1
|
Cevheroğlu O, Demirbaş B, Öğütcü D, Murat M. ADGRG1, an adhesion G protein-coupled receptor, forms oligomers. FEBS J 2024; 291:2461-2478. [PMID: 38468592 DOI: 10.1111/febs.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
G protein-coupled receptor (GPCR) oligomerization is a highly debated topic in the field. While initially believed to function as monomers, current literature increasingly suggests that these cell surface receptors, spanning almost all GPCR families, function as homo- or hetero-oligomers. Yet, the functional consequences of these oligomeric complexes remain largely unknown. Adhesion GPCRs (aGPCRs) present an intriguing family of receptors characterized by their large and multi-domain N-terminal fragments (NTFs), intricate activation mechanisms, and the prevalence of numerous splice variants in almost all family members. In the present study, bioluminescence energy transfer (BRET) and Förster resonance energy transfer (FRET) were used to study the homo-oligomerization of adhesion G protein-coupled receptor G1 (ADGRG1; also known as GPR56) and to assess the involvement of NTFs in these receptor complexes. Based on the results presented herein, we propose that ADGRG1 forms 7-transmembrane-driven homo-oligomers on the plasma membrane. Additionally, Stachel motif interactions appear to influence the conformation of these receptor complexes.
Collapse
Affiliation(s)
| | - Berkay Demirbaş
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| | - Dilara Öğütcü
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| | - Merve Murat
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| |
Collapse
|
2
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Chhabra KH, Bathina S, Faniyan TS, Samuel DJ, Raza MU, de Souza Cordeiro LM, Viana Di Prisco G, Atwood BK, Robles J, Bainbridge L, Davis A. ADGRL1 is a glucose receptor involved in mediating energy and glucose homeostasis. Diabetologia 2024; 67:170-189. [PMID: 37712955 PMCID: PMC10709246 DOI: 10.1007/s00125-023-06010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
AIMS/HYPOTHESIS The brain is a major consumer of glucose as an energy source and regulates systemic glucose as well as energy balance. Although glucose transporters such as GLUT2 and sodium-glucose cotransporter 2 (SGLT2) are known to regulate glucose homeostasis and metabolism, the identity of a receptor that binds glucose to activate glucose signalling pathways in the brain is unknown. In this study, we aimed to discover a glucose receptor in the mouse hypothalamus. METHODS Here we used a high molecular mass glucose-biotin polymer to enrich glucose-bound mouse hypothalamic neurons through cell-based affinity chromatography. We then subjected the enriched neurons to proteomic analyses and identified adhesion G-protein coupled receptor 1 (ADGRL1) as a top candidate for a glucose receptor. We validated glucose-ADGRL1 interactions using CHO cells stably expressing human ADGRL1 and ligand-receptor binding assays. We generated and determined the phenotype of global Adgrl1-knockout mice and hypothalamus-specific Adgrl1-deficient mice. We measured the variables related to glucose and energy homeostasis in these mice. We also generated an Adgrl1Cre mouse model to investigate the role of ADGRL1 in sensing glucose using electrophysiology. RESULTS Adgrl1 is highly expressed in the ventromedial nucleus of the hypothalamus (VMH) in mice. Lack of Adgrl1 in the VMH in mice caused fasting hyperinsulinaemia, enhanced glucose-stimulated insulin secretion and insulin resistance. In addition, the Adgrl1-deficient mice had impaired feeding responses to glucose and fasting coupled with abnormal glucose sensing and decreased physical activity before development of obesity and hyperglycaemia. In female mice, ovariectomy was necessary to reveal the contribution of ADGRL1 to energy and glucose homeostasis. CONCLUSIONS/INTERPRETATION Altogether, our findings demonstrate that ADGRL1 binds glucose and is involved in energy as well as glucose homeostasis in a sex-dependent manner. Targeting ADGRL1 may introduce a new class of drugs for the treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Siresha Bathina
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tumininu S Faniyan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Dennis J Samuel
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Muhammad Ummear Raza
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Leticia Maria de Souza Cordeiro
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Gonzalo Viana Di Prisco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge Robles
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lauren Bainbridge
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Autumn Davis
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
4
|
Liang H, Tang LY, Ge HY, Chen MM, Lu SY, Zhang HX, Shen CL, Shen Y, Fei J, Wang ZG. Neuronal survival factor TAFA2 suppresses apoptosis through binding to ADGRL1 and activating cAMP/PKA/CREB/BCL2 signaling pathway. Life Sci 2023; 334:122241. [PMID: 37944639 DOI: 10.1016/j.lfs.2023.122241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
AIMS TAFA2, a cytokine specifically expressed in the central nervous system, plays a vital role in neuronal cell survival. TAFA2 deficiency has been correlated to various neurological disorders in mice and humans. However, the underlying mechanism remains elusive, especially its membrane-binding receptor through which TAFA2 functions. This study aimed to identify the specific binding receptor responsible for the anti-apoptotic effects of TAFA2. MAIN METHOD Co-immunoprecipitation (Co-IP) and quantitative mass spectrometry-based proteomic analysis were employed to identify potential TAFA2 binding proteins in V5 knockin mouse brain lysates. Subsequent validation involved in vitro and in vivo Co-IP and pull-down using specific antibodies. The functional analysis included evaluating the effects of ADGRL1 knockout, overexpression, and Lectin-like domain (Lec) deletion mutant on TAFA2's anti-apoptotic activity and analyzing the intracellular signaling pathways mediated by TAFA2 through ADGRL1. KEY FINDINGS Our study identified ADGRL1 as a potential receptor for TAFA2, which directly binds to TAFA2 through its lectin-like domain. Overexpression ADGRL1, but not ADGRL1ΔLec, induced apoptosis, which could be effectively suppressed by recombinant TAFA2 (rTAFA2). In ADGRL1-/- cells or re-introducing with ADGRL1ΔLec, responses to rTAFA2 in suppressing cell apoptosis were compromised. Increased cAMP, p-PKA, p-CREB, and BCL2 levels were also observed in response to rTAFA2 treatment, with these responses attenuated in ADGRL1-/- or ADGRL1ΔLec-expressing cells. SIGNIFICANCE Our results demonstrated that TAFA2 directly binds to the lectin-like domain of ADGRL1, activating cAMP/PKA/CREB/BCL2 signaling pathway, which is crucial in preventing cell death. These results implicate TAFA2 and its receptor ADGRL1 as potential therapeutic targets for neurological disorders.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ling Yun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Yang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Mei Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shun Yuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Xin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chun Ling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Fei
- Tongji University, Shanghai 200092, China
| | - Zhu Gang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
5
|
Fu C, Huang W, Tang Q, Niu M, Guo S, Langenhan T, Song G, Yan J. Unveiling Mechanical Activation: GAIN Domain Unfolding and Dissociation in Adhesion GPCRs. NANO LETTERS 2023; 23:9179-9186. [PMID: 37831892 PMCID: PMC10607210 DOI: 10.1021/acs.nanolett.3c01163] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Indexed: 10/15/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have extracellular regions (ECRs) containing GPCR autoproteolysis-inducing (GAIN) domains. The GAIN domain enables the ECR to self-cleave into N- and C-terminal fragments. However, the impact of force on the GAIN domain's conformation, critical for mechanosensitive aGPCR activation, remains unclear. Our study investigated the mechanical stability of GAIN domains in three aGPCRs (B, G, and L subfamilies) at a loading rate of 1 pN/s. We discovered that forces of a few piconewtons can destabilize the GAIN domains. In autocleaved aGPCRs ADGRG1/GPR56 and ADGRL1/LPHN1, these forces cause the GAIN domain detachment from the membrane-proximal Stachel sequence, preceded by partial unfolding. In noncleavable aGPCR ADGRB3/BAI3 and cleavage-deficient mutant ADGRG1/GPR56-T383G, complex mechanical unfolding of the GAIN domain occurs. Additionally, GAIN domain detachment happens during cell migration. Our findings support the mechanical activation hypothesis of aGPCRs, emphasizing the sensitivity of the GAIN domain structure and detachment to physiological force ranges.
Collapse
Affiliation(s)
- Chaoyu Fu
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Qingnan Tang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Minghui Niu
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shiwen Guo
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Tobias Langenhan
- Rudolf
Schönheimer Institute of Biochemistry, Division of General
Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Gaojie Song
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yan
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, Singapore 117557, Singapore
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
6
|
Zhong BL, Lee CE, Vachharajani VT, Bauer MS, Südhof TC, Dunn AR. Piconewton Forces Mediate GAIN Domain Dissociation of the Latrophilin-3 Adhesion GPCR. NANO LETTERS 2023; 23:9187-9194. [PMID: 37831891 DOI: 10.1021/acs.nanolett.3c03171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Latrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. Most aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-autoproteolysis inducing (GAIN) domain, but the two resulting fragments remain noncovalently associated on the cell surface. Force-mediated dissociation of the fragments is thought to activate G-protein signaling, but how this mechanosensitivity arises is poorly understood. Here, we use magnetic tweezer assays to show that physiologically relevant forces in the 1-10 pN range lead to dissociation of the latrophilin-3 GAIN domain on the seconds-to-minutes time scale, compared to days in the absence of force. In addition, we find that the GAIN domain undergoes large changes in length in response to increasing mechanical load. These data are consistent with a model in which a force-sensitive equilibrium between compact and extended GAIN domain states precedes dissociation, suggesting a mechanism by which latrophilins and other aGPCRs may mediate mechanically induced signal transduction.
Collapse
Affiliation(s)
- Brian L Zhong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Christina E Lee
- Graduate Program in Biophysics, Stanford University, Stanford, California 94305, United States
| | - Vipul T Vachharajani
- Graduate Program in Biophysics, Stanford University, Stanford, California 94305, United States
| | - Magnus S Bauer
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Seufert F, Chung YK, Hildebrand PW, Langenhan T. 7TM domain structures of adhesion GPCRs: what's new and what's missing? Trends Biochem Sci 2023; 48:726-739. [PMID: 37349240 DOI: 10.1016/j.tibs.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Adhesion-type G protein-coupled receptors (aGPCRs) have long resisted approaches to resolve the structural details of their heptahelical transmembrane (7TM) domains. Single-particle cryogenic electron microscopy (cryo-EM) has recently produced aGPCR 7TM domain structures for ADGRD1, ADGRG1, ADGRG2, ADGRG3, ADGRG4, ADGRG5, ADGRF1, and ADGRL3. We review the unique properties, including the position and conformation of their activating tethered agonist (TA) and signaling motifs within the 7TM bundle, that the novel structures have helped to identify. We also discuss questions that the kaleidoscope of novel aGPCR 7TM domain structures have left unanswered. These concern the relative positions, orientations, and interactions of the 7TM and GPCR autoproteolysis-inducing (GAIN) domains with one another. Clarifying their interplay remains an important goal of future structural studies on aGPCRs.
Collapse
Affiliation(s)
- Florian Seufert
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Yin Kwan Chung
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
8
|
Jones DTD, Dates AN, Rawson SD, Burruss MM, Lipper CH, Blacklow SC. Tethered agonist activated ADGRF1 structure and signalling analysis reveal basis for G protein coupling. Nat Commun 2023; 14:2490. [PMID: 37120430 PMCID: PMC10148833 DOI: 10.1038/s41467-023-38083-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
Adhesion G Protein Coupled Receptors (aGPCRs) have evolved an activation mechanism to translate extracellular force into liberation of a tethered agonist (TA) to effect cell signalling. We report here that ADGRF1 can signal through all major G protein classes and identify the structural basis for a previously reported Gαq preference by cryo-EM. Our structure shows that Gαq preference in ADGRF1 may derive from tighter packing at the conserved F569 of the TA, altering contacts between TM helix I and VII, with a concurrent rearrangement of TM helix VII and helix VIII at the site of Gα recruitment. Mutational studies of the interface and of contact residues within the 7TM domain identify residues critical for signalling, and suggest that Gαs signalling is more sensitive to mutation of TA or binding site residues than Gαq. Our work advances the detailed molecular understanding of aGPCR TA activation, identifying features that potentially explain preferential signal modulation.
Collapse
Affiliation(s)
- Daniel T D Jones
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Andrew N Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaun D Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Maggie M Burruss
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Scholz N, Dahse AK, Kemkemer M, Bormann A, Auger GM, Vieira Contreras F, Ernst LF, Staake H, Körner MB, Buhlan M, Meyer-Mölck A, Chung YK, Blanco-Redondo B, Klose F, Jarboui MA, Ljaschenko D, Bigl M, Langenhan T. Molecular sensing of mechano- and ligand-dependent adhesion GPCR dissociation. Nature 2023; 615:945-953. [PMID: 36890234 DOI: 10.1038/s41586-023-05802-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) bear notable similarity to Notch proteins1, a class of surface receptors poised for mechano-proteolytic activation2-4, including an evolutionarily conserved mechanism of cleavage5-8. However, so far there is no unifying explanation for why aGPCRs are autoproteolytically processed. Here we introduce a genetically encoded sensor system to detect the dissociation events of aGPCR heterodimers into their constituent N-terminal and C-terminal fragments (NTFs and CTFs, respectively). An NTF release sensor (NRS) of the neural latrophilin-type aGPCR Cirl (ADGRL)9-11, from Drosophila melanogaster, is stimulated by mechanical force. Cirl-NRS activation indicates that receptor dissociation occurs in neurons and cortex glial cells. The release of NTFs from cortex glial cells requires trans-interaction between Cirl and its ligand, the Toll-like receptor Tollo (Toll-8)12, on neural progenitor cells, whereas expressing Cirl and Tollo in cis suppresses dissociation of the aGPCR. This interaction is necessary to control the size of the neuroblast pool in the central nervous system. We conclude that receptor autoproteolysis enables non-cell-autonomous activities of aGPCRs, and that the dissociation of aGPCRs is controlled by their ligand expression profile and by mechanical force. The NRS system will be helpful in elucidating the physiological roles and signal modulators of aGPCRs, which constitute a large untapped reservoir of drug targets for cardiovascular, immune, neuropsychiatric and neoplastic diseases13.
Collapse
Affiliation(s)
- Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Anne-Kristin Dahse
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marguerite Kemkemer
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Anne Bormann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Genevieve M Auger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Fernando Vieira Contreras
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Lucia F Ernst
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hauke Staake
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marek B Körner
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Max Buhlan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Amelie Meyer-Mölck
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Yin Kwan Chung
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Franziska Klose
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Mohamed Ali Jarboui
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marina Bigl
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
10
|
Nojima Y, Toriyama M, Tago K, Mizuno N, Morishita K, Itoh H. GPR56 C-terminal fragment mediates signal received by N-terminal fragment of another adhesion GPCR Latrophilin1 in neurons. Genes Cells 2023; 28:83-96. [PMID: 36453010 DOI: 10.1111/gtc.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Adhesion GPCRs (aGPCRs) are a subfamily of GPCRs that are involved in cell adhesion, cell proliferation, and cell migration in various tissues. G protein-coupled receptor proteolytic site (GPS) of aGPCR is required to cleave the extracellular domain autocatalytically, generating two fragments; a N-terminal fragment (NTF) and a C-terminal fragment (CTF) containing seven transmembrane structure. NTF can interact with CTF non-covalently after cleavage, however the physiological significance of the cleavage of aGPCR at GPS, and also the interaction between NTF and CTF have not been fully clarified yet. In this study, we first investigated the expression profiles of two aGPCRs, GPR56/ADGRG1, and LPHN1/ADGRL1 in mouse brain, and found that the NTF and CTF of GPR56 independently expressed in different brain region at different developmental stages. Immunoprecipitation of GPR56CTF co-immunoprecipitated LPHN1NTF from mouse brain and HEK293T cells expressing both fragments. Stimulation with LPHN1 ligand, α-Latrotoxin N4C (αLTXN4C), to cells expressing LPHN1NTF and GPR56CTF increased intracellular Ca2+ concentration ([Ca2+ ]i). We also demonstrated that GPR56KO mouse neurons attenuated their Ca2+ response to αLTXN4C. These results suggest the possibility of functional and chimeric complex containing LPHN1NTF and GPR56CTF in neuronal signal transduction.
Collapse
Affiliation(s)
- Yusuke Nojima
- Laboratory of Molecular Signal Transduction, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| | - Manami Toriyama
- Laboratory of Molecular Signal Transduction, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Norikazu Mizuno
- Faculty of Pharmaceutical Sciences, Aomori University, Aomori, Japan
| | - Kazuhiro Morishita
- Project for Advanced Medical Research and Development, Project Research Division, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Itoh
- Laboratory of Molecular Signal Transduction, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
11
|
Zhong BL, Lee CE, Vachharajani VT, Südhof TC, Dunn AR. Piconewton forces mediate GAIN domain dissociation of the latrophilin-3 adhesion GPCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523854. [PMID: 36711622 PMCID: PMC9882233 DOI: 10.1101/2023.01.12.523854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Latrophilins are adhesion G-protein coupled receptors (aGPCRs) that control excitatory synapse formation. aGPCRs, including latrophilins, are autoproteolytically cleaved at their GPCR-Autoproteolysis Inducing (GAIN) domain, but the two resulting fragments remain associated on the cell surface. It is thought that force-mediated dissociation of the fragments exposes a peptide that activates G-protein signaling of aGPCRs, but whether GAIN domain dissociation can occur on biologically relevant timescales and at physiological forces is unknown. Here, we show using magnetic tweezers that physiological forces dramatically accelerate the dissociation of the latrophilin-3 GAIN domain. Forces in the 1-10 pN range were sufficient to dissociate the GAIN domain on a seconds-to-minutes timescale, and the GAIN domain fragments reversibly reassociated after dissociation. Thus, mechanical force may be a key driver of latrophilin signaling during synapse formation, suggesting a physiological mechanism by which aGPCRs may mediate mechanically-induced signal transduction.
Collapse
|
12
|
Krasnova OA, Kulakova KA, Sopova JV, Smirnov EY, Silonov SA, Lomert EV, Bystrova OA, Martynova MG, Neganova IE. Essential Role of Adhesion GPCR, GPR123, for Human Pluripotent Stem Cells and Reprogramming towards Pluripotency. Cells 2023; 12:cells12020304. [PMID: 36672239 PMCID: PMC9856511 DOI: 10.3390/cells12020304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. They modulate key physiological functions and are required in diverse developmental processes including embryogenesis, but their role in pluripotency maintenance and acquisition during the reprogramming towards hiPSCs draws little attention. Meanwhile, it is known that more than 106 GPCRs are overexpressed in human pluripotent stem cells (hPSCs). Previously, to identify novel effectors of reprogramming, we performed a high-throughput RNA interference (RNAi) screening assay and identified adhesion GPCR, GPR123, as a potential reprogramming effector. Its role has not been explored before. Herein, by employing GPR123 RNAi we addressed the role of GPR123 for hPSCs. The suppression of GPR123 in hPSCs leads to the loss of pluripotency and differentiation, impacted colony morphology, accumulation of cells at the G2 phase of the cell cycle, and absence of the scratch closure. Application of the GPR123 RNAi at the initiation stage of reprogramming leads to a decrease in the percentage of the "true" hiPSC colonies, a drop in E-cadherin expression, a decrease in the percentage of NANOG+ nuclei, and the absence of actin cytoskeleton remodeling. Together this leads to the absence of the alkaline-phosphatase-positive hiPSCs colonies on the 18th day of the reprogramming process. Overall, these data indicate for the first time the essential role of GPR123 in the maintenance and acquisition of pluripotency.
Collapse
Affiliation(s)
- Olga A. Krasnova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Karina A. Kulakova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Julia V. Sopova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St-Petersburg, Russia
| | - Evgenyi Y. Smirnov
- Laboratory of Regulation of Genes Function, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Ekaterina V. Lomert
- Laboratory of Molecular Genetics of Tumor Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Olga A. Bystrova
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Marina G. Martynova
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
| | - Irina E. Neganova
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St-Petersburg, Russia
- Correspondence:
| |
Collapse
|
13
|
Hogg DW, Casatti CC, Belsham DD, Baršytė-Lovejoy D, Lovejoy DA. Distal extracellular teneurin region (teneurin C-terminal associated peptide; TCAP) possesses independent intracellular calcium regulating actions, in vitro: A potential antagonist of corticotropin-releasing factor (CRF). Biochem Biophys Rep 2022; 32:101397. [DOI: 10.1016/j.bbrep.2022.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
|
14
|
Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiol Rev 2022; 102:1587-1624. [PMID: 35468004 PMCID: PMC9255715 DOI: 10.1152/physrev.00027.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/11/2022] [Accepted: 04/16/2022] [Indexed: 01/17/2023] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a family of 33 receptors in humans exhibiting a conserved general structure but diverse expression patterns and physiological functions. The large NH2 termini characteristic of AGPCRs confer unique properties to each receptor and possess a variety of distinct domains that can bind to a diverse array of extracellular proteins and components of the extracellular matrix. The traditional view of AGPCRs, as implied by their name, is that their core function is the mediation of adhesion. In recent years, though, many surprising advances have been made regarding AGPCR signaling mechanisms, activation by mechanosensory forces, and stimulation by small-molecule ligands such as steroid hormones and bioactive lipids. Thus, a new view of AGPCRs has begun to emerge in which these receptors are seen as massive signaling platforms that are crucial for the integration of adhesive, mechanosensory, and chemical stimuli. This review article describes the recent advances that have led to this new understanding of AGPCR function and also discusses new insights into the physiological actions of these receptors as well as their roles in human disease.
Collapse
Affiliation(s)
- Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
15
|
Sreepada A, Tiwari M, Pal K. Adhesion G protein-coupled receptor gluing action guides tissue development and disease. J Mol Med (Berl) 2022; 100:1355-1372. [PMID: 35969283 DOI: 10.1007/s00109-022-02240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Phylogenetic analysis of human G protein-coupled receptors (GPCRs) divides these transmembrane signaling proteins into five groups: glutamate, rhodopsin, adhesion, frizzled, and secretin families, commonly abbreviated as the GRAFS classification system. The adhesion GPCR (aGPCR) sub-family comprises 33 different receptors in humans. Majority of the aGPCRs are orphan receptors with unknown ligands, structures, and tissue expression profiles. They have a long N-terminal extracellular domain (ECD) with several adhesion sites similar to integrin receptors. Many aGPCRs undergo autoproteolysis at the GPCR proteolysis site (GPS), enclosed within the larger GPCR autoproteolysis inducing (GAIN) domain. Recent breakthroughs in aGPCR research have created new paradigms for understanding their roles in organogenesis. They play crucial roles in multiple aspects of organ development through cell signaling, intercellular adhesion, and cell-matrix associations. They are involved in essential physiological processes like regulation of cell polarity, mitotic spindle orientation, cell adhesion, and migration. Multiple aGPCRs have been associated with the development of the brain, musculoskeletal system, kidneys, cardiovascular system, hormone secretion, and regulation of immune functions. Since aGPCRs have crucial roles in tissue patterning and organogenesis, mutations in these receptors are often associated with diseases with loss of tissue integrity. Thus, aGPCRs include a group of enigmatic receptors with untapped potential for elucidating novel signaling pathways leading to drug discovery. We summarized the current knowledge on how aGPCRs play critical roles in organ development and discussed how aGPCR mutations/genetic variants cause diseases.
Collapse
Affiliation(s)
- Abhijit Sreepada
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Mansi Tiwari
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India
| | - Kasturi Pal
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India.
| |
Collapse
|
16
|
ADGRL1 haploinsufficiency causes a variable spectrum of neurodevelopmental disorders in humans and alters synaptic activity and behavior in a mouse model. Am J Hum Genet 2022; 109:1436-1457. [PMID: 35907405 PMCID: PMC9388395 DOI: 10.1016/j.ajhg.2022.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
ADGRL1 (latrophilin 1), a well-characterized adhesion G protein-coupled receptor, has been implicated in synaptic development, maturation, and activity. However, the role of ADGRL1 in human disease has been elusive. Here, we describe ten individuals with variable neurodevelopmental features including developmental delay, intellectual disability, attention deficit hyperactivity and autism spectrum disorders, and epilepsy, all heterozygous for variants in ADGRL1. In vitro, human ADGRL1 variants expressed in neuroblastoma cells showed faulty ligand-induced regulation of intracellular Ca2+ influx, consistent with haploinsufficiency. In vivo, Adgrl1 was knocked out in mice and studied on two genetic backgrounds. On a non-permissive background, mice carrying a heterozygous Adgrl1 null allele exhibited neurological and developmental abnormalities, while homozygous mice were non-viable. On a permissive background, knockout animals were also born at sub-Mendelian ratios, but many Adgrl1 null mice survived gestation and reached adulthood. Adgrl1-/- mice demonstrated stereotypic behaviors, sexual dysfunction, bimodal extremes of locomotion, augmented startle reflex, and attenuated pre-pulse inhibition, which responded to risperidone. Ex vivo synaptic preparations displayed increased spontaneous exocytosis of dopamine, acetylcholine, and glutamate, but Adgrl1-/- neurons formed synapses in vitro poorly. Overall, our findings demonstrate that ADGRL1 haploinsufficiency leads to consistent developmental, neurological, and behavioral abnormalities in mice and humans.
Collapse
|
17
|
Dodsworth TL, Lovejoy DA. Role of Teneurin C-Terminal Associated Peptides (TCAP) on Intercellular Adhesion and Communication. Front Neurosci 2022; 16:868541. [PMID: 35585927 PMCID: PMC9108700 DOI: 10.3389/fnins.2022.868541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
The teneurin C-terminal associated peptides (TCAP) are encoded by the terminal exon of all metazoan teneurin genes. Evidence supports the liberation of a soluble TCAP peptide either by proteolytic cleavage from the mature transmembrane teneurin protein or by a separately transcribed mRNA. Synthetic versions of TCAP, based on its genomic structure, are efficacious at regulating intercellular communication by promoting neurite outgrowth and increasing dendritic spine density in vitro and in vivo in rodent models. This is achieved through cytoskeletal re-arrangement and metabolic upregulation. The putative receptors for TCAPs are the latrophilin (LPHN) family of adhesion G-protein coupled receptors, which facilitate TCAP’s actions through G-proteins associated with cAMP and calcium-regulating signalling pathways. The teneurin/TCAP and latrophilin genes are phylogenetically ancient, likely serving primitive functions in cell adhesion and energy regulation which have been since adapted for a more complex role in synaptogenesis in vertebrate nervous systems.
Collapse
|
18
|
Affiliation(s)
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry Division of General Biochemistry Medical Faculty Leipzig University Leipzig Germany
| |
Collapse
|
19
|
Caruso MB, Lauria PSS, de Souza CMV, Casais-E-Silva LL, Zingali RB. Widow spiders in the New World: a review on Latrodectus Walckenaer, 1805 (Theridiidae) and latrodectism in the Americas. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210011. [PMID: 34745240 PMCID: PMC8553018 DOI: 10.1590/1678-9199-jvatitd-2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/08/2021] [Indexed: 11/21/2022] Open
Abstract
Humankind has always been fascinated by venomous animals, as their toxic substances have transformed them into symbols of power and mystery. Over the centuries, researchers have been trying to understand animal venoms, unveiling intricate mixtures of molecules and their biological effects. Among venomous animals, Latrodectus Walckenaer, 1805 (widow spiders) have become feared in many cultures worldwide due to their extremely neurotoxic venom. The Latrodectus genus encompasses 32 species broadly spread around the globe, 14 of which occur in the Americas. Despite the high number of species found in the New World, the knowledge on these spiders is still scarce. This review covers the general knowledge on Latrodectus spp. from the Americas. We address widow spiders' taxonomy; geographical distribution and epidemiology; symptoms and treatments of envenomation (latrodectism); venom collection, experimental studies, proteome and transcriptome; and biotechnological studies on these Latrodectus spp. Moreover, we discuss the main challenges and limitations faced by researchers when trying to comprehend this neglected group of medically important spiders. We expect this review to help overcome the lack of information regarding widow spiders in the New World.
Collapse
Affiliation(s)
- Marjolly Brigido Caruso
- Laboratory of Hemostasis and Venoms, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Pedro Santana Sales Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, School of Pharmacy, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | | | - Luciana Lyra Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Russolina Benedeta Zingali
- Laboratory of Hemostasis and Venoms, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Regan SL, Pitzer EM, Hufgard JR, Sugimoto C, Williams MT, Vorhees CV. A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats. Neurobiol Dis 2021; 158:105456. [PMID: 34352385 PMCID: PMC8440465 DOI: 10.1016/j.nbd.2021.105456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion G protein-coupled receptors with three isoforms but only LPHN3 is brain specific (caudate, prefrontal cortex, dentate, amygdala, and cerebellum). Variants of LPHN3 are associated with ADHD. Null mutations of Lphn3 in rat, mouse, zebrafish, and Drosophila result in hyperactivity, but its role in learning and memory (L&M) is largely unknown. Using our Lphn3 knockout (KO) rats we examined the cognitive abilities, long-term potentiation (LTP) in CA1, NMDA receptor expression, and neurohistology from heterozygous breeding pairs. KO rats were impaired in egocentric L&M in the Cincinnati water maze, spatial L&M and cognitive flexibility in the Morris water maze (MWM), with no effects on conditioned freezing, novel object recognition, or temporal order recognition. KO-associated locomotor hyperactivity had no effect on swim speed. KO rats had reduced early-LTP but not late-LTP and had reduced hippocampal NMDA-NR1 expression. In a second experiment, KO rats responded to a light prepulse prior to an acoustic startle pulse, reflecting visual signal detection. In a third experiment, KO rats given extra MWM pretraining and hidden platform overtraining showed no evidence of reaching WT rats' levels of learning. Nissl histology revealed no structural abnormalities in KO rats. LPHN3 has a selective effect on egocentric and allocentric L&M without effects on conditioned freezing or recognition memory.
Collapse
Affiliation(s)
- Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Emily M Pitzer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Jillian R Hufgard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Regan SL, Williams MT, Vorhees CV. Latrophilin-3 disruption: Effects on brain and behavior. Neurosci Biobehav Rev 2021; 127:619-629. [PMID: 34022279 DOI: 10.1016/j.neubiorev.2021.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Latrophilin-3 (LPHN3), a G-protein-coupled receptor belonging to the adhesion subfamily, is a regulator of synaptic function and maintenance in brain regions that mediate locomotor activity, attention, and memory for location and path. Variants of LPHN3 are associated with increased risk for attention deficit hyperactivity disorder (ADHD) in some patients. Here we review the role of LPHN3 in the central nervous system (CNS). We describe synaptic localization of LPHN3, its trans-synaptic binding partners, links to neurodevelopmental disorders, animal models of Lphn3 disruption in different species, and evidence that LPHN3 is involved in cognition as well as activity and attention. The evidence shows that LPHN3 plays a more significant role in neuroplasticity than previously appreciated.
Collapse
Affiliation(s)
- Samantha L Regan
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
22
|
Beliu G, Altrichter S, Guixà-González R, Hemberger M, Brauer I, Dahse AK, Scholz N, Wieduwild R, Kuhlemann A, Batebi H, Seufert F, Pérez-Hernández G, Hildebrand PW, Sauer M, Langenhan T. Tethered agonist exposure in intact adhesion/class B2 GPCRs through intrinsic structural flexibility of the GAIN domain. Mol Cell 2021; 81:905-921.e5. [PMID: 33497605 DOI: 10.1016/j.molcel.2020.12.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/28/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs)/family B2 GPCRs execute critical tasks during development and the operation of organs, and their genetic lesions are associated with human disorders, including cancers. Exceptional structural aGPCR features are the presence of a tethered agonist (TA) concealed within a GPCR autoproteolysis-inducing (GAIN) domain and their non-covalent heteromeric two-subunit layout. How the TA is poised for activation while maintaining this delicate receptor architecture is central to conflicting signaling paradigms that either involve or exclude aGPCR heterodimer separation. We investigated this matter in five mammalian aGPCR homologs (ADGRB3, ADGRE2, ADGRE5, ADGRG1, and ADGRL1) and demonstrate that intact aGPCR heterodimers exist at the cell surface, that the core TA region becomes unmasked in the cleaved GAIN domain, and that intra-GAIN domain movements regulate the level of tethered agonist exposure, thereby likely controlling aGPCR activity. Collectively, these findings delineate a unifying mechanism for TA-dependent signaling of intact aGPCRs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Binding Sites
- COS Cells
- Chlorocebus aethiops
- Crystallography, X-Ray
- Gene Expression
- HEK293 Cells
- Humans
- Molecular Dynamics Simulation
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Multimerization
- Proteolysis
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
Collapse
Affiliation(s)
- Gerti Beliu
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Steffen Altrichter
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Ramon Guixà-González
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland; Condensed Matter Theory Group, PSI, 5232 Villigen PSI, Switzerland
| | - Mareike Hemberger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Ina Brauer
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Anne-Kristin Dahse
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Robert Wieduwild
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Alexander Kuhlemann
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hossein Batebi
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Florian Seufert
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Guillermo Pérez-Hernández
- Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany.
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
23
|
Wang Y, Shi M, Yang N, Zhou X, Xu L. GPR115 Contributes to Lung Adenocarcinoma Metastasis Associated With LAMC2 and Predicts a Poor Prognosis. Front Oncol 2020; 10:577530. [PMID: 33330053 PMCID: PMC7715024 DOI: 10.3389/fonc.2020.577530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
GPR115, a member of the adhesion G protein-coupled receptor family, is dysregulated in many cancers. However, the expression and function of GRP115 in non-small cell lung cancer (NSCLC) is not clear. Here, we examined the expression pattern, clinical significance, and function of GPR115 in NSCLC by analysis of clinical specimens and human cell lines and bioinformatics analysis. Immunohistochemical analysis of clinical samples showed that GPR115 was significantly upregulated in NSCLC tissues compares with normal lung epithelial tissue (P < 0.05). And GPR115 overexpression is an independent prognostic factor for 5-year overall survival of NSCLC patients [hazard ratio (HR)=1.625, P = 0.008]. Interestingly, higher expression of GPR115 was strongly correlation with differentiation level (P = 0.027), tumor size (P = 0.010), lymph node metastasis (P = 0.022), tumor-node-metastasis stage (P = 0.008), and poor prognosis of lung adenocarcinoma (LUAD, all P = 0.039), but not lung squamous cell carcinoma (LUSC, P > 0.05). Moreover, downregulation of GPR115 by RNA interference in human lung cancer lines inhibited cell proliferation, migration, and invasion. Preliminary bioinformatic analysis confirmed that GPR115 was closely associated with LAMC2 (Spearman correlation coefficient=0.67, P < 0.05), which was accumulated in ECM-receptor interaction and focal adhesion. Consistent with these findings, deceased of GPR115 was associated with E-cadherin, N-cadherin and Vimentin confirmed by western blot. In conclusion, these data suggest that GPR115 may play a role in the tumor growth and metastasis and may have utility as a diagnostic and prognostic marker for LUAD, but not LUSC.
Collapse
Affiliation(s)
- Yingjing Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Muqi Shi
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Nan Yang
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Xiaoyu Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Liqin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
24
|
Peregrina C, Del Toro D. FLRTing Neurons in Cortical Migration During Cerebral Cortex Development. Front Cell Dev Biol 2020; 8:578506. [PMID: 33043013 PMCID: PMC7527468 DOI: 10.3389/fcell.2020.578506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023] Open
Abstract
During development, two coordinated events shape the morphology of the mammalian cerebral cortex, leading to the cortex's columnar and layered structure: the proliferation of neuronal progenitors and cortical migration. Pyramidal neurons originating from germinal zones migrate along radial glial fibers to their final position in the cortical plate by both radial migration and tangential dispersion. These processes rely on the delicate balance of intercellular adhesive and repulsive signaling that takes place between neurons interacting with different substrates and guidance cues. Here, we focus on the function of the cell adhesion molecules fibronectin leucine-rich repeat transmembrane proteins (FLRTs) in regulating both the radial migration of neurons, as well as their tangential spread, and the impact these processes have on cortex morphogenesis. In combining structural and functional analysis, recent studies have begun to reveal how FLRT-mediated responses are precisely tuned - from forming different protein complexes to modulate either cell adhesion or repulsion in neurons. These approaches provide a deeper understanding of the context-dependent interactions of FLRTs with multiple receptors involved in axon guidance and synapse formation that contribute to finely regulated neuronal migration.
Collapse
Affiliation(s)
- Claudia Peregrina
- Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Del Toro
- Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
25
|
Vizurraga A, Adhikari R, Yeung J, Yu M, Tall GG. Mechanisms of adhesion G protein-coupled receptor activation. J Biol Chem 2020; 295:14065-14083. [PMID: 32763969 DOI: 10.1074/jbc.rev120.007423] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Adhesion G protein-coupled receptors (AGPCRs) are a thirty-three-member subfamily of Class B GPCRs that control a wide array of physiological processes and are implicated in disease. AGPCRs uniquely contain large, self-proteolyzing extracellular regions that range from hundreds to thousands of residues in length. AGPCR autoproteolysis occurs within the extracellular GPCR autoproteolysis-inducing (GAIN) domain that is proximal to the N terminus of the G protein-coupling seven-transmembrane-spanning bundle. GAIN domain-mediated self-cleavage is constitutive and produces two-fragment holoreceptors that remain bound at the cell surface. It has been of recent interest to understand how AGPCRs are activated in relation to their two-fragment topologies. Dissociation of the AGPCR fragments stimulates G protein signaling through the action of the tethered-peptide agonist stalk that is occluded within the GAIN domain in the holoreceptor form. AGPCRs can also signal independently of fragment dissociation, and a few receptors possess GAIN domains incapable of self-proteolysis. This has resulted in complex theories as to how these receptors are activated in vivo, complicating pharmacological advances. Currently, there is no existing structure of an activated AGPCR to support any of the theories. Further confounding AGPCR research is that many of the receptors remain orphans and lack identified activating ligands. In this review, we provide a detailed layout of the current theorized modes of AGPCR activation with discussion of potential parallels to mechanisms used by other GPCR classes. We provide a classification means for the ligands that have been identified and discuss how these ligands may activate AGPCRs in physiological contexts.
Collapse
Affiliation(s)
- Alexander Vizurraga
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Rashmi Adhikari
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jennifer Yeung
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Li J, Xie Y, Cornelius S, Jiang X, Sando R, Kordon SP, Pan M, Leon K, Südhof TC, Zhao M, Araç D. Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nat Commun 2020; 11:2140. [PMID: 32358586 PMCID: PMC7195488 DOI: 10.1038/s41467-020-16029-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
The trans-synaptic interaction of the cell-adhesion molecules teneurins (TENs) with latrophilins (LPHNs/ADGRLs) promotes excitatory synapse formation when LPHNs simultaneously interact with FLRTs. Insertion of a short alternatively-spliced region within TENs abolishes the TEN-LPHN interaction and switches TEN function to specify inhibitory synapses. How alternative-splicing regulates TEN-LPHN interaction remains unclear. Here, we report the 2.9 Å resolution cryo-EM structure of the TEN2-LPHN3 complex, and describe the trimeric TEN2-LPHN3-FLRT3 complex. The structure reveals that the N-terminal lectin domain of LPHN3 binds to the TEN2 barrel at a site far away from the alternatively spliced region. Alternative-splicing regulates the TEN2-LPHN3 interaction by hindering access to the LPHN-binding surface rather than altering it. Strikingly, mutagenesis of the LPHN-binding surface of TEN2 abolishes the LPHN3 interaction and impairs excitatory but not inhibitory synapse formation. These results suggest that a multi-level coincident binding mechanism mediated by a cryptic adhesion complex between TENs and LPHNs regulates synapse specificity. The trans-synaptic interaction of the cell-adhesion molecules teneurins (TENs) with latrophilins (LPHNs) promotes excitatory synapse formation. Here authors report the high resolution cryo-EM structure of the TEN2-LPHN3 complex, describe the trimeric TEN2-LPHN3-FLRT3 complex and show how alternative-splicing regulates the TEN2-LPHN3 interaction.
Collapse
Affiliation(s)
- Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Shaleeka Cornelius
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xian Jiang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Szymon P Kordon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Man Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA. .,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
27
|
Maser RL, Calvet JP. Adhesion GPCRs as a paradigm for understanding polycystin-1 G protein regulation. Cell Signal 2020; 72:109637. [PMID: 32305667 DOI: 10.1016/j.cellsig.2020.109637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Polycystin-1, whose mutation is the most frequent cause of autosomal dominant polycystic kidney disease, is an extremely large and multi-faceted membrane protein whose primary or proximal cyst-preventing function remains undetermined. Accumulating evidence supports the idea that modulation of cellular signaling by heterotrimeric G proteins is a critical function of polycystin-1. The presence of a cis-autocatalyzed, G protein-coupled receptor (GPCR) proteolytic cleavage site, or GPS, in its extracellular N-terminal domain immediately preceding the first transmembrane domain is one of the notable conserved features of the polycystin-1-like protein family, and also of the family of cell adhesion GPCRs. Adhesion GPCRs are one of five families within the GPCR superfamily and are distinguished by a large N-terminal extracellular region consisting of multiple adhesion modules with a GPS-containing GAIN domain and bimodal functions in cell adhesion and signal transduction. Recent advances from studies of adhesion GPCRs provide a new paradigm for unraveling the mechanisms by which polycystin-1-associated G protein signaling contributes to the pathogenesis of polycystic kidney disease. This review highlights the structural and functional features shared by polycystin-1 and the adhesion GPCRs and discusses the implications of such similarities for our further understanding of the functions of this complicated protein.
Collapse
Affiliation(s)
- Robin L Maser
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| |
Collapse
|
28
|
Sengupta N, Manchanda R. Spontaneous synaptic drive in detrusor smooth muscle: computational investigation and implications for urinary bladder function. J Comput Neurosci 2019; 47:167-189. [PMID: 31712945 DOI: 10.1007/s10827-019-00731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
The detrusor, a key component of the urinary bladder wall, is a densely innervated syncytial smooth muscle tissue. Random spontaneous release of neurotransmitter at neuromuscular junctions (NMJs) in the detrusor gives rise to spontaneous excitatory junction potentials (SEJPs). These sub-threshold passive signals not only offer insights into the syncytial nature of the tissue, their spatio-temporal integration is critical to the generation of spontaneous neurogenic action potentials which lead to focal contractions during the filling phase of the bladder. Given the structural complexity and the contractile nature of the tissue, electrophysiological investigations on spatio-temporal integration of SEJPs in the detrusor are technically challenging. Here we report a biophysically constrained computational model of a detrusor syncytium overlaid with spatially distributed innervation, using which we explored salient features of the integration of SEJPs in the tissue and the key factors that contribute to this integration. We validated our model against experimental data, ascertaining that observations were congruent with theoretical predictions. With the help of comparative studies, we propose that the amplitude of the spatio-temporally integrated SEJP is most sensitive to the inter-cellular coupling strength in the detrusor, while frequency of observed events depends more strongly on innervation density. An experimentally testable prediction arising from our study is that spontaneous release frequency of neurotransmitter may be implicated in the generation of detrusor overactivity. Set against histological observations, we also conjecture possible changes in the electrical activity of the detrusor during pathology involving patchy denervation. Our model thus provides a physiologically realistic, heuristic framework to investigate the spread and integration of passive potentials in an innervated syncytial tissue under normal conditions and in pathophysiology.
Collapse
Affiliation(s)
- Nilapratim Sengupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
29
|
Lovejoy DA, Hogg DW, Dodsworth TL, Jurado FR, Read CC, D'Aquila AL, Barsyte-Lovejoy D. Synthetic Peptides as Therapeutic Agents: Lessons Learned From Evolutionary Ancient Peptides and Their Transit Across Blood-Brain Barriers. Front Endocrinol (Lausanne) 2019; 10:730. [PMID: 31781029 PMCID: PMC6861216 DOI: 10.3389/fendo.2019.00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
Peptides play a major role in the transmission of information to and from the central nervous system. However, because of their structural complexity, the development of pharmacological peptide-based therapeutics has been challenged by the lack of understanding of endogenous peptide evolution. The teneurin C-terminal associated peptides (TCAP) possess many of the required attributes of a practical peptide therapeutic. TCAPs, associated with the teneurin transmembrane proteins that bind to the latrophilins, members of the Adhesion family of G-protein-coupled receptors (GPCR). Together, this ligand-receptor unit plays an integral role in synaptogenesis, neurological development, and maintenance, and is present in most metazoans. TCAP has structural similarity to corticotropin-releasing factor (CRF), and related peptides, such as calcitonin and the secretin-based peptides and inhibits the (CRF)-associated stress response. Latrophilins are structurally related to the secretin family of GPCRs. TCAP is a soluble peptide that crosses the blood-brain barrier and regulates glucose transport into the brain. We posit that TCAP represents a phylogenetically older peptide system that evolved before the origin of the CRF-calcitonin-secretin clade of peptides and plays a fundamental role in the regulation of cell-to-cell energy homeostasis. Moreover, it may act as a phylogenetically older peptide system that evolved as a natural antagonist to the CRF-mediated stress response. Thus, TCAP's actions on the CNS may provide new insights into the development of peptide therapeutics for the treatment of CNS disorders.
Collapse
Affiliation(s)
- David A. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Protagenic Therapeutics Inc., New York, NY, United States
| | - David W. Hogg
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Thomas L. Dodsworth
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Fernando R. Jurado
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Casey C. Read
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Andrea L. D'Aquila
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| | | |
Collapse
|
30
|
Rahman MA, Manser C, Benlaouer O, Suckling J, Blackburn JK, Silva JP, Ushkaryov YA. C-terminal phosphorylation of latrophilin-1/ADGRL1 affects the interaction between its fragments. Ann N Y Acad Sci 2019; 1456:122-143. [PMID: 31553068 DOI: 10.1111/nyas.14242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Latrophilin-1 is an adhesion G protein-coupled receptor that mediates the effect of α-latrotoxin, causing massive release of neurotransmitters from nerve terminals and endocrine cells. Autoproteolysis cleaves latrophilin-1 into two parts: the extracellular N-terminal fragment (NTF) and the heptahelical C-terminal fragment (CTF). NTF and CTF can exist as independent proteins in the plasma membrane, but α-latrotoxin binding to NTF induces their association and G protein-mediated signaling. We demonstrate here that CTF in synapses is phosphorylated on multiple sites. Phosphorylated CTF has a high affinity for NTF and copurifies with it on affinity columns and sucrose density gradients. Dephosphorylated CTF has a lower affinity for NTF and can behave as a separate protein. α-Latrotoxin (and possibly other ligands of latrophilin-1) binds both to the NTF-CTF complex and receptor-like protein tyrosine phosphatase σ, bringing them together. This leads to CTF dephosphorylation and facilitates CTF release from the complex. We propose that ligand-dependent phosphorylation-dephosphorylation of latrophilin-1 could affect the interaction between its fragments and functions as a G protein-coupled receptor.
Collapse
Affiliation(s)
- M Atiqur Rahman
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Catherine Manser
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ouafa Benlaouer
- School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Jason Suckling
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - John-Paul Silva
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yuri A Ushkaryov
- Department of Life Sciences, Imperial College London, London, United Kingdom
- School of Pharmacy, University of Kent, Chatham, United Kingdom
| |
Collapse
|
31
|
Wei L, Gao S, Xiong W, Liu J, Mao J, Lu Y, Song X, Li B. Latrophilin mediates insecticides susceptibility and fecundity through two carboxylesterases, esterase4 and esterase6, in Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:534-543. [PMID: 30789108 DOI: 10.1017/s0007485318000895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Latrophilin (LPH) is known as an adhesion G-protein-coupled receptor which involved in multiple physiological processes in organisms. Previous studies showed that lph not only involved the susceptibility to anticholinesterase insecticides but also affected fecundity in Tribolium castaneum. However, its regulatory mechanisms in these biological processes are still not clear. Here, we identified two potential downstream carboxylesterase (cce) genes of Tclph, esterase4 and esterase6, and further characterized their interactions with Tclph. After treatment of T. castaneum larvae with carbofuran or dichlorvos insecticides, the transcript levels of Tcest4 and Tcest6 were significantly induced from 12 to 72 h. RNAi against Tcest4 or Tcest6 led to the higher mortality compared with the controls after the insecticides treatment, suggesting that these two genes play a vital role in detoxification of insecticides in T. castaneum. Furthermore, with insecticides exposure to Tclph knockdown beetles, the expression of Tcest4 was upregulated but Tcest6 was downregulated, indicating that beetles existed a compensatory response against the insecticides. Additionally, RNAi of Tcest6 resulted in 43% reductions in female egg laying and completely inhibited egg hatching, which showed the similar phenotype as that of Tclph knockdown. These results indicated that Tclph affected fecundity by positively regulating Tcest6 expression. Our findings will provide a new insight into the molecular mechanisms of Tclph involved in physiological functions in T. castaneum.
Collapse
Affiliation(s)
- L Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - S Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - W Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - Y Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - X Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| |
Collapse
|
32
|
Ovando-Zambrano JC, Arias-Montaño JA, Boucard AA. Alternative splicing event modifying ADGRL1/latrophilin-1 cytoplasmic tail promotes both opposing and dual cAMP signaling pathways. Ann N Y Acad Sci 2019; 1456:168-185. [PMID: 31339586 DOI: 10.1111/nyas.14198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022]
Abstract
The adhesion G protein-coupled receptor ADGRL1/latrophilin-1 (LPHN1) stabilizes synapse formation through heterophilic interactions. A growing consensus is pointing to the role of LPHN1 in modulating intracellular levels of cAMP, although conflicting data exist. Variants of LPHN1 resulting from alternative splicing differ at multiple sites, two of which, designated as SSA and SSB, modify extracellular and intracellular receptor regions, respectively. While SSA splicing modulates receptor-ligand affinity, the function of SSB splicing remains elusive. Here, we explored the role of SSB in an attempt to unify current findings on LPHN1 signaling pathways by testing SSB-containing and SSB-deficient receptor variants in signaling paradigms involving interaction with their ligands neurexin and FLRT. cAMP competitive binding assays revealed that cells expressing either receptor variant exhibited a ligand-dependent decrease in the forskolin-induced cAMP accumulation. Surprisingly, the expression of SSB-containing LPHN1 promoted both constitutive and ligand-dependent cAMP production, whereas SSB-deficient LPHN1 did not. Pertussis toxin treatment unveiled a constitutive coupling to Gαi/o for SSB-containing LPHN1 while abrogating the ligand-mediated activation of Gαs . Importantly, neither receptor variant increased the intracellular concentration of Ca2+ nor MAP kinase activation in the presence of ligands. These results suggest that SSB splicing selectively affects the duality of LPHN1 signaling toward opposing cAMP pathways.
Collapse
Affiliation(s)
- José-Carlos Ovando-Zambrano
- Departamento de Fisiología, Biofísica, y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica, y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Ciudad de México, México
| | - Antony A Boucard
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Ciudad de México, México
| |
Collapse
|
33
|
Burbach JPH, Meijer DH. Latrophilin's Social Protein Network. Front Neurosci 2019; 13:643. [PMID: 31297045 PMCID: PMC6608557 DOI: 10.3389/fnins.2019.00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion GPCRs that are originally discovered as spider's toxin receptors, but are now known to be involved in brain development and linked to several neuronal and non-neuronal disorders. Latrophilins act in conjunction with other cell adhesion molecules and may play a leading role in its network organization. Here, we focus on the main protein partners of latrophilins, namely teneurins, FLRTs and contactins and summarize their respective temporal and spatial expression patterns, links to neurodevelopmental disorders as well as their structural characteristics. We discuss how more recent insights into the separate cell biological functions of these proteins shed light on the central role of latrophilins in this network. We postulate that latrophilins control the refinement of synaptic properties of specific subtypes of neurons, requiring discrete combinations of proteins.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Translational Neuroscience, UMCU Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
34
|
Moreno-Salinas AL, Avila-Zozaya M, Ugalde-Silva P, Hernández-Guzmán DA, Missirlis F, Boucard AA. Latrophilins: A Neuro-Centric View of an Evolutionary Conserved Adhesion G Protein-Coupled Receptor Subfamily. Front Neurosci 2019; 13:700. [PMID: 31354411 PMCID: PMC6629964 DOI: 10.3389/fnins.2019.00700] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
The adhesion G protein-coupled receptors latrophilins have been in the limelight for more than 20 years since their discovery as calcium-independent receptors for α-latrotoxin, a spider venom toxin with potent activity directed at neurotransmitter release from a variety of synapse types. Latrophilins are highly expressed in the nervous system. Although a substantial amount of studies has been conducted to describe the role of latrophilins in the toxin-mediated action, the recent identification of endogenous ligands for these receptors helped confirm their function as mediators of adhesion events. Here we hypothesize a role for latrophilins in inter-neuronal contacts and the formation of neuronal networks and we review the most recent information on their role in neurons. We explore molecular, cellular and behavioral aspects related to latrophilin adhesion function in mice, zebrafish, Drosophila melanogaster and Caenorhabditis elegans, in physiological and pathophysiological conditions, including autism spectrum, bipolar, attention deficit and hyperactivity and substance use disorders.
Collapse
Affiliation(s)
- Ana L. Moreno-Salinas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Monserrat Avila-Zozaya
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - David A. Hernández-Guzmán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Antony A. Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
35
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
36
|
Sita LV, Diniz GB, Horta-Junior JAC, Casatti CA, Bittencourt JC. Nomenclature and Comparative Morphology of the Teneurin/TCAP/ADGRL Protein Families. Front Neurosci 2019; 13:425. [PMID: 31130838 PMCID: PMC6510184 DOI: 10.3389/fnins.2019.00425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Luciane V. Sita
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanne B. Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José A. C. Horta-Junior
- Department of Anatomy, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Claudio A. Casatti
- Department of Basic Sciences, São Paulo State University, São Paulo, Brazil
| | - Jackson C. Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Center for Neuroscience and Behavior, Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Jackson C. Bittencourt,
| |
Collapse
|
37
|
Langenhan T. Adhesion G protein–coupled receptors—Candidate metabotropic mechanosensors and novel drug targets. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:5-16. [DOI: 10.1111/bcpt.13223] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty Leipzig University Leipzig Germany
| |
Collapse
|
38
|
Araç D, Li J. Teneurins and latrophilins: two giants meet at the synapse. Curr Opin Struct Biol 2019; 54:141-151. [PMID: 30952063 DOI: 10.1016/j.sbi.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Teneurins and latrophilins are both conserved families of cell adhesion proteins that mediate cellular communication and play critical roles in embryonic and neural development. However, their mechanisms of action remain poorly understood. In the past several years, three-dimensional structures of teneurins and latrophilins have been reported at atomic resolutions and revealed distinct protein folds and unique structural features. In this review, we discuss these structures which, together with structure-guided biochemical and functional analyses, provide hints for the mechanisms of trans-cellular communication at the synapse and other cell-cell contact sites.
Collapse
Affiliation(s)
- Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, IL 60637, USA.
| | - Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, IL 60637, USA
| |
Collapse
|
39
|
Ushkaryov YA, Lelianova V, Vysokov NV. Catching Latrophilin With Lasso: A Universal Mechanism for Axonal Attraction and Synapse Formation. Front Neurosci 2019; 13:257. [PMID: 30967757 PMCID: PMC6438917 DOI: 10.3389/fnins.2019.00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/05/2019] [Indexed: 11/24/2022] Open
Abstract
Latrophilin-1 (LPHN1) was isolated as the main high-affinity receptor for α-latrotoxin from black widow spider venom, a powerful presynaptic secretagogue. As an adhesion G-protein-coupled receptor, LPHN1 is cleaved into two fragments, which can behave independently on the cell surface, but re-associate upon binding the toxin. This triggers intracellular signaling that involves the Gαq/phospholipase C/inositol 1,4,5-trisphosphate cascade and an increase in cytosolic Ca2+, leading to vesicular exocytosis. Using affinity chromatography on LPHN1, we isolated its endogenous ligand, teneurin-2/Lasso. Both LPHN1 and Ten2/Lasso are expressed early in development and are enriched in neurons. LPHN1 primarily resides in axons, growth cones and presynaptic terminals, while Lasso largely localizes on dendrites. LPHN1 and Ten2/Lasso form a trans-synaptic receptor pair that has both structural and signaling functions. However, Lasso is proteolytically cleaved at multiple sites and its extracellular domain is partially released into the intercellular space, especially during neuronal development, suggesting that soluble Lasso has additional functions. We discovered that the soluble fragment of Lasso can diffuse away and bind to LPHN1 on axonal growth cones, triggering its redistribution on the cell surface and intracellular signaling which leads to local exocytosis. This causes axons to turn in the direction of spatio-temporal Lasso gradients, while LPHN1 knockout blocks this effect. These results suggest that the LPHN1-Ten2/Lasso pair can participate in long- and short-distance axonal guidance and synapse formation.
Collapse
Affiliation(s)
- Yuri A Ushkaryov
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Vera Lelianova
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | | |
Collapse
|
40
|
Topf U, Drabikowski K. Ancient Function of Teneurins in Tissue Organization and Neuronal Guidance in the Nematode Caenorhabditis elegans. Front Neurosci 2019; 13:205. [PMID: 30906249 PMCID: PMC6418043 DOI: 10.3389/fnins.2019.00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/22/2019] [Indexed: 01/04/2023] Open
Abstract
The nematode Caenorhabditis elegans expresses the ten-1 gene that encodes teneurin. TEN-1 protein is expressed throughout the life of C. elegans. The loss of ten-1 function results in embryonic and larval lethality, highlighting its importance for fundamental processes during development. TEN-1 is expressed in the epidermis and neurons. Defects in neuronal pathfinding and epidermal closure are characteristic of ten-1 loss-of-function mutations. The molecular mechanisms of TEN-1 function in neurite outgrowth, neuronal pathfinding, and dendritic morphology in C. elegans are largely unknown. Its genetic redundancy with the extracellular matrix receptors integrin and dystroglycan and genetic interactions with several basement membrane components suggest a role for TEN-1 in the maintenance of basement membrane integrity, which is essential for neuronal guidance. Identification of the lat-1 gene in C. elegans, which encodes latrophilin, as an interaction partner of ten-1 provides further mechanistic insights into TEN-1 function in neuronal development. However, receptor-ligand interactions between LAT-1 and TEN-1 remain to be experimentally proven. The present review discusses the function of teneurin in C. elegans, with a focus on its involvement in the formation of receptor signaling complexes and neuronal networks.
Collapse
Affiliation(s)
- Ulrike Topf
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Drabikowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
41
|
Vezain M, Lecuyer M, Rubio M, Dupé V, Ratié L, David V, Pasquier L, Odent S, Coutant S, Tournier I, Trestard L, Adle-Biassette H, Vivien D, Frébourg T, Gonzalez BJ, Laquerrière A, Saugier-Veber P. A de novo variant in ADGRL2 suggests a novel mechanism underlying the previously undescribed association of extreme microcephaly with severely reduced sulcation and rhombencephalosynapsis. Acta Neuropathol Commun 2018; 6:109. [PMID: 30340542 PMCID: PMC6195752 DOI: 10.1186/s40478-018-0610-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022] Open
Abstract
Extreme microcephaly and rhombencephalosynapsis represent unusual pathological conditions, each of which occurs in isolation or in association with various other cerebral and or extracerebral anomalies. Unlike microcephaly for which several disease-causing genes have been identified with different modes of inheritance, the molecular bases of rhombencephalosynapsis remain unknown and rhombencephalosynapsis presents mainly as a sporadic condition consistent with de novo dominant variations. We report for the first time the association of extreme microcephaly with almost no sulcation and rhombencephalosynapsis in a fœtus for which comparative patient-parent exome sequencing strategy revealed a heterozygous de novo missense variant in the ADGRL2 gene. ADGRL2 encodes latrophilin 2, an adhesion G-protein-coupled receptor whose exogenous ligand is α-latrotoxin. Adgrl2 immunohistochemistry and in situ hybridization revealed expression in the telencephalon, mesencephalon and rhombencephalon of mouse and chicken embryos. In human brain embryos and fœtuses, Adgrl2 immunoreactivity was observed in the hemispheric and cerebellar germinal zones, the cortical plate, basal ganglia, pons and cerebellar cortex. Microfluorimetry experiments evaluating intracellular calcium release in response to α-latrotoxin binding showed significantly reduced cytosolic calcium release in the fœtus amniocytes vs amniocytes from age-matched control fœtuses and in HeLa cells transfected with mutant ADGRL2 cDNA vs wild-type construct. Embryonic lethality was also observed in constitutive Adgrl2−/− mice. In Adgrl2+/− mice, MRI studies revealed microcephaly and vermis hypoplasia. Cell adhesion and wound healing assays demonstrated that the variation increased cell adhesion properties and reduced cell motility. Furthermore, HeLa cells overexpressing mutant ADGRL2 displayed a highly developed cytoplasmic F-actin network related to cytoskeletal dynamic modulation. ADGRL2 is the first gene identified as being responsible for extreme microcephaly with rhombencephalosynapsis. Increased cell adhesion, reduced cell motility and cytoskeletal dynamic alterations induced by the variant therefore represent a new mechanism responsible for microcephaly.
Collapse
|
42
|
Huang KY, Lin HH. The Activation and Signaling Mechanisms of GPR56/ADGRG1 in Melanoma Cell. Front Oncol 2018; 8:304. [PMID: 30135857 PMCID: PMC6092491 DOI: 10.3389/fonc.2018.00304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) constitute the second largest GPCR subfamily. GPR56/ADGRG1 is a member of the ADGRG subgroup of aGPCRs. Although GPR56 is best known for its pivotal role in the cerebral cortical development, it is also important for tumor progression. Numerous studies have revealed that GPR56 is expressed in various cancer types with a role in cancer cell adhesion, migration and metastasis. In a recent study, we found that the immobilized GPR56-specific CG4 antibody enhanced IL-6 production and migration ability of melanoma cells. In this review, we will summarize the current understanding of GPR56 function and discuss the activation and signaling mechanisms of GPR56 in melanoma cells.
Collapse
Affiliation(s)
- Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
43
|
Abstract
In Strongylocentrotus purpuratus, the fucose sulphate polymer (FSP) of egg jelly induces the sperm acrosome reaction (AR; Vacquier & Moy, 1997). Protease treatment of sperm renders the cells insensitive to FSP, indicating that sperm membrane receptors mediate the signal transduction events underlying the AR. Monoclonal antibodies to a 210 kDa membrane glycoprotein induce Ca2+ influx into sperm and trigger the AR (Trimmer et al., 1986; Moy et al., 1996). Purified 210 kDa protein binds species-specifically to egg jelly and blocks AR induction by antibody (Podell & Vacquier, 1985; Moy et al., 1996). FSP binds to the 210 kDa protein attached to Sepharose (Vacquier & Moy, 1997). Monoclonal antibodies localise the 210 kDa protein on the plasma membrane over the acrosome and also on the sperm flagellum. The 210 kDa protein has the attributes of a sperm receptor for egg jelly and is henceforth named suREJ1 (Moy et al., 1996). We describe here the three REJ proteins found thus far in S. purpuratus sperm.
Collapse
|
44
|
Nazarko O, Kibrom A, Winkler J, Leon K, Stoveken H, Salzman G, Merdas K, Lu Y, Narkhede P, Tall G, Prömel S, Araç D. A Comprehensive Mutagenesis Screen of the Adhesion GPCR Latrophilin-1/ADGRL1. iScience 2018; 3:264-278. [PMID: 30428326 PMCID: PMC6137404 DOI: 10.1016/j.isci.2018.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 11/15/2022] Open
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) play critical roles in diverse cellular processes in neurobiology, development, immunity, and numerous diseases. The lack of molecular understanding of their activation mechanisms, especially with regard to the transmembrane domains, hampers further studies to facilitate aGPCR-targeted drug development. Latrophilin-1/ADGRL1 is a model aGPCR that regulates synapse formation and embryogenesis, and its mutations are associated with cancer and attention-deficit/hyperactivity disorder. Here, we established functional assays to monitor latrophilin-1 function and showed the activation of latrophilin-1 by its endogenous agonist peptide. Via a comprehensive mutagenesis screen, we identified transmembrane domain residues essential for latrophilin-1 basal activity and for agonist peptide response. Strikingly, a cancer-associated mutation exhibited increased basal activity and failed to rescue the embryonic developmental phenotype in transgenic worms. These results provide a mechanistic foundation for future aGPCR-targeted drug design.
Collapse
Affiliation(s)
- Olha Nazarko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Amanuel Kibrom
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jana Winkler
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah Stoveken
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel Salzman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Katarzyna Merdas
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Yue Lu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Pradnya Narkhede
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Gregory Tall
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
45
|
Scholz N. Cancer Cell Mechanics: Adhesion G Protein-coupled Receptors in Action? Front Oncol 2018; 8:59. [PMID: 29594040 PMCID: PMC5859372 DOI: 10.3389/fonc.2018.00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
In mammals, numerous organ systems are equipped with adhesion G protein-coupled receptors (aGPCRs) to shape cellular processes including migration, adhesion, polarity and guidance. All of these cell biological aspects are closely associated with tumor cell biology. Consistently, aberrant expression or malfunction of aGPCRs has been associated with dysplasia and tumorigenesis. Mounting evidence indicates that cancer cells comprise viscoelastic properties that are different from that of their non-tumorigenic counterparts, a feature that is believed to contribute to the increased motility and invasiveness of metastatic cancer cells. This is particularly interesting in light of the recent identification of the mechanosensitive facility of aGPCRs. aGPCRs are signified by large extracellular domains (ECDs) with adhesive properties, which promote the engagement with insoluble ligands. This configuration may enable reliable force transmission to the ECDs and may constitute a molecular switch, vital for mechano-dependent aGPCR signaling. The investigation of aGPCR function in mechanosensation is still in its infancy and has been largely restricted to physiological contexts. It remains to be elucidated if and how aGPCR function affects the mechanoregulation of tumor cells, how this may shape the mechanical signature and ultimately determines the pathological features of a cancer cell. This article aims to view known aGPCR functions from a biomechanical perspective and to delineate how this might impinge on the mechanobiology of cancer cells.
Collapse
Affiliation(s)
- Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
46
|
Gα i-mediated TRPC4 activation by polycystin-1 contributes to endothelial function via STAT1 activation. Sci Rep 2018; 8:3480. [PMID: 29472562 PMCID: PMC5823873 DOI: 10.1038/s41598-018-21873-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/13/2018] [Indexed: 12/02/2022] Open
Abstract
Hypertension and aneurysm are frequently associated with autosomal dominant polycystic kidney disease (ADPKD) caused by polycystin-1 (PC1) mutations, which is closely related to endothelial dysfunction. PC1 is an atypical G-protein-coupled receptor that activates G-proteins by self-cleavage; currently, however, the molecular and cellular mechanisms of the associated intracellular signaling and ion channel activation remain poorly elucidated. Here, we report an activation mechanism of a calcium-permeable canonical transient receptor potential 4 (TRPC4) channel by PC1 and its endothelial function. We found that the inhibitory Gαi3 protein selectively bound to the G-protein-binding domain on the C-terminus of PC1. The dissociation of Gαi3 upon cleavage of PC1 increased TRPC4 activity. Calcium influx through TRPC4 activated the transcription factor STAT1 to regulate cell proliferation and death. The down-regulation of PC1/TRPC4/STAT1 disrupted migration of endothelial cell monolayers, leading to an increase in endothelial permeability. These findings contribute to greater understanding of the high risk of aneurysm in patients with ADPKD.
Collapse
|
47
|
Südhof TC. Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. Cell 2017; 171:745-769. [PMID: 29100073 DOI: 10.1016/j.cell.2017.10.024] [Citation(s) in RCA: 485] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
Synapses are specialized junctions between neurons in brain that transmit and compute information, thereby connecting neurons into millions of overlapping and interdigitated neural circuits. Here, we posit that the establishment, properties, and dynamics of synapses are governed by a molecular logic that is controlled by diverse trans-synaptic signaling molecules. Neurexins, expressed in thousands of alternatively spliced isoforms, are central components of this dynamic code. Presynaptic neurexins regulate synapse properties via differential binding to multifarious postsynaptic ligands, such as neuroligins, cerebellin/GluD complexes, and latrophilins, thereby shaping the input/output relations of their resident neural circuits. Mutations in genes encoding neurexins and their ligands are associated with diverse neuropsychiatric disorders, especially schizophrenia, autism, and Tourette syndrome. Thus, neurexins nucleate an overall trans-synaptic signaling network that controls synapse properties, which thereby determines the precise responses of synapses to spike patterns in a neuron and circuit and which is vulnerable to impairments in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, 265 Campus Drive, CA 94305-5453, USA.
| |
Collapse
|
48
|
Anderson GR, Maxeiner S, Sando R, Tsetsenis T, Malenka RC, Südhof TC. Postsynaptic adhesion GPCR latrophilin-2 mediates target recognition in entorhinal-hippocampal synapse assembly. J Cell Biol 2017; 216:3831-3846. [PMID: 28972101 PMCID: PMC5674891 DOI: 10.1083/jcb.201703042] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/24/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Synapse assembly likely requires postsynaptic target recognition by incoming presynaptic afferents. Using newly generated conditional knock-in and knockout mice, we show in this study that latrophilin-2 (Lphn2), a cell-adhesion G protein-coupled receptor and presumptive α-latrotoxin receptor, controls the numbers of a specific subset of synapses in CA1-region hippocampal neurons, suggesting that Lphn2 acts as a synaptic target-recognition molecule. In cultured hippocampal neurons, Lphn2 maintained synapse numbers via a postsynaptic instead of a presynaptic mechanism, which was surprising given its presumptive role as an α-latrotoxin receptor. In CA1-region neurons in vivo, Lphn2 was specifically targeted to dendritic spines in the stratum lacunosum-moleculare, which form synapses with presynaptic entorhinal cortex afferents. In this study, postsynaptic deletion of Lphn2 selectively decreased spine numbers and impaired synaptic inputs from entorhinal but not Schaffer-collateral afferents. Behaviorally, loss of Lphn2 from the CA1 region increased spatial memory retention but decreased learning of sequential spatial memory tasks. Thus, Lphn2 appears to control synapse numbers in the entorhinal cortex/CA1 region circuit by acting as a domain-specific postsynaptic target-recognition molecule.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/physiopathology
- Cells, Cultured
- Dendritic Spines/metabolism
- Dendritic Spines/pathology
- Entorhinal Cortex/metabolism
- Entorhinal Cortex/pathology
- Entorhinal Cortex/physiopathology
- Fear
- Genotype
- Maze Learning
- Memory
- Mice, Mutant Strains
- Motor Activity
- Neurons/metabolism
- Neurons/pathology
- Phenotype
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/pathology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Rotarod Performance Test
- Smell
- Synaptic Membranes/metabolism
- Synaptic Membranes/pathology
- Synaptic Potentials
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Garret R Anderson
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA
- Department of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University Medical School, Stanford, CA
| | - Stephan Maxeiner
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA
| | - Theodoros Tsetsenis
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University Medical School, Stanford, CA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA
| |
Collapse
|
49
|
Abstract
The adhesion G protein-coupled receptors (aGPCRs) are an evolutionarily ancient family of receptors that play key roles in many different physiological processes. These receptors are notable for their exceptionally long ectodomains, which span several hundred to several thousand amino acids and contain various adhesion-related domains, as well as a GPCR autoproteolysis-inducing (GAIN) domain. The GAIN domain is conserved throughout almost the entire family and undergoes autoproteolysis to cleave the receptors into two noncovalently-associated protomers. Recent studies have revealed that the signaling activity of aGPCRs is largely determined by changes in the interactions among these protomers. We review recent advances in understanding aGPCR activation mechanisms and discuss the physiological roles and pharmacological properties of aGPCRs, with an eye toward the potential utility of these receptors as drug targets.
Collapse
Affiliation(s)
- Ryan H Purcell
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| |
Collapse
|
50
|
Scholz N, Guan C, Nieberler M, Grotemeyer A, Maiellaro I, Gao S, Beck S, Pawlak M, Sauer M, Asan E, Rothemund S, Winkler J, Prömel S, Nagel G, Langenhan T, Kittel RJ. Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons. eLife 2017; 6. [PMID: 28784204 PMCID: PMC5548486 DOI: 10.7554/elife.28360] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/29/2017] [Indexed: 01/02/2023] Open
Abstract
Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.
Collapse
Affiliation(s)
- Nicole Scholz
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany.,Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Chonglin Guan
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Matthias Nieberler
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Alexander Grotemeyer
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Isabella Maiellaro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.,Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Shiqiang Gao
- Department of Biology, Institute for Molecular Plant Physiology and Biophysics, University of Würzburg Biocenter, Würzburg, Germany
| | - Sebastian Beck
- Department of Biology, Institute for Molecular Plant Physiology and Biophysics, University of Würzburg Biocenter, Würzburg, Germany
| | - Matthias Pawlak
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg Biocenter, Würzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Sven Rothemund
- Core Unit Peptide Technologies, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Jana Winkler
- Rudolf Schönheimer Institute of Biochemistry, Division of Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Division of Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Georg Nagel
- Department of Biology, Institute for Molecular Plant Physiology and Biophysics, University of Würzburg Biocenter, Würzburg, Germany
| | - Tobias Langenhan
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany.,Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|