training", "inflammation", "oxidative stress", and "exercise performance". We selected thirteen randomized clinical trials on cocoa ingestion that involved a total of 200 well-trained athletes. The retrieved data indicate that acute, sub-chronic, and chronic cocoa polyphenol intake may reduce exercise-induced oxidative stress but not inflammation, while mixed results are observed in terms of exercise performance and recovery. The interpretation of available results on the anti-oxidative and anti-inflammatory activities of cocoa polyphenols remains questionable, likely due to the variety of physiological networks involved. Further experimental studies are mandatory to clarify the role of cocoa polyphenol supplementation in exercise-mediated inflammation.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council-Institute of Clinical Physiology, Laboratory of Nutrigenomic and Vascular Biology, Lecce 73100, Italy.
| | - Egeria Scoditti
- National Research Council-Institute of Clinical Physiology, Laboratory of Nutrigenomic and Vascular Biology, Lecce 73100, Italy
| | - Maria Annunziata Carluccio
- National Research Council-Institute of Clinical Physiology, Laboratory of Nutrigenomic and Vascular Biology, Lecce 73100, Italy
| | - Antonia Kaltsatou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala 42100, Greece
| | - Antonio Cicchella
- Department for Quality of Life Studies, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
42
|
Maruyama T, Mizuno S, Goto K. Effects of cold water immersion and compression garment use after eccentric exercise on recovery. J Exerc Nutrition Biochem 2019; 23:48-54. [PMID: 31010274 PMCID: PMC6477821 DOI: 10.20463/jenb.2019.0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/14/2019] [Indexed: 11/22/2022] Open
Abstract
[Purpose] The combined effect of different types of post-exercise treatment has not been fully explored. We investigated the effect of combined cold water immersion (CWI) and compression garment (CG) use after maximal eccentric exercise on maximal muscle strength, indirect muscle damage markers in the blood, muscle thickness, and muscle soreness score 24 h after exercise. [Methods] Ten men performed two trials (CWI + CG and CON) in random order. In the CWI + CG trial, the subjects performed 15 min of CWI (15°C), followed by wearing of a lower-body CG for 24 h after exercise. In the CON trial, there was no post-exercise treatment. The exercise consisted of 6 × 10 maximal isokinetic (60°·s-1) eccentric knee extensions using one lower limb. The maximal voluntary contraction (MVC) and maximal isokinetic (60°·s-1) strength during knee extension, as well as the indirect muscle damage markers, were evaluated before exercise and 24 h after exercise. [Results] The maximal muscle strength decreased in both trials (p < 0.001), with no difference between them. The exercise-induced elevation in the myoglobin concentration tended to be lower in the CWI + CG trial than in the CON trial (p = 0.060). The difference in the MVC, maximal isokinetic strength, muscle thickness, and muscle soreness score between the trials was not significant. [Conclusion] CWI followed by wearing of a CG after maximal eccentric exercise tended to attenuate the exercise-induced elevation of indirect muscle damage markers in the blood.
Collapse
|
43
|
Isaacs AW, Macaluso F, Smith C, Myburgh KH. C-Reactive Protein Is Elevated Only in High Creatine Kinase Responders to Muscle Damaging Exercise. Front Physiol 2019; 10:86. [PMID: 30804809 PMCID: PMC6378920 DOI: 10.3389/fphys.2019.00086] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to investigate if exertional rhabdomyolysis induced by an acute bout of plyometric exercise in untrained individuals was associated with histological characteristics of skeletal muscle, creatine kinase (CK) polymorphism or secondary damage. Twenty-six healthy male untrained individuals completed a bout of plyometric exercise (10 sets of 10 maximal squat jumps, with each standardized to achieve at least 95% of individual maximal jump height). Blood samples were taken, and perceived pain was scored immediately before the exercise intervention and 6 h, 1, 2, and 3 days post-intervention. Muscle biopsies were collected 9 or 4 days before (baseline) and 3 days after plyometric jumps. Subjects were divided into two groups, high (n = 10) and low responders (n = 16), based on a cut-off limit for exertional rhabdomyolysis of peak CK activity ≥ 1000 U/L in any post-exercise blood sample. Perceived pain was more severe assessed in squat than standing position. Low responders perceived more pain at 6 h and 1 day, while high responders perceived more pain than low responders on days three and four after exercise; structural (dystrophin staining) and ultra-structural (transmission electron microscopy) analysis of muscle fibers revealed no baseline pathology; damage was evident in all individuals in both groups, with no difference between high and low responders in either damage or fiber type proportion. High responders had significantly higher total white blood cell and neutrophil counts 6 h and significantly higher C-reactive protein (CRP) 6 h and days one and two after exercise compared to low responders. High responders had significantly greater muscle myeloperoxidase (MPO) levels in baseline and 3 day post-exercise biopsies compared to baseline of low responders. MLCK C49T single polymorphism was present in 26% of volunteers, whose CK responses were not higher than those with MLCK CC or CT genotype. In conclusion, perceived pain is more effectively assessed with potentially affected muscle under eccentric strain, even if static. High CK responders also have pronounced CRP responses to unaccustomed plyometric exercise intervention. Exertional rhabdomyolysis after unaccustomed eccentric exercise may be related to underlying inability to resolve intramuscular MPO.
Collapse
Affiliation(s)
- Ashwin W Isaacs
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Filippo Macaluso
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.,Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.,SMART Engineering Solutions & Technologies Research Center, eCampus University, Novedrate, Italy
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Kathryn H Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
44
|
Cysteine/Glutathione Deficiency: A Significant and Treatable Corollary of Disease. THE THERAPEUTIC USE OF N-ACETYLCYSTEINE (NAC) IN MEDICINE 2019. [PMCID: PMC7120747 DOI: 10.1007/978-981-10-5311-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glutathione (GSH) deficiency may play a pivotal role in a variety of apparently unrelated clinical conditions and diseases. Orally administered N-acetylcysteine (NAC), which replenishes the cysteine required for GSH synthesis, has been tested in a large number of randomized placebo-controlled trials involving these diseases and conditions. This chapter focused on developing a base of evidence suggesting that NAC administration improves disease by increasing cysteine and/or GSH in a variety of diseases, thereby implying a significant role for GSH deficiency in the clinical basis of many diseases. To develop this base of evidence, we systematically selected studies which considered the hypothesis that the therapeutic efficacy for NAC is an indication that cysteine and/or GSH deficiency is a pathophysiological part of the diseases studied. In this manner we focus this chapter on explaining the biological mechanisms of NAC therapy in a wide variety of disorders and demonstrate its ubiquitous role in improving disease that involves disrupted GSH and/or cysteine metabolism.
Collapse
|
45
|
Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants (Basel) 2018; 7:antiox7090119. [PMID: 30189660 PMCID: PMC6162669 DOI: 10.3390/antiox7090119] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022] Open
Abstract
It is well established that the increase in reactive oxygen species (ROS) and free radicals production during exercise has both positive and negative physiological effects. Among them, the present review focuses on oxidative stress caused by acute exercise, mainly on evidence in healthy individuals. This review also summarizes findings on the determinants of exercise-induced oxidative stress and sources of free radical production. Moreover, we outline the effects of antioxidant supplementation on exercise-induced oxidative stress, which have been studied extensively. Finally, the following review briefly summarizes future tasks in the field of redox biology of exercise. In principle, this review covers findings for the whole body, and describes human trials and animal experiments separately.
Collapse
|
46
|
Évaluation des effets à court terme de deux techniques d’étirements actifs réalisés lors de l’échauffement, sur les antioxydants enzymatiques suite à un effort anaérobie : étude Pilote. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr 2018; 38:982-995. [PMID: 30201141 DOI: 10.1016/j.clnu.2018.08.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 12/30/2022]
Abstract
Persistent physical impairment is frequently encountered after critical illness. Recent data point towards mitochondrial dysfunction as an important determinant of this phenomenon. This narrative review provides a comprehensive overview of the present knowledge of mitochondrial function during and after critical illness and the role and potential therapeutic applications of specific micronutrients to restore mitochondrial function. Increased lactate levels and decreased mitochondrial ATP-production are common findings during critical illness and considered to be associated with decreased activity of muscle mitochondrial complexes in the electron transfer system. Adequate nutrient levels are essential for mitochondrial function as several specific micronutrients play crucial roles in energy metabolism and ATP-production. We have addressed the role of B vitamins, ascorbic acid, α-tocopherol, selenium, zinc, coenzyme Q10, caffeine, melatonin, carnitine, nitrate, lipoic acid and taurine in mitochondrial function. B vitamins and lipoic acid are essential in the tricarboxylic acid cycle, while selenium, α-tocopherol, Coenzyme Q10, caffeine, and melatonin are suggested to boost the electron transfer system function. Carnitine is essential for fatty acid beta-oxidation. Selenium is involved in mitochondrial biogenesis. Notwithstanding the documented importance of several nutritional components for optimal mitochondrial function, at present, there are no studies providing directions for optimal requirements during or after critical illness although deficiencies of these specific micronutrients involved in mitochondrial metabolism are common. Considering the interplay between these specific micronutrients, future research should pay more attention to their combined supply to provide guidance for use in clinical practise. REVISION NUMBER: YCLNU-D-17-01092R2.
Collapse
Affiliation(s)
- E Wesselink
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - W A C Koekkoek
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| | - S Grefte
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 DW, Wageningen, The Netherlands.
| | - R F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - A R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| |
Collapse
|
48
|
Rhodes KM, Baker DF, Smith BT, Braakhuis AJ. Acute Effect of Oral N-Acetylcysteine on Muscle Soreness and Exercise Performance in Semi-Elite Rugby Players. J Diet Suppl 2018; 16:443-453. [PMID: 29958049 DOI: 10.1080/19390211.2018.1470129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
N-acetylcysteine (NAC) supplementation may enhance performance and reduce soreness from acute, repeated-sprint, high-intensity exercise. Our aim was to investigate whether semi-elite rugby union athletes may benefit. In a randomized block design, 17 semi-elite male rugby players were assigned to receive either 1 g oral NAC (n = 8) or placebo (n = 9) for six days. The mean percentage effect of NAC on exercise performance was assessed through completion of a broken bronco exercise test on days 5 and 6 of supplementation. Players self-reported muscle soreness and tolerability to supplements using a modified Muscle Pain and Treatment Satisfaction Questionnaire throughout the supplement duration. NAC produced a likely beneficial performance effect on maximum shuttle sprint time (2.4%; 90% confidence limit ± 4.8%) but was unclear on total time during back-to-back broken bronco tests compared to placebo. NAC had a likely protective effect on subjective muscle soreness during days 1-4 of supplementation (-19% ± 27%) but a very likely harmful effect on days 5 and 6 of supplementation (71% ± 59%). Daily supplementation with 1 g of oral NAC for six days produced no adverse side effects, reduced muscle soreness after one bout of damaging exercise, but increased soreness following the second bout. The performance effects were generally unclear apart from maximal sprint time.
Collapse
Affiliation(s)
- Kate M Rhodes
- a The University of Auckland, Discipline of Nutrition, Faculty of Medical & Health Sciences , Auckland , New Zealand
| | - Dane F Baker
- b Chiefs Rugby Franchise, Ruakura Research Centre, Hamilton , New Zealand
| | - Brett T Smith
- b Chiefs Rugby Franchise, Ruakura Research Centre, Hamilton , New Zealand.,c Te Oranga School of Human Development and Movement Studies, University of Waikato , Hamilton , New Zealand
| | - Andrea J Braakhuis
- a The University of Auckland, Discipline of Nutrition, Faculty of Medical & Health Sciences , Auckland , New Zealand
| |
Collapse
|
49
|
Rhodes K, Braakhuis A. Performance and Side Effects of Supplementation with N-Acetylcysteine: A Systematic Review and Meta-Analysis. Sports Med 2018; 47:1619-1636. [PMID: 28102488 DOI: 10.1007/s40279-017-0677-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND N-Acetylcysteine (NAC) is a promising antioxidant supplement with potential as an acute strategy to enhance performance in elite sport, but there are concerns about its side effects with high doses. OBJECTIVE To review the current literature and evaluate the effects of NAC supplementation on sport performance and the risk of adverse effects. METHODS The literature up to May 2016 was searched on MEDLINE (PubMed), EMBASE, SPORTDiscus, Google Scholar and Scopus databases to identify all studies investigating the effects of NAC supplementation on exercise performance and/or side effects experienced. Performance outcomes from each study were converted to the percent effect equivalent to mean power output in a time trial. All pooled analyses were based on random-effects models generated by Review Manager (RevMan) [Computer program], version 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, 2014). RESULTS A total of seven studies met criteria for inclusion in the sport performance meta-analysis, and 17 for inclusion in the side effects meta-analysis. The typical daily dose of NAC reported was 5.8 g·d-1; with a range between 1.2 and 20.0 g·d-1. The mean increase in performance was 0.29% (95% confidence interval -0.67 to 1.25). The difference in the odds ratio of side effects on NAC compared with placebo was 1.11 (95% confidence interval 0.88-1.39). The sub-analysis of NAC dose suggested an increase in side effects as the dosage of NAC increased; however, this observation requires further investigation. CONCLUSIONS Despite initial research publications reporting positive performance effects with NAC, at this stage it cannot be recommended further. The risk of side effects from NAC supplementation also remains unclear owing to significant variations in effects. Suboptimal reporting and documentation in the literature creates difficulties when meta-analysing outcomes and generating conclusions.
Collapse
Affiliation(s)
- Kate Rhodes
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Andrea Braakhuis
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
50
|
Khelfi A, Azzouz M, Abtroun R, Reggabi M, Alamir B. Antipsychotic-induced disorders: Reported cases and prospective study on muscle biomarkers after high exposure to haloperidol. Toxicol Appl Pharmacol 2018; 352:1-8. [PMID: 29778398 DOI: 10.1016/j.taap.2018.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022]
Abstract
Antipsychotic drugs are known to induce neuromuscular effects. In this study, we review 13 years (2002-2014) of antipsychotic intoxications reported by the anti-poisoning center of Algiers (APCA). The most recorded symptoms were neuromuscular/muscular disorders, of which haloperidol was the most inducer among all antipsychotics. A prospective study was conducted between December 2012 and January 2017 to evaluate muscle effects generated after intentional or accidental ingestion of haloperidol. Fifty-one patients admitted in different emergency departments in Algiers were included in this study. Urine and blood samples were collected from each patient for biological and toxicological monitoring and a group of healthy volunteers was assessed for comparison purpose. There was no significant difference in plasma lactate dehydrogenase (LDH) activity between healthy volunteers and exposed patients even when high levels of haloperidol were recorded. In contrast, selenium concentration and creatine kinase (CK) activity in plasma samples were significantly higher in patients exposed to high levels of haloperidol compared to healthy volunteers. Large percentage of patients exposed to high levels of haloperidol presented a significant elevated CK activity and high selenium concentration regarding the physiological thresholds. Additionally, CK activity and selenium concentration correlated positively with plasma content of haloperidol suggesting a dose-dependent relationship. In conclusion, some biomarkers (CK and selenium) may reflect muscle adverse effects of high haloperidol exposure that result possibly from muscle rigidity.
Collapse
Affiliation(s)
- Abderrezak Khelfi
- Department of Toxicology, Bab-El-Oued Hospital, Avenue Mohamed Lamine Debaghine, 16009 Algiers, Algeria; National Center of Toxicology, Avenue petit Staouali Delly Brahim, 16062 Algiers, Algeria.
| | - Mohammed Azzouz
- Department of Biology and Toxicology, Ait-Idir Hospital, Avenue Abderrezak Hahad Casbah, 16017 Algiers, Algeria
| | - Rania Abtroun
- Department of Toxicology, Bab-El-Oued Hospital, Avenue Mohamed Lamine Debaghine, 16009 Algiers, Algeria
| | - Mohammed Reggabi
- Department of Biology and Toxicology, Ait-Idir Hospital, Avenue Abderrezak Hahad Casbah, 16017 Algiers, Algeria
| | - Berkahoum Alamir
- Department of Toxicology, Bab-El-Oued Hospital, Avenue Mohamed Lamine Debaghine, 16009 Algiers, Algeria; National Center of Toxicology, Avenue petit Staouali Delly Brahim, 16062 Algiers, Algeria
| |
Collapse
|